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Abstract—This paper presents a method of sequence-to-
sequence (seq2seq) voice conversion using non-parallel train-
ing data. In this method, disentangled linguistic and speaker
representations are extracted from acoustic features, and voice
conversion is achieved by preserving the linguistic representations
of source utterances while replacing the speaker representations
with the target ones. Our model is built under the framework
of encoder-decoder neural networks. A recognition encoder is
designed to learn the disentangled linguistic representations with
two strategies. First, phoneme transcriptions of training data are
introduced to provide the references for leaning linguistic repre-
sentations of audio signals. Second, an adversarial training strat-
egy is employed to further wipe out speaker information from the
linguistic representations. Meanwhile, speaker representations
are extracted from audio signals by a speaker encoder. The model
parameters are estimated by two-stage training, including a pre-
training stage using a multi-speaker dataset and a fine-tuning
stage using the dataset of a specific conversion pair. Since both
the recognition encoder and the decoder for recovering acoustic
features are seq2seq neural networks, there are no constrains of
frame alignment and frame-by-frame conversion in our proposed
method. Experimental results showed that our method obtained
higher similarity and naturalness than the best non-parallel voice
conversion method in Voice Conversion Challenge 2018. Besides,
the performance of our proposed method was closed to the state-
of-the-art parallel seq2seq voice conversion method.

Index Terms—sequence-to-sequence, adversarial training, dis-
entangle, voice conversion

I. INTRODUCTION

VOICE conversion (VC) aims at converting the input
speeches of a source speaker to make it as if uttered by

a target speaker without altering the linguistic content [1], [2].
Voice conversion has wide applications such as personalized
text-to-speech synthesis, entertainment, security attacking and
so on [3]–[5].

The data conditions for VC can be divided into parallel
and non-parallel ones [6]. Parallel VC methods are designed
for the datasets with utterances of the same linguistic content
but uttered by different persons. Thus, acoustic models that
map the acoustic features of source speakers to those of target
speakers can be learned directly when they are aligned. The
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forms of the acoustic models for VC included joint density
Gaussian mixture models (JD-GMMs) [3], [7], [8], deep
neural networks (DNNs) [9]–[11], recurrent neural networks
(RNNs) [12], [13], and so on. Recently, sequence-to-sequence
(seq2seq) neural networks [14]–[17] have also been applied
to VC, which achieved higher naturalness and similarity than
conventional frame-aligned conversion [18]–[20].

Non-parallel VC is more challenging but more valuable in
practice considering the difficulty of collecting parallel training
data of different speakers. The methods for non-parallel VC
can be roughly divided into two categories. The methods of
the first category handle non-parallel VC by first converting
it into the parallel situation and then learning the mapping
functions, such as generating parallel data through text-to-
speech synthesis (TTS) [21], frame-selection [22], iterative
combination of a nearest neighbor search step and a conversion
step alignment (INCA) [23], [24] and CycleGAN-based VC
[25]–[27]. On the other hand, the methods of the second cate-
gory factorize the linguistic and speaker related representations
carried by acoustic features [28]–[36]. At the conversion stage,
the linguistic content of the source speaker is preserved while
the speaker representation of the source speaker is transformed
to that of the target speaker. In contrast, the parallel VC
does not need to perform such factorization explicitly. For a
pair of aligned frames, they carry the same linguistic content.
Therefore, the mapping function between them can achieve
the transformation of speaker representations.

One representative approach of the second category men-
tioned above is the recognition-synthesis approach to non-
parallel VC [29]–[32]. Typically, it concatenates an automatic
speech recognition (ASR) model for extracting linguistic in-
formation, such as the posterior probabilities or bottleneck
features of phoneme classification, and a speaker-dependent
synthesis model for generating voice of the target speaker. De-
spite its success, conventional recognition-synthesis methods
have several deficiencies. First, an extra ASR model is required
for extracting linguistic descriptions. This model is usually
trained alone without joint optimization with the synthesis
model. Second, the ASR model is usually trained with a
phoneme classification loss and lacks explicit consideration
on disentangling linguistic and speaker representations. Third,
most of these methods follow the framework of frame-by-
frame conversion and can not achieve the advantages of
seq2seq modeling [18], such as duration modification.

Therefore, a non-parallel seq2seq VC method with disen-
tangled linguistic and speaker representations is presented in
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Fig. 1. (a) The overview of our model at the training stage and (b) the conversion process of our proposed method.

this paper. In this method, a seq2seq recognition encoder
and a neural-network-based speaker encoder are constructed
for transforming acoustic features into disentangled linguistic
and speaker representations. A seq2seq decoder is built for
recovering acoustic features from the combination of them.
Fig. 1 (a) depicts the overview of our model at the training
stage and Fig. 1 (b) shows the conversion process of our
proposed method, where a WaveNet vocoder is adopted [37]
for waveform reconstruction.

As shown in Fig. 1 (a), two strategies are proposed to
learn the speaker-irrelevant linguistic representations. First,
phoneme transcriptions of audio signals are sent into a text en-
coder and the outputs are adopted as the references for learning
linguistic representations from acoustic features. Second, an
adversarial training strategy is further designed for eliminating
speaker-related information from the linguistic representations.
The model parameters are estimated by two-stage training,
including pre-training using a multi-speaker dataset and fine-
tuning on the dataset of a specific conversion pair. As shown
in Fig. 1 (b), the conversion stage includes first extracting
linguistic representations from the source utterance and then
reconstructing acoustic features from them together with the
speaker representations of the target speaker. The text inputs
are only used at training time and the conversion process does
not rely on any text inputs.

Experiments have been conducted to compare our proposed
method with state-of-the-art parallel and non-parallel VC
methods objectively and subjectively. The results showed that
our proposed method achieved higher similarity and natural-
ness than the best non-parallel VC method in Voice Conversion

Challenge 2018 (VCC2018). Besides, its performance was
close to the state-of-the-art parallel seq2seq VC method.
Some ablation tests have also been conducted to confirm the
effectiveness of our proposed method.

II. RELATED WORK

A. Recognition-synthesis approach to non-parallel VC

Sun et al. [29] proposed to extract phonetic posterior-
grams (PPGs) from source speech using an ASR model then
feed them into a deep bidirectional long short-term mem-
ory (BLSTM) model [38] for generating converted speech.
Miyoshi et al. [30] proposed a seq2seq learning method for
converting context posterior probabilities, which included a
recognition model and a synthesis model. An any-to-any voice
conversion framework was proposed based on a multi-speaker
synthesis model conditioned on the i-vectors and the outputs
of an ASR model [32]. In the study of Liu et al. [31], the
ASR model was estimated using a large-scale training set and
WaveNet vocoders were built with limited training data of
target speakers for waveform recovery. This method achieved
the best performance of non-parallel VC in Voice Conversion
Challenge 2018.

Compared with Miyoshi’s method [30], the method pro-
posed in this paper does not use a separate conversion model
for converting linguistic representations. In contrast, we as-
sume a uniform linguistic space across speakers. The recog-
nition encoder compresses acoustic features into linguistic
representations which have equal lengths with phoneme tran-
scriptions. Compared with other recognition-synthesis based
VC methods [29], [31], [32], the recognition encoder and
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the seq2seq decoder in our model are optimized jointly.
Disentangled linguistic and speaker representations are also
proactively learned in our proposed method.

B. Auto-encoder based voice conversion

The VC methods using auto-encoders (AEs) and variational
auto-encoders (VAEs) [34], [35] have also been studied in
recent years. Saito et al. [33] proposed to use PPGs for
improving VAE-based VC. Several studies proposed AE-based
VC with adversarial learning of hidden representations against
speakers information [36], [39], [40]. Polyak et al. [39] tried
to incorporate an attention module between the encoder and
the decoder in a WaveNet-based AE. However, it degraded the
mean opinion score (MOS) in evaluation.

Compared with the unsupervised learning of hidden repre-
sentations in AE or VAE based VC, our method employs the
supervision of corresponding phoneme transcriptions together
with adversarial training to learn the recognition encoder.
Furthermore, in contrast to the frame-level encoders and
decoders in most previous studies, the joint training of the
recognition encoder and the decoder in our proposed method
can be viewed as building a sequence-level auto-encoder.

C. Voice cloning

Voice cloning is a task that learns the voice of unseen speak-
ers from a few speech samples for text-to-speech synthesis
[41]–[43]. Voice cloning takes texts as model inputs, which
contain only linguistic information. In contrast, audio signals
are used as the inputs of the VC task, which contain not
only linguistic content but also speaker identity. Therefore,
carefully disentangling acoustic features into linguistic and
speaker representations is important for achieving high-quality
VC in our proposed method. It is also possible to incorporate
the techniques developed for voice cloning, such as the method
of estimating speaker embeddings with limited data, into
our proposed method for achieving the one-shot or few-shot
learning of VC.

III. PROPOSED METHOD

A. Model architecture

The proposed model contains five components, including a
text encoder Et, a recognition encoder Er, a speaker encoder
Es, an auxiliary classifier Cs, and a seq2seq decoder network
Da. The overall architecture of the model is presented in Fig. 2
and functions of these components are described as follows.

Text encoder Et: Text encoder transforms the text inputs
into linguistic embeddings as Ht = Et(T ), where T =
[t1, . . . , tN ] denotes the transcription sequence with one-hot
encoding for each phoneme and Ht = [ht

1, . . . ,h
t
N ] denotes

the sequence of embedding vectors. N represents the length of
the phoneme sequence and the embedding sequence. The text
encoder is built with stacks of convolutional layers followed
by a BLSTM and a fully connected layer on the top.

Recognition encoder Er: Recognition encoder accepts the
acoustic feature sequence A = [a1, . . . ,aM ] as inputs and
predicts the phoneme sequence T , where M represents the

number of acoustic frames. The outputs of hidden units before
the softmax layer are extracted as Hr = Er(A), where
Hr = [hr

1, . . . ,h
r
N ] denotes the linguistic representations of

audio signals. The recognition encoder Er is a seq2seq neural
network which aligns the acoustic and phoneme sequences
automatically. Its encoder is based on pyramid BLSTM [44]
and its attention-based decoder is one-layer LSTM. Since one
phoneme usually corresponds to tens of acoustic frames, we
have M >> N and the encoding is a compression process. At
the training stage, the output of the recognition encoder Hr

has the equal length to the phoneme sequence T regardless of
the speaking rate of speakers. Hr is expected to reside in the
same linguistic space as Ht and contains only information of
linguistic content.

Speaker encoder Es: The speaker encoder embeds the
acoustic feature sequence into a vector as hs = Es(A), which
can discriminate speaker identities. The speaker embedding
should contain only speaker-related information. Our speaker
encoder is built with stacks of BLSTM followed by an average
pooling and a fully connected layer. The speaker encoder
is only employed at the pre-training stage which will be
introduced in Section III-E. At the beginning of fine-tuning
stage, a trainable speaker embedding is introduced for each
speaker and is initialized by the hs extracted by the speaker
encoder.

Auxiliary classifier Cs: The auxiliary classifier is em-
ployed to predict the speaker identity from the linguistic
representation of the audio input as P̂ s = Cs(Hr), where
P̂ s = [p̂s1, . . . , p̂

s
N ] and each element p̂sn is the predicted

probability distribution among speakers. Cs is introduced for
adversarial training in order to further eliminate speaker-
related information remained within the linguistic represen-
tation Hr. In our implementation, Cs is a DNN which makes
prediction for each input embedding vector.

Seq2seq decoder Da: The seq2seq decoder recovers the
acoustic feature sequence from the combination of linguistic
embeddings and speaker embeddings as Â = Da(hs,Ht)
or Â = Da(hs,Hr). Â = [â1, . . . , âM ] represents the
reconstructed acoustic features and either Ht or Hr is fed
into the decoder at each training step, in which condition a
process of text-to-speech or auto-encoding of acoustic features
is performed. It can be viewed as a decompressing process in
which the linguistic contents are transformed back into acous-
tic features conditioned on the speaker identity information.
Here, the structure of the seq2seq decoder is similar to the
Tacotron model [45], [46] for speech synthesis.

B. Loss functions for disentangled linguistic representations

Three loss functions are designed for extracting the disen-
tangled linguistic representations from audio signals and their
details are as follows.

1) Phoneme sequence classification: The recognition en-
coder is a seq2seq transducer that maps input acoustic feature
sequences into the sequences of linguistic representations. The
phoneme classification loss of the linguistic representation
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Fig. 2. The architecture of our proposed model and its forward propagation paths during training. The seq2seq decoder adopts the output of either recognition
encoder or text encoder as input at each training step. Ht, Hr and hs represent the linguistic embedding from text, the linguistic embedding from audio
and the speaker embedding respectively.

sequence Hr is defined as

LT C =
1

N

N∑
n=1

CE(tn, softmax(Whr
n))), (1)

where CE(·) represents the cross entropy loss function, W
is a trainable weight matrix of Er, hr

n and tn denote the
linguistic representation and the true label of the n-th phoneme
respectively.

2) Embedding similarity with text inputs: The linguis-
tic representations extracted from audio signals and from
phoneme sequences (i.e., Hr and Ht) are expected to share
the same linguistic space. Intuitively, we would like the
linguistic embeddings from both audio and text inputs to be
similar with close distance. Inspired by previous studies on
feature mapping [47], lip sync [48] and learning joint embed-
ding space from audio and video inputs [49], the contrastive
loss is adopted in this paper to increase the similarity between
hr
m and ht

n if m = n and to reduce their similarity if m 6= n.
The loss function is defined as

LCT =

N,N∑
m=1,n=1

Imndmn + (1− Imn)max(1− dmn, 0). (2)

Imn is the element of an indicator matrix where Imn = 1 if
m = n and Imn = 0 otherwise. dmn is the distance between
hr
m and ht

n which is defined as

dmn =‖ hr
m

‖ hr
m ‖2

− ht
n

‖ ht
n ‖2

‖22 . (3)

In our experiments, we found that the second term of the left
part in Eq. (2) was necessary, which prevented the extracted
representations from falling into the same vector.

3) Adversarial training against speaker classification: The
auxiliary classifier Cs is trained with a cross entropy loss
LSC between the predicted speaker probabilities and the target
labels as

LSC =
1

N

N∑
n=1

CE(ps, p̂sn), (4)

where ps is the one-hot speaker label of input audio signals.
Meanwhile, the recognition encoder Er is optimized toward

the opposite goal, i.e., fooling the auxiliary classifier to make
a prediction of equal probabilities among speakers. Thus, an
adversarial loss LADV is designed for training Er as

LADV =
1

N

N∑
n=1

‖ e− p̂sn ‖22. (5)

where e = [1/S, . . . , 1/S]> is an uniform distribution and S is
the total number of speakers. When updating the parameters
of the recognition encoder, Cs is frozen. It is expected to
reduce the speaker-related information carried by the linguistic
representations of audio signals by minimizing LADV . If
the speaker representations are completely eliminated from
linguistic hidden embeddings, the auxiliary classifier should
achieve the minimum loss and assign equal probability to each
possible speaker. Similar loss functions have been used for
disentangling person identity and word space of videos [49].

C. Loss functions for disentangled speaker representations

In parallel to producing linguistic representations, speaker
embeddings are extracted from acoustic features by the speaker
encoder Es. Speaker embeddings are expected to be discrim-
inative to the speaker identity. Therefore, we introduce a
speaker classification loss for the training of Es. The speaker
classification loss of Es is calculated as

LSE = CE(ps, softmax(V hs)). (6)
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where V is a trainable weight matrix of Es. Once the speaker
representation hs for an input utterances is obtained, it is
processed by L2 normalization and fixed when passed through
the decoder. In another word, the speaker encoder is only
optimized by LSE and not influenced by further calculations
using hs. Based on our experiments, this loss function can
help to obtain consistent speaker embeddings from different
utterances of the same speaker. Hence, we do not conduct
adversarial training for extracting speaker embeddings.

D. Loss functions for acoustic feature prediction

Acoustic features are eventually recovered from the linguis-
tic representations Hr or Ht together with the speaker em-
bedding hs via the seq2seq decoder. After L2 normalization,
the hs vector is concatenated with the linguistic representation
of each phoneme. An L1 loss is defined for the predicted
acoustic features as

LRC =
1

M

M∑
i=1

‖ âi − ai ‖1, (7)

where âi is the predicted acoustic feature vector at the i-th
frame.

In order to end the acoustic feature sequences generated
by the seq2seq decoder at the conversion stage, the hidden
state of the seq2seq decoder at each frame is projected to
a scalar followed by sigmoid activation to predict whether
current frame is the last frame in an utterance. Accordingly,
a cross entropy loss LED is defined for this prediction at the
training stage.

E. Model training

In summary, there are totally 7 losses introduced above
for training our proposed model. They are the loss for
phoneme sequence classification LT C , the contrastive loss
for embedding similarity with text inputs LCT , the losses
for adversarial training LADV and LSC , the loss for speaker
representations LSE , and the losses for predicting acoustic
features and utterance ends LRC and LED. These losses are
leveraged through weighting factors to form the complete loss
function. Weighting factors wadv, wct, wsc are introduced for
LADV ,LCT ,LSC respectively. For other losses, the weighting
factors are set as 1 heuristically.

The model parameters are estimated by two-stage training.
At the first stage (i.e., the pre-training stage), the whole model
is trained using a large multi-speaker dataset which contains
triplets of text transcriptions, speech waveforms and a speaker
identity label for each utterance. Then, the model parameters
are updated on a specific conversion pair of source and target
speakers at the second stage (i.e., the fine-tuning stage). It
should be noticed that our model is capable of performing
many-to-many VC if we simply increase the number of
speakers during fine-tuning. However, we concentrate on the
voice conversion between a pair of speakers in this paper.

The algorithm for pre-training is shown in Algorithm 1,
where θEt , θEr , θEs , θCs and θDa denote the parameters
of the five model components respectively. The algorithm for

Algorithm 1 Pre-training using a dataset of S speakers.
Initialization:
θEt ,θEr ,θEs ,θCs ,θDa , iter ← 1.

Iteration:
while not converaged do

Sample mini batch 〈A,T ,ps〉
Ht ← Et(T ), Hr ← Er(A), hs ← Es(A)
P̂ s ← Cs(Hr)
if iter is even then
Â← Da(hs,Ht)

else
Â← Da(hs,Hr)

end if
computing LT C ,LCT ,LADV ,LSC ,LSE ,LRC ,LED
if iter is even then
θEt

+←− −∇θEt (wctLCT + LRC + LED)
θEr

+←− −∇θEr (LT C + wctLCT + wadvLADV)
else
θEt

+←− −∇θEtwctLCT
θEr

+←− −∇θEr (LT C + wctLCT + wadvLADV+
LRC + LED)

end if
θEs

+←− −∇θEsLSE
θCs

+←− −∇θCswscLSC
θDa

+←− −∇θDa (LRC + LED)
iter

+←− 1
end while

fine-tuning is almost the same as Algorithm 1. The multi-
speaker dataset is replaced by the one containing the source
speaker and the target speaker, and the number of speakers
is reset as S = 2. Two trainable speaker embeddings are
introduced for these two speakers. These two speaker embed-
dings are initialized as the speaker encoder output hs averaged
across training utterances of these two speakers respectively.
Then, the speaker encoder Es is discarded during fine-tuning.
Besides, the softmax layer for multi-speaker classification in
the auxiliary classifier is replaced by a sigmoid output layer
for the binary speaker classification.

IV. EXPERIMENTS

A. Experiment conditions

One female speaker (slt) and one male speaker (rms) in the
CMU ACRTIC dataset [50] were used as the pair of speakers
for conversion in our experiments. For each speaker, the
evaluation and test set both contained 66 utterances. The non-
parallel training set for each speaker contained 500 utterances.
For comparison with parallel VC, 500 parallel utterances were
also selected for each speaker to form the parallel training
set. The multi-speaker VCTK dataset [51] was utilized for
model pre-training in our proposed method. Altogether 99
speakers were selected from the VCTK dataset. For each
speaker, 10 and 20 utterances were used for validation and
testing respectively, and the remaining utterances were used
as training samples. The total duration of training samples
was about 30 hours.



PREPRINT MANUSCRIPT OF IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING c©2019 IEEE 6

TABLE I
DETAILS OF THE MODEL CONFIGURATIONS.

Et

Conv1D-5-512-BN-ReLU-Dropout(0.5) ×3 →
1 layer BLSTM, 256 cells each direction →
FC-512-Tanh → Ht

Er

Encoder
2 layer Pyramid BLSTM [44], 256 cells

each direction, i.e. reducing the

sequence time resolution by factor 2.

Decoder
1 layer LSTM, 512 cells with

location-aware attention [52] →
FC-512-Tanh → Hr

Es 2 layer BLSTM, 128 cells each direction →
average pooling → FC-128-Tanh → hs

Cs FC-512-BN-LeakyReLU [53] ×3 →
FC-99-Softmax → P̂ s

Da

Encoder 1 layer BLSTM, 256 cells each direction

PreNet FC-256-ReLU-Dropout(0.5) ×2

Decoder
2 layer LSTM, 512 cells with

forward attention [54],

2 frames are predicted each decoder step

PostNet
Conv1D-5-512-BN-ReLU-Dropout(0.5) ×5 →
Conv1D-5-80, with residual connection

from the input to output

“FC” represents fully connected layer. “BN” represents batch normal-
ization. “Conv1D-k-n” represents 1-D convolution with kernel size k
and channel n. “×N” represents repeating the block for N times. Da

follows the framework of the Tacotron model [46].

The acoustic features were 80-dimensional Mel-
spectrograms extracted every 12.5 ms and the frame
size for short-time Fourier transform (STFT) was 50 ms. The
original Mel-spectrograms were then scaled to logarithmic
domain. In order to obtain the inputs of the text encoder,
we generated phoneme transcriptions using the grapheme-to-
phoneme module of Festival1. Our model was implemented
with PyTorch2. The Adam optimizer [55] was used and the
training batch size was 32 and 8 at the pre-training and
fine-tuning phases respectively. The learning rate was fixed
to 0.001 for the 80 epoches of pre-training and it was halved
every 7 epoches during fine-tuning. The weighting factors
of loss functions were tuned on the validation set of the
multi-speaker data and were determined as wct = 30 and
wsc = 0.1. wadv was set as 20 and 0.2 during pre-training
and fine-tuning respectively.

The details of our model structures are summarized in
TABLE I3. A beam search with width of 10 was adopted
for inference using the recognition encoder Er. The WaveNet
vocoder predicted 10-bit waveforms with µ-law companding.
Its implementation followed our previous work [31].

1http://www.cstr.ed.ac.uk/projects/festival/.
2https://pytorch.org/.
3Implementation code is available at https://github.com/

jxzhanggg/nonparaSeq2seqVC_code/.

B. Comparative methods

Four VC methods were implemented for comparison with
our proposed method4. Two of them adopted parallel training
and the rest adopted non-parallel training. The details of them
are described as follows.

DNN: Parallel VC method based on a DNN acoustic
model. 41-dimensional Mel-cepstral coefficients (MCCs), 5-
dimensional band aperiodicities (BAPs), 1-dimensional funda-
mental frequency (F0), their delta and accelerate features were
extracted as acoustic features. The Merlin open source toolkit5

[56] was employed for implementation. The DNN contained 6
layers with 1024 units and tanh activations per layer. WORLD
vocoder [57] was adopted for waveform recovery.

Seq2seqVC: Parallel VC method based on a seq2seq
model [18]. 80-dimensional Mel-spectrogram features were
adopted as acoustic features together with bottleneck features,
which were linguistic-related descriptions extracted by an ASR
model trained on about 3000 hours of external speech data
[18]. The WaveNet vocoder built in our proposed method was
also used here for waveform recovery. Previous study showed
that this method achieved better performance than the best
parallel VC method in VCC2018 [18].

CycleGAN: Non-parallel VC method based on CycleGAN
[25]. An open source implementation of CycleGAN-based VC
was adopted6. MCCs, BAPs and F0 were used as acoustic
features. Only MCCs were converted by CycleGAN and F0

trajectories were converted by Gaussion mean normalization
[58]. The BAP features were not converted. WORLD vocoder
was used for waveform recovery. Actually, we have tried to
adopt the WaveNet vocoder built in our proposed method.
However, the reconstructed voice was noisy and the quality
was not as good as that using WORLD vocoder.

VCC2018: Non-parallel VC method based on conventional
recognition-synthesis approach [31]. The ASR model was
the same as the one used by the Seq2seqVC method. Then,
bottleneck features were extracted from the built recognition
model as linguistic descriptions and were used as the inputs
of speaker-dependent synthesis models. MCCs, BAPs and F0

features were used as acoustic features and the WaveNet
vocoder was adopted for waveform recovery. This method
achieved the best performance on the non-parallel VC task
of Voice Conversion Challenge 2018.

C. Objective evaluations

Mel-cepstrum distortion (MCD), root of mean square er-
rors of F0 (F0 RMSE), the error rate of voicing/unvoicing
flags (VUV) and the Pearson correlation factor of F0 (F0

CORR) were used as the metrics for objective evaluation.
In order to investigate the effects of duration modification,
we also computed the average absolute differences between
the durations of the converted and target utterances (DDUR)
as in our previous work [18]. When computing DDUR, the

4 Audio samples of our experiments are available at https://
jxzhanggg.github.io/nonparaSeq2seqVC/.

5https://github.com/CSTR-Edinburgh/merlin/.
6https://github.com/leimao/Voice_Converter_

CycleGAN/.

http://www.cstr.ed.ac.uk/projects/festival/
https://pytorch.org/
https://github.com/jxzhanggg/nonparaSeq2seqVC_code/
https://github.com/jxzhanggg/nonparaSeq2seqVC_code/
https://jxzhanggg.github.io/nonparaSeq2seqVC/
https://jxzhanggg.github.io/nonparaSeq2seqVC/
https://github.com/CSTR-Edinburgh/merlin/
https://github.com/leimao/Voice_Converter_CycleGAN/
https://github.com/leimao/Voice_Converter_CycleGAN/
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TABLE II
OBJECTIVE EVALUATION RESULTS OF DIFFERENT METHODS.

Conversion Pairs Methods MCD (dB) F0 RMSE (Hz) VUV (%) F0 CORR DDUR (s)

rms-to-slt

para
DNN 4.134 16.651 9.205 0.585 0.481

Seq2seqVC 2.999 13.633 6.968 0.727 0.152

non-para

CycleGAN 3.309 27.264 11.603 0.394 0.481

VCC2018 3.376 15.042 8.222 0.663 0.481

Proposed 3.088 16.043 7.898 0.624 0.261

slt-to-rms

para
DNN 3.747 16.484 11.750 0.526 0.481

Seq2seqVC 2.887 14.360 9.435 0.664 0.245

non-para

CycleGAN 3.246 18.284 13.428 0.507 0.481

VCC2018 3.171 15.771 11.382 0.593 0.481

Proposed 2.974 16.080 10.327 0.581 0.264

Best results obtained among parallel and non-parallel VC methods for each metric are highlighted with bold fonts.
“para” and “non-para” represent parallel VC and non-parallel VC respectively.

TABLE III
MEAN OPINION SCORES (MOS) WITH 95% CONFIDENCE INTERVALS ON NATURALNESS AND SIMILARITY OF DIFFERENT METHODS.

Methods
rms-to-slt slt-to-rms

Naturalness Similarity Naturalness Similarlity

para
DNN 2.09± 0.09 2.03± 0.10 2.38± 0.10 2.42± 0.10

Seq2seqVC 4.20± 0.09 4.26± 0.09 4.18± 0.09 4.37± 0.09

non-para

CycleGAN 1.48± 0.09 1.49± 0.08 1.81± 0.11 1.82± 0.11

VCC2018 3.53± 0.11 3.59± 0.14 3.76± 0.11 3.89± 0.12

Proposed 4.19± 0.09 4.24± 0.09 4.18± 0.09 4.26± 0.09

Highest scores among parallel and non-parallel VC methods for each metric are highlighted.

silence segments at the beginning and the end of utterances
were removed.

Because Mel-spectrograms were adopted as acoustic fea-
tures in the Seq2seqVC method and our proposed method, it’s
not straightforward to extract F0 and MCCs features from the
converted acoustic features. Therefore, the MCCs and F0 were
extracted from the waveform of converted utterances using
STRAIGHT [59]. Then, they were aligned to the reference
utterances by dynamic time wraping using MCCs features for
calculating the metrics.

The test set results of both rms-to-slt and slt-to-rms conver-
sions are reported in TABLE II. As we can see from this table,
among the parallel VC methods, Seq2seqVC achieved better
performance than the DNN method. For non-parallel VC, our
proposed method achieved the best result on MCD, UVU and
DDUR metrics. In terms of F0 RMSE and F0 CORR metrics,
the VCC2018 method performed better than our proposed
method. Although there were no parallel training utterances,
our proposed method can still reduce the DDUR of the
parallel and non-parallel methods following frame-by-frame
conversion. The objective performance of propose method was
close to but still not as good as the parallel Seq2seqVC method
in spectral and F0 estimation. For durational conversion, the
Seq2seqVC method outperformed other methods by large
margins. The reason is that the Seq2seqVC method made
use of the supervision from paired utterances for learning

the mapping function at utterance level. While our method
can only obtain speaking rate information from the speaker
embeddings. To improve the capability of speaker embeddings
on describing speaking rates is worth further investigation in
the future.

D. Subjective evaluations

Subjective evaluations in term of both the naturalness and
similarity of converted speech were conducted. 20 utterances
in the test set of each speaker were randomly selected and
converted using the five methods mentioned above. For each
utterance, the converted samples were presented to listeners
in random order, who were asked to give a 5-scale opinion
score (5: excellent, 4: good, 3: fair, 2: poor, 1: bad) on both
naturalness and similarity of each sample. At least thirteen
listeners participated in each evaluation and they were asked
to use headphones. The evaluation results are presented in
TABLE III. As we can see from this table, the Seq2seqVC
method and our proposed method achieved the best subjective
performance among all parallel and non-parallel methods
respectively in both conversion directions. The DNN and
CycleGAN methods obtained lower MOSs than other methods,
which was consistent with the results of objective evaluations.

Although the VCC2018 method adopted a much larger
dataset than VCTK for training the recognition model, our
method still achieved better performance than it. In rms-
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Fig. 3. Visualization of speaker embeddings. Each point represents an
utterance and the legend indicates different speakers.

to-slt conversion, the p-values of t-tests between these two
methods for naturalness and similarity were 7.3× 10−22 and
3.3×10−19 respectively. In slt-to-rms conversion, the p-values
for naturalness and similarity were 1.3×10−10 and 4.2×10−9
respectively. We can see that the superiority of our proposed
method over the VCC2018 method was significant.

Compared with the parallel Seq2seqVC method, our pro-
posed method achieved close and slightly inferior perfor-
mance. In rms-to-slt conversion, the p-values for naturalness
and similarity were 0.94 and 0.73 respectively. In slt-to-
rms conversion, the p-values for naturalness and similarity
were 0.94 and 0.03 respectively. Therefore, the superior of
Seq2seqVC over proposed method is insignificant except the
similarity in slt-to-rms conversion. In addition to using parallel
training data, the Seq2seqVC method also benefitted from the
bottleneck features extracted from an ASR model. Considering
that the dataset for training the ASR model was much larger
than the VCTK dataset used in our proposed method, it’s
possible to further improve our model by adopting a larger
multi-speaker dataset for pre-training.

E. Visualization of hidden representations

In order to demonstrate that our model can produce disen-
tangled linguistic and speaker representations as we expected,
the extracted linguistic and speaker representations were visu-
alized by t-SNE [60]. 12 parallel utterances of 12 speakers
in the test set of VCTK were selected and sent into the
text encoder, the recognition encoder and the speaker encoder
obtained by pre-training. The linguistic representations Ht

and Hr given by the text encoder and the recognition encoder
were averaged along the time axis to get single embedding
vector for each utterance. Then, the speaker and linguistic
embedding vectors of all utterances were projected into a 2-
dimensional space by t-SNE and are shown in Fig. 3 and Fig. 4
respectively.

From Fig. 3, we can see the speaker embeddings from
the same speaker were very similar with each other. The
speaker embeddings of different speakers were also separable

Fig. 4. Visualization of linguistic embeddings. The legend indicates different
transcriptions. Each × symbol represents the linguistic embedding of a
transcription given by the text encoder and each point represents the linguistic
embedding of an utterance given by the recognition encoder.

according to their genders. From Fig. 4, we can see that
parallel utterances of different speakers had almost overlapped
linguistic representations, which confirmed that the proposed
model can generate speaker-invariant linguistic representations
using the recognition encoder. The linguistic embeddings
generated from text inputs were also located within the clusters
of utterances with the same transcriptions, which indicated the
effectiveness of the contrastive loss LCT .

F. Evaluation on the amount of training data for fine-tuning

In this experiment, we gradually reduced the number of
training utterances used at the fine-tuning stage in order to
evaluate how the data amount affects the performance of our
proposed method. Five configurations were compared which
utilized 500, 400, 300, 200 and 100 training utterances for both
source and target speakers respectively. Their objective perfor-
mances are summarized in TABLE IV7. From TABLE IV,
we can see that the performance of our proposed method
degraded slightly while reducing the number of utterances for
fine-tuning. Even with only 100 non-parallel utterances, our
method still achieved lower MCD than the VCC2018 method
in TABLE II which used 500 training utterances.

Two ABX preference tests were conducted to compare our
proposed method using 100 utterances for fine-tuning with the
VCC2018 methods using 500 and 100 utterances respectively.
In each test comparing two methods, 20 test utterances were
randomly selected for each speaker and were converted by
both methods to the other speaker. Then converted utterances
were presented to listeners in random order, who were asked
to give their preferences in term of both similarity and natu-
ralness. At least 13 listeners participated in each test and they
were asked to use headphones. The average preference scores
are shown in TABLE V. From this table, we can see that there

7 Since this paper focuses on the acoustic models for voice conversion, the
same WaveNet vocoders trained with 500 utterances were used here for all
configurations.
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TABLE IV
OBJECTIVE EVALUATION RESULTS OF OUR PROPOSED METHOD USING DIFFERENT NUMBERS OF NON-PARALLEL UTTERANCES FOR FINE-TUNING.

Conversion Pairs # of Utt. MCD (dB) F0 RMSE (Hz) VUV (%) F0 CORR DDUR (s)

rms-to-slt

500 3.088 16.043 7.898 0.624 0.261

400 3.095 15.544 8.423 0.649 0.263

300 3.114 15.950 8.037 0.636 0.270

200 3.126 15.194 7.923 0.670 0.286

100 3.171 16.368 8.410 0.622 0.290

slt-to-rms

500 2.974 16.080 10.327 0.581 0.264

400 3.007 16.591 10.391 0.563 0.257

300 3.009 16.507 10.336 0.572 0.265

200 3.036 16.852 10.401 0.570 0.283

100 3.062 16.312 10.566 0.567 0.300

TABLE V
RESULTS OF ABX PREFERENCE TESTS (%) BETWEEN THE PROPOSED METHOD USING 100 TRAINING UTTERANCES AND THE VCC2018 METHODS

USING 500 OR 100 TRAINING UTTERANCES.

Conversion Pairs Proposed (100) VCC2018 (500) VCC2018 (100) N/P p-value

rms-to-slt

Naturalness 37.31 42.31 - 20.38 0.367

Similarity 42.69 33.85 - 23.46 0.103

Naturalness 69.62 - 16.15 14.23 1.36× 10−24

Similarity 75.38 - 13.85 10.77 6.52× 10−33

slt-to-rms

Naturalness 31.15 39.23 - 29.62 0.121

Similarity 43.08 36.92 - 20.00 0.268

Naturalness 34.61 - 27.69 37.70 0.158

Similarity 43.84 - 26.92 29.24 1.08× 10−3

N/P denotes no preference. 100 or 500 indicates the number of non-parallel utterances from each speaker for model training.

was no significant difference between our proposed method
using 100 utterances and the VCC2018 method using 500
training utterances. Using the same 100 training utterances, our
method achieved significantly better naturalness and similarity
than the VCC2018 method, except the naturalness in slt-to-
rms conversion. These results indicate the advantage of our
proposed method when the amount of training data is limited.

G. Evaluation on more conversion pairs

In order to examine the generalization ability of our pro-
posed method, experiments were conducted between more
conversion pairs. In additional to the female (slt) and male
(rms) speakers used in previous experiments, another female
speaker (clb) and another male speaker (bdl) of the CMU
ARCTIC dataset were adopted. The non-parallel datasets
were constructed in the same way as the descriptions in
Section IV-A. We compared our proposed method with the
VCC2018 baseline. The conversion models between two inter-
gender speaker pairs and two intra-gender speaker pairs were
built and evaluated objectively. The results are presented in
TABLE VI. We can see that the proposed method obtained
consistently better MCD, UVU, DURR metrics than VCC2018
baseline. In terms of F0 RMSE and F0 CORR, the perfor-
mance of proposed method was comparable with the baseline.
These results demonstrate the effectiveness of our proposed

method on various inter-gender and intra-gender conversion
pairs.

H. Ablation studies

In this section, ablation studies were conducted to validate
the effectiveness of several strategies used in our proposed
method, including the strategies of adversarial training, using
text inputs and multi-speaker pre-training. For investigating
the effects of adversarial training, we removed the component
of Cs, and the losses of LADV and LSC (as indicated by
“−adv” in TABLE VII). For investigating the effects of using
text inputs, the contrastive loss LCT was first removed (i.e.,
“−LCT ”). Then we further removed the whole text inputs and
the text encoder Et, making the model only learn from acoustic
features (i.e., “−text”). For investigating the effects of pre-
training, the model parameters were initialized randomly for
fine-tuning (i.e., “−pre-training”).

TABLE VII shows the objective evaluation results of abla-
tion studies, which confirmed the effectiveness all proposed
strategies. In addition to the metrics used in Section IV-C, the
phone error rate (PER) given by the recognition encoder was
employed as shown at the last column of the table. Without
adversarial training, the performance of proposed method
degraded. After removing contrastive loss LCT , the objective
errors increased more seriously than removing adversarial
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TABLE VI
OBJECTIVE EVALUATION RESULTS OF VCC2018 BASELINE AND PROPOSED METHOD ON MORE CONVERSION PAIRS.

Methods Conversion Pairs MCD (dB) F0 RMSE (Hz) VUV (%) F0 CORR DDUR (s)

VCC2018

inter

rms-to-slt 3.376 15.042 8.222 0.663 0.481

slt-to-rms 3.171 15.771 11.382 0.593 0.481

bdl-to-clb 3.669 15.723 6.930 0.667 0.496

clb-to-bdl 3.490 15.199 11.843 0.657 0.496

intra

clb-to-slt 3.491 13.997 7.250 0.705 0.324

slt-to-clb 3.553 13.013 6.250 0.756 0.324

rms-to-bdl 3.312 15.030 11.893 0.656 0.668

bdl-to-rms 3.242 15.754 13.458 0.612 0.668

Proposed

inter

rms-to-slt 3.088 16.043 7.898 0.624 0.261

slt-to-rms 2.974 16.080 10.327 0.581 0.264

bdl-to-clb 3.150 15.692 6.162 0.672 0.165

clb-to-bdl 3.076 15.078 11.322 0.624 0.191

intra

clb-to-slt 3.019 15.088 7.128 0.662 0.134

slt-to-clb 3.134 14.915 5.600 0.698 0.144

rms-to-bdl 3.157 15.192 11.855 0.581 0.344

bdl-to-rms 3.064 15.214 10.747 0.617 0.359

“inter” and “intra” represent inter-gender and intra-gender conversions respectively. “slt” and “clb” are female
speakers. “rms” and “bdl” are male speakers.

TABLE VII
OBJECTIVE EVALUATION RESULTS OF ABLATION STUDIES ON OUR PROPOSED METHOD.

Conversion Pairs Methods MCD (dB) F0 RMSE (Hz) VUV (%) F0 CORR DDUR (s) PER

rms-to-slt

Proposed 3.088 16.043 7.898 0.624 0.261 10.09

−adv 3.256 18.426 8.985 0.499 0.406 10.71

−LCT 3.235 17.065 8.747 0.586 0.368 11.41

−text 3.613 22.455 9.565 0.463 0.488 10.45

−text− adv 4.281 44.260 23.188 0.145 0.483 10.93

−pre-training 3.200 16.961 8.126 0.619 0.593 14.81

slt-to-rms

Proposed 2.974 16.080 10.327 0.581 0.264 8.84

−adv 3.127 21.227 11.903 0.319 0.374 9.76

−LCT 3.101 17.170 10.897 0.513 0.334 10.36

−text 3.438 20.852 13.197 0.220 0.424 9.25

−text− adv 4.222 82.042 12.090 0.464 0.406 9.21

−pre-training 3.120 16.866 12.359 0.551 0.470 17.59

“−adv”, “−LCT ” and “−text” represent the proposed method without using adversarial training, contrastive loss and
text inputs respectively. “−pre-training” represents the proposed method without using pre-training strategy.

training. Removing the text inputs and the text encoder caused
further degradation. These results demonstrated that learning
linguistic representations jointly with text inputs was crucial
in our proposed method. The MCD and F0 RMSE metrics in-
creased dramatically if both adversarial training and text inputs
were discarded. In this condition, the model was trained by
naive sequence-level auto-encoding on acoustic features. An
informal listening test showed obvious similarity degradation
of converted speech. Without the pre-training stage, the PER
of the proposed method increased dramatically. Larger PER
means higher risk of mispronunciation in the converted speech.
Our informal listening test indicated obvious naturalness and

intelligibility degradations of converted speech. Therefore, it
is important to pre-train our model on a large multi-speaker
dataset to increase its generalization ability and to improve the
reliability of extracted linguistic representations.

Fig. 5 shows the spectrograms of the speech converted by
the proposed, the “−text” and the “−text − adv ” methods
together with the spectrogram of natural target speech for a
test utterance of slt-to-rms conversion. As presented in this
figure, the proposed method generated the spectrogram which
mostly resembled that of the target. As shown in Fig. 5
(b), the format patterns of the converted speech without text
inputs were inconsistent with those in the target speech. If the
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Fig. 5. Spectrograms of (a) the speech converted by our proposed method, (b) the speech converted by “−text” method, (c) the speech converted by
“−text− adv” method and (d) the natural speech of target speaker for a test utterance of slt-to-rms conversion.

Fig. 6. Visualization of linguistic embeddings extracted by the model without
the contrastive loss LCT . The legend indicates different transcriptions. Each
× symbol represents the linguistic embedding of a transcription given by
the text encoder and each point represents the linguistic embedding of an
utterance given by the recognition encoder.

adversarial training strategy was further discarded, there were
serious spectrogram distortions between the converted speech
and the target one as shown in Fig. 5 (c), including a much
higher overall pitch of the converted speech than that of the
target speech.

Fig. 6 presents the visualization of linguistic embeddings
extracted by the proposed model without the contrastive loss
LCT . We can see that the linguistic embeddings extracted from
texts scatter around and away from clusters of audio signals,
even the same seq2seq decoder was used by text encoder
and recognition encoder. The linguistic embeddings from the
model without both text inputs and adversarial training are
also visualized in Fig. 7. From this figure, we can see the
similarities among the utterances of the same transcriptions
from different speakers decreased comparing with those in Fig.
4. This result demonstrated the contributions of text inputs and
adversarial training for obtaining disentangled linguistic and
speaker representations.

Fig. 7. Visualization of linguistic embeddings extracted by the model without
both text inputs and adversarial training. The legend indicates different
transcriptions. Each point represents the linguistic embedding of an utterance
given by the recognition encoder.

V. CONCLUSION

In this paper, a non-parallel sequence-to-sequence voice
conversion method by learning disentangled linguistic and
speaker representations is proposed. The whole model is built
under the framework of encoder-decoder neural networks. The
strategies of using text inputs and adversarial training are
adopted for obtaining disentangled linguistic representations.
The model parameters are pre-trained on a multi-speaker
dataset and then fine-tuned on the data of a specific conversion
pair. Experimental results showed that our proposed method
surpassed the non-parallel VC method which achieved the top
rank in Voice Conversion Challenge 2018. The performance of
our proposed method was close to the state-of-the-art seq2seq-
based parallel VC method. Ablation studies confirmed the ef-
fectiveness of adversarial training, using text inputs and model
pre-training in our proposed method. Investigating the methods
of one-shot or few-shot voice conversion by improving the
prediction of speaker representations in our proposed method
will be our work in future.
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[21] H. Duxans, D. Erro, J. Pérez, F. Diego, A. Bonafonte, and A. Moreno,
“Voice conversion of non-aligned data using unit selection,” TC-STAR
Workshop on Speech-to-Speech Translation, 2006.

[22] D. Sundermann, H. Hoge, A. Bonafonte, H. Ney, A. Black, and
S. Narayanan, “Text-independent voice conversion based on unit se-
lection,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 1, 2006, pp. 81–84.

[23] D. Erro and A. Moreno, “Frame alignment method for cross-lingual
voice conversion,” in Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2007, pp. 1969–1972.

[24] D. Erro, A. Moreno, and A. Bonafonte, “INCA algorithm for training
voice conversion systems from nonparallel corpora,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 5, pp. 944–
953, 2010.

[25] T. Kaneko and H. Kameoka, “CycleGAN-VC: Non-parallel voice con-
version using cycle-consistent adversarial networks,” in European Signal
Processing Conference (EUSIPCO), 2018, pp. 2114–2117.

[26] F. Fang, J. Yamagishi, I. Echizen, and J. Lorenzo-Trueba, “High-quality
nonparallel voice conversion based on cycle-consistent adversarial net-
work,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 5279–5283.

[27] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “CycleGAN-
VC2:improved CycleGAN-based non-parallel voice conversion,” in
IEEE International Conference on Acoustics Speech and Signal Pro-
cessing Proceedings, 2019, pp. 6820–6824.

[28] T. Nakashika, T. Takiguchi, Y. Minami, T. Nakashika, T. Takiguchi,
and Y. Minami, “Non-parallel training in voice conversion using an
adaptive restricted Boltzmann machine,” IEEE/ACM Transactions on
Audio, Speech and Language Processing, vol. 24, no. 11, pp. 2032–
2045, 2016.

[29] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng, “Phonetic pos-
teriorgrams for many-to-one voice conversion without parallel data
training,” in 2016 IEEE International Conference on Multimedia and
Expo (ICME), 2016, pp. 1–6.

[30] H. Miyoshi, Y. Saito, S. Takamichi, and H. Saruwatari, “Voice conver-
sion using sequence-to-sequence learning of context posterior probabili-
ties,” in Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2017.

[31] L.-J. Liu, Z.-H. Ling, Y. Jiang, M. Zhou, and L.-R. Dai, “WaveNet
vocoder with limited training data for voice conversion,” in Annual
Conference of the International Speech Communication Association
(INTERSPEECH), 2018, pp. 1983–1987.

[32] S. Liu, J. Zhong, L. Sun, X. Wu, X. Liu, and H. Meng, “Voice conversion
across arbitrary speakers based on a single target-speaker utterance,”
in Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2018, pp. 496–500.

[33] Y. Saito, Y. Ijima, K. Nishida, and S. Takamichi, “Non-parallel voice
conversion using variational autoencoders conditioned by phonetic
posteriorgrams and d-vectors,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5274–
5278.

[34] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,” in
2016 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2016, pp. 1–6.

[35] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from unaligned corpora using variational autoencoding
Wasserstein generative adversarial networks,” in Annual Conference of
the International Speech Communication Association (INTERSPEECH),
2017, pp. 3364–3368.

[36] J.-c. Chou, C.-c. Yeh, H.-y. Lee, and L.-s. Lee, “Multi-target voice
conversion without parallel data by adversarially learning disentangled
audio representations,” in Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2018, pp. 501–505.

[37] A. V. Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“WaveNet: A generative model for raw audio,” in 9th ISCA Speech
Synthesis Workshop (SSW9), 2016, pp. 125–125.

[38] S. Hchreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[39] A. Polyak and L. Wolf, “Attention-based WaveNet autoencoder for uni-
versal voice conversion,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019.

[40] O. Ocal, O. H. Elibol, G. Keskin, C. Stephenson, A. Thomas, and
K. Ramchandran, “Adversarially trained autoencoders for parallel-data-
free voice conversion,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019.

[41] S. O. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural voice
cloning with a few samples,” in Advances in Neural Information
Processing Systems, 2018, pp. 10 040–10 050.

[42] Y. Jia, Y. Zhang, R. J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen,
P. Nguyen, R. Pang, I. L. Moreno et al., “Transfer learning from speaker
verification to multispeaker text-to-speech synthesis,” in Advances in
Neural Information Processing Systems, 2018, pp. 4485–4495.



PREPRINT MANUSCRIPT OF IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING c©2019 IEEE 13

[43] E. Nachmani, A. Polyak, Y. Taigman, and L. Wolf, “Fitting new speakers
based on a short untranscribed sample,” in International Conference on
Machine Learning, 2018, pp. 3683–3691.

[44] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016, pp. 4960–4964.

[45] Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-
end speech synthesis,” in Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2017, pp. 4006–4010.

[46] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. J. Skerry-Ryan et al., “Natural TTS synthesis
by conditioning WaveNet on mel spectrogram predictions,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 4779–4783.

[47] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Computer
Vision and Pattern Recognition, 2005, pp. 539–546.

[48] J. S. Chung and A. Zisserman, “Out of time: automated lip sync in the
wild,” in Asian Conference on Computer Vision, 2016, pp. 251–263.

[49] H. Zhou, Y. Liu, Z. Liu, P. Luo, and X. Wang, “Talking face generation
by adversarially disentangled audio-visual representation,” in AAAI
Conference on Artificial Intelligence (AAAI), 2019.

[50] J. Kominek and A. W. Black, “CMU ARCTIC databases for speech
synthesis,” http://festvox.org/cmu arctic/index.html, 2003, Lang. Tech-
nol. Inst., Carnegie Mellon Univ., Pittsburgh, PA.

[51] C. Veaux, J. Yamagishi, K. MacDonald et al., “CSTR VCTK corpus:
English multi-speaker corpus for cstr voice cloning toolkit,” University of
Edinburgh. The Centre for Speech Technology Research (CSTR), 2017.

[52] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in Neural
Information Processing Systems, 2015, pp. 577–585.

[53] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
International Conference on Learning Representations, 2016.

[54] J.-X. Zhang, Z.-H. Ling, and L.-R. Dai, “Forward attention in sequence-
to-sequence acoustic modeling for speech synthesis,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 4789–4793.

[55] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Computer Science, 2014.

[56] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural network
speech synthesis system,” in 9th ISCA Speech Synthesis Workshop
(SSW9), 2016.

[57] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based
high-quality speech synthesis system for real-time applications,” IEICE
Transactions on Information and Systems, vol. 99, no. 7, pp. 1877–1884,
2016.

[58] D. T. Chappell and J. H. L. Hansen, “Speaker-specific pitch contour
modeling and modification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2, 1998, pp.
885–888.

[59] H. Kawahara, I. Masuda-Katsuse, and A. D. Cheveigné, “Restructuring
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