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Abstract—This paper presents a neural vocoder named HiNet
which reconstructs speech waveforms from acoustic features by
predicting amplitude and phase spectra hierarchically. Different
from existing neural vocoders such as WaveNet, SampleRNN and
WaveRNN which directly generate waveform samples using single
neural networks, the HiNet vocoder is composed of an amplitude
spectrum predictor (ASP) and a phase spectrum predictor (PSP).
The ASP is a simple DNN model which predicts log amplitude
spectra (LAS) from acoustic features. The predicted LAS are
sent into the PSP for phase recovery. Considering the issue of
phase warping and the difficulty of phase modeling, the PSP
is constructed by concatenating a neural source-filter (NSF)
waveform generator with a phase extractor. We also introduce
generative adversarial networks (GANs) into both ASP and
PSP. Finally, the outputs of ASP and PSP are combined to
reconstruct speech waveforms by short-time Fourier synthesis.
Since there are no autoregressive structures in both predictors,
the HiNet vocoder can generate speech waveforms with high
efficiency. Objective and subjective experimental results show
that our proposed HiNet vocoder achieves better naturalness of
reconstructed speech than the conventional STRAIGHT vocoder,
a 16-bit WaveNet vocoder using open source implementation
and an NSF vocoder with similar complexity to the PSP and
obtains similar performance with a 16-bit WaveRNN vocoder.
We also find that the performance of HiNet is insensitive to the
complexity of the neural waveform generator in PSP to some
extend. After simplifying its model structure, the time consumed
for generating 1s waveforms of 16kHz speech using a GPU can
be further reduced from 0.34s to 0.19s without significant quality
degradation.

Index Terms—vocoder, neural network, amplitude spectrum,
phase spectrum, statistical parametric speech synthesis

I. INTRODUCTION

SPEECH synthesis, a technology that converts texts into
speech waveforms, plays a more and more important

role in people’s daily life. A speech synthesis system with
high intelligibility, naturalness and expressiveness is a goal
pursued by speech synthesis researchers. Recently, statistical
parametric speech synthesis (SPSS) has become a widely used
speech synthesis framework due to its flexibility achieved by
acoustic modeling and vocoder-based waveform generation.
Hidden Markov models (HMMs) [1], deep neural networks
(DNNs) [2], recurrent neural networks (RNNs) [3] and other
deep learning models [4] have been applied to build the
acoustic models for SPSS. Vocoders [5] which reconstruct
speech waveforms from acoustic features (e.g., mel-cepstra
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and F0) also play an important role in SPSS. Their perfor-
mance affects the quality of synthetic speech significantly.
Some conventional vocoders, such as STRAIGHT [6] and
WORLD [7] which are designed based on the source-filter
model of speech production [8], have been popularly applied
in current SPSS systems. However, these vocoders still have
some deficiencies, such as the loss of spectral details and phase
information.

Recently, some neural generative models for raw audio
signals [9]–[11] have been proposed and demonstrated good
performance. For example, WaveNet [9] and SampleRNN
[10] predicted the distribution of each waveform sample
conditioned on previous samples and additional conditions
using convolutional neural networks (CNNs) and RNNs re-
spectively. These models represented waveform samples as
discrete symbols. Although the µ-law quantization strategy
[12] has been applied, the neural waveform generators with
low quantization bits (e.g., 8-bit or 10-bit) always suffered
from perceptible quantization errors. In order to achieve 16-
bit quantization of speech waveforms, the WaveRNN model
[11] was proposed, which generated 16-bit waveforms by
splitting the RNN state into two parts and predicting the 8
coarse bits and the 8 fine bits respectively. However, due to
the autoregressive generation manner, these models were very
inefficient at generation stage. Therefore, some variants such
as knowledge-distilling-based models (e.g., parallel WaveNet
[13] and ClariNet [14]) and flow-based models (e.g., Wave-
Glow [15]) were then proposed to improve the efficiency of
generation.

Neural vocoders based on these waveform generation mod-
els [16]–[21] have been developed to reconstruct speech wave-
forms from various acoustic features for SPSS and some other
tasks, such as voice conversion [22], [23], bandwidth extension
[24] and speech coding [25]. Experimental results confirmed
that these neural vocoders performed significantly better than
conventional ones. Some improved neural vocoders, such as
glottal neural vocoder [26]–[28], LP-WaveNet [29], LPCNet
[30], and neural source-filter (NSF) vocoder [31], have been
further proposed by combining speech production mechanisms
with neural networks and have also demonstrated impressive
performance. The first three vocoders predict the excitation
waveforms by a neural network and then the excitation
waveforms pass through a vocal tract filter to generate the
final waveforms, which imitate the process of linear prediction
(LP). The last one achieves the process of the source-filter
model by neural networks rather than the conventional models.
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Fig. 1. The flowchart of the training and generation processes of our proposed HiNet vocoder. Here, ASP, PSP and LAS stand for amplitude spectrum
predictor, phase spectrum predictor and log amplitude spectra respectively.

However, none of these models consider recovering waveforms
from separately predicted amplitude and phase spectra.

There are still some limitations with current neural vocoders
and the most significant one is that they have much higher
computation complexity than conventional STRAIGHT and
WORLD vocoders. The autoregressive neural vocoders (e.g.,
WaveNet, SampleRNN and WaveRNN) are very inefficient
at synthesis time due to their point-by-point generation pro-
cess. For knowledge-distilling-based vocoders (e.g., parallel
WaveNet and ClariNet), although the student model acceler-
ates the generation process by removing autoregressive con-
nections, they require a WaveNet as the teacher model to guide
the training of the student model and additional criteria such
as power loss and spectral amplitude distance must be used.
These facts make it difficult to train knowledge-distilling-
based vocoders. The flow-based vocoders (e.g., WaveGlow)
are also efficient due to the flow-based model without any
autoregressive connections. However, the complexity of model
structures of WaveGlow [15] is reported to be huge with low
training efficiency.

This paper explores the approaches to improve the run-time
efficiency of neural vocoders by combining neural waveform
generation models with the frequency-domain representation
of speech waveforms. Inspired by the knowledge that speech
waveforms can be perfectly reconstructed from their short-
time Fourier transform (STFT) results which consist of frame-
level amplitude spectra and phase spectra, this paper pro-
poses a neural vocoder which recovers speech waveforms by
predicting amplitude and phase spectra hierarchically from
input acoustic features. We name this vocoder HiNet because
it is expected to generate waveforms with high quality and
high efficiency by hierarchical prediction. Different from
existing neural vocoders which directly generate waveform
samples using single neural networks, the HiNet vocoder is
composed of an amplitude spectrum predictor (ASP) and a
phase spectrum predictor (PSP). The ASP is a simple DNN
which predicts frame-level log amplitude spectra (LAS) from
acoustic features. Then, the predicted LAS are sent into
the PSP for phase recovery. Considering the issue of phase
warping and the difficulty of phase modeling, the PSP is
constructed by concatenating a neural waveform generator

with a phase extractor. Since the task of the neural waveform
generator in PSP is not to generate the final waveforms but
to supplement the amplitude spectra with phase information,
some light-weight models can be adopted even if their overall
prediction accuracy is not perfect. In our implementation,
the neural waveform generator is built by adapting the non-
autoregressive NSF vocoder [31] from three aspects. First,
LAS are used as the input of PSP rather than spectral features
(e.g., mel-cepstra). Second, the initial phase of the sine-based
excitation signal is pre-calculated for each voiced segment
at the training stage of the PSP to benefit phase modeling.
Third, a waveform loss and a correlation loss are introduced
into the complete loss function in order to enhance its ability
of measuring phase distortion. Besides, generative adversarial
networks (GANs) [32] are also introduced into ASP and PSP
to fit the true distribution of amplitude and phase spectra.
Finally, the outputs of ASP and PSP are combined to recover
speech waveforms by short-time Fourier synthesis (STFS).
Experimental results show that the proposed HiNet vocoder
achieves better naturalness of reconstructed speech than the
conventional STRAIGHT vocoder, a 16-bit WaveNet vocoder
implemented by public source codes and an NSF vocoder with
similar complexity to the PSP, and obtains similar performance
with a 16-bit WaveRNN vocoder.

There are two main characteristics of the HiNet vocoder.
First, there are no autoregressive structures in both predictors.
Thus, the HiNet vocoder is able to generate speech waveforms
with high efficiency by parallel computation. Second, the
neural waveform generator only contributes to the prediction
of phase spectra. Further experimental results reveal that
the performance of HiNet is insensitive to the complexity
of the neural waveform generator in PSP to some extend.
After simplifying its model structure, the training efficiency is
improved and the time consumed for generating 1s waveforms
of 16kHz speech can be further reduced from 0.34s to 0.19s
without significant quality degradation.

This paper is organized as follows. In Section II, we present
our proposed HiNet vocoder in detail. Section III reports our
experimental results and conclusions are given in Section IV.
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Fig. 2. Model structure of the amplitude spectrum predictor (ASP). Here, FF and Conv represent feed-forward and convolutional layers (stride size=2)
respectively, ReLu and LReLu represent rectified linear units and leaky rectified linear units respectively.

II. PROPOSED METHODS

The proposed HiNet vocoder consists of an amplitude
spectrum predictor (ASP) and a phase spectrum predictor
(PSP). The flowchart of its training and generation processes
is illustrated in Fig. 1.

A. Amplitude Spectrum Predictor

The ASP predicts LAS from input acoustic features which
include mel-cepstra, energy, F0 and voiced/unvoicded (V/UV)
flag. For better generation efficiency, a simple DNN consisting
of multiple FF layers without any autoregressive structures is
adopted to build the ASP as shown in the generator (denoted
by GA) in Fig. 2.

Let an = [an,1, . . . , an,C ]
> and ln = [ln,1, . . . , ln,K ]>

denote the acoustic features and the LAS at the n-th frame
respectively, where n, c and k represent the frame index,
the dimension index and the frequency bin index, C and K
denote the total numbers of acoustic feature dimensions and
frequency bins respectively. For utilizing history information,
the model input is a concatenation of current frame and np
previous frames (i.e., aC

n = [a>n−np
, . . . ,a>n−1,a

>
n ]
>). The

model output is the LAS of current frame as shown in Fig. 2.
If GAN is not used in the ASP, only the generator in Fig. 2

is trained. At the training stage, parallel concatenated acoustic
features aC

1:N (denoted by aC) and LAS l1:N (denoted by
l) are extracted from natural waveforms and N is the total
number of frames. The training criterion is to minimize the
mean square error (MSE) between the predicted LAS l̂ =
GA(a

C) and the real LAS l as

LMSE =
1

NK

∑
n

∑
k

(ln,k − l̂n,k)2 + L2 reg, (1)

where l̂n = [l̂n,1, . . . , l̂n,K ] is the predicted LAS at the n-th
frame. L2 reg is an L2 regularization term of all weights in
the model for avoiding overfitting.

At the generation stage, a global mean normalization
(GMN) operation is conducted to compensate the global
distortion between the amplitude spectra predicted by the
DNN and the natural ones. For the k-th frequency bin, a
compensation factor qk is estimated given the trained DNN
as

qk =

∑
n exp(ln,k)∑
n exp(l̂n,k)

, (2)

where n denotes the frame index of the training set. The
vector q = [q1, . . . , qK ]> further passes through a median
filter along the frequency axis to get a smoothed curve

qmf = [qmf
1 , . . . , qmf

K ]>. The final LAS at each frame is
obtained by

l̂FNL
n = log

(
exp(l̂n)� qmf

)
, (3)

where � represents element-wise product.
If GAN is used in the ASP, a discriminator (denoted by DA)

as shown in Fig 2 is also trained along with the generator.
The discriminator consists of multiple convolutional layers
which operate along with the frequency axis of the input
LAS. The input LAS of the discriminator which is obtained
by reshaping the predicted LAS or natural LAS has width K
and one channel. Leaky rectified linear units [33] are used as
the activation function. Each convolutional block downsamples
the input LAS by a factor of two, using strided convolutions,
until a small width is reached. The amount of filters per
convolutional layer increases so that the channel gets larger as
the width gets narrower. Finally, two feed-forward layers both
with one neuron are used to reduce the channel and width to
1 respectively and the results are used to define loss functions
for GAN.

At the training stage, a Wasserstein GAN [34] loss is used
for training. To keep the discriminator Lipschitz continuous, a
gradient penalty [35] is also introduced into the loss function
of the discriminator. Therefore, the loss function of the
discriminator is defined as

LA−D =− El∼Pr [DA(l)] + El̂∼Pg
[DA(l̂)]

+ λA−GP · El∼Pr,l̂∼Pg
[(max{0, ‖∇l̃DA(l̃)‖ − 1})2],

(4)

where l̃ = εl + (1 − ε)l̂ is sampled randomly along the line
segment between l and l̂ and λA−GP is a hyperparameter.
Regard with the generator, in addition to GAN-related loss,
MSE loss LMSE is also used as an auxiliary loss. Therefore,
the loss function of the generator is defined as

LA−G = −El̂∼Pg
[DA(l̂)] + λMSE · LMSE , (5)

where λMSE is a hyperparameter. The training process is di-
vided into three steps: first using LMSE to train the generator,
then using LA−D to train the discriminator, and finally using
LA−G and LA−D to train the generator and discriminator
alternately like a standard GAN training process [32]. GMN
is not used at the generation stage because GAN is expected
to compensate the global distortion on amplitude spectra and
effectively alleviate the over-smoothing problem when only
using the MSE loss to train the model.
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generation stage.

We can see that the whole ASP model operates at frame-
level without any autoregressive calculations. Therefore, its
training and generation processes are very efficient.

B. Phase Spectrum Predictor

The aim of PSP is to recover phase spectra given input
amplitude spectra. However, modeling and predicting phase
spectra directly are difficult due to the issue of phase warping.
Since temporal waveforms contain the information of both
amplitude and phase spectra, this paper proposes to predict
phase spectra utilizing a neural waveform generator. For
predicting phase spectra efficiently, the waveform generator is
designed based on the non-autoregressive NSF vocoder [31].
Several modifications are made in order to focus on recovering
phase spectra from input amplitude spectra. Finally, the phase
spectra extracted from the waveforms generated by the neural
waveform generator are used as the outputs of PSP.

The structure of PSP is illustrated in Fig. 3, which first
converts input LAS and F0 sequences into waveforms x̂ =
[x̂1, . . . , x̂T ]

> using a neural waveform generator and then
extracts phase spectra P = [p1, . . . ,pN ] from x̂ by STFT
analysis. At the training stage, LAS and F0 sequences are
calculated from natural waveform x = [x1, . . . , xT ]

> and the
loss functions are defined between x and x̂. At the generation
stage, the PSP adopts the test F0 sequence and the LAS
predicted by ASP as inputs. Similar to the NSF vocoder [31],
the neural waveform generator in PSP consists of a source
module and a filter module. The details of these two modules
and the loss functions will be introduced in the following
subsections.

1) Source Module: The upsampled F0 sequence f =
[f1, . . . , fT ]

> is obtained by repeating the F0 values within
each frame, and is used as the input of the source module.
The output of the source module is an excitation signal
e = [e1, . . . , eT ]

>, which is a sine-based signal for voiced
segments and a DNN-transformed Gaussian white noise for
unvoiced segments. Mathematically, for time step t, the exci-

tation signal et is defined as

et =


α sin(

t∑
h=1

2πfh
1

Ns
+ φj) + nt, ft > 0, t ∈ Vj

g(
1

3σ
nt), ft = 0

,

(6)

where ft = 0 denotes that the t-th sampling point belongs
to an unvoiced frame, g(·) represents a DNN-based transfor-
mation, nt ∼ N (0, σ2) is a Gaussian white noise at time t,
Ns is the sampling rate of waveforms, Vj is the j-th voiced
segment that the t-th sampling point belongs to, φj ∈ (−π, π]
is the initial phase of the j-th voiced segment, α and σ are
hyperparameters. At the training stage, we estimate the initial
phase φj of each voiced segment for better phase modeling.
First, the j-th voiced segment of the natural waveform x
passes through a low-pass filter whose cut-off frequency is
the maximal F0 of this segment in order to obtain a reference
waveform without formant influence. Then, φj is determined
by maximizing the correlation coefficient between the sine
wave in Eq. (4) and the reference waveform for each voiced
segment. At the generation stage, φj is set as a random initial
phase. The DNN-transformed Gaussian white noise can be
calculated offline for better run-time efficiency.

2) Filter Module: The excitation signal e generated by
the source module and the upsampled LAS sequence L =
[l1, . . . , lT ] are input into the filter module. Before upsam-
pling, the frame-level LAS features pass through GRU-based
recurrent layers and feed-forward layers for pre-processing.
The output of the filter module is the predicted waveform x̂.

As shown in Fig. 3, the filter module is a concatenation of
D quasi WaveNet (denoted by QWN) blocks. Assume x0 = e
and xD = x̂. The d-th QWN uses sequence xd−1 and L as
input and predicts sequence xd. The detailed structure of the
d-th QWN is illustrated in Fig. 4. A QWN block is similar
to a WaveNet model [9] whose key elements include dilated
convolutions, gated activation units, residual connections and
skip connections. The difference is that QWNs are non-
autoregressive with non-causal convolution because the whole
sequence xd−1 is already known for the d-th block. The
LAS features are connected to the gated activation units
after passing through two FF layers. The hyperbolic tangent
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activation function is used in QWNs because the range of
waveform samples is from -1 to 1. The two FF layers after the
skip connections are employed to reduce the dimensionality of
the skip output and to generate sequences hd1 and hd2 both
with length T . Finally, the output sequence xd is calculated
as

xd = xd−1 � exp(hd1) + hd2, (7)

where � represents element-wise product. The output of the
last QWN xD = x̂ is used to define the loss function at the
training stage and to extract phase spectra at the generation
stage.

3) Model Training: Three loss functions are defined be-
tween the predicted waveform x̂ and the natural reference x,
including amplitude spectrum loss, waveform loss and negative
correlation coefficient loss. Comparing with the original NSF
vocoder [31], the last two losses are added for indirectly
evaluating the phase accuracy of the predicted waveforms.

The amplitude spectrum loss is the MSE between the natural
amplitude spectra and the predicted ones which are derived
from x and x̂ using STFT respectively. Similar to the NSF
vocoder [31], multiple sets of frame length (FL), frame shift
(FS), and FFT point number (FN ) are adopted for STFT in
our implementation. For the i-th set of (FLi,FSi,FN i), the
amplitude spectrum loss is calculated as

LASi =
1

N iKi

Ni∑
n=1

Ki∑
k=1

(Ai
n,k − Âi

n,k)
2, (8)

where Ai
n,k and Âi

n,k are the spectral amplitude at frame n
and frequency bin k of x and x̂ respectively, N i denotes the
total number of frames and Ki = FNi

2 + 1.

The waveform loss is defined as the MSE between the
natural waveform samples and the predicted ones, i.e.,

LW =
1

T

T∑
t=1

(xt − x̂t)2. (9)

The negative correlation coefficient loss is calculated as the
negative correlation coefficient between the natural waveform
and the predicted waveform, i.e.,

LC = −E[(x− E(x))(x̂− E(x̂))]√
V(x)V(x̂)

, (10)

where the functions E(·) and V(·) calculate mean and variance
respectively.

Finally, the training criterion of the waveform generator in
PSP is to minimize the combined loss function as

LComb =
∑
i

LASi + LW + LC . (11)

Similar with GAN-based ASP, we also try to use GANs
to further improve the performance of PSP. For GAN-based
PSP, the generator (denoted by GP ) is the PSP model shown in
Fig. 3 and the discriminator (denoted by DP ) is the same with
that of GAN-based ASP shown in Fig. 2. The fake input of the
discriminator is the output of the generator x̂ = GP (f ,L).
However, the real input is a reconstructed waveform x∗ whose
phase spectra are extracted from the natural waveform x but
amplitude spectra are extracted from the predicted waveform
generated by a well-trained PSP model. There are two reasons.
One is that the PSP model always generates waveforms
with poor amplitude spectra so the discriminator can easily
distinguish the real and fake inputs if using natural waveform
x as the real input. Another is that the purpose of PSP is to
generate excellent phase spectra so GAN only needs to further
reduce the distance between the generated phase spectra and
the natural ones.

A Wasserstein GAN [34] loss with gradient penalty [35] is
also used for training the GAN-based PSP model. The loss
function of the discriminator is defined as

LP−D = −Ex∗∼P∗
r
[DP (x

∗)] + Ex̂∼Pg
[DP (x̂)]

+ λP−GP · Ex∗∼P∗
r ,x̂∼Pg

[(max{0, ‖∇x̃DP (x̃)‖ − 1})2],
(12)

where x̃ = εx∗+(1−ε)x̂ is sampled randomly along the line
segment between x∗ and x̂ and λP−GP is a hyperparameter.
The loss function of the generator is defined as

LP−G = −Ex̂∼Pg
[DP (x̂)] + λComb · LComb, (13)

where λComb is a hyperparameter. Different from GAN-based
ASP, the training process for GAN-based PSP is using LP−G
and LP−D to train the generator and discriminator alternately
like a standard GAN training process.

III. EXPERIMENTS

A. Experimental Setup

The recordings of the female speaker slt and the male
speaker bdl in CMU-ARCTIC databases [36] which contained
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English speech with 16 kHz sampling rate and 16bits resolu-
tion were adopted in our experiments. For each speaker, we
chose 1000 and 66 utterances to construct the training set and
the validation set respectively, and the remaining 66 utterances
were used as the test set. The acoustic features at each
frame were 43-dimensional including 40-dimensional mel-
cepstra, an energy, an F0 and a voiced/unvoicded (V/UV) flag.
The natural acoustic features were extracted by STRAIGHT
and the window size was 400 samples (i.e., 25ms) and the
window shift was 80 samples (i.e., 5ms). This paper focuses
on neural vocoders, thus a simple acoustic model for SPSS
was used in our experiments. A bidirectional LSTM-RNN
acoustic model [3] having 2 hidden layers with 1024 units
per layer (512 forward units and 512 backward units) was
trained to predict acoustic features from linguistic features.
The input linguistic features were the same as the ones used
in Merlin toolkit [37] for CMU-ARCTIC databases which
were 425-dimensional. The output of the acoustic model
contained the acoustic features together with their delta and
acceleration counterparts, which were totally 127 dimensions
(the V/UV flag had no dynamic components). Then, the
predicted acoustic features were generated from the output by
maximum likelihood parameter generation (MLPG) algorithm
[38] considering global variance (GV) [39].

Seven vocoders were compared in our experiments1. The
descriptions of these vocoders are as follows.

• STRAIGHT The conventional STRAIGHT vocoder. At
synthesis time, the spectral envelope at each frame was
first reconstructed from input mel-cepstra and frame
energy, and was then used to generate speech waveforms
together with input source parameters (i.e., F0 and V/UV
flag) [6].

• WaveNet A 16-bit WaveNet-based neural vocoder, which
is the teacher model used in parallel WaveNet [13].
Two speaker-dependent vocoders were trained using an
open source implementation2. 3 upsampling layers with
upsampling rates {5,4,4} were adopted. Other configu-
rations remained the same as that of the open source
implementation. The built model was a mixture density
network, outputting the parameters for a mixture of 10
logistic distributions at each timestep and had 24 dilated
casual convolutional layers which were divided into 4
convolutional blocks. Each block contained 6 layers and
their dilation coefficients were {20, 21, . . . , 25}. The filter
width was 3. The number of gate channels in gated
activation units was 512. For the residual architectures,
the number of residual channels was 512 and the number
of skip channels was 256. An Adam optimizer [40] was
used to update the parameters by minimizing the negative
log likelihood. Models were trained and evaluated on
a single Nvidia 1080Ti GPU using PyTorch framework
[41].

• WaveRNN A 16-bit WaveRNN-based neural vocoder
implemented by ourselves. The structure was the same

1Examples of generated speech can be found at http://home.ustc.edu.cn/
∼ay8067/IEEETran 2019/demo.html.

2 https://github.com/r9y9/wavenet vocoder.

as the one used in our previous work [20] which did
not adopt the efficiency optimization strategies introduced
in [11]. The built model had one hidden layer of 1024
nodes where 512 nodes for coarse outputs and another
512 nodes for fine outputs. The waveform samples were
quantized to discrete values by 16-bit linear quantization.
Truncated back propagation through time (TBPTT) algo-
rithm was employed to improve the efficiency of model
training and the truncated length was set to 480. An
Adam optimizer [40] was used to update the parameters
by minimizing the cross-entropy. Models were trained
and evaluated on a single Nvidia 1080Ti GPU using
TensorFlow framework [42].

• NSF An NSF vocoder implemented by ourselves. The
model structure and the training method of the NSF
vocoder were the same as that of the PSP model in
the following HiNet vocoder HiNet except two main
differences. First, the NSF vocoder used acoustic features
as input rather than LAS. Second, log amplitude spectrum
losses were added to its loss function and the loss function
became LComb =

∑
i(LLASi + λNSF · LASi) + LW +

LC , where λNSF was set to 500 heuristically in our
experiments. To be consistent with the PSP model in
HiNet vocoders, the strategy of using separate source-
filter pairs for the harmonic and noise components of
waveforms [43] was not adopted here.

• HiNet Our proposed HiNet neural vocoder. GANs were
not used in both ASP and PSP. When extracting LAS, the
frame length and frame shift of STFT were 640 samples
(i.e., 40ms) and 80 samples (i.e., 5ms) respectively and
the FFT point number was 1024. For ASP, the acoustic
features at current frame along with 5 previous frames
(i.e., np = 5) were concatenated to form the complete
input which was 258-dimensional. There were two hidden
layers with 2048 nodes per layer, and a 513-dimensional
linear output layer which predicted the LAS at current
frame. The activation function was rectified linear units
(ReLu) for hidden layers. For PSP, an unidirectional GRU
layer with 1024 nodes and an FF layer with 128 nodes
were used to pre-process LAS. When extracting phase
spectra from the predicted waveform at the generation
stage, the STFT parameter settings were consistent with
the ones used for extracting LAS. In the source module,
the DNN for transforming Gaussian noise had two FF
layers with 512 nodes per layer and hyperbolic tangent
activation function together with a 1-dimensional linear
output layer. Hyperparameters α and σ were set as 0.1
and 0.003 respectively. Referring to the configuration
of original NSF model [31], the filter module consisted
of 5 QWN blocks (i.e., D = 5). Each QWN had a
non-causal convolutional layer for processing the input
sequence and 10 dilated non-casual convolution layers
and their dilation coefficients were {20, 21, . . . , 29}. The
filter width was 5. The number of gate channels in
gated activation units was 128. The additional inputs L
were connected to the gated activation units after passing
through two FF layers both having 128 nodes. For the
residual architectures, the number of residual channels

http://home.ustc.edu.cn/~ay8067/IEEETran_2019/demo.html
http://home.ustc.edu.cn/~ay8067/IEEETran_2019/demo.html
https://github.com/r9y9/wavenet_vocoder


JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

was 128 and the number of skip channels was 256.
After the skip connections, an FF layer with 16 nodes
and an FF layer with 2 nodes were used to reduce the
dimensionality of the skip output. For the loss function
of PSP, two sets of STFT configurations (FL,FS, FN),
i.e., (320, 80, 512) and (80, 40, 128), were used for the
amplitude spectrum loss. An Adam optimizer [40] was
used to update the parameters by minimizing LMSE

and LComb for ASP and PSP respectively. Truncated
waveform sequences with 16000 samples were used for
training PSP to avoid the overflow of GPU memory. The
initial learning rate of ASP was 0.0001 and the learning
rate decreased exponentially from the 20th epoch. The
initial learning rate of PSP was also 0.0001 but the
learning rate decreased exponentially from 2nd epoch.
Models were trained and evaluated on a single Nvidia
1080Ti GPU using TensorFlow framework [42].

• HiNet-S A HiNet vocoder after PSP model simplification.
The simplified HiNet vocoder reduced the number of
QWN blocks in PSP from 5 to 1, and halved the numbers
of the gate channels, residual channels and skip channels
compared with HiNet.

• HiNet-S-GAN A simplified HiNet vocoder in which
ASP and PSP both used GANs. For GAN-based ASP,
the generator was the ASP model in HiNet-S. The
discriminator consisted of 6 convolutional layers (filter
width=7, stride size=2) as shown in Fig. 2 and their
channels were 16, 32, 64, 128, 256 and 512 respectively.
The resulting dimensions per layer, being it frequency
bins × channels, were 513×1, 257×16, 129×32,
65×64, 33×128, 17×256 and 9×512. Finally, two FF
layers with 512 and 9 nodes respectively were used to
map the 9×512 convolutional results into a value for
loss calculation. There were three steps in the training
process. (1) The generator was first trained for 25 epochs.
The initial learning rate was 0.0002 and the learning rate
decreased exponentially from the 20th epoch. (2) The
discriminator was then trained for 15 epochs. The initial
learning rate was 0.00005 and the learning rate decreased
exponentially from the 10th epoch. (3) The generator
and the discriminator were alternately trained. The initial
learning rates for the generator and the discriminator
were 0.0002 and 0.00005 respectively and the learning
rates both decreased exponentially from the 2nd epoch.
Hyperparameters λA−GP and λMSE were set as 10
and 50 respectively. For GAN-based PSP, the generator
was the PSP model in HiNet-S. The discriminator
consisted of 11 convolutional layers (filter width=31,
stride size=2) as shown in Fig. 2 and their channels were
16, 32, 32, 64, 64, 128, 128, 256, 256, 512 and 1024
respectively. The resulting dimensions per layer, being it
samples×channels, were 16000×1, 8000×16, 4000×32,
2000×32, 1000×64, 500×64, 250×128, 125×128,
63×256, 32×256, 16×512 and 8×1024. Finally, two
FF layers with 1024 and 8 nodes respectively were used
to map the 8×1024 convolutional results into a value
for loss calculation. The initial learning rates of the
generator and the discriminator were both 0.0001 and

TABLE I
OBJECTIVE EVALUATION RESULTS OF STRAIGHT, WaveNet, WaveRNN

AND HiNet ON THE TEST SETS OF TWO SPEAKERS WHEN USING NATURAL
ACOUSTIC FEATURES AS INPUT.

STRAIGHT WaveNet WaveRNN HiNet

slt

SNR(dB) 0.5357 3.5228 6.0568 6.2937
SNR-V(dB) 1.3551 5.3285 8.6591 8.9254

LAS-RMSE(dB) 5.5800 6.0681 6.2489 5.5937
MCD(dB) 1.3315 1.5950 1.6042 1.5036

F0-RMSE(cent) 14.8430 71.9886 12.1309 8.0286
V/UV error(%) 3.3994 4.6260 3.3756 2.1971

bdl

SNR(dB) 1.0987 2.7105 3.8993 4.5905
SNR-V(dB) 2.2865 3.9987 5.8108 6.5571

LAS-RMSE(dB) 5.6434 6.0581 6.1812 5.7486
MCD(dB) 1.3097 1.4093 1.5150 1.5528

F0-RMSE(cent) 25.7898 98.3218 21.0020 10.5880
V/UV error(%) 4.5588 8.7091 5.5817 2.7663

the learning rates both decreased exponentially from the
2nd epoch. Hyperparameters λP−GP and λComb were
both 10.

B. Comparison between HiNet and Some Existing Vocoders

In this section, we compared the performance of our
proposed HiNet vocoder with three representative existing
vocoders, including STRAIGHT, WaveNet and WaveRNN by
objective and subjective evaluations.

First, we compared the distortions between natural speech
and the speech reproduced by these four vocoders when using
natural acoustic features as input. Five objective metrics used
in [16] were adopted here, including signal-to-noise ratio
(SNR) which reflected the distortion of waveforms, root MSE
(RMSE) of LAS (denoted by LAS-RMSE) which reflected
the distortion in frequency domain, mel-cepstrum distortion
(MCD) which described the distortion of mel-cepstra, MSE of
F0 which reflected the distortion of F0 (denoted by F0-RMSE),
and V/UV error which was the ratio between the number of
frames with mismatched V/UV flags and the total number of
frames. Among these metrics, SNR can be considered as an
overall measurement on the distortions of both amplitude and
phase spectra, while LAS-RMSE and MCD mainly present the
distortion of amplitude spectra. Besides, the SNR for voiced
frames (denoted by SNR-V) was also calculated for each
vocoder. SNR-V can better present the distortion in phase
spectra than the overall SNR because the unvoiced frames with
random phase spectra were excluded when calculating SNR-V.
STRAIGHT was used to extract acoustic features from both
original and reproduced speech waveforms for calculating all
these metrics.

The results on the test sets of the two speakers are listed
in Table I. It is obvious that STRAIGHT achieved the
lowest SNR and SNR-V for both speakers due to the neglect
of natural phase information. Our proposed HiNet vocoder
outperformed WaveNet and WaveRNN on the SNR and SNR-
V metric for both speakers. This indicated that the HiNet
vocoder restored the shape of waveforms more accurately
than other vocoders. Besides, our proposed HiNet vocoder
achieved the lowest LAS-RMSE among the three neural
vocoders which implied the advantage of using a separate
ASP in our proposed method. Regarding with MCD, the
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Fig. 5. The waveforms and spectrograms of natural speech and the speech generated by different vocoders when using natural acoustic features as input for
an example sentence (arctic b0536) in the test set of speaker slt. Here, HiNet-PSP denotes the waveforms generated by the PSP in HiNet.

TABLE II
REAL TIME FACTORS (RTFS) ON GPU AND CPU AND NUMBER OF MODEL
PARAMETERS (NMP) OF COMPARED VOCODERS, WHERE (·/·) REPRESENTS

THE FRAME-LEVEL NMP (LEFT) AND POINT-LEVEL NMP (RIGHT).

Vocoder WaveNet WaveRNN HiNet HiNet-S
RTF (GPU) 222.3656 100.9148 0.3420 0.1929
RTF (CPU) 510.6052 900.4469 38.2128 11.5570

NMP (×106) 72.9 (0/72.9) 5.3 (0/5.3) 23.0 (10.6/12.4) 11.2 (10.6/0.6)

results on these two speakers were inconsistent which needed
further investigation. Our proposed HiNet vocoder achieved
the lowest F0-RMSE and V/UV error among all four vocoders
and their differences were significant. This advantage can be
attributed to the explicit excitation signal determined by F0s
and U/V flags in the PSP of HiNet.

Fig. 5 shows the waveforms and spectrograms of natural
speech and the speech generated by different vocoders when
using natural acoustic features as input for an example sen-
tence in the test set of speaker slt. We can see that there
was observable difference between the overall contours of
the waveforms generated by STRAIGHT and the natural
waveforms due to the neglect of natural phase information in
STRAIGHT. In contrast, the neural vocoders (i.e., WaveNet,
WaveRNN and HiNet) restored the overall waveform contours
much better. Besides, our proposed HiNet vocoder was better
at reconstructing the high-frequency harmonic structures of
some voiced segments (e.g., 1.4∼1.6s and 4000∼6000Hz in
Fig. 5) as shown in the spectrograms.

In order to evaluate the run-time efficiency of different
neural vocoders, real time factor (RTF) which is defined
as the ratio between the time consumed to generate speech
waveforms and the duration of the generated speech was
utilized as the measurement. In our implementation, the RTF
value was calculated as the ratio between the time consumed
to generate all test sentences using a single Nvidia 1080Ti
GPU or a single CPU core and the total duration of the test
set. The results are listed in Table II. It can be observed that
our proposed HiNet vocoder achieved the highest generation
efficiency, no matter using GPU or CPU. For WaveNet and
WaveRNN, they were very inefficient due to the point-by-point

Fig. 6. Average MUSHRA scores with 95% confidence interval of the four
vocoders for speaker slt. “R” stands for using natural acoustic features as
input and “P” stands for using predicted acoustic features as input.

Fig. 7. Average MUSHRA scores with 95% confidence interval of the four
vocoders for speaker bdl. “R” stands for using natural acoustic features as
input and “P” stands for using predicted acoustic features as input.

autoregressive generation.
The last row of Table II shows the number of model

parameters (NMP). We also calculated the number of model
parameters operating at frame-level (frame-level NMP) and
point-level (point-level NMP) respectively in Table II because
the run-time efficiency was much more sensitive to the point-
level NMP than to the frame-level NMP. For WaveNet, only
the layers for upsampling the input acoustic features were
operated at frame-level but their number of parameters was
so small that it can be ignored in the total NMP. For
WaveRNN, the upsampling was operated by repeating and had
no parameters. Therefore, there were no frame-level NMPs
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for both WaveNet and WaveRNN as shown in Table II. For
HiNet, all point-level model parameters existed in the filter
module of the PSP. Other modules of the PSP and the whole
ASP operated at frame-level. It can be observed that both the
total NMP and point-level NMP of HiNet were much smaller
than that of WaveNet but still larger than that of WaveRNN.
A further analysis showed that 94.4% and 98.4% of the time
used by HiNet was spent on the PSP when using GPU and
CPU respectively. This inspires us to simplify the waveform
generator in PSP for further improving the efficiency and
reducing the NMP of HiNet.

Regard with the subjective evaluation, four MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor) tests
[44] were conducted to compare the naturalness of these
four vocoders with natural recordings as references for both
speakers and using both natural and predicted acoustic features
as input. In each test, twenty test sentences synthesized by the
four vocoders were evaluated by at least 30 English native lis-
teners on the crowdsourcing platform of Amazon Mechanical
Turk3 with anti-cheating considerations [45]. Listeners were
asked to give a naturalness score between 0 and 100 to each
sample and the reference natural recording had the maximum
score of 100.

The average naturalness scores and their 95% confidence
intervals of these four vocoders are shown in Fig. 6 and Fig.
7 for speaker slt and bdl respectively. The results of paired
t-test showed that our proposed HiNet vocoder outperformed
STRAIGHT and WaveNet significantly at significance level of
0.01 and the differences between HiNet and WaveRNN were
not significant for both speakers, no matter using natural or
predicted acoustic features as input. Besides, the differences
between STRAIGHT and WaveNet for speaker bdl when using
predicted acoustic features as input were also not significant.
This may be attributed to the severe F0 distortion (F0-
RMSE=122.6858 cent) of WaveNet for speaker bdl when using
predicted acoustic features as input. Although our proposed
HiNet vocoder achieved similar performance with that of
WaveRNN, its run-time efficiency was about 300 times higher
as shown in Table II.

C. Comparison between HiNet and NSF Vocoders

In this section, we compared the performance of four
vocoders including HiNet, NSF, HiNet-S and HiNet-S-GAN
mentioned in Section III-A by objective and subjective evalua-
tions. These four vocoders were based on similar models (i.e.,
NSF) or variants of HiNet (i.e., HiNet-S and HiNet-S-GAN).

We first compared the performance of our proposed HiNet
vocoder (i.e., HiNet) and NSF vocoder (i.e., NSF). Our
PSP model in the HiNet vocoder was inspired by the NSF
vocoder. When implementing the NSF vocoder, we found
that only using log amplitude spectrum loss referring to
the original paper [31] always caused very strong high-
frequency harmonics, however only using amplitude spectrum
loss always caused strong high-frequency noise. Therefore, we
adopt a combination of these two losses as shown in Section
III-A. Besides, we also found that the waveform loss and

3https://www.mturk.com.

TABLE III
OBJECTIVE EVALUATION RESULTS OF HiNet, NSF AND HiNet-S ON THE

TEST SETS OF TWO SPEAKERS WHEN USING NATURAL ACOUSTIC
FEATURES AS INPUT.

HiNet NSF HiNet-S

slt

SNR(dB) 6.2937 6.8664 6.1952
SNR-V(dB) 8.9254 10.1387 8.8350

LAS-RMSE(dB) 5.5937 6.5548 5.6291
MCD(dB) 1.5036 2.0470 1.5030

F0-RMSE(cent) 8.0286 7.0935 7.4500
V/UV error(%) 2.1971 2.1319 2.1019

bdl

SNR(dB) 4.4062 4.4974 3.8400
SNR-V(dB) 6.5571 6.5201 5.8538

LAS-RMSE(dB) 5.9188 7.4945 6.0612
MCD(dB) 1.5081 2.4338 1.5678

F0-RMSE(cent) 11.8820 11.8750 12.3931
V/UV error(%) 2.6708 3.2978 3.1686

Fig. 8. The spectrograms of the speech generated by HiNet and NSF when
using natural acoustic features as input for an example sentence (arctic b0536)
in the test set of speaker slt.

correlation coefficient loss and the pre-calculated initial phase
were helpful to improve the performance of the NSF vocoder.
However, the waveforms generated by NSF still had strong
high-frequency harmonics as shown in the spectrograms of
Fig. 8.

The objective results are listed in Table III. It is obvious that
NSF achieved better performance on SNR, SNR-V, F0-RMSE
and V/UV error metrics but achieved worse performance on
LAS-RMSE and MCD metrics than HiNet. This indicated that
the phase spectra generated by the NSF vocoder were more
precise but the amplitude spectra was the opposite. We have
also tried to use the NSF vocoder as PSP in the HiNet vocoder,
but the results were unsatisfactory.

Regard with the subjective evaluation, two groups of ABX
preference tests were conducted to examine whether there
were significant subjective differences between the waveforms
generated by HiNet and NSF when using natural acous-
tic features as input for both speakers. In each subjective
test, twenty sentences randomly selected from the test set
were synthesised by two comparative vocoders. Each pair
of generated speech were evaluated by at least 30 English
native listeners on the crowdsourcing platform of Amazon
Mechanical Turk in random order. The listeners were asked to
judge which utterance in each pair had better speech quality or
there was no preference. In addition to calculating the average
preference scores, the p-value of a t-test was used to measure
the significance of the difference between two vocoders. The
results are listed in Table IV (HiNet vs NSF). It is obvious
that HiNet outperformed NSF very significantly (p <0.01)
for both speakers. This may be attributed to the poor listening

https://www.mturk.com
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TABLE IV
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY AMONG DIFFERENT VOCODERS OF TWO SPEAKERS WHEN USING NATURAL ACOUSTIC

FEATURES AS INPUT, WHERE N/P STANDS FOR “NO PREFERENCE” AND p DENOTES THE p-VALUE OF A t-TEST BETWEEN TWO VOCODERS.

HiNet NSF HiNet-S HiNet-S-GAN N/P p

slt
HiNet vs NSF 50.47 25.31 – – 24.22 <0.01

HiNet vs HiNet-S 29.67 – 30.66 – 39.67 0.7528
HiNet-S vs HiNet-S-GAN – – 30.33 37.83 31.83 0.0260

bdl
HiNet vs NSF 54.69 24.31 – – 21.00 <0.01

HiNet vs HiNet-S 31.13 – 26.45 – 42.42 0.1249
HiNet-S vs HiNet-S-GAN – – 28.23 29.03 42.74 0.7910

feeling caused by excessive high-frequency harmonics of the
waveforms generated by NSF.

Then, we explored whether a scale-reduced neural wave-
form generator was enough for predicting phase spectra in
order to further decrease the computation complexity of the
HiNet vocoder because the PSP model consumed most of the
computation at the generation stage of the HiNet vocoder as
mentioned in Section III-B. The objective results are listed
in Table III. By comparing HiNet and HiNet-S, we found
that there were no significant degradations on all metrics after
simplifying the structure of the neural waveform generator
in PSP. ABX preference tests also confirmed that there was
no significant difference (p > 0.05) between the subjective
quality of HiNet and HiNet-S for both speakers as shown in
Table IV. These results indicated that the performance of the
HiNet vocoder was insensitive to the complexity of the NSF-
based waveform generator in PSP to some extend. A neural
waveform generator with much smaller scale than the ones for
direct waveform generation may be enough for phase recovery.
Besides, we also compared the RTF and NMP between HiNet
and HiNet-S as shown in Table II. By simplifying the PSP
model, the RTF decreased from 0.34 to 0.19 and from 38.21
to 11.56 when using GPU and CPU respectively and the
generation efficiency was greatly improved. Besides, the total
NMP and point-level NMP of HiNet-S were also reduced to
11.2 × 106 and 0.6 × 106 respectively. The point-level NMP
of HiNet-S was only about one ninth of that of WaveRNN.

Finally, we explored whether GANs contribute to improving
the performance of the HiNet vocoder by comparing HiNet-S
and HiNet-S-GAN. Here, the simplified HiNet vocoder was
utilized. Once GANs were used in the model, objective evalu-
ations lost their effects. Therefore, only subjective evaluations
were conducted and the results of ABX tests are listed in Table
IV (HiNet-S vs HiNet-S-GAN). For speaker slt, HiNet-S-GAN
outperformed HiNet-S significantly (p < 0.05). However, there
was no significant difference (p > 0.05) between these two
vocoders for speaker bdl. Besides, we also draw the color
maps of the natural LAS and LAS generated by the ASP in
HiNet-S and HiNet-S-GAN as shown in Fig. 9. It is obvious
that the MSE loss-based ASP in HiNet-S suffered from the
over-smoothing problem and lost some spectral details such
as high-frequency formants. In contrast, the GAN-based ASP
in HiNet-S-GAN alleviated the over-smoothing issue and the
generated LAS were more similar with the natural ones.

D. Discussions

Fig. 9. Color maps of the natural LAS and LAS generated by the ASP in
HiNet-S and HiNet-S-GAN when using natural acoustic features as input for
an example sentence (arctic b0536) in the test set of speaker slt.

TABLE V
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY BETWEEN THE

HiNet-S-GAN VOCODERS BUILT ON CN-S AND CN-L DATASETS WHEN
USING NATURAL ACOUSTIC FEATURES AS INPUT, WHERE N/P STANDS FOR
“NO PREFERENCE” AND p DENOTES THE p-VALUE OF A t-TEST BETWEEN

TWO VOCODERS.

CN-S CN-L N/P p
58.00 7.00 35.00 < 0.01

1) Impact of the amount of training data on the HiNet
vocoder: In this subsection, we discussed the impact of the
amount of training data on the performance of the HiNet
vocoder. It is worth mentioning that the speech data of single
speaker in the Arctic dataset was only about 1 hour. Therefore,
a much larger dataset from a Chinese female speaker was
used in this experiment. Two training sets were designed for
building HiNet-S-GAN vocoders. One contained 800 training
utterances whose duration was 1.9 hours (denoted as CN-
S) and another contained 13134 training utterances whose
duration was 19.5 hours (denoted as CN-L). The validation
set and the test set had 100 utterances respectively. An
ABX subjective preference test was conducted between the
two HiNet-S-GAN vocoders trained on CN-S and CN-L. 10
Chinese native speakers participated in the test. The results
are listed in Table V. It is obvious that CN-L outperformed
CN-S very significantly (p < 0.01), which indicates that the
HiNet vocoder can benefit from a large training set. We also
drew the spectrograms generated by these two vocoders as
shown in Fig. 10. We can see that the spectrogram generated
by HiNet-S-GAN(CN-L) was very close to the natural one.
Compared with HiNet-S-GAN(CN-L), HiNet-S-GAN(CN-S)
lost some spectral details (e.g., 4.8∼5.2s).

2) Comparison between GAN-based ASP and conventional
one: As we all know, some conventional signal processing
algorithms can also achieve the function of ASP, i.e., convert-
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Fig. 10. The spectrograms of natural speech, of the speech generated by
the HiNet-S-GAN vocoders built on the CN-S and CN-L datasets, and of the
speech generated by the STR-ASP+PSP-S-GAN vocoder built on the CN-L
dataset for an example sentence in the test set. Here, natural acoustic features
were used as input.

ing acoustic features into amplitude spectra. For example, the
STRAIGHT vocoder can be used as an ASP by extracting
amplitude spectra from its generated waveforms. We designed
a new vocoder, named STR-ASP+PSP-S-GAN, which first
extracted amplitude spectra from the waveforms generated
by STRAIGHT and then input the amplitude spectra into
the GAN-based simplified PSP model used in HiNet-S-
GAN. We compared the performance of HiNet-S-GAN and
STR-ASP+PSP-S-GAN because these two vocoders just had
different ASP. The subjective ABX preference test results for
speaker slt are listed in Table VI. We can see that there was no
significant difference (p > 0.05) between these two vocoders
for speaker slt.

Considering the small training set (0.8 hour) of speaker slt,
we also conducted the comparative experiments on the CN-
S and CN-L datasets and the results are shown in Table VI.
It is obvious that for both CN-S and CN-L, HiNet-S-GAN
outperformed STR-ASP+PSP-S-GAN very significantly (p <
0.01). According to the listeners’ feedback, it was easier to
distinguish the differences when conducting the ABX test on
the CN-L dataset. Fig. 10 also shows that the spectrogram of
HiNet-S-GAN was more similar to the natural one than that of
STR-ASP+PSP-S-GAN when using the same CN-L training
set. These results indicated that the GAN-based ASP can
outperform the STRAIGHT-based one given enough training
data.

3) Effects of GMN: As introduced in Section II-A, GMN
was introduced to compensate the global distortion between
the predicted amplitude spectra and natural ones. To confirm
the effectiveness of GMN, the HiNet-S-woGMN vocoder
was built for comparing with HiNet-S. This vocoder was a
simplified HiNet vocoder without GMN. Table VII listed the
results of the ABX subjective test for speaker slt. We can
see that HiNet-S outperformed HiNet-S-woGMN significantly
(p <0.05). This result shows that GMN had a positive effect
on improving the performance of the HiNet vocoder without

TABLE VI
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY BETWEEN

HiNet-S-GAN AND STR-ASP+PSP-S-GAN FOR slt (0.8 HOUR), CN-S (1.9
HOURS) AND CN-L (19.5 HOURS) DATASETS WHEN USING NATURAL

ACOUSTIC FEATURES AS INPUT, WHERE N/P STANDS FOR “NO
PREFERENCE” AND p DENOTES THE p-VALUE OF A t-TEST BETWEEN TWO

VOCODERS.

HiNet-S-GAN STR-ASP+PSP-S-GAN N/P p
slt 34.29 33.14 32.57 0.7130

CN-S 56.25 4.17 39.58 <0.01
CN-L 66.67 2.92 30.42 <0.01

TABLE VII
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY BETWEEN

HiNet-S AND HiNet-S-woGMN FOR SPEAKER slt WHEN USING NATURAL
ACOUSTIC FEATURES AS INPUT, WHERE N/P STANDS FOR “NO

PREFERENCE” AND p DENOTES THE p-VALUE OF A t-TEST BETWEEN TWO
VOCODERS.

HiNet-S HiNet-S-woGMN N/P p
34.09 22.73 43.18 0.0250

using GANs for speaker slt.
4) Effects of Pre-Calculated Initial Phase: As introduced

in Section II-B1, we pre-calculated the initial phase φj for
the sine-based excitation signal of each voiced segment at
the training stage of PSP, expecting to benefit the recovery
of phase spectra. To confirm the effectiveness of the pre-
calculated initial phase, the HiNet-woPCIP vocoder was built
for comparison. This vocoder adopted random initial phase φj
for the sine-based excitation signal of all voiced segments at
the training stage of PSP which was different from HiNet. The
speaker slt was used for experiments.

Here we focused on the SNR and SNR-V metrics which
reflected the performance of phase prediction and the results
are listed in Table VIII. It is obvious that HiNet-woPCIP
achieved much lower waveform SNR and SNR-V than HiNet.
Fig. 11 draws the curves of the waveform loss and the negative
correlation coefficient loss of PSPs on the validation set as a
function of training steps. In our implementation, a training
step generated a truncated sequence with 16000 samples.
An epoch contained 2462 training steps for speaker slt. A
validation was performed every 1000 training steps and at
the end of an epoch during the training process. We can
see from Fig. 11 that the waveform loss and the negative
correlation coefficient loss of HiNet gradually decreased and
both converged eventually, which implied that the PSP in the
original HiNet vocoder gradually learnt the phase information
during model training. However, the waveform loss of HiNet-
woPCIP was almost unchanged and its negative correlation
coefficient loss remained close to zero (i.e., no correlation),
which indicated that discarding the pre-calculated initial phase
prevented the PSP from learning the phase information through
the waveform loss and the negative correlation coefficient loss.
Therefore, the initial phase pre-calculation was crucial in our
proposed method.

5) Effects of Loss Functions: As introduced in Section
II-B3, a combination of amplitude spectrum loss, waveform
loss and negative correlation coefficient loss was used to train
the waveform generator in PSP. In this subsection, we explored
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Fig. 11. The waveform loss and the negative correlation coefficient loss of
PSPs in different vocoders on the validation set of speaker slt, where the
x-axis shows training steps.

TABLE VIII
SNRS AMONG THE ORIGINAL HINET VOCODER, THE HINET VOCODER

WITHOUT PRE-CALCULATED INITIAL PHASE AND THE HINET VOCODERS
TRAINED WITH DIFFERENT LOSS FUNCTIONS ON THE TEST SETS OF

SPEAKER slt WHEN USING NATURAL ACOUSTIC FEATURES AS INPUT.

HiNet HiNet-woPCIP HiNet-L1 HiNet-L2 HiNet-L3
SNR(dB) 6.2937 1.8579 6.1380 6.2899 6.1377

SNR-V(dB) 8.9254 2.4820 8.6689 8.9394 8.6683

the effects of the components in the combined loss function by
ablation tests. Three vocoders with different loss functions for
PSP compared with HiNet were built and their descriptions
were as follows.
• HiNet-L1 The HiNet vocoder removing the negative cor-

relation coefficient loss from the combined loss function
for PSP (i.e., LComb =

∑
i LASi + LW ).

• HiNet-L2 The HiNet vocoder removing the waveform
loss from the combined loss function for PSP (i.e.,
LComb =

∑
i LASi + LC).

• HiNet-L3 The HiNet vocoder removing the waveform
loss and the negative correlation coefficient loss from
the combined loss function for PSP (i.e., LComb =∑

i LASi).
Similar with Section III-D4, only the SNR and SNR-V

results on speaker slt are listed in Table VIII. Comparing
HiNet with HiNet-L1, it can be observed that removing the
negative correlation coefficient loss led to the degradation on
waveform SNR and more significant degradation on SNR-
V. In contrast, removing the waveform loss did not cause
a significant degradation on waveform SNR. The curves of
the waveform loss and the negative correlation coefficient
loss on the validation set are also drawn in Fig. 11. We can
see that there were no significant differences between HiNet
and HiNet-L2. However, the converged losses of the HiNet
vocoders trained without the negative correlation coefficient
loss (i.e., HiNet-L1 and HiNet-L3) were slightly higher than
that of the other two HiNet vocoders (i.e., HiNet and HiNet-
L2). We also conducted a subjective ABX test to compare
HiNet with HiNet-L3. The results are listed in Table IX. We
can see that HiNet was better than HiNet-L3 but the difference

TABLE IX
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY BETWEEN

HiNet AND HiNet-L3 OF SPEAKER slt WHEN USING NATURAL ACOUSTIC
FEATURES AS INPUT, WHERE N/P STANDS FOR “NO PREFERENCE” AND p

DENOTES THE p-VALUE OF A t-TEST BETWEEN TWO VOCODERS.

HiNet HiNet-L3 N/P p
30.00 24.68 45.32 0.0731

was not obviously significant (p slightly greater than 0.05).
In summary, the negative correlation coefficient loss and the
waveform loss had a positive impact on objective results but
had little significant impact in subjective evaluations.

IV. CONCLUSION

In this paper, we have proposed a novel neural vocoder
named HiNet which adopts hierarchical generation of ampli-
tude and phase spectra for statistical parametric speech syn-
thesis. The HiNet vocoder consists of an amplitude spectrum
predictor (ASP) and a phase spectrum predictor (PSP). The
former employs a DNN model to generate the amplitude
spectra and the latter utilizes a neural source-filter (NSF)
waveform generator to predict the phase spectra given ampli-
tude spectra. The experimental results show that our proposed
HiNet vocoder outperformed the conventional STRAIGHT
vocoder, a 16-bit WaveNet vocoder using open source im-
plementation and an NSF vocoder with similar complexity
to the PSP, and achieved similar performance with a 16-
bit WaveRNN vocoder. Because there are no autoregressive
structures in both ASP and PSP, our proposed HiNet vocoder
can reconstruct speech waveforms very efficiently. Through
model simplification, the proposed HiNet vocoder can generate
1s waveforms of 16kHz speech in about 0.19s. Further
improving the performance of ASP and PSP by using other
advanced model structures and applying the HiNet vocoder to
other tasks such as voice conversion will be our future work.
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