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Abstract—Blind source separation exploiting multichannel in-
formation has long been a popular topic, and recently proposed
methods based on the local Gaussian model have shown promising
results despite its high computational cost for the case of many
microphone signals. The low updating speed for such a model is
mainly due to the inversion of a spatial covariance matrix, for which
the complexity increases with the number of microphones, M , and
is generally of orderO(M3). Several projection-based approaches
that attempt to concentrate energy on the diagonal part of the
spatial covariance matrix have been introduced to circumvent the
matrix inversion, which can reduce the complexity to O(M). In
this article, we focus on the fast Fourier transform as a projection
method because the energy concentration on the diagonal can be ef-
ficiently achieved compared with other projection-based methods.
For the case where the diagonalization is imperfect, for example,
owing to discontinuities at the edge of a linear array, we also
developed a more robust algorithm approximating the tri-diagonal
part of the spatial covariance matrix, which requires a complexity
of O(M2) for the inversion by applying the Thomas algorithm. To
remove the ad-hoc integration of post clustering after the decompo-
sition, we also examine a self-clustering algorithm. Our evaluation
shows better results than other previously proposed methods in
terms of the separation quality under reverberant conditions as
well as higher efficiency than multichannel non-negative matrix
factorization.

Index Terms—Multichannel source separation, non-negative
factorization, spatial covariance model, wavenumber domain, local
Gaussian model.
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I. INTRODUCTION

MULTICHANNEL music source separation is one of the
most actively studied topics in the audio signal process-

ing field and various approaches have been proposed to tackle
this difficult problem. In recent years, owing to the advent of deep
learning, supervised methods based on training spectro-temporal
information of audio signals have been proven to yield notable
results [1]–[6]. In contrast, unsupervised source separation,
where training data are not available, still remains a challenging
and open problem.

In the last decade, the local Gaussian model has gained
much attention as one of the most promising unsupervised
approaches exploiting multichannel coherence. In 2005 the local
Gaussian model was first applied to multichannel source sepa-
ration [7], [8], in which the spectrum of each time-frequency bin
is modeled as an instantaneous mixture of complex multivariate
Gaussians. To cope with more complex mixing conditions such
as convolutive environments, the model was further extended to
incorporate a full-rank model, and a generalized expectation-
maximization (GEM) algorithm was employed to derive the
update rules to obtain the model parameters [9], [10]. Ozerov
and Févotte applied a low-rank factorization in this framework
for modeling source amplitudes of time-frequency bins [11].
Their approach can be regarded as the multichannel extension of
the well-known non-negative matrix factorization (NMF) [12].
This original approach was limited to a rank-1 matrix, which
was later generalized to the full-rank case so that the algorithm
can also be used under reverberant conditions [13]–[15]. The
separation quality of multichannel NMF was highlighted in the
literature as outperforming other existing methods, such as l1-
norm minimization [16], lp-norm minimization [17], and binary
clustering [18]. Its huge computational cost and slow conver-
gence, were addressed as two major problems to be tackled in the
future. In detail, the computational cost explodes with increasing
the number of microphones,M , asO(M3) owing to the multiple
matrix inversions during the parameter updates [19]. For the con-
vergence of multichannel NMF, GEM-based parameter updates
were shown to be much slower than multiplicative updates by
comparison with non-negative tensor factorization (NTF) [20].

The convergence speed of multichannel NMF was increased
by incorporating multiplicative updates into the M-step of the
source parameter updates [21]. A different update method was
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proposed in [22] consisting solely of multiplicative updates
with the majorization–minimization algorithm [23]. While the
convergence problem was mitigated by such means, the authors
reported that the separation performance was prone to local
minima resulting from the initialization of the model parameters.

Nikunen and Virtanen developed a direction-of-arrival
(DOA)-based method to overcome the initialization prob-
lem [24]. The algorithm provides a series of DOA kernels en-
abling the spatial properties observed in the multichannel signals
to be encoded. A DOA kernel is composed of outer products
of steering vectors. In [24], it was reported that the method
yielded robust results even in the case of initializing parameters
with random values. To reduce the number of parameters to
be updated, the DOA-based method was further enhanced by
splitting a DOA kernel into two parts: a fixed kernel consisting
of phase covariances and an updatable kernel consisting of
amplitude covariances [25].

In parallel with the advancement of multichannel NMF, other
authors devoted their time to improving NTF [26]–[29]. Their
methods treat multichannel spectrograms as three-way tensors
and apply non-negative factorization inspired by NMF. NTF
can also be regarded as a simplified approach to multichannel
NMF because the model extracts the diagonal part of a spatial
covariance matrix (SCM) while discarding the off-diagonal part
that contains information of interchannel phase differences.
Since NTF assumes that the original sources are mixed in-
stantaneously, exploiting only the diagonal part is often not
sufficient to model more realistic mixing conditions. In addition
to NTF modeling of the diagonal part, an NMF-based treatment
of off-diagonal elements has recently been proposed [30].

To overcome the weakness of the high computational cost
in multichannel NMF, several authors have attempted to apply
different types of orthogonal transforms to an SCM, enabling
the energy of the SCM to be concentrated in the diagonal part.
As a result, a matrix inversion in the update can be replaced
with element-wise diagonal divisions, thus reducing the high
computational cost. The authors in [31] leveraged a steering
matrix to convert the SCM into the so-called beamspace domain.
The method was further generalized in the framework called
PROJET [32]. There have been several works on the itera-
tive estimation of the projection matrix by independent vector
analysis (IVA) [33], either jointly with NMF updates [34] or
independently followed by the NMF approach [35].

In this paper, we first propose the use of a fast Fourier
transform (FFT) to project signals into the wavenumber domain
and to model only the band elements of an SCM. The conversion
can be achieved more efficiently than by other projection-based
methods while making use of the property that plane waves
can be sparsely represented in the wavenumber domain. The
diagonal approximation of an SCM in the wavenumber domain
was first introduced in an international conference paper [36]
by the authors, in which only the scenario of using a uniform
linear array with a large number of microphones was evaluated.
However, it can be assumed that the performance gradually
degrades as the number of microphones is reduced because the
SCM of projected signals cannot contain sufficient information
in the diagonal part when the number of microphones is small.

Evaluating the robustness to such a scenario is one of the focuses
of this paper.

To further increase the robustness, secondly, we also devised
a tri-diagonal approximation approach, where the algorithm
not only takes into account the diagonal part but also exploits
the adjacent lower and upper bands of the matrix. It relies
on the assumption that the tri-diagonal part contains more
spatial information than the diagonal part. A difficulty exists
in the extraction step of the tri-diagonal elements because a
simple truncation of off-diagonal elements cannot maintain the
positive semi-definitiveness of the matrix, which is required to
ensure the convergence of the iterative update rules.

The inversions of tri-diagonal matrices, which appear a few
times in the multiplicative updates, can be efficiently computed
by means of the Thomas algorithm [37], which can achieve a
matrix inversion of order O(M2).

Finally, we examine the incorporation of self-clustering to
remove the dependency of clustering methods after the de-
composition, which was reported in [38] to yield a quality
improvement.

The novelties and the contributions of this work are as follows:
• an in-depth evaluation of the FFT-based projection

method [36] in the case of a small number of microphones,
• an extension to tri-diagonal SCM approximation, where

we ensure the positive semi-definitiveness of the matrix,
followed by an efficient inverse calculation based on the
Thomas algorithm, and,

• the incorporation of self-clustering to iteratively group
NMF components into several source types.

The paper is organized as follows. First, we introduce the
spatial covariance model in Section II. We then describe in detail
our proposed method in Section III, which is then evaluated in
Section IV. Finally, Section V gives the conclusions.

The following notations are used throughout this paper: x
denotes a column vector and X a matrix, where I is the identity
matrix. The trace operator, determinant, matrix transpose, con-
jugate matrix transpose, Euclidean vector norm, and Frobenius
matrix norm are denoted by tr{.}, det{.}, (.)T , (.)H , ‖.‖, and
‖.‖F , respectively. X � 0, X � 0 means that X is symmetric
and positive definite / semi-definite. Furthermore, tridiag{X}
returns a matrix of the same size as X that contains the tri-
diagonal part of X.

II. MODELS AND RELATED METHODS

A. Local Gaussian Model

This section provides an introduction to the model underlying
multichannel NMF and its variant, DOA-based multichannel
NMF [24]. It assumes that an M -channel vector of a short-time
Fourier transform (STFT) bin can be modeled as a multivariate
complex Gaussian, i.e.,

sifn ∼ NC

(
0,Ri

fn

)
, (1)

where M denotes the number of microphones, sifn ∈ CM de-
notes the spatial image of the ith source in the STFT domain,
Ri

fn = E[sifns
i
fn

H
] ∈ CM×M denotes the SCM of the complex
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Gaussian distribution NC , f is the frequency bin index, and n
is the time frame index.

The spatial image of a mixture of multiple sourcesxfn ∈ CM

is represented as a sum of complex Gaussians, i.e.,

xfn =
∑

i

sifn ∼ NC (0,Rfn) , (2)

where Rfn ∈ CM×M denotes the SCM. Assuming that the
sources are mutually independent, the SCM of the mixture Rfn

is given by the sum of the SCMs of all sources, i.e.,

Rfn = E
[
xfnx

H
fn

]
=
∑

i

Ri
fn. (3)

The log-likelihood of the spatial image xfn for the model pa-
rameters θ under the assumption of the local Gaussian model (2)
is given by

log p(x|θ) =
∑

fn

logNC

(
xfn|0, R̂fn(θ)

)
, (4)

where the model parameter θ will be defined later in
Sections II-B and II-C. This likelihood can be interpreted as the
log-determinant divergence [39] between the empirical SCM,
R̃fn = xfnx

H
fn, and the estimated SCM, R̂fn(θ) ∈ CM×M :

C(θ) =
∑

fn

DLD

(
R̃fn|R̂fn(θ)

)

≡
∑

fn

tr
(
R̃fnR̂fn(θ)

−1
)
+ log det

(
R̂fn(θ)

)
, (5)

where C(θ) can be seen as a cost function which we want to
minimize with respect to the model parameters θ. We denote the
log-determinant divergence by DLD.

B. Multichannel NMF

In the framework of multichannel NMF proposed in [22]
where θ = {Afk, wfk, hkn}, the SCM R̂fn is assumed to
be a superposition of time-invariant normalized SCMs Afk ∈
CM×M coupled with a scale value that represents the power
spectral density. The scale value is decomposed into a non-
negative frequency weight wfk and a non-negative activation
hkn,

R̂fn(θ) =
∑

k

Afkwfkhkn, (6)

where the NMF component index is denoted by k. Even though
the performance of multichannel NMF exceeds that of other
multichannel based approaches, such as IVA [33], it is known to
be sensitive to the initialization of the parameters. The drawback
can be mitigated by employing other multichannel methods
as an initializer of multichannel NMF [34]. Another major
problem of multichannel NMF is its computational cost because
the complexity increases with the number of microphones, M .
In particular, in the case of multichannel NMF based on the
log-determinant divergence (5), numerous matrix inversions in
the update rules of wfk and hkn and eigendecompositions in the
update of Afk result in a very high computational cost of order
O(M3) [19].

C. Multichannel NMF With Fixed DOA Kernels

In the extended approach of multichannel NMF proposed
in [24] where θ = {zko, wfk, hkn}, the time-invariant normal-
ized SCM is further decomposed into a set of fixed DOA ker-
nels Jfo ∈ CM×M and the corresponding directional weights
zko ∈ RK×O

+ ,

R̂fn(θ) =
∑

k

∑

o

Jfozkowfkhkn, (7)

whereAfk =
∑

o Jfozko results in the same equation as (6) and
o denotes the index of steering directions for the DOA kernels.
By using a fixed basis of DOA kernels throughout the separation
process, the stability of the performance is improved even when
the parameters are initialized with random values. Furthermore,
there is also a major advantage in terms of computational
cost owing to the elimination of the update of the normalized
SCM Afk.

Opposed to multichannel NMF, which blindly estimates the
normalized SCM, the DOA-based approach requires that the
geometry of the array is known in order to compute the DOA
kernels. In the case of a uniform linear array, the DOA kernel
is composed of an outer product of steering vectors qfo ∈ CM ,
where each steering vector is represented as a function of the time
delay determined by the steering direction and the microphone
distance, i.e.,

Jfo = qfoq
H
fo, (8)

with

qT
fo =

[
1 ejωfγo · · · ejωf (M−1)γo

]
, (9)

where ωf denotes the frequency and γo denotes the time delay
between each microphone and the array center. Although the
overall computational cost is greatly reduced by fixing the DOA
kernels, the presence of the matrix inversions in the updates of
zko, wfk, and hkn prevents us from applying the algorithm to
the scenario where a large number of microphones are required,
i.e., where M is large.

III. PROPOSED METHOD

A. Motivation

To further reduce the computational complexity owing to
the inverse operations in the update rules, several authors have
attempted to diagonalize the SCM in different ways such that
inverse operations can be replaced with element-wise divi-
sions [31], [32], [36]. In this paper, we employ a wavenumber
domain transform because it can be achieved by applying an
FFT operation, which only requires O(M logM) operations.
The wavenumber domain, also referred to as spatial Fourier
domain, can be applied to the multichannel observations. If the
microphones are uniformly distributed in space, the SCM can be
diagonalized by the wavenumber transform [40]. This approach
makes use of the property that plane waves can be sparsely
represented in the wavenumber domain, as can be seen in Fig. 1.
The spectrograms in the wavenumber domain are characterized
by several sparsely located peaks that represent plane waves.
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Fig. 1. Virtual plane waves represented in the wavenumber domain, originat-
ing from π/20, 8π/20, and 14π/20.

Fig. 2. SCM of mixed plane waves (2 kHz) originating from π/20, 8π/20,
and14π/20. The number of microphones,M , is 32. |.| denotes the element-wise
absolute value of the matrix.

B. Spatial Transform of SCMs

The STFT multichannel signals are converted into the
wavenumber domain, where the underlying probability model
is based on the zero-mean complex Gaussian distribution,

FHxfn = FH
∑

i

sifn ∼ NC

(
0,RSP

fn

)
, (10)

with

RSP
fn = FHR̃fnF, (11)

where RSP
fn ∈ CM×M denotes the SCM in the wavenumber

domain and F ∈ CM×M denotes the discrete Fourier transform
(DFT) matrix. Fig. 2 shows an example of a comparison be-
tween an SCM for M = 32 in the time-frequency domain and
the converted matrix in the wavenumber domain. It is clear
from the figure that the SCM in the wavenumber domain has
strong peaks in the band elements, whereas the one in the
time-frequency domain has quasi-uniformly distributed values.
A comparison for M = 4 is shown in Fig. 3. Again, the SCM in
wavenumber domain exhibits a small number of strong peaks.
To numerically assess the sparseness of the SCMs, we computed
the percentage of elements that are smaller in magnitude than
20% of the maximum element. For the case of M = 32 (Fig. 2),
we obtain 6.1% in (a) and 99.5% in (b). Also, for the case of
M = 4 (Fig. 3), we obtain 0% in (a) and 81.3% in (b). Thus, even
forM = 4, more than 80% of all SCM elements in wavenumber
domain are smaller than the threshold whereas it was none in the

Fig. 3. SCM of mixed plane waves (2 kHz) originating from π/20, 8π/20,
and 14π/20. The number of microphones, M , is 4. |.| denotes the element-wise
absolute value of the matrix.

Fig. 4. SCM of three point sources (2 kHz) originating from π/20, 8π/20,
and 14π/20, simulated in the reverberant scenario with the image method (7.0 m
× 12.0 m × 3.0 m, T60 = 400 ms). The number of microphones, M , is 32 for
(a), and 4 for (b). |.| denotes the element-wise absolute value of the matrix.

time-frequency domain. Finally, to observe the effect of room
reverberation on the sparseness of the SCM, we conducted a
simulation based on the image method [41]. The simulated room
size is 7.0 m × 12.0 m × 3.0 m and the reverberation time is
400 ms. The setup is the same as for Figs. 2 and 3, i.e., the
three sources are placed at the corresponding directions. Fig. 4
shows the resultant wavenumber-domain SCMs obtained in this
simulation. In the reverberant scenario, the sparseness of the
SCMs are 91.8% for M = 32 and 68.8% for M = 4. Although
the values decrease gradually compared with the anechoic case,
the sparse nature in the wavenumber domain still remains.
Furthermore, the concentration on the diagonal elements can
still be seen in Fig. 4, as in Figs. 2 and 3.

Given R̂SP
fn = FHR̂fnF, the cost function for the local Gaus-

sian model in (5) can then be modified by replacing the SCM in
the time-frequency domain with the matrix in the wavenumber
domain,

Csp(θ) =
∑

fn

DLD

(
RSP

fn|R̂SP
fn

)
. (12)

Note thatCsp(θ) is equivalent toC(θ) in (5) as can be seen from

Csp(θ) =
∑

fn

DLD

(
FHR̃fnF|FHR̂fnF

)

=
∑

fn

tr
(
FHR̃fnFF

−1R̂−1fnF
−H
)

+ log det
(
FHR̂fnF

)



MITSUFUJI et al.: MULTICHANNEL NON-NEGATIVE MATRIX FACTORIZATION USING BANDED SPATIAL COVARIANCE MATRICES 53

=
∑

fn

tr
(
FHFF−1F−HR̃fnR̂

−1
fn

)

+ log det
(
R̂fn

)
− log det (F) + log det (F)

= C(θ). (13)

Since wfk and hkn are not dependent on the channel dimension,
the spatial transform of the estimated SCMs, supposed to be
performed in every iteration, can be replaced with a single spatial
transform of the fixed DOA kernelsJfo at the initialization stage,

R̂SP
fn = FHR̂fnF

=
∑

k

∑

o

JSP
fo zkowfkhkn, (14)

with

JSP
fo = FHJfoF. (15)

C. Wiener Filtering in Wavenumber Domain

Given the estimated model parameters, the STFT coefficients
of each source can be recovered by a multichannel Wiener filter,
i.e., a minimum mean squared error (MMSE) estimator [42].
Since R̂fn = FR̂SP

fnF
H and Jfo = FJSP

foF
H also hold owing

to FFH = I where I denotes an identity matrix, the MMSE
estimator can be given in the wavenumber domain by

ŝifn =

(
∑

k∈Ki

∑

o

Jfozkowfkhkn

)
(
R̂fn

)−1
xfn

=

(
∑

k∈Ki

∑

o

FJSP
foF

Hzkowfkhkn

)
(
FR̂SP

fnF
H
)−1

xfn

= F

(
∑

k∈Ki

∑

o

JSP
fo zkowfkhkn

)
(
R̂SP

fn

)−1
FHxfn,

(16)

where Ki denotes the set of components that belong to the ith
source. The set of NMF components Ki can be determined by
a clustering method, such as LPC-based [43] or Mel-spectrum-
based clustering [44].

D. Diagonal Approximation

If we assume that FHR̂fnF and FHJfoF are diagonal ma-
trices (see Fig. 2), then FHR̂fnF and FHJfnF can be well
approximated by considering only their diagonal elements,

FHR̂fnF ≈ R̂Diag
fn =

⎛

⎜
⎜
⎜
⎝

â1fn 0 . . . 0
0 â2fn . . . 0
...

...
. . .

...
0 0 . . . âMfn

⎞

⎟
⎟
⎟
⎠

, (17)

FHJfoF ≈ JDiag
fo =

⎛

⎜
⎜
⎜
⎝

b1fo 0 . . . 0
0 b2fo . . . 0
...

...
. . .

...
0 0 . . . bMfo

⎞

⎟
⎟
⎟
⎠

. (18)

Thus, the cost function (13) can also be approximated by
focusing on the diagonal elements,

Csp(θ) ≈
∑

fn

DLD

(
RSP

fn|R̂Diag
fn

)

=
∑

fn

DLD

(

RSP
fn|
∑

k

∑

o

JDiag
fo zkowfkhkn

)

. (19)

The update rules reflecting the approximation can be written
such that they only contain the inversions of diagonal matrices,
allowing the algorithm to run at a computational cost of order
O(M) in each iteration,

zko ← zko
√√
√
√
√
√
√

∑
fn tr

((
R̂Diag

fn

)−1
RSP

fn

(
R̂Diag

fn

)−1
JDiag
fo

)
wfkhkn

∑
fn tr

((
R̂Diag

fn

)−1
JDiag
fo

)
wfkhkn

,

(20a)

wfk ← wfk

√√
√
√
√
√
√

∑
on tr

((
R̂Diag

fn

)−1
RSP

fn

(
R̂Diag

fn

)−1
JDiag
fo

)
zkohkn

∑
on tr

((
R̂Diag

fn

)−1
JDiag
fo

)
zkohkn

,

(20b)

hkn ← hkn

√√
√
√
√
√
√

∑
fo tr

((
R̂Diag

fn

)−1
RSP

fn

(
R̂Diag

fn

)−1
JDiag
fo

)
zkowfk

∑
fo tr

((
R̂Diag

fn

)−1
JDiag
fo

)
zkowfk

.

(20c)

Since a matrix inversion can be written in a more compact way
by using element-wise divisions, the above update rules can be
simplified, i.e.,

zko ← zko

√√
√
√
∑

fn

∑
m

amfn

â2
mfn

bmfowfkhkn

∑
fn

∑
m

1
âmfn

bmfowfkhkn

, (21a)

wfk ← wfk

√√
√
√
∑

on

∑
m

amfn

â2
mfn

bmfozkohkn

∑
on

∑
m

1
âmfn

bmfozkohkn

, (21b)

hkn ← hkn

√√
√
√
∑

fo

∑
m

amfn

â2
mfn

bmfozkowfk

∑
fo

∑
m

1
âmfn

bmfozkowfk

. (21c)

where amfn denotes the diagonal elements ofRSP
fn. The detailed

derivation can be found in Appendix. The proposed diagonal
algorithm is given in Algorithm 1.
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Algorithm 1: Diagonal Approximation Approach.
Input: Mixture xfn

Compute R̃fn = xfnx
H
fn

Apply spatial transform to R̃fn with (11)
Apply spatial transform to Jfo with (15)
Extract diagonal part of FHJfoF with (18)
Initialize zko, wfk, hkn with randomized values
Compute R̂SP

fn with (14)
for i = 0 to MM iteration do
zko ← (21a)

Compute R̂SP
fn with (14)

wfk ← (21b)

Compute R̂SP
fn with (14)

hkn ← (21c)

Compute R̂SP
fn with (14)

Normalize zko, wfk

end for
Cluster NMF components based on [43], [44]
Apply Wiener filtering with (16)

Output: Estimates ŝifn

E. Extension to Tri-Diagonal Approximation

Owing to the finite length of the DFT matrix, the SCM cannot
be perfectly diagonalized and off-diagonal elements cannot be
avoided. This “smear” becomes more dominant in the case of a
uniform linear array because the matrix cannot be regarded as
a circulant matrix for which diagonalization can be perfectly
achieved. Different from the previous subsection, where we
exploited only the diagonal part, we also make use of the upper
and lower adjacent bands, i.e., the tri-diagonal part. The matrix
entries outside the tri-diagonal part are not taken into account in
the optimization process.

It should be emphasized that simply discarding the off-tri-
diagonal part does not ensure the convergence of the multi-
plicative update rules because setting these entries to zero does
not guarantee the positive semi-definitiveness of the resulting
tri-diagonal SCM, which is an essential assumption through-
out the update of model parameters in multichannel NMF. To
maintain the positive semi-definitiveness of the matrix during
the tri-diagonalization process, we must solve the optimization
problem

R̂Tri
fn = argmin

V

∥
∥
∥R̂SP

fn − tridiag{V}
∥
∥
∥
2

F

subject to tridiag{V} � 0. (22)

The operation tridiag{V} returns a tri-diagonal matrix in which
elements that are not on the main diagonal and on the diagonal
above/below are set to zero. The optimization problem (22)
is a nearest-matrix problem where we solve for the positive
semi-definite, tri-diagonal matrix R̂Tri

fn ∈ CM×M that is nearest
to RSP

fn using the Frobenius norm. We solve the semi-definite
programming problem (22) by using YALMIP [45] with Se-
DuMi [46].

Although the optimization (22) in order to obtain R̂Tri
fn is

costly, it can be replaced with solving the same problem for the
DOA kernel Jfo, which only must be carried out once in the
initialization process as the DOA kernels are fixed throughout
the update iterations.

ĴTri
fo = argmin

V

∥
∥JSP

fo − tridiag{V}∥∥2
F

subject to tridiag{V} � 0. (23)

R̂Tri
fn =

∑

k

∑

o

ĴTri
fo zkowfkhkn. (24)

Using the approximated tri-diagonal SCM, the cost function
in (13) can be modified to

Csp(θ) ≈
∑

fn

DLD

(
RSP

fn|R̂Tri
fn

)

=
∑

fn

DLD

(

RSP
fn|
∑

k

∑

o

JTri
fo zkowfkhkn

)

.

(25)

To minimize the log-determinant divergence between two
SCMs, we employ the majorization–minimization algorithm to
reduce the cost monotonically. The detailed derivation can be
found in Appendix.

The multiplicative update rules for the model parameters zko,
wfk, and hkn are given by

zko ← zko
√√
√
√
√
√
√

∑
fn tr

((
R̂Tri

fn

)−1
RSP

fn

(
R̂Tri

fn

)−1
ĴTri
fo

)
wfkhkn

∑
fn tr

((
R̂Tri

fn

)−1
ĴTri
fo

)
wfkhkn

, (26a)

wfk ← wfk

√√
√
√
√
√
√

∑
on tr

((
R̂Tri

fn

)−1
RSP

fn

(
R̂Tri

fn

)−1
ĴTri
fo

)
zkohkn

∑
on tr

((
R̂Tri

fn

)−1
ĴTri
fo

)
zkohkn

, (26b)

hkn ← hkn

√√
√
√
√
√
√

∑
fo tr

((
R̂Tri

fn

)−1
RSP

fn

(
R̂Tri

fn

)−1
ĴTri
fo

)
zkowfk

∑
fo tr

((
R̂Tri

fn

)−1
ĴTri
fo

)
zkowfk

. (26c)

Even in the case of a huge number of microphones, M , the
inversion of the estimated SCM is not costly when employing the
Thomas algorithm [37], which has a computational complexity
of O(M2). The proposed tri-diagonal algorithm is given in
Algorithm 2.
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Algorithm 2: Extension to Tri-Diagonal Approximation.
Input: Mixture xfn

Compute R̃fn = xfnx
H
fn

Apply spatial transform to R̃fn with (11)
Apply spatial transform to Jfo with (15)

Obtain tri-diagonal approximation ĴTri
fo with (23)

Initialize zko, wfk, hkn with randomized values
Compute R̂Tri

fn with (24)
for i = 0 to MM iteration do
zko ← (26a)

Compute R̂Tri
fn with (24)

wfk ← (26b)

Compute R̂Tri
fn with (24)

hkn ← (26c)

Compute R̂Tri
fn with (24)

Normalize zko, wfk

end for
Cluster NMF components based on [43], [44]
Apply Wiener filtering with (16)

Output: Estimates ŝifn

F. Extension to Self-Clustering

Inspired by the prior works [22], [26] in which the models have
clustering capability, we extended (19) as follows to possess a
grouping factor gik:

âmfn =
∑

i

∑

k

∑

o

bmfoziogikwfkhkn. (27)

The update rules are derived in a similar way to in Section III-D
and are given by

zio ← zio

√√
√
√
∑

kfn

∑
m

amfn

â2
mfn

bmfogikwfkhkn

∑
kfn

∑
m

1
âmfn

bmfogikwfkhkn

, (28a)

gik ← gik

√√
√
√
∑

ofn

∑
m

amfn

â2
mfn

bmfoziowfkhkn

∑
ofn

∑
m

1
âmfn

bmfoziowfkhkn

, (28b)

wfk ← wfk

√√
√
√
∑

ion

∑
m

amfn

â2
mfn

bmfoziogikhkn

∑
ion

∑
m

1
âmfn

bmfoziogikhkn

, (28c)

hkn ← hkn

√√
√
√
∑

ifo

∑
m

amfn

â2
mfn

bmfoziogikwfk

∑
ifo

∑
m

1
âmfn

bmfoziogikwfk

. (28d)

In [22], it was shown that incorporating self-clustering
into the iterations improved their performance. We compare
self-clustering with various other post-clustering approaches
in Section IV-D and observe similar behavior for the average
performance over all instruments. Note that the self-clustering
extension can also be applied to the tri-diagonal case. The
proposed self-clustering extension can be found in Algorithm 3.

TABLE I
EXPERIMENTAL SETUP

Algorithm 3: Extension to Self-Clustering.
Input: Mixture xfn

Compute R̃fn = xfnx
H
fn

Apply spatial transform to R̃fn with (11)
Apply spatial transform to Jfo with (15)
Extract diagonal part of FHJfoF with (18)
Initialize zio, bik, wfk, hkn with randomized values
Compute R̂SP

fn with (14)
for i = 0 to MM iteration do
zio ← (28a)

Compute R̂SP
fn with (14)

gik ← (28b)

Compute R̂SP
fn with (14)

wfk ← (28c)

Compute R̂SP
fn with (14)

hkn ← (28d)

Compute R̂SP
fn with (14)

Normalize zio, gik, wfk

end for
Apply Wiener filtering with (16)

Output: Estimates ŝifn

IV. EVALUATION

A. Experimental Conditions

To evaluate the proposed algorithms, Algorithms 1, 2, and
3, we conducted various experiments in a music separation
scenario. The experimental conditions are listed in Table I. As an
evaluation metric, we employed the SDR improvement, which
can be computed by subtracting the outputs of BSS Eval Tool-
box [47] for the original mixture from the BSS Eval values of
the separations. Furthermore, the SIR improvement and the SAR
are also given for the experiment in Section IV-B. Please note
that we did not compute SAR improvements as the input SAR
is infinity and, therefore, an improvement is not computable.
Moreover, we omit the SIR improvement and the SAR for the
other experiments because the tendencies of these metrics are
the same as that of the corresponding SDR improvement, as can
be seen in Section IV-B.

B. Comparison With Other Methods Under
Reverberant Conditions

Reverberant room conditions were simulated to compare the
proposed method with various other methods under realistic
conditions. To answer the issue addressed in Section I regarding
the case of imperfect diagonalization of SCM for small M ,
the number of microphones was set to M = 4 to observe our
proposed method in the case of a small number of microphones.
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Fig. 5. Relationship between source positions with respect to the center of the
microphone array.

Note that the case of many microphones was investigated in [36],
where we studied an example with M = 32 microphones and
showed the effectiveness of our diagonal approximation in this
scenario. Three instrument signals of 10 seconds each were
taken from the SiSEC (Signal Separation Evaluation Campaign)
database 20081 for the task of under-determined speech and
music mixtures. The angle between adjacent sources and the
array center is denoted as θ, as shown in Fig. 5. To create
reverberant signals, the RWCP impulse response [48] was used
and convolved with the source signals. The reverberation time
of the selected room response was 470 ms, which corresponds
to the reverberation of a standard conference room. The angle θ
was varied from 10 to 30◦ to verify the robustness to angle dif-
ferences. To exclude the dependence of random initializations,
the average over 10 trials per angle was computed and the result
is labeled as “mean” in Fig. 7. The maximum value over 10 trials
is also shown to observe the potential of each algorithm and the
corresponding bar is labeled as “max” in Fig. 7. The locations
of the three sources were rotated three times to avoid the bias of
spatial locations. In addition to the proposed Algorithm 1 (Diag)
and Algorithm 2 (Tridiag) with O = 5 kernels, five different al-
gorithms were evaluated as baselines: minimum variance distor-
tionless response (MVDR) beamformer, IVA [33], independent
low-rank matrix analysis (ILRMA) [34], full-rank multichannel
NMF (MNMF) [22], and multichannel NMF with fixed DOA
kernels (O = 5, 8), described in Section II-C (DOANMF). For
MVDR beamformer, the DOAs of all three sources as well as
the oracle SCM of interferences were fed to the algorithm as
prior knowledge. The cost function for ILRMA, MNMF, and
DOANMF was based on the log-determinant divergence. The
number of iterations for all the iterative methods was set to 100,
empirically determined based on the convergence plot shown
in Fig. 6. The NMF clustering method in [44] was carried
out for MNMF, DOANMF, and the proposed algorithms. The
SDR improvements, SIR improvements, and raw SARs for
the three different angles between the sources are shown in
Fig. 7. For all three angles, both the diagonal approach and
the tri-diagonal approach consistently outperformed the other

1[Online]. Available: http://sisec2008.wiki.irisa.fr/tiki-index.html

Fig. 6. Convergence curves for DOANMF, the proposed Algorithm 1 (Diag),
and Algorithm 2 (Tridiag). The costs for DOANMF, Algorithm 1 (Diag), and
Algorithm 2 (Tridiag) are computed by (5), (19), and (25), respectively.

methods. A more rigorous comparison between the proposed
algorithms is described in Section IV-C. For the conventional
methods, DOANMF exhibits inferior performance to MNMF,
in contrast to our expectation that a DOA-based method should
be robust against random initializations as reported in [24].
The performance of DOANMF was improved as the number
of DOA kernels was increased from O = 5 to O = 8 (the
best-performance case), but it cannot reach the performance
of the proposed methods. Although ILRMA exhibits superior
performance to IVA owing to the NMF-based source model on
top of the IVA spatial model, it did not achieve as good results as
our approaches. This is due to the fact that one of the algorithmic
assumptions of ILRMA, i.e., the spatially rank-1 property for
each source, does not hold under our simulated reverberant
conditions. In this simulation, the STFT frame size was set
to 1024 points, corresponding to a length of 64 ms, which is
much shorter than the reverberation time of 470 ms and thus, no
valid time-invariant demixing matrices exist in ILRMA and IVA.
For MVDR beamformer, although the above mentioned prior
knowledge was given to the system, it does not perform as good
as ILRMA. It is natural to observe such results because MVDR
beamformer’s prior information on the target source is only
the direct-wave direction (steering vector) without taking the
reverberant components into account. Thus, in the reverberant
condition, the target source component has much leakage. On the
other hand, ILRMA can estimate the optimal separation matrix,
which consists of multiple beamformers’ weights to cancel each
of interferences with their reverberant components, resulting in
less leakage (the detailed mechanism has been reported in [49]).

C. Robustness to Different Angles

To evaluate the effectiveness of adding upper and lower bands
to the diagonal elements in the tri-diagonal approach, we further

http://sisec2008.wiki.irisa.fr/tiki-index.html
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Fig. 7. SDR improvements, SIR improvements, and SARs under the reverberant conditions shown in Fig. 5, where the reverberation time is 470 ms.

TABLE II
MAXIMUM SDR IMPROVEMENTS AMONG 10 TRIALS FOR DIFFERENT SOURCE ANGLES UNDER ANECHOIC CONDITION

TABLE III
AVERAGED SDR IMPROVEMENTS OVER 10 TRIALS FOR DIFFERENT SOURCE ANGLES UNDER ANECHOIC CONDITION

conducted an experiment comparing Algorithm 1 (Diag) and Al-
gorithm 2 (Tridiag) by changing the angle between the sources.
We assume that the tri-diagonal approach is more robust against
changes to the angle because it contains additional information
in the lower and upper bands. The source angle was varied from
10 to 80◦. To minimize the overlap with the previous experiment,
this experiment was performed under anechoic conditions and
the number of DOA kernels was set to O = 8. Other than the
angle variation and the room conditions, the experimental set-
tings listed in Table I were retained in this experiment. The SDR
improvements are shown in Tables II and III. The better result
for each angle is highlighted in bold. In Table II, the maximum
SDR improvement among 10 trials with different initializations
is given for each source angle θ. Regardless of the source angle,
the results show consistent improvements upon adding band
elements to the diagonal matrix. In contrast, Table III did not
show the clear superiority of the tri-diagonal approach over
the diagonal approach. We assume that the reasons for this are

twofold. First, the Thomas algorithm used in the tri-diagonal
approach is probably not as stable as diagonal division [37].
Second, since the tri-diagonal approach involves the approxi-
mation of the SCM, the error resulting from the optimization of
(22) is not negligible.

D. Different Clustering Algorithms

To evaluate the self-clustering algorithm for the diagonal ap-
proach, we incorporated the state-of-the-art LPC-based cluster-
ing algorithm [43] into Algorithm 1 (Diag). Two other clustering
methods [44] were also compared as baselines. The three cluster-
ing algorithms are denoted as, LPC k-medoid, MFCC k-means,
and Mel-NMF. The SDR improvements for the different sources
are shown in Fig. 8. On average, we can see that self-clustering
has the best performance among the four clustering algorithms.
Note that the SDR improvements for each instrument do not
show a clear trend in the performance for different algorithms.
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Fig. 8. Comparison of SDR improvement for various clustering methods.
Three instrument signals (Hi-hat, Snare drum, Bass) obtained from SiSEC
database were used to evaluate clustering methods.

TABLE IV
RELATIONSHIP BETWEEN MUSICAL INSTRUMENTS

AND LOUDSPEAKER POSITIONS

E. Under-Determined Case With Real Recordings

To take into account data obtained from more realistic acous-
tic conditions, we recorded music sources consisting of four
musical instruments emitted by four loudspeakers with box
enclosures. Three omni-directional microphones are placed with
a distance of 0.45 m. The four-second long sources of musical
instruments were obtained from the songKitamura dataset.2

Garritan Personal Orchestra 4 was chosen as MIDI source as
it is considered more realistic than the other provided MIDI
sources. More details about the dataset can be found in [50]. Four
loudspeakers are placed in a circle with an angle θ clockwise
with respect to the microphone array. The relationship between
the musical instruments and the positions of the loudspeak-
ers are listed in Table IV. The rough size of the room was
3.5 m × 6.0 m × 3.0 m and the reverberation time was 400 ms.
The shape of the room can be found in Fig. 9. We chose four
best performing methods in terms of SDR improvements shown
in Section IV-B, i.e., ILRMA, MNMF, Algorithm 1 (Diag), and
Algorithm 2 (Tridiag). The number of iterations was set to 500
to ensure convergence of the methods. Table V shows mean and
maximum values of the SDR improvements if all four methods
are run ten times. Algorithm 2 (Tridiag) outperformed the other
three methods in both mean and maximum values. ILRMA does
not perform as good as in Section IV-B as it is not designed for
such an under-determined case.

F. Computation Time

The computation times for all the methods compared in
Section IV-B were measured to investigate the efficiencies of
the proposed algorithms. The measurement was carried out by

2[Online]. Available: http://d-kitamura.net/dataset.htm

Fig. 9. The bird-view geometry of the common room used for the real data
recordings in Section IV-E. Three microphones were linearly placed with a
distance of 0.45 m while four loudspeakers were placed in a circle configuration
with a radius of 1.12 m.

TABLE V
SDR IMPROVEMENTS UNDER THE CONDITIONS SHOWN IN FIG. 9

TABLE VI
COMPUTATIONAL COSTS

inserting MATLAB time commands in the space before in-
putting the STFT signals and after outputting the separated
time-domain signals. We ran the programs on a Xeon E5-2620 v4
CPU where each core has 2.1 GHz CPU capability. The number
of DOA kernels was set to O = 5 as in Section IV-B. The results
are listed in Table VI. MVDR beamformer, the non-iterative
method, has the shortest computation time. By comparing Al-
gorithm 1 (Diag) of order O(M), Algorithm 2 (Tridiag) of
order O(M2), and DOANMF of order O(M3), the efficiency of
the proposed algorithms can be clearly observed. The speed of
Algorithm 2 (Tridiag) can be further improved if a specialized
matrix product that assumes that one of the two matrices is sparse
is used instead of a standard matrix product. We can expect
that the difference in efficiency between the algorithms will be
even more significant when the number of microphones, M , is
large. The diagonal approach and ILRMA have similar results
because both algorithms are based on diagonal approximations
of SCMs computed in the projected space. ILRMA is faster
than the diagonal approach because the signals are projected to
a more compact space, i.e., source space. In this experiment,
the dimension of the projected space for ILRMA is equal to the
number of sources, 3, whereas that for the diagonal approach is
equal to the size of spatial DFT, 4.

http://d-kitamura.net/dataset.htm
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V. CONCLUSION

To reduce the computational cost of multichannel NMF,
mainly owing to the inverse calculation of an SCM, in this paper
we proposed the conversion of STFT signals to the wavenumber
domain, where the power of the SCM can be concentrated on
diagonal elements, thus enabling us to apply element-wise divi-
sions to obtain the inverse matrix. The approximation can reduce
the computational complexity from orderO(M3) toO(M). The
diagonal algorithm can be further extended by incorporating
the self-clustering framework. To increase the accuracy of the
matrix approximation, we also devised another extension that
makes use of the upper and lower bands in addition to the
diagonal elements. The inverse of the tri-diagonal matrix can
be computed with a computational complexity of O(M2) by
applying the Thomas algorithm. To ensure that the tri-diagonal
matrix is positive semi-definite while truncating the off-diagonal
elements, a semi-definite problem was solved. The experimental
results show that our two approximations consistently gave bet-
ter results in terms of SDR improvement than various unsuper-
vised methods. The computation time measured by MATLAB
time commands showed the greater efficiency of the tri-diagonal
approach than multichannel NMF in the case of four channels,
and we expect that this tendency will become more significant
when the number of microphones is large.

APPENDIX

The upper bounds of the cost functions (19) and (25) are
constructed by applying two inequalities to the convex part and
the concave part, respectively [51]. This yields

C +
sp (θ,Tfnko,Ufn)

=
∑

fn

⎛

⎜
⎜
⎝
∑

ko

tr

(
RSP

fnT
H
fnko

(
J∗fo
)−1

Tfnko

)

zkowfkhkn

+ log detUfn + tr
(
U−1fnR̂

∗
fn

)
−M

⎞

⎟
⎟
⎠ , (29)

where Tfnko and Ufn are hidden variable matrices that satisfy∑
ko Tfnko = I,Tfnko � 0, and Ufn � 0. The banded SCM

and DOA kernel are denoted as R̂∗fn and J∗fo, respectively.
The partial derivatives with respect to zko, wfk, and

hkn are derived by minimizing the upper bound function
C +

sp (θ,Tfnko,Ufn). The derivatives of C +
sp (θ,Tfnko,Ufn)

with respect to the model parameters are
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The equality of the auxiliary function and the cost function holds
only when the hidden variables satisfy

Tfnko =
(
J∗fozkowfkhkn

) (
R̂∗fn

)−1
, (31a)

Ufn = R̂∗fn. (31b)

The multiplicative update rules for the model parameters zko,
wfk, and hkn are obtained by equating the partial derivatives to
zero. Equations. (21a)-(21c) for the diagonal case are the result
of substituting R̂∗fn and J∗fo by R̂Diag

fn and JDiag
fo , respectively,

while (26a)-(26c) for the tri-diagonal case are obtained by sub-
stituting R̂∗fn and J∗fo by R̂Tri

fn and ĴTri
fo , respectively.

ACKNOWLEDGMENT

The authors thank Mr. Yuki Kubo for collecting the multi-
channel recordings that are used in Section IV-E.

REFERENCES

[1] S. Uhlich, F. Giron, and Y. Mitsufuji, “Deep neural network based instru-
ment extraction from music,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2015, pp. 2135–2139.

[2] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 24, no. 9, pp. 1652–1664, Sep. 2016.

[3] S. Uhlich et al., “Improving music source separation based on deep neural
networks through data augmentation and network blending,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2017, pp. 261–265.

[4] S. I. Mimilakis, K. Drossos, T. Virtanen, and G. Schuller, “A recurrent
encoder-decoder approach with skip-filtering connections for monaural
singing voice separation,” in Proc. IEEE Int. Workshop Mach. Learn.
Signal Process., 2017, pp. 1–6.

[5] N. Takahashi and Y. Mitsufuji, “Multi-scale multi-band DenseNets for
audio source separation,” in Proc. IEEE Workshop Appl. Signal Process.
Audio Acoust., 2017, pp. 21–25.

[6] N. Takahashi, N. Goswami, and Y. Mitsufuji, “MMDenseLSTM: An
efficient combination of convolutional and recurrent neural networks for
audio source separation,” in Proc. Int. Workshop Acoust. Signal Enhanc.,
2018, pp. 106–110.

[7] C. Févotte and J.-F. Cardoso, “Maximum likelihood approach for blind
audio source separation using time-frequency Gaussian models,” in Proc.
IEEE Workshop Appl. Signal Process. Audio Acoust., 2005, pp. 78–81.

[8] E. Vincent, S. Arberet, and R. Gribonval, “Underdetermined instantaneous
audio source separation via local Gaussian modeling,” in Proc. 8th Int.
Conf. Independent Compon. Anal. Signal Separ., 2009, pp. 775–782.



60 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

[9] N. Q. K. Duong, E. Vincent, and R. Gribonval, “Spatial covariance models
for under-determined reverberant audio source separation,” in Proc. IEEE
Workshop Appl. Signal Process. Audio Acoust., 2009, pp. 129–132.

[10] N. Q. Duong, E. Vincent, and R. Gribonval, “Under-determined reverber-
ant audio source separation using a full-rank spatial covariance model,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 7, pp. 1830–1840,
Sep. 2010.

[11] A. Ozerov and C. Févotte, “Multichannel nonnegative matrix factorization
in convolutive mixtures for audio source separation,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 18, no. 3, pp. 550–563, Mar. 2010.

[12] D. Lee, “Learning the parts of objects with nonnegative matrix factoriza-
tion,” Nature, vol. 401, pp. 788–791, 1999.

[13] S. Arberet et al., “Nonnegative matrix factorization and spatial covariance
model for under-determined reverberant audio source separation,” in Proc.
10th Int. Conf. Inf. Sci., Signal Process. Appl., 2010, pp. 1–4.

[14] A. Ozerov, E. Vincent, and F. Bimbot, “A general modular framework
for audio source separation,” in Proc. Latent Variable Anal. Signal Separ.,
2010, pp. 33–40.

[15] A. Ozerov, E. Vincent, and F. Bimbot, “A general flexible framework
for the handling of prior information in audio source separation,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 4, pp. 1118–1133,
May 2012.

[16] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation
using sparse representations,” Signal Process., vol. 81, no. 11, pp. 2353–
2362, 2001.

[17] E. Vincent, “Complex nonconvex lp norm minimization for underdeter-
mined source separation,” in Proc. 7th Int. Conf. Independent Compon.
Anal. Signal Separ., 2007, pp. 430–437.

[18] A. Jourjine, S. Rickard, and Ö. Yilmaz, “Blind separation of disjoint
orthogonal signals: Demixing N sources from 2 mixtures,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2000, pp. 2985–2988.

[19] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:
Vectors, Matrices, and Least Squares. Cambridge, U.K.: Cambridge Univ.
Press, 2018.

[20] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix
and Tensor Factorizations – Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation. New York, NY, USA: Wiley, 2009.

[21] A. Ozerov, C. Févotte, R. Blouet, and J. Durrieu, “Multichannel non-
negative tensor factorization with structured constraints for user-guided
audio source separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2011, pp. 257–260.

[22] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel exten-
sions of non-negative matrix factorization with complex-valued data,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 5, pp. 971–982,
May 2013.

[23] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Am. Stat.,
vol. 58, no. 1, pp. 30–37, 2004.

[24] J. Nikunen and T. Virtanen, “Direction of arrival based spatial covariance
model for blind sound source separation,” IEEE/ACM Trans. Audio, Speech
Lang. Process., vol. 22, no. 3, pp. 727–739, Mar. 2014.

[25] J. J. Carabias-Orti, J. Nikunen, T. Virtanen, and P. Vera-Candeas, “Mul-
tichannel blind sound source separation using spatial covariance model
with level and time differences and nonnegative matrix factorization,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 9, pp. 1512–
1527, Sep. 2018.

[26] C. Févotte and A. Ozerov, “Notes on nonnegative tensor factorization
of the spectrogram for audio source separation: Statistical insights and
towards self-clustering of the spatial cues,” in Proc. Int. Symp. Comput.
Music Model. Retriev., 2010, pp. 102–115.

[27] D. Fitzgerald, M. Cranitch, and E. Coyle, “Extended nonnegative tensor
factorisation models for musical sound source separation,” Comput. Intell.
Neurosci., vol. 2008, 2008, Art. no. 872425.

[28] Y. Mitsufuji and A. Roebel, “On the use of a spatial cue as prior infor-
mation for stereo sound source separation based on spatially weighted
non-negative tensor factorization,” EURASIP J. Adv. Signal Process.,
vol. 2014, pp. 1–9, 2014.

[29] Y. Mitsufuji, M. Liuni, A. Baker, and A. Roebel, “Online non-negative
tensor deconvolution for source detection in 3DTV audio,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 3082–3086.

[30] M. Fakhry, P. Svaizer, and M. Omologo, “Audio source separation in
reverberant environments using β-divergence-based nonnegative factor-
ization,” IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 25, no. 7,
pp. 1462–1476, Jul. 2017.

[31] S. Lee, S. H. Park, and K. Sung, “Beamspace-domain multichannel non-
negative matrix factorization for audio source separation,” IEEE Signal
Process. Lett., vol. 19, no. 1, pp. 43–46, Jan. 2012.

[32] D. Fitzgerald, A. Liutkus, and R. Badeau, “Projection-based demixing of
spatial audio,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24,
no. 9, pp. 1560–1572, Sep. 2016.

[33] N. Ono, “Stable and fast update rules for independent vector analysis
based on auxiliary function technique,” in Proc. IEEE Workshop Appl.
Signal Process. Audio Acoust., 2011, pp. 189–192.

[34] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Determined blind source separation unifying independent vector analysis
and nonnegative matrix factorization,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 24, no. 9, pp. 1626–1641, Sep. 2016.

[35] T. Taniguchi and T. Masuda, “Linear demixed domain multichannel non-
negative matrix factorization for speech enhancement,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2017, pp. 476–480.

[36] Y. Mitsufuji, S. Koyama, and H. Saruwatari, “Multichannel blind source
separation based on non-negative tensor factorization in wavenumber
domain,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016,
pp. 56–60.

[37] L. H. Thomas, “Elliptic problems in linear differential equations over
a network,” Tech. Rep., Watson Sci. Comput. Lab Report Columbia
University New York, NY, 1949.

[38] J. Nikunen and T. Virtanen, “Multichannel audio separation by direction
of arrival based spatial covariance model and non-negative matrix factor-
ization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014,
pp. 6677–6681.

[39] B. Kulis, M. A. Sustik, and I. S. Dhillon, “Low-rank kernel learning with
Bregman matrix divergences,” J. Mach. Learn. Res., vol. 10, pp. 341–376,
2009.

[40] J. Ahrens, Analytic Methods of Sound Field Synthesis. Berlin, Germany:
Springer, 2012.

[41] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943–950,
1979.

[42] S. M. Kay, Fundamentals of Statistical Signal Processing. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1993.

[43] X. Guo, S. Uhlich, and Y. Mitsufuji, “NMF-based blind source separation
using a linear predictive coding error clustering criterion,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2015, pp. 261–265.

[44] M. Spiertz and V. Gnann, “Source-filter based clustering for monau-
ral blind source separation,” in Proc. Int. Conf. Digit. Audio Ef-
fects, 2009. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=8336997

[45] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MAT-
LAB,” in Proc. CACSD Conf., 2004, pp. 284–289.

[46] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optim. Methods Softw., vol. 11, no. 1-4, pp. 625–
653, 1999.

[47] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[48] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acous-
tical sound database in real environments for sound scene understanding
and hands-free speech recognition,” in Proc. Int. Conf. Lang. Resources
Eval., 2000, pp. 965–968.

[49] Y. Takahashi, T. Takatani, K. Osako, H. Saruwatari, and K. Shikano, “Blind
spatial subtraction array for speech enhancement in noisy environment,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 4, pp. 650–664,
May 2009.

[50] D. Kitamura, H. Saruwatari, H. Kameoka, Y. Takahashi, K. Kondo, and
S. Nakamura, “Multichannel signal separation combining directional clus-
tering and nonnegative matrix factorization with spectrogram restoration,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 23, no. 4, pp. 654–
669, Apr. 2015.

[51] K. Kitamura, Y. Bando, K. Itoyama, and K. Yoshii, “Student’s t multichan-
nel nonnegative matrix factorization for blind source separation,” in Proc.
IEEE Int. Workshop Acoust. Signal Enhanc., 2016, pp. 1–5.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8336997


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


