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Abstract—Audio tagging is the task of predicting the presence
or absence of sound classes within an audio clip. Previous work
in audio tagging focused on relatively small datasets limited to
recognising a small number of sound classes. We investigate
audio tagging on AudioSet, which is a dataset consisting of
over 2 million audio clips and 527 classes. AudioSet is weakly
labelled, in that only the presence or absence of sound classes
is known for each clip, while the onset and offset times are
unknown. To address the weakly-labelled audio tagging problem,
we propose attention neural networks as a way to attend the most
salient parts of an audio clip. We bridge the connection between
attention neural networks and multiple instance learning (MIL)
methods, and propose decision-level and feature-level attention
neural networks for audio tagging. We investigate attention
neural networks modelled by different functions, depths and
widths. Experiments on AudioSet show that the feature-level
attention neural network achieves a state-of-the-art mean average
precision (mAP) of 0.369, outperforming the best multiple in-
stance learning (MIL) method of 0.317 and Google’s deep neural
network baseline of 0.314. In addition, we discover that the audio
tagging performance on AudioSet embedding features has a weak
correlation with the number of training samples and the quality
of labels of each sound class.

Index Terms—Audio tagging, AudioSet, attention neural net-
work, weakly labelled data, multiple instance learning.

I. INTRODUCTION

Audio tagging is the task of predicting the tags of an audio
clip. Audio tagging is a multi-class tagging problem to predict
zero, one or multiple tags for an audio clip. As a specific
task of audio tagging, audio scene classification often involves
the prediction of only one label in an audio clip, i.e. the
type of environment in which the sound is present. In this
paper, we focus on audio tagging. Audio tagging has many
applications such as music tagging [1] and information retrieval
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[2]. An example of audio tagging that has attracted significant
attention in recent years is the classification of environmental
sounds, that is, predicting the scenes where they are recorded.
For instance, the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges [3]–[6] consist of
tasks from a variety of domains, such as DCASE 2018 Task 1
classification of outdoor sounds, DCASE 2017 Task4 tagging
of street sounds and DCASE 2016 Task4 tagging of domestic
sounds. These challenges provide labelled datasets, so it is
possible to use supervised learning algorithms for audio tagging.
However, many audio tagging datasets are relatively small [3]–
[6], ranging from hundreds to thousands of training samples,
while modern machine learning methods such as deep learning
[7, 8] often benefit greatly from larger dataset for training.

In 2017, a large-scale dataset called AudioSet [9] was
released by Google. AudioSet consists of audio clips extracted
from YouTube videos, and is the first dataset that achieves
a similar scale to the well-known ImageNet [10] dataset in
computer vision. The current version (v1) of AudioSet consists
of 2,084,320 audio clips organised into a hierarchical ontology
with 527 predefined sound classes in total. Each audio clip in
AudioSet is approximately 10 seconds in length, leading to
5800 hours of audio in total. AudioSet provides an opportunity
for researchers to investigate a large and broad variety of sounds
instead of being limited to small datasets with limited sound
classes.

One challenge of AudioSet tagging is that AudioSet is a
weakly-labelled dataset (WLD) [11, 12]. That is, for each
audio clip in the dataset, only the presence or the absence of
sound classes is indicated, while the onset and offset times are
unknown. In previous work in audio tagging, an audio clip is
usually split into segments and each segment is assigned with
the label of the audio clip [13]. However, as the onset and
offset of sound events are unknown so such label assignment
can be incorrect. For example, a transient sound event may only
appear a short time in a long audio recording. The duration
of sound events can be very different and there is no prior
knowledge of their duration. Different from ImageNet [10] for
image classification where objects are usually centered and have
similar scale, in AudioSet the duration of sound events may vary
a lot. To illustrate, Fig. 1 from top to bottom shows: the log mel
spectrogram of a 10-second audio clip1; AudioSet bottleneck
features [9] extracted by a pre-trained VGGish convolutional
network followed by a principal component analysis (PCA);
weak labels of the audio including “music”, “chuckle”, “snicker”

1https://www.youtube.com/embed/Wxa36SSZx8o?start=70&end=80
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Fig. 1. From top to bottom: Log mel spectrogram of a 10-second audio clip;
AudioSet bottleneck features extracted by a pre-trained VGGish convolutional
neural network followed by a principle component analysis (PCA) [14]; Weak
labels of the audio clip. There are no onset and offset times of the sound
classes.

and “speech’. In contrast to WLD, strongly labelled data (SLD)
refers to the data labelled with both the presence of sound
classes as well as their onset and offset times. For example,
the sound event detection tasks in DCASE challenge 2013,
2016, 2017 [3, 5, 6] provide SLD. However, labelling onset
and offset times of sound events is time-consuming, so these
strongly labelled datasets are usually limited to a relatively
small size [3, 5, 6], which may limit the performance of deep
neural networks that require large data to train a good model.

In this paper, we train an audio tagging system on the large-
scale weakly labelled AudioSet. We bridge our previously
proposed attention neural networks [15, 16] with multiple
instance learning (MIL) [17] and propose decision-level and
feature-level attention neural networks for audio tagging. The
contributions of this paper include the following:
• Decision-level and feature-level attention neural networks

are proposed for audio tagging;
• Attention neural networks modelled by different functions,

widths and depth are investigated;
• The impact of the number of training samples per class

on the audio tagging performance is studied;
• The impact of the quality of labels on the audio tagging

performance is studied.
This paper is organised as follows. Section II introduces

audio tagging with weakly labelled data. Section III introduces
our previously proposed attention neural networks [15, 16].
Section IV introduces multiple instance learning. Section V
reviews attention neural networks under the MIL framework
and proposes decision-level and feature-level attention mod-
els. Section VI shows the experimental results. Section VII
concludes and forecasts future work.

II. AUDIO TAGGING WITH WEAKLY LABELLED DATA

Audio tagging has attracted much research interests in recent
years. For example, the tagging of the CHiME Home dataset
[18], the UrbanSound dataset [19] and datasets from the
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges in 2013 [20], 2016 [21], 2017 [6] and
2018 [22]. The DCASE 2018 Challenge includes acoustic scene
classification [22], general purpose audio tagging [23] and bird
audio detection [24] tasks. Mel frequency cepstral coefficients
(MFCC) [25]–[27] have been widely used as features to build

audio tagging systems. Other features used for audio tagging
include pitch features [26] and I-vectors [27]. Classifiers include
such as Gaussian mixture models (GMMs) [28] and support
vector machines [29]. Recently, neural networks have been
used for audio tagging with mel spectrograms as input features.
A variety of neural network methods including fully-connected
neural networks [13], convolutional neural networks (CNNs)
[14, 30, 31] and convolutional recurrent neural networks
(CRNNs) [32, 33] have been explored for audio tagging. For
sound localization, an identify, locate and separate model [34]
was proposed for audio-visual object extraction in large video
collections using weak supervision.

A WLD consists of a set of bags, where each bag is a
collection of instances. For a particular sound class, a positive
bag contains at least one positive instance, while a negative
bag contains no positive instances. We denote the n-th bag in
the dataset as Bn = {xn1, ...,xnTn}, where Tn is the number
of instances in the bag. An instance xnt ∈ RM in the bag
has a dimension of M . A WLD can be denoted as D =
{Bn,yn}Nn=1, where yn ∈ {0, 1}K denotes the tags of bag
Bn, and K and N are the number of classes and training
samples, respectively. In WLD, each bag Bn has associated
tags but we do not know the tags of individual instances xnt

within the bag [35]. For example, in the AudioSet dataset, a
bag consists of instances that are bottleneck features obtained
by inputting a logmel to a pre-trained VGGish convolutional
neural network. In the following sections, we omit the training
example index n and the time index t to simplify notation.

Previous audio tagging systems using WLD have been based
on segment based methods. Each segment is called an instance
and are assigned the tags inherited from the audio clip. During
training, instance-level classifiers are trained on individual
instances. During inference, bag-level predictions are obtained
by aggregating the instance-level predictions [13]. Recently,
convolutional neural networks have been applied to audio
tagging [32], where the log spectrogram of an audio clip
is used as input to a CNN classifier without predicting the
individual instances explicitly. Attention neural networks have
been proposed for AudioSet tagging in [15, 16]. Later, a clip-
level and segment-level model with attention supervision was
proposed in [36].

III. AUDIO TAGGING WITH ATTENTION NEURAL NETWORKS

A. Segment based methods

R3: In segment based methods, an audio clip is split into
segments and each segment is assigned the tags inherited from
the audio clip. In MIL, each segment is called an instance. An
instance-level classifier f is trained on the individual instances:
f : x 7→ f(x), where f(x) ∈ [0, 1]K predicts the presence
probabilities of sound classes. The function f depends on a set
of learnable parameters that can be optimised using gradient
descent methods with the loss function

l(f(x),y) = d(f(x),y), (1)
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where y ∈ {0, 1}K are the tags of the instance x and d(·, ·) is
a loss function. For instance, it could be binary cross-entropy
for multi-class tagging, given by

d(f(x),y) = −
K∑

k=1

[yklogf(x)k+(1−yk)log(1−f(x)k]. (2)

In inference, the prediction of a bag is obtained by aggregating
the predictions of individual instances in the bag such as
by majority voting [13]. The segment based model has been
applied to many tasks such as information retrieval [37] due to
its simplicity and efficiency. However, the assumption that all
instances inherit the tags of a bag is incorrect. For example,
some sound events may only occur for a short time in an audio
clip.

B. Attention neural networks

Attention neural networks were first proposed for natural
language processing [38, 39], where the words in a sentence are
attended differently for machine translation. Attention neural
networks are designed to attend to important words and ignore
irrelevant words. Attention models have also been applied to
computer vision, such as image captioning [40] and information
retrieval [41]. We proposed attention neural networks for audio
tagging and sound event detection with WLD in [15, 33]: these
were ranked first in the DCASE 2017 Task 4 challenge [33].
In a similar way to the segment based model, attention neural
networks build an instance-level classifier f(x) for individual
instances x. In contrast to the segment based model, attention
neural networks do not assume that instances in a bag have
the same tags as the bag. As a result, there is no instance-level
ground truth for supervised learning using (1). To solve this
problem, we aggregate the instance-level predictions f(x) to
a bag-level prediction F (B) given by

F (B)k =
∑
x∈B

p(x)kf(x)k, (3)

where p(x)k is a weight of f(x)k that we refer to as an
attention function. The attention function p(x)k should satisfy∑

x∈B
p(x)k = 1, (4)

so that the bag-level prediction can be seen as a weighted sum
of the instance-level predictions. Both the attention function
p(x) and the instance-level classifier f(x) depend on a set of
learnable parameters. The attention function p(x)k controls
how much a prediction f(x)k should be attended. Large p(x)k
indicates that f(x)k should be attended, while small p(x)k
indicates that f(x)k should be ignored. To satisfy (4), the
attention function p(x)k can be modelled as

p(x)k = v(x)k/
∑
x∈B

v(x)k, (5)

where v(·) can be any non-negative function to ensure that p(·)
is a probability.

An extension of the attention neural network in (3) is the
multi-level attention model [16], where multiple attention

modules are applied to utilise the hierarchical information
of neural networks:

F (B) = g(F1(B), ..., FL(B)), (6)

where Fl(B) is the output of the l-th attention module and
L is the number of attention modules. Each Fl(B) can be
modeled by (3). Then a mapping g is used to map from the
predictions of L attention modules to the final prediction of
a bag. The multi-level attention neural network has achieved
state-of-the-art performance in AudioSet tagging.

In the next section, we show that the attention neural
networks explored above can be categorised into an MIL
framework.

IV. MULTIPLE INSTANCE LEARNING

Multiple instance learning (MIL) [17, 42] is a type of
supervised learning method. Instead of receiving a set of
labelled instances, the learner receives a set of labelled bags.
MIL methods have many applications. For example, in [42],
MIL is used to predict whether new molecules are qualified
to make some new drug, where molecules may have many
alternative low-energy states, but only one, or some of them,
are qualified to make a drug. Inspired by the MIL methods,
a sound event detection system trained on WLD [11] was
proposed. General MIL methods include the expectation-
maximization diversity density (EM-DD) method [43], support
vector machine (SVM) methods [44] and neural network MIL
methods [45, 46]. In [47], several MIL pooling methods were
investigated in audio tagging. Attention-based deep multiple
instance learning is proposed in [48].

In [35], MIL methods are grouped into three categories:
the instance space (IS) methods, where the discriminative
information is considered to lie at the instance-level; the bag
space (BS) methods, where the discriminative information is
considered to lie at the bag-level; and the embedded space
(ES) methods, where each bag is mapped to a single feature
vector that summarises the relevant information about a bag.
We introduce the IS, BS and ES methods in more detail below.

A. Instance space methods

In IS methods, an instance-level classifier f : x 7→ f(x) is
used to predict the tags of an instance x, where f(x) ∈ [0, 1]K

predicts the presence probabilities of sound classes. The IS
methods introduce aggregation functions [35] to convert an
instance-level classifier f to a bag-level classifier F : B 7→
[0, 1]K , given by

F (B) = agg ({f(x)}x∈B) , (7)

where agg(·) is an aggregation function. The classifier f
depends on a set of learnable parameters. When the IS method
is trained with (1) in which each instance inherits the tags
of the bag, the IS method is equivalent to the segment based
model. On the other hand, the IS method can also be trained
using the bag-level loss function:

l(F (B),y) = d(F (B),y), (8)
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where y ∈ {0, 1}K is the tag of the bag and d(·, ·) is a loss
function such as the binary cross-entropy in (2).

To model the aggregation function, the standard multiple
instance (SMI) assumption and collective assumption (CA)
are proposed in [35]. Under the SMI assumption, a bag-level
classifier can be obtained by

F (B)k = max
x∈B

f(x)k, (9)

where the subscript k denotes the k-th sound class of the
instance-level prediction f(x) and the bag-level prediction
F (B). Under the SMI assumption, for the k-th sound class,
only one instance with the maximum prediction probability is
chosen as a positive instance.

One problem of the SMI assumption is that a positive bag
may contain more than one positive instance. In SED, some
sound classes such as “ambulance siren” may last for several
seconds and may occur in many instances. In contrast to the
SMI assumption, with the CA assumption, all the instances
in a bag contribute equally to the tags of the bag. The bag-
level prediction can be obtained by averaging the instance-level
predictions:

F (B) =
1

|B|
∑
x∈B

f(x). (10)

The symbol |B| denotes the number of instances in bag B.
Equation (10) shows that CA is based on the assumption that
all the instances in a positive bag are positive.

B. Bag space methods

Instead of building an instance-level classifier, the BS
methods regard a bag B as an entirety. Building a tagging model
on the bags rely on a distance function D(·, ·) : B ×B 7→ R.
The distance function can be, for example, the Hausdorff
distance [49]:

D(B1, B2) = min
x1∈B1,x2∈B2

‖x1 − x2‖ . (11)

In (11), the distance between two bags is the minimum distance
between the instances in bag B1 and B2. Then this distance
function can be plugged into a standard distance-based classifier
such as a k-nearest neighbour (KNN) or a support vector
machine (SVM) algorithm. The computational complexity of
(11) is |B1||B2|, which is larger than the IS and the ES methods
described below.

C. Embedded space methods

Different from the IS methods, ES methods do not clas-
sify individual instances. Instead, the ES methods define an
embedding mapping from a bag to an embedding vector:

femb : B 7→ h. (12)

Then the tags of a bag is obtained by applying a function g
on the embedding vector:

F (B) = g(h). (13)

The embedding mapping femb can be modelled in many ways.
For example, by averaging the instances in a bag, as in the
simple MI method in [50]:

h =
1

|B|
∑
x∈B

x. (14)

Alternatively, the mapping can be obtained in terms of the
max-min operations on the instances [51]:

h = (a1, ..., aM , b1, ..., bM ),

am = max
x∈B

(xm),

bm = min
x∈B

(xm),

(15)

where xm is the m-th dimension of x. Equation (15) shows
that only one instance with the maximum or the minimum
value is chosen for each dimension, while other instances have
no contribution to the embedding vector h. The ES methods
summarise a bag containing an arbitrary number of instances
with a vector of fixed size. Similar methods have been proposed
in natural language processing to summarise sentences with a
variable number of words [52].

V. ATTENTION NEURAL NETWORKS UNDER MIL

In this section, we show that the previously proposed
attention neural networks [15, 16] belong to MIL frameworks,
especially the IS methods. We refer to these attention neural
networks as decision-level attention neural networks, because
the prediction of a bag is obtained by aggregating the pre-
dictions of instances (see (7)). We then propose feature-level
attention neural networks inspired by the ES methods with
attention in the hidden layers.

A. Decision-level attention neural networks

The IS methods predict the tags of a bag by aggregating the
predictions of individual instances in the bag described in (7).
Section IV-A shows that conventional IS methods are based
on either the SMI assumption (see (9)) or the CA (see (10)).
The problem of the SMI assumption is that only one instance
in a bag is considered to be positive for a sound class while
other instances are not considered. The SMI assumption is not
appropriate for bags with more than one positive instance for a
sound class. On the other hand, CA assumes that all instances
in a positive bag are positive. CA is not appropriate for sound
events that only last for a short time. To address the problems
of the SMI and CA methods, a decision-level attention neural
network based on the IS methods in (7) is proposed to learn
an attention function to weight the predictions of instances in
a bag, so that

F (B)k = agg({f(x)k}x∈B)

=
∑
x∈B

p(x)kf(x)k,
(16)

where p(x) is an attention function modelled by (5). We refer
to (16) as a decision-level attention neural network because the
attention function p(x) is multiplied with the predictions of the
instances f(x) to obtain the bag-level prediction. The attention
function p(x) controls how much the prediction of an instance
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p(x)kf(x)k

p(x) f(x)

p(x)kf(x)k

p(x) f(x)

p(x)kf(x)k

f(x)

p(x)

x x

(a) (c)

x

(b)

Fwd

Fig. 2. (a) Joint detection and classification (JDC) model; (b) Self attention
neural network in [53]; (c) Proposed attention neural network [15]. The blue
outlined block in (c) is called a forward (FWD) block.

f(x) should be attended or ignored. Equation (16) can be seen
as a general case of the SMI and CA assumptions. When one
instance x in a bag has a value of p(x) = 1 the other instances
have values of p(x) = 0, then (16) is equivalent to the SMI
assumption in (9). When p(x) = 1

|B| for all instances in a bag,
(16) is equivalent to CA.

Fig. 2 shows different ways to model the attention neural
network in (16). For example, Fig. 2(a) shows the joint detection
and classification (JDC) model [12] with attention function p
and the classifier f modelled by separate branches. Fig. 2(b)
shows the self attention neural network [53] proposed in natural
language processing. Fig. 2(c) shows the JDC improved by
using shared layers for the attention function p and the classifier
f before they separate in the penultimate layer [15].

In the attention neural networks, both p and f depend on
a set of learnable parameters which can be optimised with
gradient descent methods using the loss function in (8). For the
proposed model in Fig. 2(c), the attention function p and the
classifier f share the low-level layers. We denote the output
of the layer before they separate as x′. The mapping from x
to x′ can be modelled by fully-connected layers, for example.

x′ = fFC(x). (17)

The classifier f can be modelled by

f(x) = σ(W1x
′ + b1), (18)

where σ(x) = 1/(1 + e−x) is the sigmoid function. The
attention function p can be modelled by{

v(x′)k = φ1(U1x
′ + c1),

p(x)k = v(x′)k/
∑

x∈B v(x
′)k,

(19)

where φ1 can be any non-negative function to ensure p(x)k is
a probability.

B. Feature-level attention neural network

The limitation of the decision-level attention neural networks
is that the attention function p(x) is only applied to the
prediction of the instances f(x), as shown in (16). In this
section, we propose to apply attention to the hidden layers of
a neural network. This is inspired by the ES methods in (12),
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Fig. 3. (a) Decision-level single attention neural network [15]; (b) Decision-
level multiple attention neural network [16]; (c) Feature-level attention neural
network (proposed).

where a bag B is mapped to a fixed-size vector h before being
classified. We model (12) with attention aggregation:

hj =
∑
x∈B

q(x)ju(x)j , (20)

where both q(x) ∈ [0, 1]J and u(x) ∈ RJ have a dimension of
J . The embedded vector h ∈ RJ summarises the information of
a bag. Then the tags of a bag B can be obtained by classifying
the embedding vector:

F (B) = f(h). (21)

The probability q(x)j in (20) is the attention function of u(x)j
and should satisfy ∑

x∈B
q(x)j = 1. (22)

We model u(x) with

u(x) = ψ(W2x
′ + b1), (23)

where ψ can be any linear or non-linear function to increase
the representation ability of the model. The attention function
q can be modelled by{

w(x′)j = φ2(U2x
′ + c2),

q(x)j = w(x′)j/
∑

x∈B w(x
′)j ,

(24)

where w(x)j can be any non-negative function to ensure q(x)j
is a probability.

Fig. 3 shows the decision-level single attention [15], decision-
level multiple attention [16] and the proposed feature-level
attention neural network. The forward (Fwd) block in Fig. 3
is the same as the block in Fig. 2(c). The difference between
the feature-level attention function q(x) and the decision-level
attention function p(x) is that the dimension of q(x) can be any
value, while the dimension of p(x) is fixed to be the number of
sound classes K. Therefore, the capacity of the decision-level
attention neural networks is limited. With an increase in the
dimension of q(x), the capacity of feature-level attention neural
networks is increased. The decision-level attention function
attends to the predictions of instances, while the feature-level
attention function attends to the features, so it is equivalent to
feature selection. The multi-level attention model [16] in (6) can
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Fig. 4. Distribution of the number of sound classes in an audio clip.

be seen as a special case of the feature-level attention model,
with embedding vector h = (F1(B), ..., FL(B)). The superior
performance of the multi-level attention model shows that the
feature-level attention neural networks have the potential to
perform better than the decision-level attention neural networks.

C. Modeling the attention function with different non-linearity

We adopt Fig. 2(c) as the backbone of our attention neural
networks. The attention function p and q for the decision-level
and feature-level attention neural networks are obtained via
non-negative functions φ1 and φ2, respectively. The φ1 and
φ2 appearing in the summation term of the denominator of
(19) and (24) may affect the optimisation of the attention
neural networks. We investigate modelling φ2 in the feature-
level attention neural networks with different non-negative
functions, including ReLU [54], exponential, sigmoid, softmax
and network-in-network (NIN) [55]. We omit the evaluation of
φ1, as the feature-level attention neural networks outperform the
decision-level attention neural networks. The ReLU function
is defined as [54]

φ(z) = max(z, 0). (25)

The exponential function is defined as

φ(z) = ez. (26)

The sigmoid function is defined as

φ(z) =
1

1 + e−z
. (27)

For a vector z, the softmax function is defined as

φ(zj) =
ezj∑
k e

zk
. (28)

The network-in-network function [55] is defined as

φ(z) = σ(H2ψ(H1z+ d1) + d2), (29)

where H1, H2 are transformation matrices, d1 and d2 are
biases, ψ is ReLU nonlinearity and σ is the sigmoid function.

VGGish
CNN

AudioSet
2 million clips

527 classes

YouTube 100M
20 billion clips
3087 classes

Log mel
spectrogram

AudioSet
bottleneck

features

Log mel
spectrogram Inference

Fig. 5. A VGGish CNN model is trained on the YouTube 100M dataset.
Audio clips from AudioSet are given as input to the trained VGGish CNN to
extract the bottleneck features, which are released by AudioSet.

VI. EXPERIMENTS

A. Dataset

We evaluate the proposed attention neural networks on
AudioSet [9], which consists of 2,084,320 10-second audio clips
extracted from YouTube video with a hierarchical ontology of
527 classes in the released version (v1). We released both Keras
and PyTorch implementations of our code online2. AudioSet
consists of a variety of sounds. AudioSet is multi-labelled, such
that each audio clip may contain more than one sound class.
Fig. 4 shows the statistics of the number of sound classes in
the audio clips. All audio clips contain at least one label. Out
of over 2,084,320 audio clips, there are 896,045 audio clips
containing one sound class, followed by around 684,166 audio
clips containing two sound classes. Only 4,661 audio clips
have more than 7 labels.

Instead of providing raw audio waveforms, AudioSet pro-
vides bottleneck features of audio clips. The bottleneck features
are extracted from the bottleneck layer of a VGGish CNN,
pre-trained on 70 million audio clips from the YouTube100M
dataset [14]. The VGGish CNN consists of 6 convolutional
layers with kernel size of 3× 3 and 2 fully layers. To begin
with, the 70 million training audio clips are segmented to non-
overlapping 960 ms segments. Each segment inherits all tags
of its parent video. Then short-time Fourier transform (STFT)
is applied on each 960 ms segment with a window size of 25
ms and a hop size of 10 ms to obtain a spectrogram. Then
a mel filter bank with 64 frequency bins is applied on the
spectrograms followed by a logarithmic operation to obtain
log mel spectrograms. Each log mel spectrogram of a segment
has a shape of 96 × 64, representing the time steps and the
number of mel frequency bins. A VGGish CNN is trained on
these log mel spectrograms with the 3087 most frequent labels.
After training, the VGGish CNN is used as a feature extractor.
By inputting an audio clip to the VGGish CNN, the outputs
of the bottleneck layer are used as bottleneck features of the
audio clip. The framework of AudioSet feature extraction is
shown in Fig. 5.

B. Evaluation criterion

We first introduce basic statistics [56]: true positive (TP),
where both the reference and the system prediction indicate
an event to be active; false negative (FN), where the reference
indicates an event is active but the system prediction indicates

2https://github.com/qiuqiangkong/audioset_classification
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Fig. 6. AudioSet statistics. Upper bars: the number of audio clips of a specific sound class sorted in descending order plotted in log scale with respect to the
sound classes. Red stems: average precision (AP) of sound classes with the feature-level attention model.

TABLE I
BASELINE RESULTS OF SEGMENT BASED METHOD, IS AND ES METHODS

mAP AUC d-prime

Random guess 0.005 0.500 0.000
Google baseline [9] 0.314 0.959 2.452

Segment based [13] 0.293 0.960 2.483

(IS) SMI assumption [11] 0.292 0.960 2.471
(IS) Collective assumption 0.300 0.964 2.536

(ES) Average instances [50] 0.317 0.963 2.529
(ES) Max instance 0.284 0.958 2.443
(ES) Min instance 0.281 0.956 2.413

(ES) Max-min instance [51] 0.306 0.962 2.505

an event is inactive; false positive (FP), where the system
prediction indicates an event is active but the reference indicates
it is inactive; true negative (TN), where both the reference and
the system prediction indicate an event is inactive. Precision
(P) and recall (R) are defined as in [56]:

P =
TP

TP + FP
, R =

TP
TP + FN

. (30)

In addition, the false positive rate is defined as [56]

FPR =
FP

FP + TN
. (31)

Following [9], we adopt mean average precision (mAP), area
under the curve (AUC) and d-prime as evaluation metrics.
Average precision (AP) [9] is defined as the area under the
recall-precision curve of a specific class. The mean average
precision (mAP) is the average value of AP over all classes. As
AP is regardless of TN, AUC is used as a complementary metric.
AUC is the area under the receiver operating characteristic
(ROC) created by plotting the recall against the false positive
rate (FPR) at various threshold settings for a specific class.
We use mAUC to denote the average value of AUC over all
classes. D-prime is a statistic used in signal detection theory
that provides separation between signal and noise distributions.
D-prime is obtained via a transformation of AUC and has a
better dynamic range than AUC when AUC is larger than 0.9. A

TABLE II
RESULTS OF ES AVERAGE INSTANCES METHOD WITH DIFFERENT

BALANCING STRATEGY.

mAP AUC d-prime

Balanced data 0.274 0.949 2.316
Full data (no bal. training) 0.268 0.950 2.331

Full data (bal. training) 0.317 0.963 2.529

higher mAP, AUC and d-prime indicates a better performance.
D-prime can be calculated by [9]:

d-prime =
√
2F−1x (AUC), (32)

where F−1x is an inverse of the cumulative distribution function
defined by

Fx(x) =

∫ x

−∞

1√
2π
e

−(x−µ)2
2 dx. (8)

C. Baseline system

We build baseline systems with segment based method, IS
and ES models without the attention mechanism described
in Section III-A, IV-A and IV-C, respectively. In the segment
based model, a classifier is trained on individual instances,
where each instance inherits the tags of a bag. A three-layer
fully-connected neural network with 1024 hidden units and
ReLU [54] non-linearity is applied. Dropout [57] with a rate of
0.5 is used to prevent overfitting. The loss function for training
is given in (1). In inference, the prediction is obtained by
averaging the prediction of individual instances. The IS models
have the same structure as the segment based model. Different
from the segment based model, the instance-level predictions
by the IS models are aggregated to a bag-level prediction by
either the SMI assumption in (9) or CA in (10). The loss
function is calculated from (8). The ES method aggregates the
instances of a bag to an embedded vector before tagging. The
embedding function can be the averaging mapping in (14) or
max-min vector mapping in (15). Then the embedded vector
is input to a neural network in the same way as the segment
based model. The loss function is calculated from (8). We
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adopt the Adam optimiser [58] with a learning rate of 0.001 in
training. The mini-batch size is set to 500. The networks are
trained for a total number of 50,000 iterations. We average the
predictions of 9 models from 10,000 to 50,000 iterations as
the final prediction to ensemble and stabilise the result, which
can reduce the prediction randomness caused by the model.

Table I shows the tagging result of segment based method, IS
and ES baseline methods. The first row shows that the random
guess achieves an mAP of 0.005, an AUC of 0.500 and a
d-prime of 0. The segment based model achieves an mAP of
0.293, slightly better than the IS methods with the CA and SMI
assumption, with mAP of 0.300 and 0.292, respectively. The
sixth to the ninth rows show that both the ES methods with
averaging and the max-min instances perform better than the
segment based model and IS methods. Averaging the instances
performs the best in the ES methods with an mAP of 0.317,
an AUC of 0.963 and a d-prime of 2.529.

D. Data balancing
AudioSet is highly imbalanced, as some sound classes such

as speech and music are more frequent than others. The upper
bars in Fig. 6 show the number of audio clips per class sorted
in descending order (in log scale). The data has a long tail
distribution. Music and speech appear in almost 1 million audio
clips while some sounds such as gargling and toothbrush only
appear in hundreds of audio clips. AudioSet provides a balanced
subset consisting of 22,160 audio clips. The lower bars in Fig.
6 show the number of audio clips per class of the balanced
subset. When training a neural network, data is loaded in mini
batches. We found that without a balancing strategy, the classes
with fewer samples are less likely to be selected in training.
Several balancing strategies have been investigated in image
classification such as balancing the frequent and infrequent
classes [59]. In this paper, we follow the mini-batch balancing
strategy [15] for AudioSet tagging, where each mini-batch is
balanced to have approximately the same number of samples
in training the neural network.

We first investigate the performance of training on the
balanced subset only and training on the full data. We adopt the
best baseline model; that is, the ES average instances model in
Section IV-C. Table II shows that the model trained with only
the balanced subset achieves an mAP of 0.274. The model
trained with the full dataset without balancing achieves an
mAP of 0.268. The model trained with the balancing strategy
achieves an mAP of 0.317. Fig. 7 shows the class-wise AP.
The dashed and solid curves show the training and testing AP,
respectively. In addition, Fig. 7 shows that the AP is not always
positive related to the number of training samples. For example,
when using full data for training, “bagpipes” has 1,715 audio
clips but achieves an mAP of 0.884, while “outside” has 34,117
audio clips but only achieves an AP of 0.093. We discover that
for a majority of sound classes, the improvement of AP is small
compared when using the full dataset rather than the balanced
subset. For example, there are 60 and 1,715 “bagpipes” audio
clips in the balanced subset and the full dataset, respectively.
Their APs are 0.873 and 0.884, respectively, indicating that
collecting more data for “bagpipes” does not substantially
improve its tagging result.

TABLE III
CORRELATION OF MAP WITH TRAINING SAMPLES AND LABELS QUALITY

OF SOUND CLASSES.

PCC p-value

Training examples 0.169 9.35 ×10−5

Labels quality 0.230 7 ×10−7

To investigate how AP is related to the number of training
samples, we calculate their Pearson correlation efficient (PCC)3.
PCC is a number between -1 and +1. The PCC of -1, 0,
+1 indicate negative correlation, no correlation and positive
correlation, respectively. The null hypothesis is that the
correlation of the pair of random variables is 0. The p-value
indicates the confidence when the null hypothesis is satisfied.
If the p-value is lower than the conventional 0.05 the PCC
is called statistically significant. Table III shows that AP and
the number of training samples have a correlation with a PCC
of 0.169 and the p-value is 9.35 × 10−5, indicating that AP
is only weakly positively related with the number of training
samples.

E. Noisy labels

AudioSet contains noisy tags [9]. That is, some tags for
training may be incorrect. There are three major reasons leading
to the noisy tags in AudioSet shown in [9]: 1) confusing labels,
where some sound classes are easily confused with others;
2) human error, where the labeling procedure may be flawed;
3) faint/non-salient sounds, where some sound are faint to
recognise in an audio clip. Sound classes with a high label
confidence include “christmas music” and “accordion”. Sound
classes with a low label confidence include “boiling” and
“bicycle”. To investigate how accurate are the ground truth
tags, The authors of AudioSet conducted an internal quality
assessment task where experts checked 10 random segments
for most of the classes. The quality is a value between 0 and
1 measured by the percentage of correctly labelled audio clips
verified by human. The quality of labels is shown in Fig. 7
with red plus symbols. Hyphen symbols are plotted for the
classes that have not been evaluated. We discover that AP is
not always correlated positively with the quality of labels. For
example, our model achieves an AP of 0.754 in recognizing
“harpsichord”, while the human label quality is 0.4. On the
other hand, humans achieve a label quality of 1.0 in “hiccup”,
but the AP of our model is 0.076. Table III shows that AP and
the quality of labels have a weak PCC of 0.230, indicating AP
is only weakly correlated with the quality of labels.

F. Attention neural networks

We evaluate the decision-level and the feature-level attention
neural networks in this subsection. We adopt the architecture
in Fig. 2(c) as our model. The output x′ of the layer before the
attention function is obtained by (17). Then the decision-level

3Given a pair of random variables X and Y , the PCC is calculated as
cov(X, Y)
σXσY

, where cov(·, ·) is the covariance of two variables and σ is the
standard deviation of the random variables.
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Fig. 8. Class-wise AP of sound events predicted using different models.

and feature-level attention neural networks are modelled by
(16) and (20), respectively. The first row of Table IV shows
that the ES method with averaged instances achieves an mAP
of 0.317. The second and third rows show that the JDC model
in Fig. 2(a) and the self-attention model in Fig. 2(b) achieve an
mAP of 0.337 and 0.324, respectively. The fourth and fifth row
show that the decision-level attention neural network achieves
an mAP of 0.337. The decision-level multiple attention neural
network further improves this result to an mAP of 0.357.

The results of the feature-level attention neural networks
are shown in the bottom block of Table IV. The ES methods
with average and maximum aggregation achieve an mAP of
0.298 and 0.343, respectively. The feature-level attention neural
network achieves an mAP of 0.361, an mAUC of 0.969 and
a d-prime of 2.641, outperforming the other models. One
explanation is that the feature-level attention neural network
can attend to or ignore the features in the feature space which
further improves the capacity of the decision-level attention
neural network. Fig. 8 shows the class-wise performance of the
attention neural networks. The feature-level attention neural
network outperforms the decision-level attention neural network
and the ES method with averaged instances in a majority of
sound classes. The results of all 527 sound classes are shown
in Fig. 9.

TABLE IV
RESULTS OF DECISION-LEVEL ATTENTION MODEL AND FEATURE-LEVEL

ATTENTION MODEL

mAP AUC d-prime

Average instances [50] 0.317 0.963 2.529

JDC [12] 0.337 0.963 2.526
Self attention [48] 0.324 0.962 2.506

Decision-level single-attention [15] 0.337 0.968 2.612
Decision-level multi-attention [16] 0.357 0.968 2.621

Feature-level avg. pooling 0.298 0.960 2.475
Feature-level max pooling 0.343 0.966 2.589

Feature-level attention 0.361 0.969 2.641

G. Modeling attention function with different functions

As described in Section V-C, we model the attention function
q of the feature-level attention neural network via a non-
negative function φ2. The choice of the non-negative function
may affect the optimisation and result of the attention neural
network. Table V shows that the exponential, sigmoid, softmax
and NIN functions achieve a similar mAP of approximately
0.360. Modeling φ(·) with ReLU is worse than with other
non-linear functions..
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TABLE V
RESULTS OF MODELING THE NON-NEGATIVE φ2 WITH DIFFERENT

NON-NEGATIVE FUNCTIONS.

mAP AUC d-prime

ReLU att 0.308 0.963 2.520
Exp. att 0.358 0.969 2.631

Sigmoid att 0.361 0.969 2.641
Softmax att 0.360 0.969 2.636

NIN 0.359 0.969 2.637

TABLE VI
RESULTS OF MODELING THE ATTENTION NEURAL NETWORK WITH

DIFFERENT LAYER DEPTHS.

Depth mAP AUC d-prime

0 0.328 0.963 2.522
1 0.356 0.967 2.605
2 0.358 0.968 2.620
3 0.361 0.969 2.641
4 0.356 0.969 2.637
6 0.348 0.968 2.619
8 0.339 0.967 2.595
10 0.331 0.966 2.579

TABLE VII
RESULTS OF MODELING THE ATTENTION NEURAL NETWORK WITH

DIFFERENT NUMBER OF HIDDEN UNITS.

Hidden units mAP AUC d-prime

256 0.305 0.962 2.512
512 0.339 0.967 2.599
1024 0.361 0.969 2.641
2048 0.369 0.969 2.640
4096 0.369 0.968 2.619

H. Attention neural networks with different embedding depth
and width

As shown in (17), our attention neural networks map the
instances x to x′ through several non-linear embedding layers
to increase the representation ability of the instances. We model
fFC using the feature-level attention neural network with fully-
connected layers with different depths. Table VI shows that the
mAP increases from 0 layers and reaches a peak of 0.361 at 3
layers. More hidden layers do not increase the mAP. The reason
might be that the AudioSet bottleneck features obtained by a
VGGish CNN trained on YouTube100M have good separability.
Therefore, there is no need to apply very deep neural networks
on the AudioSet bottleneck features. On the other hand, the
YouTube100M data may have a different distribution from
AudioSet. As a result, the embedding mapping fFC can be
used as domain adaption.

Based on the network fFC modelled with three layers in the
feature-level attention neural network, we investigate the width
of fFC. Table VII shows that feature-level attention model with
2048 hidden units in each hidden layer achieves an mAP of
0.369, an mAUC of 0.969 and a d-prime of 2.641 is achieved,
outperforming the models with 256, 512, 1024 and 4096 hidden
units in each layer. On the other hand, with 4096 hidden units,
the model tends to overfit, and does not outperform the model
with 2048 hidden units.

VII. CONCLUSION

We have presented a decision-level and a feature-level
attention neural network for AudioSet tagging. We developed
the connection between multiple instance learning and attention
neural networks. We investigated the class-wise performance
of all the 527 sound classes in AudioSet and discovered that
the AudioSet tagging performance on AudioSet embedding
features is only weakly correlated with the number of training
examples and quality of labels, with Pearson correlation
coefficients of 0.169 and 0.230, respectively. In addition, we
investigated modelling the attention neural networks with
different attention functions, depths and widths. Our proposed
feature-level attention neural network achieves a state-of-the-
art mean average precision (mAP) of 0.369 compared to the
best MIL method of 0.317 and the decision-level attention
neural network of 0.337. In the future, we will explore weakly
labelled sound event detection on AudioSet with attention
neural networks.

ACKNOWLEDGMENT

The authors would like to thank all anonymous reviewers
for their suggestions to improve this paper.

REFERENCES

[1] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A survey of audio-based
music classification and annotation,” IEEE Transactions on Multimedia,
vol. 13, pp. 303–319, 2011.

[2] R. Typke, F. Wiering, and R. C. Veltkamp, “A survey of music information
retrieval systems,” in International Conference on Music Information
Retrieval, 2005, pp. 153–160.

[3] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and
M. D. Plumbley, “Detection and classification of acoustic scenes and
events: An IEEE AASP challenge,” in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), 2013.

[4] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley,
“Detection and classification of acoustic scenes and events,” IEEE
Transactions on Multimedia, vol. 17, no. 10, pp. 1733–1746, 2015.

[5] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen,
and M. D. Plumbley, “Detection and classification of acoustic scenes and
events: Outcome of the DCASE 2016 challenge,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 26, no. 2, pp. 379–393,
2018.

[6] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent,
B. Raj, and T. Virtanen, “DCASE 2017 challenge setup: Tasks, datasets
and baseline system,” in DCASE Workshop on Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE), 2017, pp. 85–92.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85 – 117, 2015.

[9] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology
and human-labeled dataset for audio events,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 776–780.

[10] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[11] A. Kumar and B. Raj, “Audio event detection using weakly labeled data,”
in Proceedings of the 2016 ACM on Multimedia Conference, 2016, pp.
1038–1047.

[12] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint detection-
classification model for audio tagging of weakly labelled data,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2017, pp. 641–645.



11

Ba
gp

ip
es

Ch
an

ge
 ri

ng
in

g 
(c

am
pa

no
lo

M
us

ic
An

gr
y 

m
us

ic
Ac

co
rd

io
n

Ha
rm

on
ica

Ha
rp

sic
ho

rd
Di

dg
er

id
oo

Em
er

ge
nc

y 
ve

hi
cle

Br
as

s i
ns

tru
m

en
t

Sp
ee

ch
Si

re
n

Ba
ttl

e 
cr

y
Ci

vi
l d

ef
en

se
 si

re
n

W
hi

sp
er

in
g

W
in

d 
in

st
ru

m
en

t, 
wo

od
wi

nd
Ra

il 
tra

ns
po

rt
Sh

of
ar

Tr
ai

n
Ra

ilr
oa

d 
ca

r, 
tra

in
 w

ag
on

Ch
oi

r
Ba

nj
o

Tr
ai

n 
wh

ee
ls 

sq
ue

al
in

g
Fi

re
 e

ng
in

e,
 fi

re
 tr

uc
k

Cr
ow

d
Gu

ita
r

Si
zz

le
Ha

rp
Th

un
de

r
Pu

rr
Sa

nd
in

g
Ha

ir 
dr

ye
r

El
ec

tri
c 

gu
ita

r
Ap

pl
au

se
Hi

-h
at St
ir

He
ar

t s
ou

nd
s, 

he
ar

tb
ea

t
Th

un
de

rs
to

rm
Or

ga
n

Pi
zz

ica
to

St
ee

lp
an

St
ea

m
 w

hi
st

le
Sk

at
eb

oa
rd

Sc
ra

tc
hi

ng
 (p

er
fo

rm
an

ce
Ch

at
te

r
Cy

m
ba

l
Ti

m
pa

ni
Ta

bl
a

Dr
um

 k
it

Be
e,

 w
as

p,
 e

tc
.

Cl
ick

in
g

St
rin

g 
se

ct
io

n
Op

er
a

Ba
sk

et
ba

ll 
bo

un
ce

Fr
yi

ng
 (f

oo
d)

A 
ca

pe
lla

Bl
en

de
r

Ai
rc

ra
ft

Ch
ild

re
n 

sh
ou

tin
g

Ri
m

sh
ot

Fi
re

 a
la

rm
In

se
ct

El
ec

tri
c 

sh
av

er
, e

le
ct

ric
Fr

en
ch

 h
or

n
Sn

ar
e 

dr
um

W
at

er
Fu

sil
la

de
Ch

an
t

Pe
rc

us
sio

n
So

na
r

Ch
ee

rin
g

Ce
llo

Am
bu

la
nc

e 
(s

ire
n)

Cl
ar

in
et

Fl
y,

 h
ou

se
fly

Go
ng

Ai
rc

ra
ft 

en
gi

ne
Ef

fe
ct

s u
ni

t
Ch

ai
ns

aw
Ba

ss
 d

ru
m

Du
bs

te
p

Co
m

pu
te

r k
ey

bo
ar

d
Sa

xo
ph

on
e

Ho
wl

Pl
uc

ke
d 

st
rin

g 
in

st
ru

m
en

t
Fi

re
wo

rk
s

Ra
in

Ch
op

pi
ng

 (f
oo

d)
Co

o
Su

bw
ay

, m
et

ro
, u

nd
er

gr
ou

n
Zi

th
er

El
ec

tro
ni

c 
tu

ne
r

Bi
rd

 fl
ig

ht
, f

la
pp

in
g 

wi
n

Ra
pp

in
g

Do
ub

le
 b

as
s

Pi
ge

on
, d

ov
e

Dr
um

Ch
ew

in
g,

 m
as

tic
at

io
n

Sm
ok

e 
de

te
ct

or
, s

m
ok

e 
al

a
Ra

in
 o

n 
su

rfa
ce

M
us

ic 
of

 B
ol

ly
wo

od
Ch

ur
ch

 b
el

l
Ha

nd
s

Di
st

or
tio

n
Sa

lsa
 m

us
ic

Ta
pp

in
g 

(g
ui

ta
r t

ec
hn

iq
ue

M
ac

hi
ne

 g
un

Fi
xe

d-
wi

ng
 a

irc
ra

ft,
 a

irp
El

ec
tro

ni
c 

da
nc

e 
m

us
ic

Sk
id

di
ng

Fo
wl

Cr
ow

in
g,

 c
oc

k-
a-

do
od

le
-d

o
Ru

b
Si

ta
r

Te
ch

no
W

in
d 

ch
im

e
Ice

 c
re

am
 tr

uc
k,

 ic
e 

cr
ea

Fl
ut

e
Af

ro
be

at
To

ile
t f

lu
sh

Ty
pi

ng
Co

wb
el

l
Ch

ild
re

n 
pl

ay
in

g
Do

g
W

at
er

fa
ll

Po
lic

e 
ca

r (
sir

en
)

Tr
om

bo
ne

Ac
ou

st
ic 

gu
ita

r
Sy

nt
he

tic
 si

ng
in

g
Sn

or
in

g
Ja

ck
ha

m
m

er
Tr

ai
n 

ho
rn

102

103

104

105

106
Nu

m
be

r o
f a

ud
io

 c
lip

s

Va
cu

um
 c

le
an

er
Ke

yb
oa

rd
 (m

us
ica

l)
Ch

im
e

Bo
om

Ve
hi

cle
St

om
ac

h 
ru

m
bl

e
Po

ur
Bl

ue
gr

as
s

M
us

ic 
of

 A
fri

ca
Zi

ng
Ba

th
tu

b 
(fi

llin
g 

or
 w

as
hi

Cl
ick

et
y-

cla
ck

Do
m

es
tic

 a
ni

m
al

s, 
pe

ts
Sp

la
sh

, s
pl

at
te

r
Bo

we
d 

st
rin

g 
in

st
ru

m
en

t
Vi

de
o 

ga
m

e 
m

us
ic

Tr
um

pe
t

Je
t e

ng
in

e
Ba

ss
 g

ui
ta

r
Si

ng
in

g 
bo

wl
Sa

ilb
oa

t, 
sa

ilin
g 

sh
ip

Pl
op M
oo

Bo
w-

wo
w

Gu
ns

ho
t, 

gu
nf

ire
Bo

at
, W

at
er

 v
eh

icl
e

Po
we

r w
in

do
ws

, e
le

ct
ric

St
ea

m
Ru

m
bl

e
Ch

ick
en

, r
oo

st
er

W
ha

le
 v

oc
al

iza
tio

n
Ca

ttl
e,

 b
ov

in
ae

Ca
te

rw
au

l
W

oo
d 

bl
oc

k
Ro

ar
Ca

sh
 re

gi
st

er
Dr

um
 ro

ll
Ch

or
us

 e
ffe

ct
W

in
d 

no
ise

 (m
icr

op
ho

ne
)

Si
ne

 w
av

e
Re

ve
rs

in
g 

be
ep

s
Cr

ick
et

Sm
as

h,
 c

ra
sh

An
im

al
W

at
er

 ta
p,

 fa
uc

et
Pi

nk
 n

oi
se

Uk
ul

el
e

Si
nk

 (f
illi

ng
 o

r w
as

hi
ng

)
M

ar
im

ba
, x

yl
op

ho
ne

Bu
sy

 si
gn

al
Ca

p 
gu

n
Ch

ild
 sp

ee
ch

, k
id

 sp
ea

ki
n

Qu
ac

k
W

hi
st

lin
g

Ra
ttl

e 
(in

st
ru

m
en

t)
Fl

am
en

co
Ba

bb
lin

g
Ca

rn
at

ic 
m

us
ic

Ai
r h

or
n,

 tr
uc

k 
ho

rn
Sn

iff
Ca

r a
la

rm
Ta

m
bo

ur
in

e
Gr

un
ge

El
ec

tro
ni

ca
Ra

ce
 c

ar
, a

ut
o 

ra
cin

g
Dr

um
 a

nd
 b

as
s

Cl
ap

pi
ng

Fr
og

Ha
m

m
on

d 
or

ga
n

Di
al

 to
ne Ca

r
Sc

ar
y 

m
us

ic
Ca

t
Cr

oa
k

Jin
gl

e 
be

ll
Vi

ol
in

, f
id

dl
e

Ra
in

dr
op

W
in

d
Bo

in
g

Go
sp

el
 m

us
ic

Be
at

bo
xi

ng
M

us
ica

l i
ns

tru
m

en
t

Lu
lla

by
M

ai
ns

 h
um

Ch
ild

 si
ng

in
g

Ba
rk

Fi
re

cr
ac

ke
r

Go
bb

le
Sc

ra
tc

h
Tr

ai
n 

wh
ist

le
M

an
tra

Ty
pe

wr
ite

r
Tr

an
ce

 m
us

ic
M

an
do

lin
Tu

rk
ey

St
at

ic
Re

gg
ae

Gl
oc

ke
ns

pi
el

Ba
by

 la
ug

ht
er

St
ee

l g
ui

ta
r, 

sli
de

 g
ui

ta
Sp

ee
ch

 sy
nt

he
siz

er
Ga

rg
lin

g
Ha

m
m

er
Or

ch
es

tra
La

ug
ht

er
Tu

ni
ng

 fo
rk Sk
a

Cr
um

pl
in

g,
 c

rin
kl

in
g

Cu
tle

ry
, s

ilv
er

wa
re

Fa
rt

Hi
p 

ho
p 

m
us

ic
Liv

es
to

ck
, f

ar
m

 a
ni

m
al

s,
Cl

uc
k

Hu
bb

ub
, s

pe
ec

h 
no

ise
, s

pe
Fi

lin
g 

(ra
sp

)
Se

wi
ng

 m
ac

hi
ne

M
os

qu
ito

Di
sc

o
Gr

un
t

Si
ng

in
g

Ho
ot

En
gi

ne
Ro

wb
oa

t, 
ca

no
e,

 k
ay

ak
Ca

w
Vi

br
ap

ho
ne Bi
rd

La
wn

 m
ow

er
Dr

ill
Ve

hi
cle

 h
or

n,
 c

ar
 h

or
n,

Lig
ht

 e
ng

in
e 

(h
ig

h 
fre

qu
e

M
al

le
t p

er
cu

ss
io

n
En

vi
ro

nm
en

ta
l n

oi
se

102

103

104

105

106

Nu
m

be
r o

f a
ud

io
 c

lip
s

Ow
l

Cr
ow

El
ec

tri
c 

to
ot

hb
ru

sh
Am

bi
en

t m
us

ic
He

lic
op

te
r

Pr
og

re
ss

iv
e 

ro
ck

Da
nc

e 
m

us
ic

Ba
by

 c
ry

, i
nf

an
t c

ry
El

ec
tro

ni
c 

or
ga

n
Cl

oc
k

Ar
til

le
ry

 fi
re

Ho
nk

Ch
op

Ac
ce

le
ra

tin
g,

 re
vv

in
g,

Th
ro

bb
in

g
Te

le
ph

on
e 

be
ll 

rin
gi

ng
Ra

di
o

Co
nv

er
sa

tio
n

Sa
d 

m
us

ic
Th

er
em

in
Bl

ue
s

Sh
uf

fle
Re

ve
rb

er
at

io
n

Go
os

e
W

av
es

, s
ur

f
Pi

an
o

Oc
ea

n
St

ru
m

Cl
ip

-c
lo

p
Te

le
ph

on
e 

di
al

in
g,

 D
TM

F
He

ar
t m

ur
m

ur
Cl

an
g

Si
gh

To
ot

Dr
um

 m
ac

hi
ne

Ne
w-

ag
e 

m
us

ic
Sn

ak
e

El
ec

tri
c 

pi
an

o
Br

ea
ki

ng
Cr

un
ch

Vo
ca

l m
us

ic
Te

ar
in

g
Gu

sh
Bi

cy
cle

 b
el

l
Sw

in
g 

m
us

ic
Ho

us
e 

m
us

ic
M

ot
or

cy
cle

Di
sh

es
, p

ot
s, 

an
d 

pa
ns

Hi
ss

M
eo

w
Co

un
try

Be
lly

 la
ug

h
Bi

tin
g

Fo
gh

or
n

W
hi

st
le

M
ar

ac
a

Ba
ck

gr
ou

nd
 m

us
ic

Er
up

tio
n

Ti
re

 sq
ue

al
Kn

oc
k

Ri
ng

to
ne

W
oo

d
En

gi
ne

 k
no

ck
in

g
He

av
y 

m
et

al
Ro

ll
St

re
am

Tr
uc

k
Th

um
p,

 th
ud

Dr
aw

er
 o

pe
n 

or
 c

lo
se

Th
em

e 
m

us
ic

Sq
ue

ak
Ro

ar
in

g 
ca

ts
 (l

io
ns

, t
ig

e
Ch

uc
kl

e,
 c

ho
rtl

e
Fi

ng
er

 sn
ap

pi
ng

To
ol

s
M

id
dl

e 
Ea

st
er

n 
m

us
ic

Fi
el

d 
re

co
rd

in
g

Ro
ck

 a
nd

 ro
ll

W
al

k,
 fo

ot
st

ep
s

Sc
re

am
in

g
Ai

r c
on

di
tio

ni
ng

Yo
de

lin
g

Bi
rd

 v
oc

al
iza

tio
n,

 b
ird

Ps
yc

he
de

lic
 ro

ck
Ne

ig
h,

 w
hi

nn
y

Ec
ho

Pi
ng

Id
lin

g
Pr

in
te

r
W

ha
ck

, t
hw

ac
k

Sh
uf

fli
ng

 c
ar

ds
Ca

ni
da

e,
 d

og
s, 

wo
lv

es
W

hi
p

Gr
ow

lin
g

Cu
pb

oa
rd

 o
pe

n 
or

 c
lo

se
Th

un
k

Pu
m

p 
(li

qu
id

)
Sh

at
te

r
Sq

ua
wk

Al
ar

m
 c

lo
ck

Hu
m

In
de

pe
nd

en
t m

us
ic

Cr
yi

ng
, s

ob
bi

ng
Po

we
r t

oo
l

Sa
wi

ng
M

us
ic 

fo
r c

hi
ld

re
n

Dr
ip

Bu
rp

in
g,

 e
ru

ct
at

io
n

Si
de

to
ne

En
gi

ne
 st

ar
tin

g
M

ot
or

bo
at

, s
pe

ed
bo

at
De

nt
al

 d
ril

l, 
de

nt
ist

's
W

ho
os

h,
 sw

oo
sh

, s
wi

sh
Po

p 
m

us
ic

Ho
rs

e
Fu

nk
Sc

iss
or

s
Sa

m
pl

er
M

us
ic 

of
 A

sia
Rh

yt
hm

 a
nd

 b
lu

es
M

us
ic 

of
 L

at
in

 A
m

er
ica

Hu
m

m
in

g
Ch

irp
 to

ne
Do

or
be

ll
Te

le
ph

on
e

Ye
ll

Jin
gl

e,
 ti

nk
le

Ar
ro

w
Ro

ck
 m

us
ic

Pu
nk

 ro
ck

Sl
os

h
Ca

co
ph

on
y

102

103

104

105

106

Nu
m

be
r o

f a
ud

io
 c

lip
s

Pr
op

el
le

r, 
ai

rs
cr

ew Bu
s

Sp
lin

te
r

Co
ug

h
Ch

ris
tia

n 
m

us
ic

W
rit

in
g

Ha
pp

y 
m

us
ic

Ta
p

Pi
g

Gl
as

s
Fe

m
al

e 
sin

gi
ng

Pa
nt

So
ul

 m
us

ic
Tr

ad
iti

on
al

 m
us

ic
Gi

gg
le

Co
in

 (d
ro

pp
in

g)
In

sid
e,

 sm
al

l r
oo

m
Sh

ou
t

Ti
ck

-to
ck

W
hi

r
Sy

nt
he

siz
er

Bo
un

cin
g

Yi
p

W
ild

 a
ni

m
al

s
Al

ar
m

W
ai

l, 
m

oa
n

Sh
ip

Tu
bu

la
r b

el
ls

Ai
r b

ra
ke

Ru
st

lin
g 

le
av

es
Ca

m
er

a
Ch

irp
, t

we
et

Ro
de

nt
s, 

ra
ts

, m
ice

Jin
gl

e 
(m

us
ic)

Di
ng

Vi
br

at
io

n
Sn

ick
er

Ga
sp

W
he

ez
e

To
ot

hb
ru

sh
Be

ep
, b

le
ep

Fe
m

al
e 

sp
ee

ch
, w

om
an

 sp
ea

Sh
ee

p
Ca

r p
as

sin
g

Be
llo

w
Sl

ap
, s

m
ac

k
Ex

pl
os

io
n

M
icr

ow
av

e 
ov

en Be
ll

W
hi

m
pe

r
Sl

id
in

g 
do

or
Du

ck
Te

le
vi

sio
n

Cr
us

hi
ng

Te
nd

er
 m

us
ic

Th
ro

at
 c

le
ar

in
g

M
al

e 
sin

gi
ng

Sl
am

So
un

dt
ra

ck
 m

us
ic

Fo
lk

 m
us

ic
Bo

ilin
g

W
hi

m
pe

r (
do

g)
Bu

zz
er

Ch
ris

tm
as

 m
us

ic
Pu

lse
M

ec
ha

ni
ca

l f
an Fi
re

Sn
ee

ze
So

ng
W

ed
di

ng
 m

us
ic

Tr
af

fic
 n

oi
se

, r
oa

dw
ay

Sq
ue

al
El

ec
tro

ni
c 

m
us

ic
Cr

ac
kl

e
Cl

at
te

r
Pa

tte
r

M
ec

ha
ni

sm
s

M
ed

iu
m

 e
ng

in
e 

(m
id

 fr
eq

ue
M

al
e 

sp
ee

ch
, m

an
 sp

ea
ki

ng
Di

ng
-d

on
g

Fl
ap

Cr
ac

k
Ke

ys
 ja

ng
lin

g
Fi

ll 
(w

ith
 li

qu
id

)
Bl

ea
t

Fu
nn

y 
m

us
ic

Ba
ng

Ou
ts

id
e,

 u
rb

an
 o

r m
an

m
ad

e
Ru

n
Go

at
Oi

nk
Ex

cit
in

g 
m

us
ic

W
ho

op
Pu

lle
ys

Br
ea

th
in

g
Na

rra
tio

n,
 m

on
ol

og
ue

M
ot

or
 v

eh
icl

e 
(ro

ad
)

Zi
pp

er
 (c

lo
th

in
g)

W
hi

te
 n

oi
se

Gr
oa

n
Ge

ar
s

Si
le

nc
e

Sn
or

t
Sp

ra
y

Do
or

Hi
cc

up
Ra

tc
he

t, 
pa

wl
Ru

st
le

In
sid

e,
 la

rg
e 

ro
om

 o
r h

al
Tr

ick
le

, d
rib

bl
e

He
av

y 
en

gi
ne

 (l
ow

 fr
eq

ue
n

Bi
cy

cle
Cr

ea
k

Ch
in

k,
 c

lin
k

Sq
ui

sh Ja
zz

In
sid

e,
 p

ub
lic

 sp
ac

e
Cl

as
sic

al
 m

us
ic

No
ise

Ou
ts

id
e,

 ru
ra

l o
r n

at
ur

al
Si

ng
le

-le
ns

 re
fle

x 
ca

m
er

a
Ha

rm
on

ic
So

un
d 

ef
fe

ct
Bu

zz
Liq

ui
d

Ti
ck

Gu
rg

lin
g

Bu
rs

t, 
po

p
Ra

ttl
e

Sc
ra

pe
M

ou
se

102

103

104

105

106

Nu
m

be
r o

f a
ud

io
 c

lip
s

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

pr
ec

isi
on

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

pr
ec

isi
on

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

pr
ec

isi
on

0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

pr
ec

isi
onAP with averaging instances (baseline)

AP with decision-level attention
AP with multi-level attention
AP with feature-level attention
Label quality

Fig. 9. mAP of all sound classes predicted using different models.

[13] Q. Kong, I. Sobieraj, W. Wang, and M. D. Plumbley, “Deep neural
network baseline for DCASE challenge 2016,” in IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events (DCASE),
2016, pp. 50–54.

[14] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C.
Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al., “CNN
architectures for large-scale audio classification,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017,



12

pp. 131–135.
[15] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “Audio set classification

with attention model: A probabilistic perspective,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018,
pp. 316–320.

[16] C. Yu, K. S. Barsim, Q. Kong, and B. Yang, “Multi-level attention model
for weakly supervised audio classification,” in Workshop on Detection
and Classification of Acoustic Scenes and Events, 2018, pp. 188–192.

[17] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance
learning,” in Advances in Neural Information Processing Systems (NIPS),
1998, pp. 570–576.

[18] P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumbley, “CHiME-
Home: A dataset for sound source recognition in a domestic environment,”
in IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), 2015.

[19] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for
urban sound research,” in ACM International Conference on Multimedia.
ACM, 2014, pp. 1041–1044.

[20] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley,
“Detection and classification of acoustic scenes and events,” IEEE
Transactions on Multimedia, vol. 17, no. 10, pp. 1733–1746, 2015.

[21] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic
scene classification and sound event detection,” in IEEE European Signal
Processing Conference (EUSIPCO), 2016, pp. 1128–1132.

[22] Mesaros, A. and Heittola, T. and Virtanen, T., “A multi-device dataset
for urban acoustic scene classification,” in Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE), 2018, pp. 9–13.

[23] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J. Pons, and
X. Serra, “General-purpose tagging of freesound audio with audioset
labels: Task description, dataset, and baseline,” in Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE), 2018, pp.
69–73.

[24] D. Stowell, M. D. Wood, H. Pamuła, Y. Stylianou, and H. Glotin,
“Automatic acoustic detection of birds through deep learning: The first
bird audio detection challenge,” Methods in Ecology and Evolution, 2018.

[25] D. Li, I. K. Sethi, N. Dimitrova, and T. McGee, “Classification of
general audio data for content-based retrieval,” Pattern Recognition
Letters, vol. 22, no. 5, pp. 533–544, 2001.

[26] B. Uzkent, B. D. Barkana, and H. Cevikalp, “Non-speech environmental
sound classification using svms with a new set of features,” International
Journal of Innovative Computing, Information and Control, vol. 8, no. 5,
pp. 3511–3524, 2012.

[27] H. Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “CP-JKU
submissions for DCASE-2016: a hybrid approach using binaural i-
vectors and deep convolutional neural networks,” in Technical Report,
Detection and Classification of Acoustic Scenes and Events (DCASE
2016) Challenge, 2016.

[28] J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-frames approach
to audio pattern recognition: A sufficient model for urban soundscapes
but not for polyphonic music,” The Journal of the Acoustical Society of
America, vol. 122, no. 2, pp. 881–891, 2007.

[29] S. Sigtia, A. M. Stark, S. Krstulović, and M. D. Plumbley, “Automatic
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