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Unsupervised speech representation learning
using WaveNet autoencoders

Jan Chorowski, Ron J. Weiss, Samy Bengio, Aäron van den Oord

Abstract—We consider the task of unsupervised extraction
of meaningful latent representations of speech by applying
autoencoding neural networks to speech waveforms. The goal
is to learn a representation able to capture high level semantic
content from the signal, e.g. phoneme identities, while being
invariant to confounding low level details in the signal such as
the underlying pitch contour or background noise. Since the
learned representation is tuned to contain only phonetic content,
we resort to using a high capacity WaveNet decoder to infer
information discarded by the encoder from previous samples.
Moreover, the behavior of autoencoder models depends on the
kind of constraint that is applied to the latent representation.
We compare three variants: a simple dimensionality reduction
bottleneck, a Gaussian Variational Autoencoder (VAE), and a
discrete Vector Quantized VAE (VQ-VAE). We analyze the quality
of learned representations in terms of speaker independence, the
ability to predict phonetic content, and the ability to accurately re-
construct individual spectrogram frames. Moreover, for discrete
encodings extracted using the VQ-VAE, we measure the ease
of mapping them to phonemes. We introduce a regularization
scheme that forces the representations to focus on the phonetic
content of the utterance and report performance comparable with
the top entries in the ZeroSpeech 2017 unsupervised acoustic unit
discovery task.

Index Terms—autoencoder, speech representation learning, un-
supervised learning, acoustic unit discovery

I. INTRODUCTION

Creating good data representations is important. The deep
learning revolution was triggered by the development of
hierarchical representation learning algorithms, such as stacked
Restricted Boltzman Machines [1] and Denoising Autoencoders
[2]. However, recent breakthroughs in computer vision [3],
[4], machine translation [5], [6], speech recognition [7], [8],
and language understanding [9], [10] rely on large labeled
datasets and make little to no use of unsupervised representation
learning. This has two drawbacks: first, the requirement of large
human labeled datasets often makes the development of deep
learning models expensive. Second, while a deep model may
excel at solving a given task, it yields limited insights into the
problem domain, with main intuitions typically consisting of
visualizations of salient input patterns [11], [12], a strategy that
is applicable only to problem domains that are easily solved
by humans.

In this paper we focus on evaluating and improving un-
supervised speech representations. Specifically, we focus on
representations that separate selected speaker traits, specifically
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speaker gender and identity, from phonetic content, properties
which are consistent with internal representations learned
by speech recognizers [13], [14]. Such representations are
desired in several tasks, such as low resource automatic speech
recognition (ASR), where only a small amount of labeled
training data is available. In such scenario, limited amounts
of data may be sufficient to learn an acoustic model on the
representation discovered without supervision, but insufficient
to learn the acoustic model and a data representation in a fully
supervised manner [15], [16].

We focus on representations learned with autoencoders
applied to raw waveforms and spectrogram features and
investigate the quality of learned representations on LibriSpeech
[17]. We tune the learned latent representation to encode only
phonetic content and remove other confounding detail. However,
to enable signal reconstruction, we rely on an autoregressive
WaveNet [18] decoder to infer information that was rejected
by the encoder. The use of such a powerful decoder acts
as an inductive bias, freeing up the encoder from using its
capacity to represent low level detail and instead allowing it
to focus on high level semantic features. We discover that best
representations arise when ASR features, such as mel-frequency
cepstral coefficients (MFCCs) are used as inputs, while raw
waveforms are used as decoder targets. This forces the system
to also learn to generate sample level detail which was removed
during feature extraction. Furthermore, we observe that the
Vector Quantized Variational Autoencoder (VQ-VAE) [19]
yields the best separation between the acoustic content and
speaker information. We investigate the interpetability of VQ-
VAE tokens by mapping them to phonemes, demonstrate
the impact of model hyperparameters on interpretability and
propose a new regularization scheme which improves the degree
to which the latent representation can be mapped to the phonetic
content. Finally, we demonstrate strong performance on the
ZeroSpeech 2017 acoustic unit discovery task [20], which
measures how discriminative a representation is to minimal
phonetic changes within an utterance.

II. REPRESENTATION LEARNING WITH NEURAL NETWORKS

Neural networks are hierarchical information processing
models that are typically implemented using layers of computa-
tional units. Each layer can be interpreted as a feature extractor
whose outputs are passed to upstream units [21]. Especially in
the visual domain, features learned with neural networks have
been shown to create a hierarchy of visual atoms [11] that
match some properties of the visual cortex [22]. Similarly, when
applied to audio waveforms, neural networks have been shown
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to learn auditory-like frequency decompositions on music [23]
and speech [24], [25], [26], [27] in their lower layers.

A. Supervised feature learning

Neural networks can learn useful data representations in both
supervised and unsupervised manners. In the supervised case,
features learned on large datasets are often directly useful
in similar but data-poor tasks. For instance, in the visual
domain, features discovered on ImageNet [28] are routinely
used as input representations in other computer vision tasks [29].
Similarly, the speech community has used bottleneck features
extracted from networks trained on phoneme prediction tasks
[30], [31] as feature representations for speech recognition
systems. Likewise, in natural language processing, universal
text representations can be extracted from networks trained for
machine translation [32] or language inference [33], [34].

B. Unsupervised feature learning

In this paper we focus on unsupervised feature learning.
Since no training labels are available we investigate autoen-
coders, i.e., networks which are tasked with reconstructing
their inputs. Autoencoders use an encoding network to extract
a latent representation, which is then passed through a decod-
ing network to recover the original data. Ideally, the latent
representation preserves the salient features of the original
data, while being easier to analyze and work with, e.g. by
disentangling different factors of variation in the data, and
discarding spurious patterns (noise). These desirable qualities
are typically obtained through a judicious application of
regularization techniques and constraints or bottlenecks (we
use the two terms interchangeably). The representation learned
by an autoencoder is thus subject to two competing forces. On
the one hand, it should provide the decoder with information
necessary for perfect reconstruction and thus capture in the
latents as much of the input data characteristics as possible.
On the other hand, the constraints force some information to
be discarded, preventing the latent representation from being
trivial to invert, e.g. by exactly passing through the input. Thus
the bottleneck is necessary to force the network to learn a
non-trivial data transformation.

Reducing the dimensionality of the latent representation can
serve as a basic constraint applied to the latent vectors, with
the autoencoder acting as a nonlinear variant of linear low-
rank data projections, such as PCA or SVD [35]. However,
such representations may be difficult to interpret because the
reconstruction of an input depends on all latent features [36]. In
contrast, dictionary learning techniques, such as sparse [37] and
non-negative [36] decompositions, express each input pattern
using a combination of a small number of selected features out
of a larger pool, which facilitates their interpretability. Discrete
feature learning using vector quantization can be seen as an
extreme form of sparseness in which the reconstruction uses
only one element from the dictionary.

The Variational Autoencoder (VAE) [38] proposes a different
interpretation of feature learning which follows a probabilistic
framework. The autoencoding network is derived from a latent-
variable generative model. First, a latent vector z is sampled

from a prior distribution p(z) (typically a multidimensional
normal distribution). Then the data sample x is generated
using a deep decoder neural network with parameters θ that
computes p(x|z; θ). However, computing the exact posterior
distribution p(z|x) that is needed during maximum likelihood
training is difficult. Instead, the VAE introduces a variational
approximation to the posterior, q(z|x;φ), which is modeled
using an encoder neural network with parameters φ. Thus the
VAE resembles a traditional autoencoder, in which the encoder
produces distributions over latent representations, rather than
deterministic encodings, while the decoder is trained on samples
from this distribution. Encoding and decoding networks are
trained jointly to maximize a lower bound on the log-likelihood
of data point x [38], [39]:

JVAE (θ, φ;x) =Eq(z|x;φ) [log p(x|z; θ)]−
β DKL (q(z|x;φ) || p(z)) . (1)

We can interpret the two terms of Eq. (1) as the autoencoder’s
reconstruction cost augmented with a penalty term applied to
the hidden representation. In particular, the KL divergence
expresses the amount of information in nats which the latent
representation carries about the data sample. Thus, it acts as an
information bottleneck [40] on the latent representation, where
β controls the trade-off between reconstruction quality and the
representation simplicity.

An alternative formulation of the VAE objective explicitly
constrains the amount of information contained in the latent
representation [41]:

JVAE (θ, φ;x) =Eq(z|x;φ) [log p(x|z; θ)]−
max (B,DKL (q(z|x;φ) || p(z))) , (2)

where the constant B corresponds to the amount of free
information in q, because the model is only penalized if it
transmits more than B nats over the prior in the distribution
over the latents. Please note that for convenience we will often
refer to information content using units of bits instead of nats.

A recently proposed modification of the VAE, called the
Vector Quantized VAE [19], replaces the continuous and
stochastic latent vectors with deterministically quantized ver-
sions. The VQ-VAE maintains a number of prototype vectors
{ei, i = 1, . . . ,K}. During the forward pass, representations
produced by the encoder are replaced with their closest
prototypes. Formally, let ze(x) be the output of the encoder
prior to quantization. VQ-VAE finds the nearest prototype
q(x) = argmini‖ze(x) − ei‖22 and uses it as the latent
representation zq(x) = eq(x) which is passed to the decoder.
When using the model in downstream tasks, the learned
representation can therefore be treated either as a distributed
representation in which each sample is represented by a
continuous vector, or as a discrete representation in which
each sample is represented by the prototype ID (also called
the token ID).

During the backward pass, the gradient of the loss with
respect to the pre-quantized embedding is approximated using
the straight-through estimator [42], i.e., ∂L

∂ze(x)
≈ ∂L

∂zq(x)
1. The

1In TensorFlow this can be conveniently implemented using zq(x) =
ze(x) + stop gradient(eq(x) − ze(x))
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prototypes are trained by extending the learning objective
with terms which optimize quantization. Prototypes are forced
to lie close to vectors which they replace with an auxiliary
cost, dubbed the commitment loss, introduced to encourage
the encoder to produce vectors which lie close to prototypes.
Without the commitment loss VQ-VAE training can diverge by
emitting representations with unbounded magnitude. Therefore,
VQ-VAE is trained using a sum of three loss terms: the negative
log-likelihood of the reconstruction, which uses the straight-
through estimator to bring the gradient from the decoder to
the encoder, and two VQ-related terms: the distance from each
prototype to its assigned vectors and the commitment cost [19]:

L = log p
(
x | zq(x)

)
+ ‖sg

(
ze(x)

)
− eq(x)‖22 + γ‖ze(x)− sg(eq(x))‖22, (3)

where sg(·) denotes the stop-gradient operation which zeros
the gradient with respect to its argument during backward pass.

The quantization within the VQ-VAE acts as an information
bottleneck. The encoder can be interpreted as a probabilistic
model which puts all probability mass on the selected discrete
token (prototype ID). Assuming a uniform prior distribution
over K tokens, the KL divergence is constant and equal to
logK. Therefore, the KL term does not need to be included in
the VQ-VAE training criterion in Eq. (3) and instead becomes
a hyperparameter tied to the size of the prototype inventory.

The VQ-VAE was qualitatively shown to learn a representa-
tion which separated the phonetic content within an utterance
from the identity of the speaker [19]. Moreover the discovered
tokens could be mapped to phonemes in a limited setting.

C. Autoencoders for sequential data
Sequential data, such as speech or text, often contain local

dependencies that can be exploited by generative models. In
fact, purely autoregressive models of sequential data, which
predict the next observation based on recent history, are very
successful. For text, these correspond to n-gram models [43]
and convolutional neural language models [44], [45]. Similarly,
WaveNet [18] is a state-of-the-art autoregressive model of
time-domain waveform samples for text-to-speech synthesis.

A downside of such autoregressive models is that they
do not explicitly produce latent representations of the data.
However, it is possible to combine an autoregressive sequence
generation model with an encoder tasked with extraction of
latent representations. Depending on the use case, the encoder
can process the whole utterance, emit a single latent vector and
feed it to an autoregressive decoder [33], [46] or the encoder
can periodically emit vectors of latent features to be consumed
by the decoder [19], [47]. We concentrate on the latter solution.

Training mixed latent variable and autoregressive models
is prone to latent space collapse, in which the decoder learns
to ignore the constrained latent representations and only uses
the unconstrained signal coming through the autoregressive
path. For the VAE, this collapse can be prevented by annealing
the weight of the KL term and using the free-information
formulation in Eq. (2). The VQ-VAE is naturally resilient to
the latent collapse because the KL term is a hyperparameter
which is not optimized using gradient training of a given model.
We defer further discussion of this topic to Section V.
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Fig. 1. The proposed model is conceptually divided into 3 parts: an encoder
(green), made of a residual convnet that computes a stream of latent vectors
(typically every 10ms or 20ms) from a time-domain waveform sampled at
16 kHz, which are passed through a bottleneck (red) before being used to
condition a WaveNet decoder (blue) which reconstructs the waveform using
two additional information streams: an autoregressive stream which predicts the
next sample based on past samples, and global conditioning which represents
the identity of the input speaker (one out of Ns total training speakers). We
experiment with three bottleneck variants: a simple dimensionality reduction
(AE), a sampling layer with an additional Kullback-Leibler penalty term (VAE),
or a discretization layer (VQ-VAE). Intuitively, this bottleneck encourages
the encoder to discard portions of the latent representation which the decoder
can infer from the two other information streams. For all layers, numbers in
parentheses indicate the number of output channels, and subscripts denote
the filter length. Locations of “probe” points which are used in Section IV to
evaluate the quality of the learned representation are denoted with black dots.

III. MODEL DESCRIPTION

The architecture of our model is presented in Figure 1. The
encoder reads a sequence of either raw audio samples, or of
audio features2 and extracts a sequence of hidden vectors,
which are passed through a bottleneck to become a sequence
of latent representations. The frequency at which the latent
vectors are extracted is governed by the number of strided
convolutions applied by the encoder.

The decoder reconstructs the utterance by conditioning a
WaveNet [18] network on the latent representation extracted by

2To keep the autoencoder viewpoint, the feature extractor can be interpreted
as a fixed signal processing layer in the encoder.
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the encoder and, separately, on a speaker embedding. Explicitly
conditioning the decoder on speaker identity frees the encoder
from having to capture speaker-dependent information in the
latent representation. Specifically, the decoder (i) takes the en-
coder’s output, (ii) optionally applies a stochastic regularization
to the latent vectors (see Section III-A), (iii) then combines
latent vectors extracted at neighboring time steps using con-
volutions and (iv) upsamples them to the output frequency.
Waveform samples are reconstructed with a WaveNet that
combines all conditioning sources: autoregressive information
about past samples, global information about the speaker, and
latent information about past and future samples extracted
by the encoder. We find that the encoder’s bottleneck and
the proposed regularization is crucial in extracting nontrivial
representations of data. With no bottleneck, the model is prone
to learn a simple reconstruction strategy which makes verbatim
copies of future samples. We also note that the encoder is
speaker independent and requires only speech data, while the
decoder also requires speaker information.

We consider three forms of bottleneck: (i) simple di-
mensionality reduction, (ii) a Gaussian VAE with different
latent representation dimensionalities and different capacities
following Eq. (2), and (iii) a VQ-VAE with different number of
quantization prototypes. All bottlenecks are optionally followed
by the dropout inspired time-jitter regularization described
below. Furthermore, we experiment with different input and
output representations, using raw waveforms, log-mel filterbank,
and mel-frequency cepstral coefficient (MFCC) features which
discard pitch information present in the spectrogram.

A. Time-jitter regularization

We would like the model to learn a representation of speech
which corresponds to the slowly-changing phonetic content
within an utterance: a mostly constant signal that can abruptly
change at phoneme boundaries.

Inspired by the slow features analysis [48] we first exper-
imented with penalizing time differences between encoder
representation either before or after the bottleneck. However,
this regularization resulted in a collapse of the latent space
– the model learned to output a constant encoding. This is a
common problem of sequential VAEs that use loss terms to
regularize the latent encoding [49].

Reconsidering the problem we realized that we want each
frame’s representation to correspond to a meaningful phonetic
unit. Thus we want to prevent the system from using consecu-
tive latent vectors as individual units. Put differently, we want
to prevent latent vector co-adaptation. We therefore introduce
a dropout-inspired [50] time-jitter regularizer, also reminiscent
of Zoneout [51] regularization for recurrent networks. During
training, each latent vector can replace either one or both of
its neighbors. As in dropout, this prevents the model from
relying on consistency across groups of tokens. Additionally,
this regularization also promotes latent representation stability
over time: a latent vector extracted at time step t must strive
to also be useful at time steps t − 1 or t + 1. In fact, the
regularization was crucial for reaching good performance on
ZeroSpeech at higher token extraction frequencies.

The regularization layer is inserted right after the encoder’s
bottleneck (i.e., after dimensionality reduction for regular
autoencoder, after sampling a realization of the latent layer for
the VAE and after discretization for the VQ-VAE). It is only
enabled during training. For each time step we independently
sample whether it is to be replaced with the token right after
or before it. We do not copy a token more than one timestep.

IV. EXPERIMENTS

We evaluated models on two datasets: LibriSpeech [17]
(clean subset) and ZeroSpeech 2017 Contest Track 1 data [20].
Both datasets have similar characteristics: multiple speakers,
clean, read speech (sourced from audio books) recorded at a
sampling rate of 16 kHz. Moreover the ZeroSpeech challenge
controls the amount of per-speaker data with the majority of
the data being uttered by only a few speakers.

Initial experiments, presented in section IV-B, compare differ-
ent bottleneck variants and establish what type of information
from the input audio is preserved in the continuous latent
representations produced by the model at the four different
probe points pictured in Figure 1. Using the representation
computed at each probe point, we measure performance
on several prediction tasks: phoneme prediction (per-frame
accuracy), speaker identity and gender prediction accuracy, and
L2 reconstruction error of spectrogram frames. We establish
that the VQ-VAE learns latent representations with strongest
disentanglement between the phonetic content and speaker
identity, and focus on this architecture in the following
experiments.

In section IV-C we analyze the interpretability of VQ-VAE
tokens by mapping each discrete token to the most frequent
corresponding phoneme in a forced alignment of a small labeled
data set (LibriSpeech dev) and report the accuracy of the
mapping on a separate set (LibriSpeech test). Intuitively, this
captures the interpretability of individual tokens.

We then apply the VQ-VAE to the ZeroSpeech 2017 acoustic
unit discovery task [20] in section IV-D. This task evaluates
how discriminative the representation is with respect to the
phonetic class. Finally, in section IV-E we measure the impact
of different hyperparameters on performance.

A. Default model hyperparameters

Our best models used MFCCs as the encoder input, but
reconstructed raw waveforms at the decoder output. We used
standard 13 MFCC features extracted every 10ms (i.e., at a
rate of 100 Hz) and augmented with their temporal first and
second derivatives. Such features were originally designed for
speech recognition and are mostly invariant to pitch and similar
confounding detail in the audio signal. The encoder had 9 layers
each using 768 units with ReLU activation, organized into the
following groups: 2 preprocessing convolution layers with filter
length 3 and residual connections, 1 strided convolution length
reduction layer with filter length 4 and stride 2 (downsampling
the signal by a factor of two), followed by 2 convolutional
layers with length 3 and residual connections, and finally
4 feedforward ReLU layers with residual connections. The
resulting latent vectors were extracted at 50 Hz (i.e., every
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it. While information is present at the penc probe. The AE and VAE models
tend to similarly discard both gender and phoneme information at other probe
points. On the other hand, VQ-VAE selectively discards gender information.

second frame), with each latent vector depending on a receptive
field of 16 input frames. We also used an alternative encoder
with two length reduction layers, which extracted latent
representation at 25 Hz with a receptive field of 30 frames.

When unspecified, the latent representation was 64 dimen-
sional and when applicable constrained to 14 bits. Furthermore,
for the VQ-VAE we used the recommended γ = 0.25 [19].

The decoder applied the randomized time-jitter regularization
(see Section III-A). During training each latent vector was
replaced with either of its neighbors with probability 0.12.

The jittered latent sequence was passed through a single
convolutional layer with filter length 3 and 128 hidden
units to mix information across neighboring timesteps. The
representation was then upsampled 320 times (to match the
16kHz audio sampling rate) and concatenated with a one-hot
vector representing the current speaker to form the conditioning
input of an autoregressive WaveNet [18]. The WaveNet was
composed of 20 causal dilated convolution layers, each using
368 gated units with residual connections, organized into two
“cycles” of 10 layers with dilation rates 1, 2, 4, . . . , 29. The
conditioning signal was passed separately into each layer. The
signal from each layer of the WaveNet was passed to the output
using skip-connections. Finally, the signal was passed through 2
ReLU layers with 256 units. A Softmax was applied to compute
the next sample probability. We used 256 quantization levels
after mu-law companding [18].

All models were trained on minibatches of 64 sequences of
length 5120 time-domain samples (320 ms) sampled uniformly
from the training dataset. Training a single model on 4 Google
Cloud TPUs (16 chips) took a week. We used the Adam
optimizer [52] with initial learning rate 4× 10−4 which was
halved after 400k, 600k, and 800k steps. Polyak averaging [53]
was applied to all checkpoints used for model evaluation.

B. Bottleneck comparison
We train models on LibriSpeech and analyze the informa-

tion captured in the hidden representations surrounding the
autoencoder bottleneck at each of the four probe points shown
in Figure 1:
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penc (768 dim) encoder output prior to the bottleneck,
pproj (64 dim) within the bottleneck after projecting to lower
dimension,
pbn (64 dim) bottleneck output, corresponding to the quantized
representation in VQ-VAE, or a random sample from the
variational posterior in VAE, and
pcond (128 dim) after passing pbn through a convolution layer
which captures a larger receptive field over the latent encoding.

At each probe point, we train separate MLP networks with 2048
hidden units on each of four tasks: classifying speaker gender
and identity for the whole segment (after average pooling latent
vectors across the full signal), predicting phoneme class at
each frame (making several predictions per latent vector3), and
reconstructing log-mel filterbank features4 in each frame (again
predicting several consecutive frames from each latent vector).
A representation which captures the high level semantic content
from the signal, while being invariant to nuisance low-level
signal details, will have a high phoneme prediction accuracy,
and high spectrogram reconstruction error. A disentangled
representation should additionally have low speaker prediction
accuracy, since this information is explicitly made available to
the decoder conditioning network, and therefore need not be
preserved in the latent encoding [54]. Since we are primarily
interested in discovering what information is present in the
constructed representations we report the training performance
and do not tune probing networks for generalization.

A comparison of models using each of the three bottlenecks
with different hyperparameters (latent dimensionality and
bottleneck bitrate) is presented in Figure 2, illustrating the
degree of information propagation through the network. In

3Ground truth phoneme labels and filterbank features have a frame rate of
100 Hz, while the latent representation is computed at a lower rate.

4We also experimented with probes that reconstructed MFCCs, but the
results were strongly correlated with those on filterbanks so we do not include
them. We did not evaluate waveform reconstruction because training a full
WaveNet for each probe point was too expensive.

addition, Figure 3, highlights the separation of phonetic content
and speaker identity obtained using different configurations.

Figure 2 shows that each bottleneck type consistently
discards information between the penc and pbn probe locations,
as evidenced by the reduced performance on each task. The
bottleneck also impacts information content in preceding layers.
Especially for the vanilla autoencoder (AE), which simply
reduces dimensionality, the speaker prediction accuracy and
filterbank reconstruction loss at penc depend on the width of
the bottleneck, with narrower widths causing more information
to be discarded in lower layers of the encoder. Likewise, VQ-
VAEs and AEs yielded better filterbank reconstructions and
speaker identity prediction at penc compared to VAEs with
matching dimensionality and bitrate, which corresponds to the
logarithm of the number of tokens for the VQ-VAE, and the
KL divergence from the prior for the VAE, which we control
by setting the number of allowed free bits.

As expected, AE discards the least information. At pcond the
representation remains highly predictive about both speaker and
phonemes, and its filterbank reconstructions are the best among
all configurations. However, from an unsupervised learning
standpoint, the AE latent representation is less useful because
it mixes all properties of the source signal.

In contrast, VQ-VAE models produce a representation which
is highly predictive of the phonetic content of the signal while
effectively discarding speaker identity and gender information.
At higher bitrates, phoneme prediction is about as accurate as
for the AE. Filterbank reconstructions are also less accurate.
We observe that the speaker information is discarded primarily
during the quantization step between pproj and pbn. Combining
several latent vectors in the pcond representation results in more
accurate phoneme predictions, but the additional context does
not help to recover speaker information. This phenomenon is
highlighted in Figure 3. Note that VQ-VAE models showed
little dependence on the bottleneck dimension, so we present
results at the default setting of 64.

Finally, VAE models separate speaker and phonetic infor-
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TABLE I
LIBRISPEECH FRAME-WISE PHONEME RECOGNITION ACCURACY. VQ-VAE
MODELS CONSUME MFCC FEATURES AND EXTRACTED TOKENS AT 25 HZ.

Num tokens / bits
256 512 1024 2048 4096 8192 16384 32768

Train steps 8 9 10 11 12 13 14 15

200k 56.7 58.3 59.7 60.3 60.7 61.2 61.4 61.7
900k 58.6 61.0 61.9 63.3 63.8 63.9 64.3 64.5

mation better than simple dimensionality reduction, but not as
well as VQ-VAE. The VAE discards phonetic and speaker infor-
mation more uniformly than VQ-VAE: at pbn, VAE’s phoneme
predictions are less accurate, while its gender predictions
are more accurate. Moreover, combining information across
a wider receptive field at pcond does not improve phoneme
recognition as much as in VQ-VAE models. The sensitivity to
the bottleneck dimensionality, seen in Figure 2 is also surprising,
with narrower VAE bottlenecks discarding less information than
wider ones. This may be due to the stochastic operation of the
VAE: to provide the same KL divergence as at low bottleneck
dimensions, more noise needs to be added at high dimensions.
This noise may mask information present in the representation.

Based on these results we conclude that the VQ-VAE
bottleneck is most appropriate for learning latent representations
which capture phonetic content while being invariant to the
underlying speaker identity.

C. VQ-VAE token interpretability

Up to this point we have used the VQ-VAE as a bottleneck
that quantizes latent vectors. In this section we seek an
interpretation of the discrete prototype IDs, evaluating whether
VQ-VAE tokens can be mapped to phonemes, the underlying
discrete constituents of speech sounds. Example token IDs
are pictured in the middle pane of Figure 4, where we can
see that the token 11 is consistently associated with the
transient “T” phone. To evaluate whether other tokens have
similar interpretations, we measured the frame-wise phoneme
recognition accuracy in which each token was mapped to one
out of 41 phonemes. We used the 460 hour clean LibriSpeech
training set for unsupervised training, and used labels from
the clean dev subset to associate each token with the most
probable phoneme. We evaluated the mapping by computing
frame-wise phone recognition accuracy on the clean test set at
a frame rate of 100 Hz. The ground-truth phoneme boundaries
were obtained from forced alignments using the Kaldi tri6b
model from the s5 LibriSpeech recipe [55].

Table I shows performance of the configuration which
obtained the best accuracy mapping VQ-VAE tokens to
phonemes on LibriSpeech. Recognition accuracy is given at two
time points: after 200k gradient descent steps, when the relative
performance of models can be assessed, and after 900k steps
when the models have converged. We did not observe overfitting
with longer training times. Predicting the most frequent silence
phoneme for all frames set an accuracy lower bound at 16%.
A model discriminatively trained on the full 460 hour training
set to predict phonemes with the same architecture as the
25 Hz encoder achieved 80% framewise phoneme recognition

accuracy, while a model with no time-reduction layers set the
upper bound at 88%.

Table I indicates that the mapping accuracy improves with
the number of tokens, with the best model reaching 64.5%
accuracy using 32768 tokens. However, the largest accuracy
gain occurs at 4096 tokens, with diminishing returns as the
number of tokens is further increased. This result is in rough
correspondence with the 5760 tied triphone states used in the
Kaldi tri6b model.

We also note that increasing the number of tokens does
not trivially lead to improved accuracies, because we measure
generalization, and not cluster purity. In the limit of assigning
a different token to each frame, the accuracy will be poor
because of overfitting to the small development set on which
we establish the mapping. However, in our experiments we
consistently observed improved accuracy.

D. Unsupervised ZeroSpeech 2017 acoustic unit discovery

The ZeroSpeech 2017 phonetic unit discovery task [20] eval-
uates a representation’s ability to discriminate between different
sounds, rather than the ease of mapping the representation to
predefined phonetic units. It is therefore complementary to the
phoneme classification accuracy metric used in the previous
section. The ZeroSpeech evaluation scheme uses the minimal
pair ABX test [56], [57] which assesses the model’s ability to
discriminate between pairs of three phoneme long segments
of speech that differ only in the middle phone (e.g. “get” and
“got”). We trained the models on the provided training data
(45 hours for English, 24 hours for French and 2.5 hours
for Mandarin) and evaluated them on the test data using the
official evaluation scripts. To ensure that we do not overfit to the
ZeroSpeech task we only considered the best hyperparameter
settings found on LibriSpeech5 (c.f. Section IV-E). Moreover,
to maximally abide by the ZeroSpeech convention, we used the
same hyperparameters for all languages, denoted as VQ-VAE
(per lang, MFCC, pcond) in Table II.

On English and French, which come with sufficiently
large training datasets, we achieve results better than the top
contestant [58], despite using a speaker independent encoder.

The results are consistent with our analysis of information
separation performed by the VQ-VAE bottleneck: in the
more challenging across-speaker evaluation, the best perfor-
mance uses the pcond representation, which combines several
neighboring frames of the bottleneck representation (VQ-VAE,
(per lang, MFCC, pcond) in Table II). Comparing within-
and across-speaker results is similarly consistent with the
observations in Section IV-B. In the within-speaker case, it is
not necessary to disentangle speaker identity from phonetic
content so the quantization between pproj and pbn probe points
hurts performance (although on English this is corrected by
considering the broader context at pcond). In the across-speaker
case, quantization improves the scores on English and French
because the gain from discarding the confounding speaker

5The comparison with other systems from the challenge is fair, because
according to the ZeroSpeech experimental protocol, all participants were
encouraged to tune their systems on the three languages that we use (English,
French, and Mandarin), while the final evaluation used two surprise languages
for which we do not have the labels required for evaluation.
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TABLE II
ZEROSPEECH 2017 PHONETIC UNIT DISCOVERY ABX SCORES REPORTED ACROSS- AND WITHIN-SPEAKERS (LOWER IS BETTER). THE VQ-VAE ENCODER

IS SPEAKER INDEPENDENT AND THUS ITS RESULTS DO NOT CHANGE WITH THE AMOUNT OF TEST SPEAKER DATA (1S, 10S, OR 2M), WHILE
SPEAKER-ADAPTIVE MODELS (E.G. SUPERVISED TOPLINE) IMPROVE WITH MORE TARGET SPEAKER DATA. WE REPORT THE TWO REFERENCE POINTS FROM
THE CHALLENGE, ALONG WITH THE CHALLENGE WINNER [58] AND THREE OTHER SUBMISSIONS THAT USED NEURAL NETWORK IN AN UNSUPERVISED

SETTING [59], [60], [61]. ALL VQ-VAE MODELS USE EXACTLY THE SAME HYPERPARAMETER SETUP (14 BIT TOKENS EXTRACTED AT 50 HZ WITH
TIME-JITTER PROBABILITY 0.5), REGARDLESS OF THE AMOUNT OF UNLABELED TRAINING DATA (45H, 24H OR 2.4H).

THE TOP VQ-VAE RESULTS ROW (VQ-VAE TRAINED ON TARGET LANGUAGE, FEATURES EXTRACTED AT THE pCOND POINT) GIVES BEST RESULTS
OVERALL. WE ALSO INCLUDE in italics RESULTS FOR DIFFERENT PROBE POINTS AND FOR VQ-VAES JOINTLY TRAINED ON ALL LANGUAGES.

MULTILINGUAL TRAINING HELPS MANDARIN. WE ALSO OBSERVE THAT THE QUANTIZATION MOSTLY DISCARDS SPEAKER AND CONTEXT INFLUENCE. THE
CONTEXT IS HOWEVER RECOVERED IN THE CONDITIONING SIGNAL WHICH COMBINES INFORMATION FROM LATENT VECTORS AT NEIGHBORING TIMESTEPS.

Within-speaker Across-speaker

English (45h) French (24h) Mandarin (2.4h) English (45h) French (24h) Mandarin (2.4h)
Model 1s 10s 2m 1s 10s 2m 1s 10s 2m 1s 10s 2m 1s 10s 2m 1s 10s 2m

Unsupervised baseline 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3
Supervised topline 6.5 5.3 5.1 8.0 6.8 6.8 9.5 4.2 4.0 8.6 6.9 6.7 10.6 9.1 8.9 12.0 5.7 5.1

VQ-VAE (per lang, MFCC, pcond) 5.6 5.5 5.5 7.3 7.5 7.5 11.2 10.7 10.8 8.1 8.0 8.0 11.0 10.8 11.1 12.2 11.7 11.9
VQ-VAE (per lang, MFCC, pbn) 6.2 6.0 6.0 7.5 7.3 7.6 10.8 10.5 10.6 8.9 8.8 8.9 11.3 11.0 11.2 11.9 11.4 11.6
VQ-VAE (per lang, MFCC, pproj) 5.9 5.8 5.9 6.7 6.9 6.9 9.9 9.7 9.7 9.1 9.0 9.0 11.9 11.6 11.7 11.0 10.6 10.7

VQ-VAE (all lang, MFCC, pcond) 5.8 5.8 5.8 8.0 7.9 7.8 9.2 9.1 9.2 8.8 8.6 8.7 11.8 11.6 11.6 10.3 10.0 9.9
VQ-VAE (all lang, MFCC, pbn) 6.3 6.2 6.3 8.0 8.0 7.9 9.0 8.9 9.1 9.4 9.2 9.3 11.8 11.7 11.8 9.9 9.7 9.7
VQ-VAE (all lang, MFCC, pproj) 5.8 5.7 5.8 7.1 7.0 6.9 7.4 7.2 7.1 9.3 9.3 9.3 11.9 11.4 11.6 8.6 8.5 8.5
VQ-VAE (all lang, fbank, pproj) 6.0 6.0 6.0 6.9 6.8 6.8 6.8 6.6 6.6 10.1 10.1 10.1 12.5 12.2 12.3 7.8 7.7 7.7

Heck et al. [58] 6.9 6.2 6.0 9.7 8.7 8.4 8.8 7.9 7.8 10.1 8.7 8.5 13.6 11.7 11.3 8.8 7.4 7.3
Chen et al. [59] 8.5 7.3 7.2 11.2 9.4 9.4 10.5 8.7 8.5 12.7 11.0 10.8 17.0 14.5 14.1 11.9 10.3 10.1
Ansari et al. [60] 7.7 6.8 N/A 10.4 N/A 8.8 10.4 9.3 9.1 13.2 12.0 N/A 17.2 N/A 15.4 13.0 12.2 12.3
Yuan et al. [61] 9.0 7.1 7.0 11.9 9.5 9.5 11.1 8.5 8.2 14.0 11.9 11.7 18.6 15.5 14.9 12.7 10.8 10.7

information offsets the loss of some phonetic details. Moreover,
the discarded phonetic information can be recovered by mixing
neighboring timesteps at pcond.

VQ-VAE performance on Mandarin is worse, which we
can attribute to three main causes. First, the training dataset
consists of only 2.4 hours or speech, leading to overfitting
(see Sec. IV-E7). This can be partially improved by mul-
tilingual training, as in VQ-VAE, (all lang, MFCC, pcond).
Second, Mandarin is a tonal language, while the default
input features (MFCCs) discard pitch information. We note a
slight improvement with a multilingual model trained on mel
filterbank features (VQ-VAE, (all lang, fbank, pproj)). Third,
VQ-VAE was shown not to encode prosody in the latent
representation [19]. Comparing the results across probe points,
we see that Mandarin is the only language for which the VQ
bottleneck discards information and decreases performance in
the across-speaker testing regime. Nevertheless, the multilingual
prequantized features yield accuracies comparable to [58].

We do not consider the need for more unsupervised training
data to be a problem. Unlabeled data is abundant. We believe
that a more powerful model that requires and can make better
use of large amounts of unlabeled training data is preferable to
a simpler model whose performance saturates on small datasets.
However, it remains to be verified if increasing the amount
of training data would help the Mandarin VQ-VAE learn to
discard less tonal information (the multilingual model might
have learned to do this to accommodate French and English).

E. Hyperparameter impact

All VQ-VAE autoencoder hyperparameters were tuned on
the LibriSpeech task using several grid-searches, optimizing for
the highest phoneme recognition accuracy. We also validated

these design choices on the English part of the ZeroSpeech
challenge task. Indeed, we found that the proposed time-jitter
regularization improved ZeroSpeech ABX scores for all input
representations. Using MFCC or filterbank features yields better
scores that using waveforms, and the model consistently obtains
better scores when more tokens are used.

1) Time-jitter regularization: In Table III we analyze the
effectiveness of the time-jitter regularization on VQ-VAE
encodings and compare it to two variants of dropout: regular
dropout applied to individual dimensions of the encoding and
dropout applied randomly to the full encoding at individual
time steps. Regular dropout does not force the model to sepa-
rate information in neighboring timesteps. Step-wise dropout
promotes encodings which are independent across timesteps
and performs slightly worse than the time-jitter6.

The proposed time-jitter regularization greatly improves
token mapping accuracy and extends the range of token
frame rates which perform well to include 50 Hz. While the
LibriSpeech token accuracies are comparable at 25 Hz and
50 Hz, higher token emission frequencies are important for
the ZeroSpeech AUD task, on which the 50 Hz model was
noticeably better. This behavior is due to the fact that the 25 Hz
model is prone to omitting short phones (Sec. IV-E6), which
impacts the ABX results on the ZeroSpeech task.

We also analyzed information content at the four probe points
for VQ-VAE, VAE, and simple dimensionality reduction AE
bottleneck, shown in Figure 5. For all bottleneck mechanisms,
the regularization limits the quality of filterbank reconstruc-
tions and increases the phoneme recognition accuracy in the
constrained representation. However this benefit is smaller after

6 The token copy probability of 0.12 keeps a given token with probability
0.882 = 0.77 which roughly corresponds to a 0.23 per-timestep dropout rate
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Fig. 5. Impact of the time-jitter regularization on information captured by
representations at different probe points.

TABLE III
EFFECTS OF INPUT REPRESENTATION AND REGULARIZATION ON PHONEME

RECOGNITION ACCURACY ON LIBRISPEECH, MEASURED AFTER 200K
TRAINING STEPS. ALL MODELS EXTRACT 256 TOKENS.

Input features Token rate Regularization Accuracy

MFCC 25 Hz None 52.5
MFCC 25 Hz Regular dropout p = 0.1 50.7
MFCC 25 Hz Regular dropout p = 0.2 49.1
MFCC 25 Hz Per-time step dropout p = 0.2 55.3
MFCC 25 Hz Per-time step dropout p = 0.3 55.7
MFCC 25 Hz Per-time step dropout p = 0.4 55.1
MFCC 25 Hz Time-jitter p = 0.08 56.2
MFCC 25 Hz Time-jitter p = 0.12 56.2
MFCC 25 Hz Time-jitter p = 0.16 56.1

MFCC 50 Hz None 46.5
MFCC 50 Hz Time-jitter p = 0.5 56.1

log-mel spectrogram 25 Hz None 50.1
log-mel spectrogram 25 Hz Time-jitter p = 0.12 53.6

raw waveform 30 Hz None 37.6
raw waveform 30 Hz Time-jitter p = 0.12 48.1

neighboring timesteps are combined in the pcond probe point.
Moreover, for VQ-VAE and VAE the regularization decreases
gender prediction accuracy and makes the representation
slightly less speaker-sensitive.

2) Input representation: In this set of experiments we
compared performance using different input representation:
raw waveforms, log-mel spectrograms, or MFCCs. The raw
waveform encoder used 9 strided convolutional layers, which
resulted in token extraction frequency of 30 Hz. We then
replaced the waveform with a customary ASR data pipeline:
80 log-mel filterbank features extracted every 10ms from 25ms-
long windows and 13 MFCC features extracted from the mel-
filterbank output, both augmented with their first and second
temporal derivatives. Using two strided convolution layers in
the encoder led to a 25 Hz token rate for these models.

The results are reported in the bottom of Table III. High-level
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Fig. 6. Impact of decoder WaveNet receptive field on the properties of the
VQ-VAE conditioning signal. The representation is significantly more gender
invariant when the receptive field is larger that 10ms. Frame-wise phoneme
recognition accuracy peaks at about 125ms. The depth and width of the
WaveNet have a secondary effect (cf. points with the same RF).

features, especially MFCCs, perform better than waveforms,
because by design they discard information about pitch and
provide a degree of speaker invariance. Using such a reduced
representation forces the encoder to transmit less information to
the decoder, acting as an inductive bias toward a more speaker
invariant latent encoding.

3) Output representation: We constructed an autoregressive
decoder network that reconstructed filterbank features rather
than raw waveform samples. Inspired by recent progress in
text-to-speech systems, we implemented a Tacotron 2-like
decoder [62] with a built-in information bottleneck on the
autoregressive information flow, which was found to be critical
in TTS applications. Similarly to Tacotron 2 the filterbank
features were first processed by a small “pre-net”, we applied
generous amounts of dropout and configured the decoder to
predict up to 4 frames in parallel. However, these modifications
yielded at best 42% phoneme recognition accuracy, significantly
lower than the other architectures described in this paper. The
model was however an order of magnitude faster to train.

Finally, we analyzed the impact of the size of the decoding
WaveNet on the representation extracted by the VQ-VAE. We
have found that overall receptive field (RF) has a larger impact
than the depth or width of the WaveNet. In particular, a large
change in the properties of the latent representation happens
when the decoder’s receptive field crosses than about 10ms.
As shown in Figure 6, for smaller RFs, the conditioning signal
contains more speaker information: gender prediction is close
to 80%, while framewise phoneme prediction accuracy is only
55%. For larger RFs, gender prediction accuracy is about 60%,
while phoneme prediction peaks near 65%. Finally, while the
reconstruction log-likelihood improved with WaveNet depth up
to 30 layers, the phoneme recognition accuracy plateaued with
20 layers. Since the WaveNet has the largest computational
cost we decided to keep the 20 layer configuration.

4) Decoder speaker conditioning: The WaveNet decoder
generates samples based on three sources of information: the
previously emitted samples (via the autoregressive connection),
global conditioning on speaker or other information which
is stationary in time, and on the time-varying representation
extracted from the encoder. We found that disabling global
speaker conditioning reduces phoneme classification accuracy
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by 3 percentage points. This further corroborates our findings
about disentanglement induced by the VQ-VAE bottleneck,
which biases the model to discard information that is available
in a more explicit form. Throughout our experiments we used
a speaker-independent encoder. However, adapting the encoder
to the speaker might further improve the results. In fact, [58]
demonstrates improvements on the ZeroSpeech task using a
speaker-adaptive approach.

5) Encoder hyperparameters: We experimented with tuning
the number of encoder convolutional layers, as well as the
number of filters, and the filter length. In general, performance
improved with larger encoders, however we established that
the encoder’s receptive field must be carefully controlled, with
the best performing encoders seeing about 0.3 seconds of input
signal for each generated token.

The effective receptive field can be controlled using two
mechanisms: by carefully tuning the encoder architecture, or by
designing an encoder with a wide receptive field, but limiting
the duration of signal segments seen during training to the
desired receptive field. In this way the model never learns to
use its full capacity. When the model was trained on 2.5s long
segments, an encoder with receptive field of 0.3s had framewise
phoneme recognition accuracy of 56.5%, while and encoder
with a receptive field of 0.8s scored only 54.3%. When trained
on segments of 0.3s, both models performed similarly.

6) Bottleneck bit rate: The speech VQ-VAE encoder can be
seen as encoding a signal using a very low bit rate. To achieve
a predetermined target bit rate, one can control both the token
rate (i.e., by controlling the degree of downsampling down in
the encoder strided convolutions), and the number of tokens
(or equivalently the number of bits) extracted at every step. We
found that the token rate is a crucial parameter which must be
chosen carefully, with the best results after 200k training steps
obtained at 50 Hz (56.0% phoneme recognition accuracy ) and
25 Hz (56.3%). Accuracy drops abruptly at higher token rates
(49.3% at 100 Hz), while lower rates miss very short phones
(53% accuracy at 12.5 Hz).

In contrast to the number of tokens, the dimensionality of the
VQ-VAE embedding has a secondary effect on representation
quality. We found 64 to be a good setting, with much smaller
dimensions deteriorating performance for models with a small
number of tokens and higher dimensionalities negatively
affecting performance for models with a large number of tokens.

For completeness, we observe that even for the model with
the largest inventory of tokens, the overall encoder bitrate is
low: 14 bits at 50 Hz = 700 bps, which is on par with the
lowest bitrate of classical speech codecs [63].

7) Training corpus size: We experimented with training
models on subsets of the LibriSpeech training set, varying
the size from 4.6 hours (1%) to 460 hours (100%). Training
on 4.6 hours of data, phoneme recognition accuracy peaked
at 50.5% at 100k steps and then deteriorated. Training on 9
hours led to a peak accuracy of 52.5% at 180k sets. When the
size of training set was increased past 23 hours the phoneme
recognition reached 54% after around 900k steps. No further
improvements were found by training on the full 460 hours of
data. We did not observe any overfitting, and for best results
trained models until reaching 900k steps with no early stopping.

An interesting future area for research would be investigating
methods to increase the model capacity to make better use of
larger amounts of unlabeled data.

The influence of the size of the dataset is also visible in
the ZeroSpeech Challenge results (Table II): VQ-VAE models
obtained good performance on English (45 hours of training
data) and French (24 hours), but performed poorly on Mandarin
(2.5 hours). Moreover, on English and French we obtained the
best results with models trained on monolingual data. On
Mandarin slightly better results were obtained using a model
trained jointly on data from all languages.

V. RELATED WORK

VAEs for sequential data were introduced in [49]. The model
used LSTM encoder and decoder, while the latent representation
was formed from the last hidden state of the encoder. The model
proved useful for natural language processing tasks. However, it
also demonstrated the problem of latent representation collapse:
when a powerful autoregressive decoder is used simultaneously
with a penalty on the latent encoding, such as the KL prior,
the VAE has a tendency to ignore the prior and act as if it
were a purely autoregressive sequence model. This issue can
be mitigated by changing the weight of the KL term, and
limiting the amount of information on the autoregressive path
by using word dropout [49]. Latent collapse can also be avoided
in deterministic autoencoders, such as [64], which coupled a
convolutional encoder to a powerful autoregressive WaveNet
decoder [18] to learn a latent representation of music audio
consisting of isolated notes from a variety of instruments.

We empirically validate that conditioning the decoder on
speaker information results in encodings which are more
speaker invariant. Moyer et al. [54] give a rigorous proof
that this approach produces representations that are invariant
to the explicitly provided information and relate it to domain-
adversarial training, another technique designed to enforce
invariance to a known nuisance factor [65].

When applied to audio, the VQ-VAE uses the WaveNet
decoder to free the latent representation from modeling
information that is easily recoverable form the recent past
[19]. It avoids the problem of posterior collapse by using a
discrete latent code with a uniform prior which results in a
constant KL penalty. We employ the same strategy to design
the latent representation regularizer: rather than extending the
cost function with a penalty term that can cause the latent space
to collapse, we rely on random copies of the latent variables
to prevent their co-adaptation and promote stability over time.

The randomized time-jitter regularization introduced in this
paper is inspired by slow representations of data [48] and
by dropout, which randomly removes during training neurons
to prevent their co-adaptation [50]. It is also very similar to
Zoneout [51] which relies on random time copies of selected
neurons to regularize recurrent neural networks.

Several authors have recently proposed to model sequences
with VAEs that use a hierarchy of variables. [66] explore a
hierarchical latent space which separates sequence-dependent
variables from those which are sequence-independent ones.
Their model was shown to perform speaker conversion and to
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improve automatic speech recognititon (ASR) performance in
the presence of domain mismatch. [67] introduce a stochastic
latent variable model for sequential data which also yields
disentangled representations and allows content swapping
between generated sequences. These other approaches could
possibly benefit from regularizing the latent representation to
achieve further information disentanglement.

Acoustic unit discovery systems aim at transducing the
acoustic signal into a sequence of interpretable units akin
to phones. They often involve clustering of acoustic frames,
MFCC or neural network bottleneck features, regularized using
a probabilistic prior. DP-GMM [68] imposes a Dirichlet Process
prior over a Gaussian Mixture Model. Extending it with an
HMM temporal structure for sub-phonetic units leads to the
DP-HMM and the HDP-HMM [69], [70], [71]. HMM-VAE
proposes the use of a deep neural network instead of a GMM
[72], [73]. These approaches enforce top-down constraints via
HMM temporal smoothing and temporal modeling. Linguistic
unit discovery models detect recurring speech patterns at a
word-like level, finding commonly repeated segments with a
constrained dynamic time warping [74].

In the segmental unsupervised speech recognition framework,
neural autoencoders were used to embed variable length speech
segments into a common vector space where they could be
clustered into word types [75]. [76] replace the segmental
autoencoder with a model that instead predicts a nearby
speech segment and demonstrate that the representation shares
many properties with word embeddings. Coupled with an
unsupervised word segmentation algorithm and unsupervised
mapping of word embeddings discovered on separate corpora
[77] the approach yielded an ASR system trained on unpaired
speech and text data [78].

Several entries to the ZeroSpeech 2017 challenge relied
on neural networks for phonetic unit discovery. [61] trains
an autoencoder on pairs of speech segments found using an
unsupervised term discovery system [79]. [59] first clustered
speech frames, then trained a neural network to predict the
cluster IDs and used its hidden representation as features.
[60] extended this scheme with features discovered by an
autoencoder trained on MFCCs.

VI. CONCLUSIONS

We applied sequence autoencoders to speech modeling and
compared different information bottlenecks, including VAEs
and VQ-VAEs. We carefully evaluated the induced latent
representation using interpretability criteria as well as the ability
to discriminate between similar speech sounds. The comparison
of bottlenecks revealed that discrete representations obtained
using VQ-VAE preserved the most phonetic information
while also being the most speaker-invariant. The extracted
representation allowed for accurate mapping of the extracted
symbols into phonemes and obtained competitive performance
on the ZeroSpeech 2017 acoustic unit discovery task. A similar
combination of VQ-VAE encoder and WaveNet decoder by
Cho et al. had the best acoustic unit discovery performance in
ZeroSpeech 2019 [80].

We established that an information bottleneck is required
for the model to learn a representation that separates content

from speaker characteristics. Furthermore, we observe that the
latent collapse problem induced by bottlenecks which are too
strong can be avoided by making the bottleneck strength a
model hyperparameter, either removing it completely (as in
the VQ-VAE), or by using the free-information VAE objective.

To further improve representation quality, we introduced a
time-jitter regularization scheme which limits the capacity of
the latent code yet does not result in a collapse of the latent
space. We hope that this can similarly improve performance
of latent variable models used with auto-regressive decoders
in other problem domains.

Both the VAE and VQ-VAE constrain the information
bandwidth of the latent representation. However, the VQ-VAE
uses a quantization mechanism, which deterministically forces
the encoding to be equal to a prototype, while the VAE limits
the amount of information by injecting noise. In our study,
the VQ-VAE resulted in better information separation than
the VAE. However, further experiments are needed to fully
understand this effect. In particular, is this a consequence of
the quantization, or of the deterministic operation?

We also observe that while the VQ-VAE produces a discrete
representation, for best results it uses a token set so large that
it is impractical to assign a separate meaning to each one. In
particular, in our ZeroSpeech experiments we used the dense
embedding representation of each token, which provided a
more nuanced token similarity measure than simply using the
token identity. Perhaps a more structured latent representation
is needed, in which a small set of units can be modulated in a
continuous fashion.

Extensive hyperparameter evaluation indicated that opti-
mizing the receptive field sizes of the encoder and decoder
networks is important for good model performance. A multi-
scale modeling approach could furthermore separate the
prosodic information. Our autoencoding approach could also
be combined with penalties that are more specialized to speech
processing. Introducing a HMM prior as in [73] could promote
a latent representation which better mimics the temporal
phonetic structure of speech.
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