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Robust Speech Filter And Voice Encoder Parameter Estimation using the

Phase-Phase Correlator

Abul K Azad

(ABSTRACT)

In recent years, linear prediction voice encoders have become very efficient in terms of com-

puting execution time and channel bandwidth usage while providing, in the absence of im-

pulsive noise, natural sounding synthetic speech signals. This good performance has been

achieved via the use of a maximum likelihood parameter estimation of an auto-regressive

model of order ten that best fits the speech signal under the assumption that the signal

and the noise are Gaussian stochastic processes. However, this method breaks down in the

presence of impulse noise, which is common in practice, resulting in harsh or non-intelligible

audio signals. In this paper, we propose a robust estimator of correlation, the Phase-Phase

correlator that is able to cope with impulsive noise. Utilizing this correlator, we develop

a Robust Mixed Excitation Linear Prediction encoder that provides improved audio qual-

ity for voiced, unvoiced, and transition speech segments. This is achieved by applying a

statistical test to robust Mahalanobis distances for identifying the outliers in the corrupted

speech signal, which are then replaced with filtered signals. Simulation results reveal that

the proposed method outperforms in variance, bias, and breakdown point three other robust

approaches based on the arcsin law, the polarity coincidence correlator, and the median-

of-ratio estimator without sacrificing the encoder bandwidth efficiency and the compression



gain while remaining compatible with real-time applications. Furthermore, in the presence

of impulsive noise, the proposed speech encoder speech perceptual quality also outperforms

the state of the art in terms of mean opinion score.



Robust Speech Filter And Voice Encoder Parameter Estimation using the

Phase-Phase Correlator

Abul K Azad

(GENERAL AUDIENCE ABSTRACT)

Impulsive noise is a natural phenomenon in everyday experience. Impulsive noise can be

analogous to discontinuities or a drastic change in natural progressions of events. Specifi-

cally in this research the disrupting events can occur in signals such as speech, power trans-

mission, stock market, communication systems, etc. Sudden power outage due to lighting,

maintenance or other catastrophic events are some of the reasons why we may experience

performance degradation in our electronic devices. Another example of impulsive noise is

when we play an old damaged vinyl records, which results in annoying clicking sounds. At

the time instance of each click, the true music or speech or simply the audible waveform

is completely destroyed. Other examples of impulse noise is a sudden crash in the stock

market; a sudden dive in the market can destroy the regression and future predictions. Un-

fortunately, in the presence of impulsive noise, classical methods methods are unable to filter

out the impulse corruptions.

The intended filtering objective of this dissertation is specific, but not limited, to speech sig-

nal processing. Specifically, research different filter model to determine the optimum method

of eliminating impulsive noise in speech. Note, that the optimal filter model is different for

time series signal model such as speech, stock market, power systems, etc. In our studies



we have shown that our speech filter method outperforms the state of the art algorithms.

Another major contribution of our research is in speech compression algorithm that is ro-

bust to impulse noise in speech. In digital signal processing, a compression method entails

in representing the same signal with less data and yet convey the the same same message as

the original signal. For example, human auditory system can produce sounds in the range

of approximately 60 Hz and 3500 Hz, another word speech can occupy approximately 4000

Hz in frequency space. So the challenge is, can we compress speech in one of half of that

space, or even less. This is a very attractive proposition because frequency space is limited

but the wireless service providers desires to service as many users as possible without sacri-

ficing quality and ultimately maximize the bottom line. Encoding impulse corrupted speech

produces harsh quality of synthesized audio. We have shown if the encoding is done with

the proposed method, synthesized audio quality is far superior to the sate of the art.
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Chapter 1

Introduction

Bandwidth in wireless voice communication systems is limited and very expensive. Therefore,

extensive research has been carried out for developing methods able to achieve high level

of speech compression while maintaining good audio signal quality. Well-known methods

include the transmission of the estimates of the parameters of an Auto-Regressive (AR)

model, the Fourier magnitudes of the error signal, the pitch periods, the signal gain, and the

transition frames. The AR model parameters are estimated at the receiver end to reproduce

a synthesized version of the actual speech signal. Note that AR model of a short time speech

segment is synonymous with a linear prediction model, which is encoded via the Line Spectral

Pairs (LSP), which are resilient to quantization errors. Linear prediction, AR model and LSP

represent the same parameter in different form. However, there are two challenges that have

not been yet satisfactorily addressed; these are: (i) achieving good quality of the speech

encoder model estimation using low data rate [1], and that despite a significant progress

1
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made during the last decades [2], [3], [4], [5], [6], and (ii) copying with speech impulsive

noise [7, 8, 9, 10]. If the model parameters are not estimated with acceptable accuracy

from the bias and variance stand point, the synthesized audio may sound harsh, or tonal, or

non-human like, or non intelligible [2].

Let us now review the most popular prefiltering techniques for noise suppression in speech.

One of them is the median filter [8], [11], which computes the median of a sliding window,

one sample at a time, and then tags the sample as an outlier via a thresholding mechanism.

A corrupted sample is replaced with an estimated value obtained using a linear prediction

model. Unfortunately, the median filter is not practical for real-time application because

it filters the speech signal one sample at a time, which is time consuming. Furthermore, it

unduly over-tags as outliers good signal segments, making the filtered speech sound distorted.

A second method is the binary mask filter proposed by Ruhland et al. [7], which processes

the speech signal in the frequency domain. Assuming a disjoint speech and noise spectra,

a Signal-to-Noise Ratio (SNR) thresholding algorithm is utilized to identify the noise bins,

which are then zeroed. Finally, an inverse Fourier transform is applied to recover the filtered

speech signal in the time domain. Unfortunately, this approach provides a strongly biased

spectrum estimate, resulting in a poorly synthesized audio signal. A third method is proposed

by Veselinovic and Graupe [9]; it makes use of a wavelet filter bank that decomposes the

noisy speech in the wavelet domain, and then calculates highpass and lowpass filter output

wavelet coefficients, whose noise components, which have lower values, are filtered out via a

thresholding method. Then, the noise is either replaced with zeroes or interpolated. Finally
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a filtered speech is obtained by applying the inverse wavelet transform. Unfortunately, this

method produces sounds of poor quality in the presence of impulsive noise because the latter

have a power spectrum that leaks over the filter bandwidths. A fourth method is proposed

by Wen and Tao [12], which aims at suppressing the voice signal from the noise by utilizing

an inverse AR filter and applying a thresholding mechanism. Unfortunately, this method

produces harsh sounds when the original speech signal is corrupted by impulsive noise. A

fifth method proposed by Hassen and Clements [10] consists in applying the Wiener filter that

minimizes the mean-square-error between a target signal and the estimated signal, yielding

distorted audio signal in the presence of impulsive noise.

A brief overview of our proposed contributions consists of a) a robust estimator of correlation,

applicable to speech, based on the Phase-Phase Correlator (PPC) [13], b) a robust method

to estimate the power spectral density, c) a robust approach to estimate the Auto-Regressive

model of order p, AR(p). d) a novel speech filter algorithm and e) a robust speech encoder

algorithm. Although speech filter can be applied on its own or as the pre-filter to speech

encoder process, all of the contributions are applicable to designing a robust speech encoder

that can cope with impulsive noise condition. A robust estimator of correlation may be

applied in a speech encoder to estimate the fundamental frequency, to make voice/unvoiced

framing decision, estimate band-pass voicing strength, etc. The robust estimator of corre-

lation can be used to define auto-correlation function of the error signal and subsequently

take the Fourier transform to estimate the PSD, which can be utilized to estimate the ro-

bust excitation signal. The robust estimator of correlation, along with the Burg’s algorithm
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can be applied to estimate the minimum phase AR(p), which can be transformed into Line

Spectral Pair (LSP) for encoder model.

In this paper, we develop a new pre-filtering algorithm that is robust to impulsive noise,

which has the following novel features. As shown in Fig. 2.4, it consists in identifying the

outliers using a new statistical test applied to Robust Mahalanobis Distances (RMD) based

on the PPC. A new method for generating the exciting error signal of the AR(10) model

is developed. First, this model is robustly estimated using a robust version of the Burg’s

algorithm based on the PPC. Then, the PPC is executed again to robustly estimate the

autocorrelation function at various time lags. Next, by applying the Fourier transform to

this function, the Power Spectrum Density (PSD) of the error signal is estimated and the

Fourier magnitudes are calculated. Finally, the missing samples associated with the outliers

are replaced with the outputs of the AR(10) model that are excited with the Inverse Fast

Fourier Transform (IFFT) of the Fourier magnitudes. Our simulation results show significant

improvements on the filtered output speech provided by our pre-filtering method over the

methods advocated in the literature mentioned earlier.

After the execution of the prefiltering step just described, we apply a new robust speech

compression algorithm based on the Mixed-Excitation Linear Prediction (MELP) coding.

Initiated by McCree and Barnwell [2] in 1995, it has been the top candidate for the U.S.

federal standards and since then, has been adopted by NATO as the standard for the voice

encoder. Indeed, in the absence of impulsive noise, the MELP is able to synthesize superior

quality and natural sounding speech. The MELP encoder algorithm is based on the Linear
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Predictive Coding (LPC) with several additional analysis functions as described next. The

speech signal is first segmented into 22.5-ms frames, which are each processed to estimate

the pitch periodicity, the parameters of an AR(10) model, the time correlations, the Fourier

transform magnitudes, and five bandpass voicing strengths. The model parameters are then

encoded and sent to the receiver for decompression. Besides the MELP, there are a few

other algorithms proposed in the literature. These include the Vector Sum Excited Linear

Prediction (VSELP) coding [6], the Advanced Multi-Band Excitation (AMBE) coding [14],

and the Code Excited Linear Prediction (CELP) [5] coding. Unfortunately, all these methods

are vulnerable to impulsive noise.

In this paper, we propose a new robust version of the MELP, termed the RMELP. We

choose the MELP algorithm because it outperforms all the other methods in terms of speech

quality in the absence of impulsive noise. By contrast, our RMELP robustly estimates four

critical parameters, namely the fundamental frequency or the pitch period, the band-pass

voicing strengths, the AR(10) model parameters, and the Fourier magnitudes of the residual

signal, which are all estimated using a correlation estimator. In this paper, we investigate

four robust correlation estimation methods proposed in the literature to identify which one

is the most suitable for speech processing; these are the Arcsin Law (ASL), the Complex

Polarity Coincidence Correlator (CPCC), the PPC, and the Median-of-Ratios Estimator

(MRE), which is the maximum likelihood estimator at the Laplace probability distribution.

Specifically, we develop the Complex-valued PPC (CPPC), which has been adapted from

the real-valued hard limitor estimator, namely the ASL. Here, the CPCC is the intermediate
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step for deriving the PPC with infinite phase quantization. Furthermore, we show that

a hard limited correlation estimator in the complex domain is more efficient than in the

real domain. Since speech signals are real-valued processes, we propose to first take the

Hilbert transform to map them in the complex domain, and then to estimate the complex-

valued correlation coefficients using the CPCC to improve its variance. To evaluate the

performance of each of these four estimators at various contamination rate, we carry out

extensive simulations on synthetic signals and evaluate their variance, bias, and breakdown

point at various correlation and contamination rate level. We conclude that the PPC is

the robust estimator of choice for speech signal analysis when subject to impulsive noise.

The paper is organized as follows. Section 2 analyzes the characteristics of the corrupted

speech signal. Section 3 describes the ASL, the CPCC, the PPC, and the MRE as robust

correlation estimators for speech signals. Section 4 proposes robust pre-filtering methods

based on the PPC. Section 5 develops a robust PPC-based MELP encoder algorithm, the

RMELP. Section 6 provides some simulation results of the proposed methods and compares

their performances to the ASL, the CPCC, and the MRE in terms of bias, variance, and

breakdown point. Finally, Section 7 concludes the paper.



Chapter 2

Corrupted Speech Signal

Characteristics

Over the last few decades, a number of different algorithms for speech encoding have been

proposed in the literature. However, most of them utilize spectral and excitation estimation

methods under the assumption that short-time speech frames are stationary and Gaussian.

However, this assumption is strongly violated in the presence of impulsive noise, making the

speech signal and the noise to be intermixed in both the frequency and the time domain.

Generally, an impulsive noise amplitude is large compared to that of the true signal and may

span up to 2 or 5 ms. For instance, the MELP vocoder algorithms involve the estimation

of the pitch period, the voiced/unvoiced flag, the aperiodic flag, the voicing strength, the

AR(10) parameters, the Fourier magnitudes, and the AR model excitation in 22.5 ms frames.

Evidently, if all these parameters are not robustly estimated, which is the case for all the

7
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Figure 2.1: Impulse model in time and frequency domain at 8Ksps; observing the frequency
response, clearly it destroys the entire spectrum.

conventional methods, the synthesized audio signal will be biased in the presence of impulsive

noise.

Impulse corruption in time domain can be modelled as a double sided exponential function;

increase in amplitude, reaching infinite slope and hence discontinuous, while immediately

decays to mean value following the discontinuity point. Clean and impulse corrupted time

series of a speech segment is depicted in 2.2. In general, impulse noise variance is greater

than the signal variance and hence noise samples may be clearly visible. However, this is not

always true, meaning impulse noise variance may be at the same level as the signal variance,

where noise detection becomes very challenging. It is further evident from the spectrogram

in 2.3 that when the impulses occurs, the spectrum characteristics are destroyed across all

frequency bands.
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Figure 2.2: Speech sampled at 8ksps, corrupted with impulse noise. It may appear the
impulse corruptions is relatively higher in amplitude but in reality, they can occur at the
same level as the true signal.

Figure 2.3: Impulse corrupted speech spectrogram.
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To address this problem, we develop a robust estimator of correlation based on the PPC that

is implemented within the RMELP voice encoder algorithm, which is executed at the rate

of 2400 bits/sec. As shown in Fig. 2.4, a parametric model of the speech signal is generated

at the output of the RMELP encoder with the same characteristics as the input speech

waveform. Since a speech signal is non stationary and a-periodic due to the characteristics of

the glottal excitation, the underlying process used to produce speech, it should be in principle

modeled as a non-stationary stochastic process. However, this modeling is mathematically

intractable for real-time applications. To address this problem, a speech signal is first broken

into frames with time intervals of 20 to 30 ms, during which the signal can be reasonably

assumed to be stationary, at least in the wide-sense. This is a very important assumption

that makes the signal modeling, filtering, and compression algorithms realistic and execute.

Hence, a frame is modeled as a stochastic process X(t) with a constant mean, E[X(t)] = µ,

a constant variance, E[X(t)2] = σ2, and a time invariant autocorrelation function, Rxx(t, t+

τ) = Rxx(τ). Note it is very costly and nearly impossible to segment speech into frames

that are near stationary. And hence stationary assumption is often violated, specially in

transition frames, resulting in sub-optimal parameter estimation and poor speech synthesis.

Research has shown that speech synthesis quality is just as sensitive to excitation signal

estimation as AR model parameters. This is specially true when signal in question is non-

stationary. However, in the presence of impulsive noise, our research has shown that gen-

erating the excitation signal is more challenging than estimating the PSD of a given frame.

In this paper, we propose to robustly estimate the power spectral density, by taking the
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Figure 2.4: Flowchart of the RMELP encoder.

Fourier transform of the PPC-based autocorrelation function, which is encoded to estimate

the spectral shape of the error signal. Unfortunately, this approach still produces some noisy

artifacts in the synthesized audio. A method will be proposed next to deal with this problem.

Robust statistics deal with the development of estimators with stable bias and variance

under violations of the assumptions. In signal processing, the ε-replacement contaminated

process is considered; it is defined as Xt = Xt(1 − Zt) + ZtWt, where Zt is the zero-one

process such that P (Zt = 1) = ε, which determines the contamination rate. The breakdown

point of an estimator is the largest contamination rate associated with an acceptable bias,

where the asymptotic bias is defined as b = |θ̂(F ) − θ̂(G)|, where θ̂ is the estimator, G is

the contaminated model distribution of true model F . In this paper, we analyze the bias,

the variance, and the breakdown point of various correlation estimators at various levels of

correlation and signal contamination. Asymptotic variance is defined as



Chapter 3

Speech Filter Algorithms

Speech filtering is a popular topic in modern speech signal processing. Consequently there

are way too many algorithms proposed in the IEEE papers that can withstand the scholars

criticism of their technical approach and performances. Earlier, we briefly mentioned four of

the best performing speech filter algorithms, specifically, the Median Filter (MF), the Binary

Mask Filter (BMF), the Wavelet Filter (WF) and the Inverse Filter. In this chapter we go

a little deeper into their implementations.

3.1 The Median Filter

The Sample median is the ML estimator of location at the Laplacian distribution, which

sounds very attractive because speech conforms to Laplacian PDF over long time. The class

of Median Filters actively smooths out the corrupted signal of generic distribution. Median

12
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Figure 3.1: The basic Median Filter Process

filter, is a non-linear filter, which operates on the running frame and replaces the outliers

with the moving median. It should be apparent that a the MF assumes the observations are

Independent and Identically distributed. Since Speech signal is highly correlated and closely

follows Gaussian PDF withing short time frames, it is often the case that MF false detects

the outliers. As mentioned earlier, there is no well defined threshold method, where it can

suppress the undesired samples, while retaining the desired information. This make sense

because both the desired and the noise signal occupy the same space in frequency. The basic

processing blocks of the Median filter is demonstrated in 3.1, where the central element is

the median of the sliding window.
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Figure 3.2: The Simple Binary Mask Filter

3.2 The Binary Mask Filter

As its name suggests, binary masking is the process of masking the frequency bins of a

signal in frequency domain. The simplest of methods is to replace the outlier bins with zeros

and take the inverse Fourier transform to clean up the corrupted signal. As shown in 3.2,

the process begins by taking Fourier transform of the input frame and utilize a threshold

mechanism in the frequency domain to mask out the noise and then convert back into time

domain. This filter. This filter performs very well for applications where the true signal is

known and the noise bins are easily estimated from the corrupted signal. As seen in 3.3, the

improvement is remarkable. It should be noted that the clean speech was corrupted with

Gaussian white noise, which is a big problem in real applications where the noise model is

unknown. Furthermore, determining the optimum threshold to mask out the noise bins is

very difficult.
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Figure 3.3: The BMF performance under the ideal condition

3.3 The Wavelet Filter

It is well documented that the Wavelet Filter is able to decompose a signal in both time and

frequency domain, apply a threshold mechanism to identify the outliers, replace them and

reconstruct an estimated, filtered signal. Simultaneous time and frequency domain filtering

is claimed because the corrupted signal is filtered with a high-pass filter and a low-pass filter,

which results in two time series’ which are separated in frequencies. In theory, his process

can be iterated until the lowest time resolution is achieved; however, after so many iterations

there will be no information left and hence no need in continuing. In wavelet analysis, the

low-pass filter output is referred to as the approximation signal, while the high-pass filter

output is is considered as the details. Indeed, the classifications of the wavelet transform



Abul K. Azad Chapter 2. Corrupted Speech Signal Characteristics 16

Figure 3.4: The Wavelet Transform Decomposition

outputs, specifically for speech, makes good sense. Most of he information if a speech signal

is contained int he lower end of the spectrum. It is easy to show that if we filter the speech

with a low-pass filter with 1kHz cutoff frequency, we would still be able to understand a

conversation, while loosing some of the finer individual speaker characteristics. However,

if we filter the speech with a high-pass filter with 1kHs cutoff frequency, the words in the

conversation will be much harder to make any cognitive sense. It should be noted that in

the presence of impulsive noise, classical wavelet transform does not work as the impulse

corruption spectrum is flat and it shows up on both the approximation and the details

signals. Wavelet transform decomposition and reconstruction methods are depicted in 3.4

and 3.5, where a down means decimation and an up arrow means interpolation.

3.4 The Inverse Filter

The Inverse Filter might sound elusive, however, the concept makes sense for outlier iden-

tification. The concept is to estimate the AR(p) model for a given frame, and if you apply
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Figure 3.5: The Wavelet Transform Reconstruction

the inverse filter of the AR model to the input speech, the output will be white. If there are

noise corruptions, specifically impulse corruptions, the inverse filter will have a significant

effect, in terms of amplitude, on the inverse filter output. The objective then is to determine

a threshold that is significantly larger for impulse corruptions than the mean error signal

variance. This is plausible because when you apply the inverse filter, the output of correlated

speech samples will be suppressed and become noise like, while impulsive noise samples will

be smeared and transformed to a scaled version of the impulse response of the LPC inverse

filter. Another word, the scale of speech signal is reduced to white noise, while the scale of

the noise remains unchanged or, in most cases, increases. Assuming the inverse filter output

is a white Gaussian random process, a filter matched to the LPC inverse filter can further

improve smeared impulsive noise detection ability. However the key is the robust estima-

tion of the AR model; otherwise the inverse filter performs very poor in maximizing the

corruptions in the error signal and hence identifying the outliers. Indeed a robust method

in identifying the outliers is the essential first step. However, the problem of replacing them

is just as challenging. One such method is to replace the outliers in the error signal with
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Gaussian noise and synthesize the estimated, filtered signal, while replacing only the outliers

in the input frame.
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Figure 3.6: The Inverse Filter outlier identification



Chapter 4

Speech Encoder Algorithms

Encoding of the speech signal is how the compression gain is achieved. Classical digital

telephony samples voice stream at 8ksps with 8 bits per sample linear quantizer, resulting

in 64kbps, effective bandwidth. This may not be a reason for attention for wired commu-

nication such as Public Switched Telephone Network. However, when it comes to wireless

communication systems, spectrum is very much limited and enterprises like AT&T, Intel-

sat, Iridium made it their mission to pack more user in a narrow-band voice channel, while

maintaining speech quality as if you are in a 64kbps pipe. From the acoustic signal process-

ing prospective, this translates into the highest possible compression ratio in speech signal

encoding without compromising the fidelity. Hence voice encoder algorithms such as the

MELP, the AMBE, the CELP and others alike that only requires 2.4kbps or lower pipe and

still demonstrate acceptable speech synthesis quality are highly sought after. Our proposed

speech compression algorithm is based on the MELP encoder, which is discussed throughout

20
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Figure 4.1: Speech Encoder System Model

this paper and in great details in a later section. Here we briefly discuss the three popular

algorithms, namely, the VSELP, the CELP and the AMBE coding algorithms mentioned in

the introduction.

4.1 The Code Excited Linear Prediction Encoder

In speech encoder algorithm, there are two main objectives, retain fidelity, while compressing

the encoder information as much as possible. Another word, we hope to retain the fidelity

of a 64kbps speech signal, as an example, into as low amount of bits/sec as possible. CELP

encoder is another attempt in improving compression and quality performance of the LPC

encoder. It was perceived that if we can define a finite code-book that can represent arbitrary

excitation signal in the form of an AR model, then we only need to transmit the index of the
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Figure 4.2: CELP Encoder Model

excitation code index, which in theory would result in huge compression gain. Because now

you can encode the index of the LPC code, which is known to the synthesizer as opposed to

encode all of the LPC filter coefficients. The basic CELP encoder process is also referred to

as the Analysis-by-Synthesis (AbS) encoder. As shown in 4.2, the CELP encoder proposes to

minimize the error between the input spectral shape and a code-book of quantized spectral

shapes. The index of the code book spectral shape is chosen that minimizes error in the

synthesized speech. Clearly, there is one fundamental problem to this method, that it is

impossible to quantize the excitation signal so the error is negligible. This approach is

promising, only if one can define a finite code book that can represent all possible excitation

signals.
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4.2 The Vector Sum Excited Linear Prediction En-

coder

Originally developed by Motorola Corporation, the VSELP encoder algorithm is and evolu-

tion to the CELP encoder, with an attempt to lower code book size and hence improving

computational cost. Excitation vectors from the stochastic codebook, however, are obtained

through linear combination of a number of fixed basis vectors—hence the name of vector

sum excitation. The VSELP coder was designed to achieve the highest possible quality with

reasonable computational complexity while providing robustness to channel errors, essential

requirements for cellular telephony applications. Figure 4.3, shows the core encoding struc-

ture. For this coder, a frame consists of 160 samples, and a subframe contains 40 samples. A

total of 27 = 128 codevectors are included in each stochastic codebook, with each codevector

having 40 elements.

4.3 The Advanced Multi-band Excitation Encoder

The AMBE encoder is a variation of the Multiband Excitation Encoder. The excitation signal

and the spectral envelopes are estimated simultaneously so that the synthesized spectrum is

closest in the least squares sense to the spectrum of the original speech. This encoder also falls

under the general class of analysis by synthesis encoders. Analysis consists of prefiltering,

parameter estimation, quantization, and coding. Parameter decoding and frame-by-frame
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Figure 4.3: VSELP Encoder Model
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Figure 4.4: AMBE Encoder Model

reconstruction of the coded speech form the synthesis stage. The relevant parameters which

are used to represent the input speech waveform are fundamental frequency (pitch), vocal

tract spectral estimate, voicing decisions, and frame gain. An example block diagram of the

AMBE analyzer is shown in Figure 4.4.



Chapter 5

Robust Correlation Estimation

Methods

The most widely used estimator of correlation is the Gaussian Maximum Likelihood Esti-

mator (GMLE) of the Pearson’s ρ based on the sample mean and the sample covariance.

Unfortunately, in the presence of impulsive noise, this estimator breaks down. This moti-

vates us to explore the application of four robust alternative correlation estimators to speech

processing, which are defined next. Specifically we evaluate the asymptotic bias and variance

properties [15] to isolate the optimum robust estimator for speech processing.

Moronna [15] defined asymptotic bias as b = |T (F )−T (G)|, where G = (1− ε)F + εH, is the

gross error model, F is the true distribution and H is the contamination distribution. It is

clear that for a given distribution, the bias of the estimator is simply the difference between

26
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the true value and estimate. It is also clear that maximum bias is achieved when T (G) = 0,

at some arbitrary contamination rate ε. This contamination rate is known as the breakdown

point. Part of our research is to reveal which one of the estimators can withstand highest

breakdown point ε, making it robust compared to others.

Given a probability distribution F , minimum asymptotic variance is attained with the max-

imum likelihood estimator and in short speech frame situation, it is the GMLE. However,

the robust estimators we are evaluating in this paper are clearly not the GMLE. As a result

there is a cost in terms of increased asymptotic variance of the estimator, in contrast to hav-

ing better bias performances. Marona defined efficiency as η = V AR(TMLE(F )/V AR(T (F )

[15], as the ratio of the variances of the MLE and the variance of the estimator in question.

In addition to quantitative bias and variance performance of the four robust estimators,

we will evaluate auditory perception at different bias and variance thresholds utilizing the

Perceptual Evaluation Quality Estimator (PESQ)[16].

5.1 The Arcsin Law

If the noise power is equal or greater than the desired signal power, large distortions of

the signal amplitude and power spectrum will result. Therefore, it is very important to

analyze the noise power and its spectrum characteristics when developing robust correlation

estimators. In the early 1940’s, Van Vleck [17] developed a mathematical theory of the

clipped signal spectrum. He showed that if the clipping is not down to more than the Root-
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Figure 5.1: Hard limited speech signal.

Mean-Square (RMS) level before limiting, which is equivalent to clipping at about 1.4 times

the RMS level, there is practically no distortion of the power spectrum. Even in the case

of extreme clipping or hard limiting signal amplitude to +1 or −1, the distortion of the

spectrum due to the presence of harmonics in the signal is small.

Given a real, zero mean Gaussian stationary process {z(t);−∞ < t <∞} with autocorrela-

tion function with time lag τ , Rzz(τ) and Normalized Auto-Correlation Function (NACF),

ρzz(τ), hard limiting z(t) presents a unit variance process {y(t) = sign[z(t)]} and its NACF,

ρyy = 1
σ2
yy
E{y(t)y(t + τ)} = 2

π
arcsin[ρzz(τ)]. In other words, if z(t) is a stationary ergodic

process, ρzz(τ) can be calculated from ρyy(τ) using the relationship given by

ρzz(τ) = sin[
π

2
ρyy(τ)]. (5.1)



Abul K. Azad Chapter 3. Robust Correlation Estimation Methods 29

5.2 The Complex Polarity Coincidence Correlator

McGraw and Wagner [18] have shown that Van Vleck’s work [17] on the ASL is applicable to

any elliptically symmetric distribution. As a special case, we consider a stationary zero-mean

circular complex Gaussian process, {z(t) = {zr(t) + jzi(t)};−∞ < t <∞}, with a bivariate

probability density function,

fZ(z) =
1√

π2det(R)
e−z

TR−1z, (5.2)

where R is the Hermitian symmetric, positive-definite covariance matrix. Its complex-valued

NACF is defined as ρzz(τ) = Rzz(τ)
σ2
z

= ρrzz(τ) + ρizz(τ), where Rzz(τ) = E[z(t)z∗(t + τ)]

is the autocovariance function and σ2
z is the variance of z(t). The NACF ρzz(τ) can be

calculated using (5.1), with the exception that the time shifted version of the signal is complex

conjugate. Jacovitti [13] proposed a ”hard limited” process, y(t) = sign[zr(t)] + jsign[zi(t)],

obtained through a constant magnitude, memoryless complex nonlinear transformation. In

the complex phase plane, the simplest hard limiting transformation results in four discrete

phases, where both the real and the imaginary parts can be +1 or −1. This can be thought

of as four-level phase quantization in the phase plane, which intuitively may increase the

phase error in the complex-valued NACF estimate. This is known as the CPCC, and for the

ideal infinite-level phase quantization is known as the PPC, which will be discussed in the

next section.
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By extending (5.1) in the complex domain, the CPCC can be written as

ρyy(τ) = E{csign[z(t)]csign∗[z(t+ τ ]}, (5.3)

where csign[z(t)] , 1√
2
{sign[zr(t)]+jsign[zi(t)]}. For a discrete signal of lengthN , the above

expectation can be computed numerically as ρyy(τ) = 2
π
{arcsin[ρrzz(τ)] + jarcsin[ρizz(τ)]}.

Ultimately, the CPCC can be seen as the extension of the ASL in the complex domain

for the special case where the phase plane is quantized to four levels on the unit circle.

This condition will force the csign operator to produce complex numbers in the set [1 +

j, 1 − j,−1 + j,−1 − j]. Similarly to the ASL, we can write the NACF of the CPCC as

ρCPCCzz = sin[π
2
ρryy(τ)] + jsin[π

2
ρiyy(τ)].

In order to evaluate the variance of the CPCC estimator, we realize that ρCPCCyy ≤ 1, yielding

ρCPCCyy = 1
2
[ρyryr(τ) + ρyiyi(τ)] + j 1

2
[ρyiyr(τ) − ρyryi(τ)]. It is apparent that the variances of

the real and the imaginary components of the CPCC are respectively given by

E[Re(ρCPCCyy (τ))2] =
1

4
E[ρ2yryr(τ)] +

1

4
E[ρ2yiyi(τ)] +

1

2
E[ρyryrρyiyi ], (5.4)

E[Im(ρCPCCyy (τ))2] =
1

4
E[ρ2yiyr(τ)] +

1

4
E[ρ2yry2i

(τ)] − 1

2
E[ρyiyrρyryi ]. (5.5)

Since yi and yr have identical statistics, from the Schwart’s inequality, we can claim that

the variance of the complex-valued correlation estimate is more efficient than the real-valued
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Figure 5.2: The CPCC signal space.

one, that is, E[Re(ρCPCCyy (τ))2] ≤ E[ρ2yryr(τ)] and E[Im(ρCPCCyy (τ))2] ≤ E[ρ2yiyi(τ)]. For

sufficiently large sample size, Jacovitti and Neri [13] derived the variances of the real and

the imaginary parts of the CPCC as

E[Re(ρCPCCzz (τ))2] ∼=
π2

8N
(1 − (ρrzz)

2)[1 − 4

π2
arcsin2(ρrzz) −

4

π2
arcsin2(ρizz)], (5.6)

E[Im(ρCPCCzz (τ))2] ∼=
π2

8N
(1 − (ρizz)

2)[1 − 4

π2
arcsin2(ρizz) −

4

π2
arcsin2(ρrzz)]. (5.7)

Note that the approximations of the Gaussian variates by the linear terms of the Taylor’s

series expansion of the associated characteristic function are used to derive the variance of

the CPCC.
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5.3 The Phase-Phase Correlator

Jacovitti and Neri [13] proposed the PPC estimator based on Reeds’ derivation of the cross-

correlation function of two general, envelope-distorting filters [19], where the joint probability

density of the envelope is a Gaussian process. The PPC can be viewed as a generalization

of the CPPC since the complex-valued signal is also hard limited while retaining all the

phase information without quantization. By contrast, the CPCC estimator assumes four

discrete points in the complex phase plane, which results in the loss of the phase information

due to quantization. Jacovitti and Neri [13] classified the CPPC as a fine phase quantized

estimator. For both the PPC and the CPCC, we consider the process {z(t) = {zr(t) +

jzi(t)};−∞ < t < ∞} obeying a joint bi-variate circularly complex Gaussian probability

distribution, the phase preserving hard-limiting process, y(t) = z(t)
|z(t)| = ejArg[z(t)], where

Arg[z(t)] is the phase of complex process z(t). The PPC can be applied to calculate the

NACF of y(t) at lag τ as ρyy(τ) = E[ejArg[z(t)]ejArg[z(t+τ)]], which is related to ρzz(τ) via

ρyy(τ) = π
4
ρzz(τ)2F1(

1
2
, 1
2
, 2; |ρzz(τ)|2), where 2F1(a, b; c; z) is the Gaussian hypergeometric

function defined as

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (5.8)

It can be seen from (5.8) that 2F1(a, b; c; z) is a real function and hence, it follows |ρyy(τ)| =

π
4
|ρzz(τ)|2F1(

1
2
, 1
2
, 2; |ρzz(τ)|2), and since the PPC is phase preserving, we may writeArg[ρyy(τ)] =

Arg[ρzz(τ)]. For complex-valued signals, if z(t) is a stationary ergodic process, an estimate
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ρ̂zz(τ) can be calculated from an estimate of ρ̂yy(τ), with the inverse function given by

ρ̂zz(τ) = ejArg[ρyy(τ)]g−1[|ρyy(τ)|]. For N -samples of a discrete-time hard-limited signal, an

estimate ρ̂yy(τ) can be calculated as

ρ̂yy(τ) =
1

N − τ

N−τ∑
i=1

e{jArg[z(ti)]−Arg[z(ti+τ)]}. (5.9)

It can be seen that |ρ̂yy(τ)| is less than one, which forces |ρ̂zz(τ)| also to be less than one.

This property is particularly attractive in estimating the AR parameters for speech processing

since it ensures that the synthesis filter is stable.

The variances of the real and the imaginary parts and the covariance of the PPC estimator

can be expressed in terms of the hypergeometric function as

E[Re(ρPPCyy (τ))2] ∼=
1

N

{1

2
+

1

4
[[ρrzz]

2]− [[ρizz]
2]2F1(1, 1, 3; |ρzz(τ)|2)

− π2

16
[ρzzr]2

[
2F1(

1

2
,
1

2
, 2; |ρzz(τ)|2)

]2}
, (5.10)

E[Im(ρPPCyy (τ))2] ∼=
1

N

{1

2
− 1

4
[[ρrzz]

2]− [[ρizz]
2]2F1(1, 1, 3; |ρzz(τ)|2)

− π2

16
[ρzzi]2

[
2F1(

1

2
,
1

2
, 2; |ρzz(τ)|2)

]2}
, (5.11)
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Figure 5.3: The PPC signal space.

Cov[Re(ρPPCyy )Im(ρPPCyy )] ∼=
1

N

{1

2
ρrzzρ

i
zz2F1(1, 1, 3; |ρzz(τ)|2)

+
π2

16
ρrzzρ

i
zz

[
2F1(

1

2
,
1

2
, 2; |ρzz(τ)|2)

]2}
. (5.12)

However, a closed form representation of the inverse of the variances of the real and the

imaginary part and their covariance matrices does not exist; hence, look up tables are used

to calculate the variance of ρ̂PPCzz (τ).

5.4 The Median-of-Ratios Estimator

An estimator of the correlation ρ for the bi-variate Gaussian distribution using the sample

median assumes that the two sets of observations obey a zero-mean bi-variate probability

density function written as

fXY (x, y) =
1

2πσ2
√

1− ρ2
e
− 1

2σ2(1−ρ2)
(x2+y2−2ρxy)

. (5.13)
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As shown in [20], a random variable V equal to the ratio X/Y follows a Cauchy distribu-

tion with density function, fV (v) =

√
1−ρ2

π(1−2ρv+v2) and cumulative probability density function,

FV (v) = 1
2

+ 1
π
arctan

(
v−ρ√
1−ρ2

)
. It follows that when v = ρ, FV (v) = 1

2
, which is the me-

dian. For a zero mean Gaussian stationary time series MRE of correlation is defined as

ρ̂x(τ) = ξ̂FV (v), where ξ̂ is the sample median and FV (v) is the cumulative probability den-

sity function of the ratio Xt+τ
Xt

. For a complex-valued signal, Tamburello and Mili [21] showed

that the independent application of the coordinate-wise median of the ratio to the real and

the imaginary components is justified. Given a zero mean Gaussian random process Xt, if

Yt = Xt+τ
Xt

is defined as a coordinate-wise ratio at some lag τ , then the MRE is expressed as

ρ̂x(τ) = ξ̂(Re{Yt(τ)}) + ξ̂(Im{Yt(τ)})).



Chapter 6

Robust Pre-Filtering Methods

Impulsive noise is a naturally occurring phenomenon in communication systems, which can

be thought of as sharp keystrokes, discontinuities in transmission, fast fading, interference,

etc. Gandhi, Ledoux and Mili [22] proposed an impulsive noise model using two exponen-

tial functions of opposite signs, where a discontinuity occurs at the changing of the signs.

While an impulse can last between 1ms to 5ms, it behaves like the Dirac impulse in the

time domain, resulting in a flat power spectrum, which makes it impossible to filter out in

frequency domain. Study shows that in the presence of impulsive noise, the robust PPC

estimator of the encoder parameters still produces some noisy artifacts in the synthesized

audio. Indeed, speech encoder requires the estimation of the Fourier magnitudes of the error

signal; consequently, if the original signal is corrupted, the error signal, even when robustly

estimated with a robust AR model, will also be corrupted. Now, because the parameters

encoded in the speech coder model are the Fourier magnitudes, which are needed to generate

36



Abul K. Azad Chapter 4. Robust Pre-Filtering Methods 37

the excitation of the AR model for speech synthesis, the synthesized speech will exhibit noisy

artifacts if the Fourier magnitudes are corrupted. One of our contributions in speech encoder

Identify
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(RMD/PPC)
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Outliers 
with N(0,1)

Fourier
Magnitudes
(PPC)

IFFT Speech 
Synthesis

AR(10)
Estimation
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Error
Signal

Replace 
Outliers in 
Input

Figure 6.1: Flowchart of the proposed robust pre-filtering algorithm.

parameter estimation is the development of a pre-filtering algorithm based on the Robust

Mahalonobis Distance (RMD) method, which is entirely implemented in the time domain.

It consists of two main steps: (1) a robust MD is first calculated using the PPC to identify

the outliers and (2) the flagged outliers are then replaced by estimated values obtained from

a robust AR model, also estimated with the PPC.

6.1 A Robust Mahalanobis Distance

An outlier may be induced by a lighting on a transmission line as an impulsive noise, which is

easy to identify. However, it is also possible, i.e. in fast fading, that the noise amplitude is at
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the same level as the true signal amplitude. In that case, the outlier identification becomes

much more difficult and requires sophisticated algorithms to be reliability fulfilled. A reliable

method consists in applying a statistical test to robust MD values as described next. The MD

of an n-dimensional vector, hi, which is the i-th column vector of the observation matrix

HT and has a sample mean given by h, is defined as MDi =
√

(hi − h)TC−1(hi − h);

it is a measure of distance of the associated poin with respect to the bulk of the point

cloud. If we assume that the hi’s are drawn from a normal distribution, N(µ,C), then MD2
i

will approximately obey a chi-squared distribution with n-degrees of freedom, that is, χ2
n.

Classical outlier identification method flags all the data points having MDi >
√
χ2
n,0.975.

However, this method is not robust because it is prone to the masking effect; indeed, a

sufficiently large outlier can bias the sample mean and inflates the sample covariance matrix

to the point where a second outlier closer to the bulk will stand below the confidence threshold√
χ2
n,0.975, resulting in the breakdown of the method. Our robust version of MD replaces

h with the median of hi and the ij-th element of the covariance matrix, C, with Cij =√
E[{zi −med(zi)}2]E[{zj −med(zj)}2], whose normalized version is calculated with the

PPC.

6.2 Robust AR Model Estimation

Now that we have described a robust way of identifying outliers in the pre-filtering process

step, the next step is to robustly estimate the desired signal segment that has been corrupted
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with the impulsive noise. Here, outlier replacement is considered, that is, a set of signal

samples have been replaced with outliers, which is the worst case scenario as compared to

outlier addition. After being identified, the outliers are replaced with reliable estimated

values from a robust AR model. As mentioned earlier, the speech signal is non-stationary,

which makes the AR parameter estimation of a large ensemble unrealistic. To get around this

problem, the speech signal is first segmented into smaller frames, which may be considered

to be piece-wise stationary. In low data rate speech compression, specifically the signal is

sampled at 8 kHz with 8 sps, and research has shown 22.5 ms, yielding 180 samples, to be an

optimum frame length. It is important to note that a frame length plays a significant role in

model parameter estimation, affecting the quality of speech synthesis. Further discussions

on frame length will be provided on later sections.

Speech signal spectral response is very well represented by an AR(p) model, which is also

the fundamental building block for any LPC. This time series model assumes that a sample

value at time k can be written as a linear combination of previous sample values up to time

k − p plus a white noise. Formally, we have

zk =

p∑
i=1

aizk−i + ek, (6.1)

where {a1, ..., ap} are the parameters of the model and ek is the error value. Assuming that

N samples, z1,..., zN , are available, we can write (N − p) equations (12) for k = p+ 1, ..., N ,

which can be put in a matrix form as z = Hx + e, where z, x, e are column vectors and
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H is the observation matrix. The two standard methods for estimating the AR(p) model

parameters are the least square estimator and the Levinson-Durban recursion, which is

derived from the Yule-Walker equations. The least squares parameter estimation minimizes

the sum of the squared residuals, where e is assumed to be a vector of independent Gaussian

random variables, with zero mean. The Levinson-Durban recursion provides a fast solution

involving a Toeplitz correlation matrix. Under ideal conditions, both of these methods can

result in stable parameter estimation. When estimating the auto-correlation function, they

implicitly assume that the beginning and the end of the time series samples are zero. This is

what Burg refers to as ”end effect” [23]. Therefore, when we are dealing with near periodic

signals, they can lead to unstable AR model estimation, mainly due to an ill-conditioned

covariance matrix.

Burg [23] proposes instead to operate on the time series data in iterations and estimate the

reflection coefficients that minimizes forward and backward prediction error vectors fi and

bi. Specifically, given a discrete, zero mean, Gaussian stationary random process, {z(n); 0 ≤

n < N}, the reflection coefficient Γi, that minimizes the prediction error is defined as

Γi = − 2bHi fi
fHi fi + bHi bi

, (6.2)

where fi = x(1 : N − i − 1) and bi = x(0 : N − i − 2). The prediction error vectors are

then updated as fi+1 = fi + Γibi and bi+1 = bi + Γ∗i fi to calculate Γi+1 using (6.2) until

iteration i reaches order p. It can be shown that indeed, the prediction error minimizing
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reflection coefficients satisfy the condition, {0 ≤ Γi < 1; ∀i}. Although the Burg’s algorithm

is more stable than the least square method and the Levinson-Durban recursion, they are all

formulated given the assumption that the noise obeys a normal distribution. In the presence

of impulsive noise, all three methods break down. It can be easily seen from (6.2) that

large amplitude outliers can cause partial correlation estimate to breakdown, resulting in an

unstable AR(p) model. In order to robustify the Γ estimation, any of the four previously

discussed methods, the ASL, the CPPC, the PPC or the MRE can be utilized. However,

considering the bias and variance trade-offs, we proposed to use the PPC with the Burg’s

method to estimate the AR(p) parameters from noise corrupted data.

For a large data set, study shows that a speech signal closely obeys the Laplace distribution.

However, when the speech frame is short, such as 22.5 ms in our low data rate encoder

model, piece-wise frames more closely follow a Gaussian distribution. Therefore, we propose

to replace the outliers with prediction estimates obtained from an AR(p) model excited with

zero-mean, unit variance normal process.

6.3 Outlier Replacement Method

To circumvent the difficulty in robustly generating the excitation signal directly from cor-

rupted speech that will produce good quality synthesized speech, we pre-process the input

speech with a non-linear, time domain, filter algorithm before carrying out the encoder pa-

rameters estimation. A convenient way to filter the signal is to replace the signal value, one
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sample at a time, by the output estimate of the AR model. However, this is computationally

intensive, and therefore, may be too slow for real time applications. Instead, we propose to

do the following. For each region of clustered outliers, an analysis window of 180 samples

that is centered at the midpoint of the outlier cluster is formed from the 360 sample running

buffer. Next, an AR(20) model is estimated via the robust PPC-based Burg’s algorithm.

The speech frame is then filtered with the inverse of the AR(20) model to generate the error

signal. Now, because the latter is estimated using the corrupted signal, the associated resid-

uals retain the impulses. Furthermore, because the inverse filter has an opposite effect on

the error signal, it tends to amplify the error signal samples corresponding to the impulses

instead of forcing them to behave like a white noise. To address this probem, we propose

to replace the corrupted error signal samples with samples drawn from a standard Gaussian

distribution, N(0, 1). Then, we estimate a robust PSD from the PPC and take its inverse

Fourier transform to generate the robust excitation signal. Finally, we apply this excitation

signal to the input of the robust AR(20) model to produce a synthesized audio signal. Here,

only the samples tagged as outliers are replaced at the output of the prefilter. Great care

must be taken with respect to the gain of the replacement samples. Inappropriate gain

calculation can cause erratic transitions from replacement to adjacent samples, which can

induce audio distortion.



Chapter 7

The Proposed, Robust Speech

Encoder Algorithm

We now describe the MELP vocoder algorithm developed by McCree and Barnwell [2].

As portrayed in Fig. 2.4, the RMELP is a robust implementation of the MELP encoder

algorithm with four fundamental differences. Specifically in RMELP, pitch period, voicing

strength, AR(10) model and Fourier magnitudes are estimated with the robust estimator of

correlation from (7.2). The RMELP analyzes the speech frame duration of 22.5 ms, sampled

at 8000 samp/sec, which is equivalent to 180 samples that are 16-bit quantized. It defines a

parametric model with merely 54 bits [2] and hence, it is able to achieve compression ratio

of 53.33 over a traditional digital speech signal at 64 kbps. It should be reemphasized that

we propose to utilize our robust estimator of correlation to estimate pitch period, voicing

strengths, AR(10) model and Fourier magnitudes for frames tagged with outliers; otherwise

43
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GMLE will be applied. In the following sections, we propose several improvements to the

fundamental encoder blocks while making the RMELP encoder robust against impulsive

noise.

7.1 Pitch Period Estimation and Voiced/Unvoiced Frame

Identification

The first step of the MELP encoder analysis process consists in estimating the pitch period

on each 22.5 ms frame, which is processed with a 1-kHz lowpass filter. For real-valued signal,

zn(t), the pitch period is defined by a lag τ where the GMLE estimator of the Pearson’s ρ

given by

ρ̂zz(τ) =

−bτ/2c+79∑
n=−bτ/2c−80

znzn+τ√
−bτ/2c+79∑

n=−bτ/2c−80
znzn

−bτ/2c+79∑
n=−bτ/2c−80

zn+τzn+τ

(7.1)

reaches its maximum. In this paper, it is calculated for lag τ = 40, 41, ..., 160, where the lag

values have been carefully chosen. For speech signal samples at 8000 ksps, the pitch period τ

translates into fundamental frequencies between 50 and 200 Hz. Naturally, female and male

speech signals tend to fall within and on the higher end of the spectrum, respectively.

Furthermore, voiced and unvoiced decisions are also determined based on the values taken

by ρ̂zz(τ), since the voiced frames are highly periodic and have much higher correlation co-

efficients than the unvoiced frames. Robust estimation in pitch period and voiced/unvoiced
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frame classification is critical to preserving the fidelity of the speech signal. Impulsive noise

in either voiced or unvoiced frames can cause the encoder to falsly identify the frames and

incorrectly estimating the fundamental frequency. Our research shows that these miss clas-

sifications can severely degrade the quality of the synthesized speech signals. In order to

robustify the pitch period estimation and the voiced/unvoiced frame classification, we pro-

pose to use the PPC.

As portrayed in Fig. 2.4, the MELP is an extension of the classical LPC model with two

fundamental additions, an aperiodic pulse excitation for the transition frames and an periodic

and noise mixed excitation for the voiced and unvoiced frames. Other improvements are

an adaptive spectral enhancement, a pulse dispersion filter and a Fourier-magnitude-based

excitation generation. Speech signals exhibit strong time correlations (larger than 0.6) for

time lags up to the 10-th order. The MELP analyzes the speech frame duration of 22.5 ms,

sampled at 8000 samp/sec, which is equivalent to 180 samples that are 16-bit quantized. It

defines a parametric model with merely 54 bits [2] and hence, it is able to achieve compression

ratio of 53.33 over a traditional digital speech signal at 64 kbps.

The encoder maintains 360 samples in a circular buffer, that is, 180 samples of the current

frame, 90 samples of the previous frame, and 90 samples of the next frame. The speech signal

analysis window varies depending on the specific parameter to be estimated. The estimation

of the pitch period, which corresponds to the fundamental frequency of the signal, is the first

and critical step of the RMELP encoder algorithm. All subsequent parameter estimations

are dependent upon the accuracy of the fundamental frequency estimate and the correct
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classification of the original speech signal into voiced, or unvoiced, or transition frames.

Hence, the widest analysis window is used to estimate the pitch period. It is clear from (7.2)

that for a given lag τ , the NACF is a function of 160 samples. However, as τ takes on values

between 40 and 160, the center of the correlation window can also shift by as much as 160

samples. As a result, a total of 320 samples analysis window is required to calculate the

pitch period, where 160 samples belong to the current frame and 160 samples to the next

frame. Prior to the pitch period estimation, the input speech is processed with a high-pass

filter to remove any low frequency hum below 60 Hz, and then is passed through a low-pass

filter with cut-off frequency of 1 kHz. Furthermore, in order to increase the accuracy of the

pitch period estimation, a fractional pitch period refinement is accomplished utilizing the

PPC. For more details on fractional pitch refinement, the reader is referred to [1].

The fundamental frequency estimation is instrumental in accurately analyzing the band-pass

voice strength of the upper four bands as described in Section 7.2. The band-pass voicing

strength analysis is a two-step process. First, the NACF, ρ̂zz(τ), is calculated at the pitch

lag. However, because the speech signal is non-stationary, it is possible that the pitch period

may transition within a single frame. As a result, at higher frequencies this method can

often provide poor correlation estimates. In order to circumvent this problem, we propose

to use a second method initiated by McCree and Barnwell [2]. Here, the output of the band-

pass filter is full-wave rectified to eliminate the high frequency transitions, which makes the

generated signal to behave as if its envelopes rise and fall, in line with each pitch pulse. Then,

the rectifier output is smoothed with a one-pole low-pass filter followed by a notch filter to
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remove DC component. The NACF is once again calculated from the full-wave rectified

signal utilizing the PPC. Finally, the higher estimated value of the ρ(τ) of the above two

methods is utilized to encode the pitch periodicity in each of the upper four bands. For

the robust AR(10) model estimation, we use the Burgs’ algorithm from (6.2). Bandwidth

expansion is performed on the AR(10) model spectral response by multiplying each linear

prediction coefficient by a factor of 0.994. Simulation results show that our proposed method

of AR model estimation based on the Burg’s algorithm is quite robust; consequently, an a

priori removal of the outliers may not be necessary.

In the standard modeling procedure, which is different from the MELP, a speech signal

is fragmented as binary, voiced or unvoiced frames. With a binary voicing decision, it is

common to falsely identify a frame as voiced or unvoiced. In the former case, it will sound

tonal while in the latter case, it will sound harsh. This problem is specially pronounced for

female speakers with a higher fundamental frequency. By contrast, the MELP identifies a

third type of frames, the transition frames, where the speech signal is neither highly periodic

nor noise-like. For the transition frames, McCree and Barnwell [2] propose to remove the

periodicity in the voiced excitation pulses by randomly varying pitch period by ±25%, which

is proved to be a better fit in characterizing erratic glottal pulses in transition frames. In

practice, the voiced frames are highly periodic and identified with high normalized correlation

coefficients at the fundamental frequency while the transition frames are those with marginal

correlation coefficients.

As for the LPC, it generates either periodic or white noise pulses that are used to excite an
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all-pole filter to synthesize voiced or unvoiced frames, respectively. Since the natural sound of

a human voice is periodic with some level of added white noise, the LPC synthesizes output

signals that sound as tonal or harsh. On the other hand, the MELP generates dynamically

mixed excitation by combining periodic and white noise pulses in different proportion in

each frame, determined by the periodicity intensity in different voicing frequency bands. The

speech frames are filtered using five frequency bands and the periodicity at the fundamental

frequency is calculated in each band. The periodic pulse excitation and the noise excitation

intensity is determined in each band based on the normalized autocorrelation coefficients for

each frame. The relative voice and noise power in each band characterizes the pulse shaping

filter. The periodic and noise excitations are first filtered using the pulse shaping and the

noise shaping filter, respectively. Here, the filters’ outputs are added together to form the

total excitation, known as the mixed excitation [24], since some portions of the noise and

the pulse train are mixed together. Basically, mixed excitation along with the transition

frame identification are the keys for improving the tonal or the buzzy quality sounds, hence

making the speech signal to sound natural.

For voiced or transition frames, the periodic pulse excitation is still insufficient to synthesize

a human-like voice. If the order of the AR model is sufficiently large, the error signal will

be approximately white. However, for a low data rate speech encoder model, a higher order

of the AR model costs more bandwidth; consequently, an AR(10) is proposed for the MELP

encoder. If an inverse filter from the AR(10) is applied, the error signal does indeed remain

colored, that is, the error signal still has important information that is critical in estimating
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optimum excitation impulses. In order to capture that information, the Fourier magnitudes

are also encoded. On the synthesizer, the Fourier magnitudes are used to shape the periodic

excitation sequence to closely estimate the encoder error signal.

The intended purpose of the spectral enhancement filter is to enhance the quality of the

synthesized speech by closely matching the natural speech waveform in the formant regions

[25]. According to [2], formants between pitch pulses do not decay as rapidly as they do

at the all-pole filter output. If the poles are close to or greater than the unit circle, the

LPC synthesis filter output may sound chirpy or even make the filter unstable. To address

this problem, a bandwidth expanded pole-zero filter, estimated directly from the synthesis

filter, has been proposed in [2]. The purpose of the pulse dispersion filter is to improve the

quality of the synthesized speech signal in the frequency regions with low formant resonance.

This filter is a 65-tap Finite Impulse Response (FIR) filter based on a spectrally flattened

triangular pulse to create a time domain stretch to the synthetic speech, which makes it more

natural sounding. By implementing the above signal processing blocks, the MELP is able to

synthesize and mimic natural sounding human voice without buzzy, synthetic artifacts. In

the following sections, we propose several improvements to the fundamental encoder blocks

while making the MELP encoder robust against impulsive noise.

The first step of the MELP encoder analysis process consists in estimating the pitch period

on each 22.5 ms frame, which is processed with a 1-kHz lowpass filter. For real-valued signal,

zn(t), the pitch period is defined by a lag τ where the robust estimator of correlation is given
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by

ρ̂zz(τ) = ejArg[ρyy(τ)]g−1[|ρyy(τ)|], (7.2)

where ρyy(τ) is given by (5.9), reaches its maximum. In this paper, the pitch is calculated

for τ = 40, 41, ..., 160, where the lag values have been carefully chosen to cover male and

female speaker fundamental frequency range. For speech signal sampled at 8000 ksps, the

pitch period τ translates into fundamental frequencies between 50 and 200 Hz. Naturally,

male and female speech signals tend to fall within and on the higher end of the spectrum,

respectively.

Furthermore, robust voiced and unvoiced decisions are also determined based on the values

taken by ρ̂zz(τ), since the voiced frames are highly periodic and have much higher correlation

coefficients than the unvoiced frames. Robust estimation in pitch period and voiced/unvoiced

frame classification is critical to preserving the fidelity of the speech signal. Impulsive noise

in either voiced or unvoiced frames can cause the encoder to falsely identify the frames

and incorrectly estimating the fundamental frequency. Our research shows that these miss

classifications can severely degrade the quality of the synthesized speech.

The encoder maintains 360 samples in a circular buffer, that is, 180 samples of the current

frame, 90 samples of the previous frame, and 90 samples of the next frame. The speech signal

analysis window varies depending on the specific parameter to be estimated. The estimation

of the pitch period, which corresponds to the fundamental frequency of the signal, is the first

and critical step of the RMELP encoder algorithm. All subsequent parameter estimations
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are dependent upon the accuracy of the fundamental frequency estimate and the correct

classification of the original speech signal into voiced, or unvoiced, or transition frames.

Hence, the widest analysis window is used to estimate the pitch period. It is clear from (7.2)

that for a given lag τ , the NACF is a function of 160 samples. However, as τ takes on values

between 40 and 160, the center of the correlation window can also shift by as much as 160

samples. As a result, a total of 320 samples analysis window is required to calculate the

pitch period, where 160 samples belong to the current frame and 160 samples to the next

frame. Prior to the pitch period estimation, the input speech is processed with a high-pass

filter to remove any low frequency hum below 60 Hz, and then is passed through a low-pass

filter with cut-off frequency of 1 kHz. Furthermore, in order to increase the accuracy of the

pitch period estimation, a fractional pitch period refinement is accomplished utilizing the

robust estimator of correlation from (7.2). For more details on fractional pitch refinement,

the reader is referred to [1].

n addition to voiced and unvoiced frames, the RMELP identifies a third type of frames, the

transition frames, where the speech signal is neither highly periodic nor noise-like. For the

transition frames, McCree and Barnwell [2] propose to remove the periodicity in the voiced

excitation pulses by randomly varying pitch period by ±25%, which is proved to be a better

fit in characterizing erratic glottal pulses in transition frames. In practice, the voiced frames

are highly periodic and identified with high normalized correlation coefficients at the pitch

while the transition frames are those with marginal correlation coefficients. Hence robust

pitch estimation plays a significant role in transition frame identification.
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7.2 Multiband Voicing Strength Estimation

As mentioned earlier, a key factor in determining the optimum mixture of periodic and noise

pulses in mixed excitation process is pulse shaping filter. So it is important to understand

the spetral characteristics of a given frame. For this purpose, speech signal in each frame

is processed with five filter banks, with passbands of 0-500, 500-1000, 1000-2000, 2000-3000,

and 3000-4000 Hz. We need to precondition the excitation signal, which is a combination

of both pitch and noise. To separate the two types of signals, we calculate normalized

autocorrelation estimates for each five bands, which are evaluated at the pitch period lag τ .

Then, if a coefficient estimate exceeds a threshold on a particular band, the signal is flagged

as voice-like, otherwise it is flagged as only noise. To make the test immune to impulsive

noise, we propose to use the PPC for robustly estimating the autocorrelation function.

The fundamental frequency estimation is instrumental in accurately analyzing the band-

pass voicing strengths of the upper four bands. The band-pass voicing strength analysis is

a two-step process. First, the NACF, ρ̂zz(τ), is robustly estimated via (7.2) at the pitch

lag. However, because the speech signal is non-stationary, it is possible that the pitch period

may transition within a single frame. As a result, at higher frequencies this method can

often provide poor correlation estimates. In order to circumvent this problem, we propose

to use a second method initiated by McCree and Barnwell [2]. Here, the output of the band-

pass filter is full-wave rectified to eliminate the high frequency transitions, which makes the

generated signal to behave as if its envelopes rise and fall, in line with each pitch pulse.
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Then, the rectifier output is smoothed with a one-pole low-pass filter followed by a notch

filter to remove DC component. The NACF is once again robustly estimated with (7.2)from

the full-wave rectified signal utilizing the PPC. Finally, the higher estimated value of the

ρ(τ) of the above two methods is utilized to encode the pitch periodicity in each of the upper

four bands.

The relative voice and noise power in each band characterizes the pulse shaping filter. The

periodic and noise excitations are first filtered using the pulse shaping and the noise shaping

filter, respectively. Here, the filters’ outputs are added together to form the total excitation,

known as the mixed excitation [24], since some portions of the noise and the pulse train are

mixed together. Basically, mixed excitation along with the transition frame identification

are the keys for improving the tonal or the buzzy quality sounds, hence making the speech

signal to sound natural. In the presence of impulsive noise, it is clear that robust estimation

of voicing strengths to generate the pulse shaping filter is critical to generating the optimum

excitation signal.

7.3 AR Model Estimation

For the robust AR(10) model estimation, we use the Burgs’ algorithm from (6.2). AR(10)

model is robustly estimated on the input speech signal by applying the Burg’s algorithm

based on the PPC while using a 200-sample (i.e., a 25-ms signal segment) Hamming window

centered on the last sample in the current frame. Bandwidth expansion is performed on
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the AR(10) model spectral response by multiplying each linear prediction coefficient by a

factor of 0.994. Simulation results show that our proposed method of AR model estimation

based on the Burg’s algorithm is robust against impulsive noise; consequently, an a-priori

removal of the outliers may not be necessary. Note that our robust PPC based AR(10) is

guaranteed to be minimum phase and stable, where MMSE minimization method such as

Levinson-Durban recursion is not. However, if the speech input is clean then variance of

the robustly estimated AR(10) coefficients may be greater than one, negatively impacting

synthesized speech quality.

The intended purpose of the spectral enhancement filter is to enhance the quality of the

synthesized speech by closely matching the natural speech waveform in the formant regions

[25]. According to [2], formants between pitch pulses do not decay as rapidly as they do at

the all-pole filter output. If the poles are close to or greater than the unit circle, the LPC

synthesis filter output may sound chirpy or even make the filter unstable. To address this

problem, a bandwidth expanded pole-zero filter, estimated directly from the synthesis filter,

has been proposed in [2]. Since spectral enhancement filter is directly related to AR(10)

model, the need for robust estimation of the sysnthesis filter is further validated.
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7.4 Fourier Magnitudes Estimation of The Error Sig-

nal

In theory, if the order of the AR model is sufficiently large, the error signal will be approxi-

mately white. However, for a low data rate speech encoder model, a higher order of the AR

model is cost prohibitive; consequently, an AR(10) is proposed for the RMELP encoder. If

an inverse filter from the AR(10) is applied, the error signal does indeed remain colored, that

is, the error signal still has important information that is critical in estimating optimum exci-

tation impulses. In order to capture that information, the low order Fourier magnitudes are

encoded. On the synthesizer, the Fourier magnitudes are used to shape the mixed excitation

sequence to closely estimate the encoder error signal.

In order to accurately estimate and reproduce the information in the error signal, McCree and

Barnwell [2] propose to use a Fourier series expansion of the signal and encode the ten most

dominant magnitudes around integer multiple of the fundamental pitch harmonics. This

procedure makes sense since a digital impulse can be represented in the frequency domain

by means of the Discrete Fourier Transform (DFT) if all the bins are represented with unit

magnitude and zero phase. At the decoder one pitch period speech is synthesized at a time.

So, instead of estimating one-pitch period impulse train to generate the excitation, the inverse

Fourier transform of the Fourier magnitudes is taken at the pitch harmonics to obtain the

time-domain excitation signal. By using sufficient points for the DFT, the magnitudes and

phases of the excitation of the transmitted error signal can be systematically configured to



Abul K. Azad Chapter 5. THE Speech Encoder Algorithm 56

reproduce near ideal error signal. The Inverse Discrete Fourier Transform (IDFT) output is

then processed with pulse shaping and spectral enhancement filters. Finally, the output is

excited with the AR(10) filter to synthesize the output speech signal.

Prior to computing the FFT, a Hamming window is applied to 200 samples of the transmitted

error signal, centered at the last samples of the current frame. The output is then zero

padded to compute a 512-point complex Fourier transform. A peak search algorithm is

performed on the normalized magnitudes with an RMS value of one and the first ten peaks

at integer multiples of the fundamental frequency are estimated and encoded with a vector

quantizer. However, it is well known that the Fourier transform performs poorly in presence

of outliers. To overcome this weakness, we propose a robust method to estimate the power

spectral density and Fourier magnitudes of the error signal using the PPC. Specifically,

we propose to estimate, two-sided, symmetric autocorrelation vector, directly from the error

signal and then take its Fourier transform to obtain the PSD. Formally, it is given by Sz(f) =∫∞
−∞Rzz(τ)e−2πifτdτ, where Rzz(τ) is robustly estimated using the PPC.



Chapter 8

Simulation Results

The performance of the robust correlation estimators is investigated using Monte-Carlo sim-

ulations using synthetic signals with different levels of contamination rate and correlation.

Specifically, we generate their bias and variance curves for different contamination rates with

a fixed correlation coefficient and study their robustness against outliers. Furthermore, the

robust pre-filter performance is evaluated by comparing the variance of the error signal ob-

tained before and after the pre-filtering process. Finally, the conventional MELP algorithm

is compared with our proposed RMELP algorithm at a contamination rate of ε = 0.05 using

a a recorded real speech signal corrupted by impulsive noise.

Our research extends over a broad range of the speech signal processing aspects and over

time it became apparent that there is no single accepted method to quantify improvements

in different stages of the speech processing. For example, we first attempt to identify robust
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estimators of correlation for speech in terms of bias and variance, then propose a filter algo-

rithm that improves impulse corrupted speech and finally robustly implement the RMELP to

synthesize the improved version of the corrupted speech. At different stages of these process,

the Signal to Noise Ratio (SNR) improvement is a good metric for a filter performance while

the Perceptual Evaluation of Speech Quality (PESQ) or the Mean Opinion Score (MOS)

metrics make more sense for speech quality enhancement evaluation.

Signal to noise ratio method is the most basic method out of the three aforementioned

metrics. Strictly for research and bench-marking, if the known true signal is corrupted with

a known noise model, then we can apply some arbitrary signal processing on the input speech

such as our proposed robust filter and measure the gain in terms of G = SNR(filtered)
SNR(corrupted

. SNR

measurements is simple for the ε contamination model if the noise is precisely known.

Perceptual Evaluation of Speech Quality (PESQ) is a weighted measure of the perceived

distortion in reproduced speech compared to the reference signal. The PESQ measurement

begins by level aligning both signals to a standard listening level. They are filtered (using an

FFT) with an input filter to model a standard telephone handset. The signals are aligned in

time and then processed through an auditory transform. The transformation also involves

equalising for linear filtering in the system and for gain variation. Two distortion parameters

are extracted from the disturbance (the difference between the transforms of the signals),

and are aggregated in frequency and time and mapped to a prediction of subjective mean

opinion score (MOS). A block diagram of the PESQ algorithm is shown in Figure

The Mean Opinion Score (MOS), is the widely accepted subjective evaluation where the
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Figure 8.1: The PESQ Architecture

measure is an average of many subjective evaluations of speech signal under test. Proper set

up of the MOS test is quite elaborate and address some very important details. For example,

the test lab environment has to be properly calibrated so as not not create echos or other

artificial effects. All of the sample speech have to be properly conditioned with the reference

gain control so the listen tests are not biased. The test evaluation subject would have to

be carefully chosen at random. Speech samples have to be chosen carefully to maintain

balance between male vs female speakers. Furthermore, an encoder performance may not

behave the same way, for example, German Vs. American English and so on. With our

limited resources, we have attempted to conduct MOS evaluation with ten subjects chosen

at random. Essentially, the speech quality published is ten opinions spread over four male

and four female speech samples.
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8.1 Performance Analysis of the Robust Correlation

Estimators

In order to generate bias and variance curves, N = 2000 samples are drawn from a zero-

mean, unit variance, complex-valued Gaussian distribution. White noise samples are then

colored with lag-one or single-pole filter, where the filter parameter is the complex correlation

coefficient. The ε contaminating replacement outliers are selected at random so they are

uniformly distributed for the duration of N samples. Note that replacement outliers are

also drawn from a zero-mean Gaussian distribution with σ2
outlier >> σ2

inlier. For bias curve,

one thousand iterations of white noise samples are drawn and then colored with complex

correlation coefficients given by 0.5ej
π
4 and 0.9ej

π
4 . The lag-one correlation coefficient is

estimated while varying contamination rate, ε, between zero and fifty percent. Finally, the

sample mean of all the iteration estimates’ bias is plotted against the contamination rate.

We observe from Fig.8.2 that for correlation magnitude of 0.50, the GMLE bias is the largest.

That estimator breaks down at very low contamination rate, as expected. The CPCC exhibits

the best bias performance, followed by the ASL, the PPC and the MRE, in that order. For

highly correlated data, the ASL performs the best, followed by the CPCC, the PPC, and the

MRE, in that order. Therefore from the bias point of view, the ASL and the CPCC are the

two estimators of choice. However, as we will now see, these two estimators may not be as

efficient as the others. Let us examine the variances of these four estimators. The Gaussian

white noise is correlated with AR(1) model, where lag-one correlation coefficient is varied
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Figure 8.2: Bias curves of the ASL, the CPCC, the PPC, the MRE, and the GMLE versus
the contamination rate ε at ρ = 0.5 (top) and ρ = 0.9 (bottom).

between zero and one. Colored signal is contaminated with a fixed ε. By means of the ASL,

the CPCC, the PPC, the MRE, and the GMLE the correlation coefficient is estimated one

thousand times and the variance of the estimates is calculated and plotted against an array

of ρ values. As observed from Fig. 8.3, when there is no contamination, the GMLE clearly

outperforms the others, while the PPC, the CPCC and the MRE exhibit slightly higher but

approximately the same variances, and the ASL performs the worst. At a contamination rate

of 10%, the GMLE starts to break down for ρ > 0.7 while the PPC, the CPCC, and the MRE
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Figure 8.3: Variance curves at ε = 0.0 (top) and ε = 0.10 (bottom) of the PPC, the MRE,
the CPCC, and the ASL.

do not break down and perform similarly. It is important to note that although variance of

the ASL is quite high, it still outperforms the GMLE. At higher contamination rates of 20

and 35 percent, we see from Fig. 8.4 that the MRE begins to break down for ρ > 0.6. This

observation will prove to be very important in selecting an estimator of correlation for signal

such as speech. It is known that speech signal is highly correlated and in fact, frames that

are classified as voice type, exhibit normalized correlation ρ >> 0.6. Considering bias and

variance performance, we have chosen the PPC for our speech encoder algorithm. Note that
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while the PPC is less efficient than the GMLE; however, in the presence of impulsive noise,

it is able to estimate stable speech model parameters. We have also evaluated all of the five

estimators’ performance for an excitation obeying a complex-valued Laplace distribution.

Our simulation results show that the MRE breaks down at low contamination rate while the

ASL, the CPCC, and the PPC perform similarly when complex-valued Laplacian excitation

is used.

Figure 8.4: Variance curves versus the correlation ρ at ε = 0.20 (top) and ε = 0.35 (bottom)
of the PPC, the CPCC, and the MRE.

Through analysis and simulations, we have shown robust correlation estimators statistical
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properties in terms of bias and variance performances. However, it may not be clear how

speech perceptual quality is impacted with increased bias and variance levels. To this end

we performed a very control set of experiments by artificially injecting different levels of bias

or variance errors to the maximum likelihood, AR(10) estimates. We then synthesized the

speech with the known, ideal excitation and error injected AR(10) estimates. Finally, the

PESQ tool is used to determine how MOS scores are affected with different bias and variance

thresholds. Note that a clean speech segment, sampled at 8ksps, is fragmented into 22.5ms

frames for this experiment. Table 8.1 shows PESQ test results of bias thresholds between 0

and 0.5 in 0.1 increments and variance thresholds between 1 and 2 in 0.2 increments. Note

that when bias is varied, variance remained constant at one and likewise when variance is

increased, bias is held at zero. The choice of the optimum estimator of correlation for speech

is a careful balance between bias and variance evaluation. One may deduce from table 8.1

that speech quality is more sensitive to bias than variance of the estimates.

Table 8.1: PESQ of different bias or variance thresholds
Bias Variance PESQ Bias Variance PESQ

0 1 4.5 0 1 4.5
0.1 1 2.2 0 1.2 2.445
0.2 1 1.456 0 1.4 2.373
0.3 1 1.555 0 1.6 1.788
0.4 1 1.190 0 1.8 1.728

0.5 1 1.064 0 2 1.567
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8.2 Robust Filter Performance Analysis

For consistency with the RMELP encoder speech frame length of 22.5 ms or 180 samples,

the analysis window for the impulsive outlier identification and replacement comprises 180

samples. For the outlier identification, we apply the RMD and for outlier replacement, we

develop a new algorithm that utilizes the robust Burg’s algorithm and the robust PSD, both

derived from the PPC.

Figure 8.5: The actual clean speech signal (green) and the RMELP pre-filter input (red) and
output signal (blue).

In preparation for calculating the RMD, we start by forming an (180x4) dimensional obser-

vation matrix H, each row vector of which is used to calculate an RMD. The outliers are

then flagged as those with RMDi >
√
χ2
4,0.975. Then, the outliers of each frame are replaced
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with robust signal estimates. Note that the outliers located at the edge of a frame are treated

in the same way as those located inside because, by design, the RMELP analysis frame is

centered at the last sample of the processed frame while maintaining a running buffer of

360 samples. However, with the RMD threshold criterion, it is often difficult to identify

the beginning and the end of an impulse. Inaccurate identification of the impulse edges can

cause sharp transitions in the filtered signal, which may degrade perceptual quality. This

is a well-known and a difficult problem. To alleviate it, we propose to replace 10 samples

preceding and following an impulse. It can be observed from Fig. 8.5, which displays a real

speech frame corrupted by simulated impulses, the prefilter output signal exhibits tremen-

dous improvements. It is important to note that the latter will never match the clean signal.

More importantly, it will mimic the underlying characteristics, i.e. the spectral shape and

the perceptual quality.

In order to evaluate the proposed filter performance in comparison to other filter methods

discussed in section ??, we resort to signal to noise ratio metric, where the true signal is

known. Corrupted or filtered speech signal noise level can simply be calculated as SNR =

s2/(s− x)2, where s is the true signal and x is the corrupted or filtered signal. True speech

was corrupted with 2% impulse outliers to produce SNR of −4.4dB. We then filtered the

corrupted speech with our proposed method, along with the binary mask filter, the inverse

filter and the Wavelet filter. Our proposed filter outperforms the second best BMF fitler

by more than 3dB. Note that BMF would perform better if true signal is known and noise

frequency bins are correctly identified. This is not possible in real applications; instead local
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threshold mechanism is used to identify the noisy frequency bins. In contrast, the inverse

filter and and the wavelet filter perform worse because either they are unable to identify

majority of the outliers or they falsely tag portion of the true signal as outliers.

Table 8.2: Filter SNR Improvement Comparison
Filter Method Input SNR Output SNR SNR Gain

Proposed robust filter -4.4 7 11.4
Binary mask filter -4.4 3.5 7.9

Inverse filter -4.4 4.3 8.7
Wavelet filter -4.4 2 6.4

8.3 Speech Synthesis Performance Analysis

Let us now analyze the simulation results of the RMLEP algorithm for estimating the pitch

period, the voice strength, the AR(10) model, and the error signal PSD estimation.

To assess the performance of our proposed PPC-based speech synthesis method, we do the

following. First, a 200-sample, highly correlated, a clean voiced frame is processed with

the GMLE to benchmark the desired AR(10) model. Then, we induce a replacement of

the outliers using the clean signal with the ε contamination model, and then we re-estimate

the AR(10) parameters. The outlier replacement is made at random on the time-axis with

zero-mean and a variance of σ2
outlier = 10 σ2

clean. As it can be seen from Fig. 8.6, the speech

frame contaminated with a fraction of ε = 0.02, the GMLE estimator of the AR(10) from

the Levinson-Durbin recursion breaks down, while our proposed estimator follows closely

the desired, clean model. Furthermore, our study shows that for highly correlated voiced
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frames, the robust PPC estimator does not break down until ε > 0.20. In order to estimate

Figure 8.6: PSD amplitude curves calculated from the AR(10) model; the latter is estimated
with the PPC at ε = 0.02 (red ) and ε = 0.20 (violate) and with the GMLE at ε = 0.0 (blue),
ε = 0.02 (yellow) and ε = 0.20 (green). As observed, the PPC-based PSD curves closely
follow the uncontaminated GMLE-based PSD curve.

and encode the error signal, the RMELP encoder algorithm performs a 512-point Fourier

magnitude estimation from the output of the inverse filter, whose parameters are those of

the AR(10) model, which are estimated using the Burg’s algorithm. The goal is to encode

the error signal information as correctly as possible so that the receiver may generate the

optimum excitation with the aid of the pitch period, the band-pass voicing strengths, and

the LPC model. Identical signal model is used to examine the PSD estimation algorithm

based on the PPC. Note that we are attempting to capture information contained in the error
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signal and if the AR model is estimated correctly, the output of the inverse filter will indeed

be a white noise. However, if the AR model is not of sufficient order, then there remains

some information in the error signal. Clearly, contamination rate ε would have to be much

lower for PSD to exhibit any discernible characteristic. Error signal PSD is estimated with

ε = 0.05, contaminated input frame. It can be seen from 8.7, PSD estimated from the robust

PPC is far superior than the FFT method. The PPC performs much better in all frequency

regions. Last but not least, Fig. 8.3 shows synthesized speech from our proposed encoder

algorithm results in tremendous improvements over the state of the art.
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Figure 8.7: PSD amplitudes of the error signal estimated with the PPC at ε = 0.05 (green)
and the GMLE at ε = 0.0 (blue) and ε = 0.05 (red). As observed, the robust PSD curves
remain close to the uncontaminated GMLE-based PSD curve while the GMLE-based PSD
curve under contamination strongly deviate from it.
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Figure 8.8: MELP Synthesis with the proposed robust encoder, in the presence of impul-
sive noise. Synthesized speech with MELP encoded method clearly shows (middle) spiky
residuals, while our RMELP encoder produces speech (bottom) with impulses, completely
removed.
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Figure 8.9: MELP Synthesis with the proposed robust encoder, in the presence of impulsive
noise. Synthesized speech with MELP encoded method clearly shows (in red) spiky residuals,
while our RMELP encoder produces speech (in blue) with impulses removed.

However, there may be some residuals of the impulses, buried within true signal, which may

be hard to visualize. Nonetheless, a true evaluation of the speech perceptual quality can

only be performed by subjective tests resulting in MOS scores. For MOS scores, we resort
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to Degradation Category [?] method, accepted and adopted by the International Telecom-

munications Union (ITU). Note that clean speech stimulus used for our simulations is a

set of eight speech segments, four male and four female speakers, sampled at 8ksps. Each

speaker segment is an ensemble of four short sentences, approximately three seconds long.

Ten subjects were chosen at random to evaluate clean and corrupted speech quality perfor-

mances. As noted earlier, corrupted speech was generated with 1% outliers and it can be

seen from table 8.3 that performance is dramatically affected for such small contamination

rate. Given a robust estimator will produce sub-optimal encoder parameters when speech

stimulus is uncorrupted, RMELP is applied only when outliers are detected in a given frame;

otherwise GMLE is applied. Naturally, RMELP performs similar to MELP when speech is

clean. However, in the presence of impulsive noise, RMELP MOS score is improved from 2.3

to 4.0 for female speapkers and for male speakers it improved from 2.6 to 4.5. Furthermore

our research shows that clean, female, voiced frames are more likely to be falsely tagged

with outliers than the clean, male, voiced frames. Which may explain why MELP performs

better compared to RMELP.

Table 8.3: MOS performance of MELP Vs. RMELP
Input RMELP MELP

Female clean 4.3 4.2
Male clean 4.4 4.4

Female corrupted 4.01 2.3
Male corrupted 4.5 2.6
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8.3.1 Execution Time Analysis

Analytically it is difficult to conduct a fair comparison of execution time between the GMLE

and the PPC. The main reason is because the PPC utilizes a lookup table to estimate the

correlation coefficients, which can vary significantly depending on the hardware architecture.

For a 180 sample signal window, the GMLE of normalized auto-correlation at lag one can

be computed with approximately 360 multipliers, 360 additions, one square root and one

division. In contrast the PPC can be computed with 721 multiplications, 720 additions,

181 divisions and one lookup operation. Clearly, GMLE requires less computation resources

than the PPC. In order to make sense of how execution time compares between the GMLE

and the PPC, we estimated the auto-regressive model of order ten from the 180 sample

window. Through Monte-Carlo simulations, we have found that processing time is increased

by approximately a factor of 4.8 when using the robust PPC to estimate the AR(10) model

relative to that of the GMLE.



Chapter 9

Future Work

Speech recognition technologies for applications in devices such as smart speakers, mobile

phones, home appliance controllers have become integral to our daily lives. For future work as

a continuation of robust speech processing research, we propose to develop a robust pattern

recognition algorithm based on correlation analysis utilizing the Mel Frequency Cepstral

Coefficient (MFCC) [ref]. Pattern recognition is the fundamental building block to speech

recognition where acquired speech is anaylyzed by follwoing the human auditory system

model. Analysis patterns must then be correlated against a database of a comprehensive

dictionary of patterns and translate them into text or other formats. Futher processing of

pattern recognition is required to arrange the words so they form meaningful sentences in

the right context. As it may be obvious speech recognition is extemely expensive in terms

of computation resources. State of the art algorithms have made enormous progress and

yet often make false pattern recognition even in the ideal environment. This is well known

73
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in applications such text translation from voice when speaker pronounces one word and

the application translates it to a similar sounding but completely different text word. In

moderate noise environments such as inside of a moving car, present algorithms performance

are poor and they perform extremely poor in the presence of impulsive noise. Unfortunately,

a full speech recognition application is very complex and it is out of scope for our future

work. Instead, in the presence of impulsive noise, we focus on a robust algorithm for feature

extraction in individual spoken words and accurately correlate them against a known pattern

dictionary.

Figure 9.1: Pattern recognition Algorithm

In computer science and electrical engineering, Automatic Speech Recognition (ASR) is the

translation of spoken words into text. Some SR systems use ”speaker-independent speech

recognition while others use ”training” where an individual speaker reads sections of text into

the SR system. These systems analyse the person’s specific voice and use it to fine-tune the

recognition of that person’s speech, resulting in more accurate transcription. Systems that

do not use training are called ”speaker-independent” systems. Systems that use training are
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called ”speaker-dependent” systems [ref]. Speech recognition is a very complex problem be-

cause vocalizations vary in terms of accent, pronunciation, articulation, roughness, nasality,

pitch, volume, speed etc. Three main algorithms used in state of the art speech recognition

systems are Hidden Markov Model(HMM), Dynamic Time Warping(DTW) and Artificial

Neural Networks(ANN). When an HMM is applied to speech recognition, the states are

interpreted as acoustic models, indicating what sounds are likely to be heard during their

corresponding segments of speech; while the transitions provide temporal constraints, indi-

cating how the states may follow each other in sequence. Because speech always goes forward

in time, transitions in a speech application always go forward [ref].Dynamic time warping is

a well-known technique to find an optimal alignment between two given (time-dependent)

sequences under certain restrictions and the sequences are warped in a nonlinear fashion to

match each other. The reasoning behind DTW is that the rate of speech may not be constant

throughout the word; in other words, the optimal alignment between a template and the

speech sample may be nonlinear. A neural network can be defined as a model of reasoning

based on the human brain where learning can be supervised or unsupervised. For all three

of the speech recognition algorithms, they require one common fundamental process, which

is pattern recognition of short time speech frames.

A system model of our proposed speech pattern recognition algorithm is depicted in Fig. 9.1.

Acquired speech is first segmented into short time frames to ensure each frame is stationary,

Power Spectral Density (PSD) is then calculated on each frame followed by taking the log

of Mel filter bank energies and Discrete Cosine Transform (DCT). For correlation based
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pattern recognition methodology only a set of the DCT coefficients, specifically thirteen,

retained for comparison against a pattern database. In order to robustify this algorithm, we

propose a two-step process. First we propose to replace PSD calculation in Fig. 9.1 with

autocorrelation function derived from the PPC in section 3.3 and evaluate its performance.

Next apply our robust pre-filter from chapter 4, in addition to PPC based robust PSD

estimation and evaluate pattern recognition performance.

Machine learning is a trending area of research, with applications in communication systems,

specifically in signal processing. However, most machine learning algorithms propose to find

the optimum result by minimizing the mean square error method. It should be noted that

the sample mean is not robust to outliers and hence a robust decoder algorithm is warranted.

Furthermore, if the optimum noise model is known, in theory, it would be possible to train

the encoder to learn similarities in the characteristics of the corrupted Vs. the clean training

codes and make the correct decoding decision. For low data rate speech encoder application,

we circle back to the same issue of how to define a finite code-book that captures all possible

noise characteristics. If we were to assume a large enough, the optimum, code-book, it

would still be challenging to minimize the right error at the receiver for real-time applications.

Nonetheless, if computing power is of no concern, it would be of great value to pursue further

research in low data rate speech encoding that might result in acceptable performances.



Chapter 10

Conclusions

In the presence of impulsive noise, all the methods proposed in the literature produce syn-

thesized audio signals of very poor quality that are either harsh or non-intelligible. This

paper describes the first robust method able to overcome this problem without sacrificing

the encoder bandwidth efficiency, the compression gain, and the computation time while

remaining compatible with real-time applications. Simulation results show that our method

achieves much needed improvements in synthesized speech, both in terms of perceptual qual-

ity and error variance magnitudes. This has been achieved thanks to the development of a

new robust version of the state-of-the-art MELP speech compression method utilizing a new

robust outlier identification method based on the RMD and a novel algorithm for replacing

the missing data by synthesizing a robustly estimated AR model. For the MELP encoder

improvements, robust estimation methods based on the PCC have been developed for four

sets of encoder parameters, namely the pitch period, the multiband voicing strengths, the

77
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AR(10) model, and the Fourier magnitudes.

As a future work, we will initiate an outlier replacement method based on a robust pattern

recognition algorithm. Furthermore, we will develop a fixed-point implementation of the

proposed RMELP algorithm for real-time applications to improve its computation time.

We will also evaluate its performance for speaker authentication and voice recognition in

impulsive noise environments.



Bibliography

[1] W. C. Chu, “Foundation and evolution of standardized coders,” in Speech Coding Al-

gorithms, July 2003.

[2] A. V. McCree and T. P. Barnwell, “A mixed excitation lpc vocoder model for low bit

rate speech coding,” IEEE Transactions on Speech and Audio Processing, vol. 3, no. 4,

pp. 242–250, Jul 1995.

[3] A. McCree, K. Truong, E. B. George, T. P. Barnwell, and V. Viswanathan, “A 2.4 kbit/s

melp coder candidate for the new u.s. federal standard,” in 1996 IEEE International

Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 1,

May 1996, pp. 200–203 vol. 1.

[4] D. W. Griffin and J. S. Lim, “Multiband excitation vocoder,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 36, no. 8, pp. 1223–1235, Aug 1988.

[5] E. Pryadi, K. Gandi, and H. Y. Kanalebe, “Speech compression using celp speech

coding technique in gsm amr,” in 2008 5th IFIP International Conference on Wireless

and Optical Communications Networks (WOCN ’08), May 2008, pp. 1–4.

79



Abul K. Azad Chapter 8. Conclusions 80

[6] I. A. Gerson and M. A. Jasiuk, “Vector sum excited linear prediction (vselp) speech cod-

ing at 8 kbps,” in International Conference on Acoustics, Speech, and Signal Processing,

Apr 1990, pp. 461–464 vol.1.

[7] M. Ruhland, J. Bitzer, M. Brandt, and S. Goetze, “Reduction of gaussian, supergaus-

sian, and impulsive noise by interpolation of the binary mask residual,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 23, no. 10, pp. 1680–

1691, Oct 2015.

[8] N. Gallagher and G. Wise, “A theoretical analysis of the properties of median filters,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp.

1136–1141, December 1981.

[9] D. Veselinovic and D. Graupe, “A wavelet transform-based blind adaptive filter of un-

known noise from speech,” in Proceedings of the 43rd IEEE Midwest Symposium on

Circuits and Systems (Cat.No.CH37144), vol. 3, 2000, pp. 1362–1365 vol.3.

[10] J. H. L. Hansen and M. A. Clements, “Constrained iterative speech enhancement with

application to automatic speech recognition,” in ICASSP-88., International Conference

on Acoustics, Speech, and Signal Processing, Apr 1988, pp. 561–564 vol.1.

[11] V. H. Diaz-Ramirez and V. Kober, “Robust speech processing using local adaptive

non-linear filtering,” IET Signal Processing, vol. 7, no. 5, pp. 345–359, July 2013.



Abul K. Azad Chapter 8. Conclusions 81

[12] Z. Wen and J. Tao, “An excitation model based on inverse filtering for speech analysis

and synthesis,” in 2011 IEEE International Workshop on Machine Learning for Signal

Processing, Sept 2011, pp. 1–5.

[13] G. Jacovitti and A. Neri, “Estimation of the autocorrelation function of complex gaus-

sian stationary processes by amplitude clipped signals,” IEEE Transactions on Infor-

mation Theory, vol. 40, no. 1, pp. 239–245, Jan 1994.

[14] S. F. C. Neto, F. L. Corcoran, J. Phipps, and S. Dimolitsas, “Performance assessment

of 4.8 kbit/s ambe coding under aeronautical environmental conditions,” in 1996 IEEE

International Conference on Acoustics, Speech, and Signal Processing Conference Pro-

ceedings, vol. 1, May 1996, pp. 499–502 vol. 1.

[15] R. Maronna, R. Martin, and V. Yohai, Robust Statistics: Theory and Methods. Wiley,

New York, NY, USA, 2006.

[16] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation of

speech quality (pesq)-a new method for speech quality assessment of telephone networks

and codecs,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal

Processing. Proceedings (Cat. No.01CH37221), vol. 2, May 2001, pp. 749–752 vol.2.

[17] J. H. V. Vleck and D. Middleton, “The spectrum of clipped noise,” Proceedings of the

IEEE, vol. 54, no. 1, pp. 2–19, Jan 1966.

[18] D. McGraw and J. Wagner, “Elliptically symmetric distributions,” IEEE Transactions

on Information Theory, vol. 14, no. 1, pp. 110–120, Jan 1968.



Abul K. Azad Chapter 8. Conclusions 82

[19] I. Reed, “On the use of Laguerre polynomials in treating the envelope and phase compo-

nents of narrow-band Gaussian noise,” IRE Transactions on Information Theory, vol. 5,

no. 3, pp. 102–105, September 1959.

[20] Y. Chakhchoukh, P. Panciatici, and P. Bondon, “Robust estimation of sarima mod-

els: Application to short-term load forecasting,” in 2009 IEEE/SP 15th Workshop on

Statistical Signal Processing, Aug 2009, pp. 77–80.

[21] P. Tamburello and L. Mili, “Robustness analysis of the phase-phase correlator to white

impulsive noise with applications to autoregressive modeling,” IEEE Transactions on

Signal Processing, vol. 60, no. 11, pp. 6053–6058, Nov 2012.

[22] M. A. Gandhi, C. Ledoux, and L. Mili, “Robust estimation methods for impulsive noise

suppression in speech,” in Proceedings of the Fifth IEEE International Symposium on

Signal Processing and Information Technology, 2005., Dec 2005, pp. 755–760.

[23] J. Burg, “Maximum entropy spectral analysis.” in Proceedings of 37th Meeting, Society

of Exploration Geophysics, Oklahoma City., 1967.

[24] J. Makhoul, R. Viswanathan, R. Schwartz, and A. Huggins, “A mixed-source model for

speech compression and synthesis,” in ICASSP ’78. IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 3, Apr 1978, pp. 163–166.

[25] J. Holmes, “The influence of glottal waveform on the naturalness of speech from a

parallel formant synthesizer,” IEEE Transactions on Audio and Electroacoustics, vol. 21,

no. 3, pp. 298–305, Jun 1973.


	Introduction
	Corrupted Speech Signal Characteristics
	Speech Filter Algorithms
	The Median Filter
	The Binary Mask Filter
	The Wavelet Filter
	The Inverse Filter

	Speech Encoder Algorithms
	The Code Excited Linear Prediction Encoder
	The Vector Sum Excited Linear Prediction Encoder
	The Advanced Multi-band Excitation Encoder 

	Robust Correlation Estimation Methods
	The Arcsin Law
	The Complex Polarity Coincidence Correlator
	The Phase-Phase Correlator
	The Median-of-Ratios Estimator

	Robust Pre-Filtering Methods
	A Robust Mahalanobis Distance
	Robust AR Model Estimation
	Outlier Replacement Method

	The Proposed, Robust Speech Encoder Algorithm
	Pitch Period Estimation and Voiced/Unvoiced Frame Identification
	Multiband Voicing Strength Estimation
	AR Model Estimation
	Fourier Magnitudes Estimation of The Error Signal

	Simulation Results
	Performance Analysis of the Robust Correlation Estimators
	Robust Filter Performance Analysis
	Speech Synthesis Performance Analysis
	Execution Time Analysis


	Future Work
	Conclusions

