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Abstract—The ability to localize and track acoustic events is a
fundamental prerequisite for equipping machines with the ability
to be aware of and engage with humans in their surrounding
environment. However, in realistic scenarios, audio signals are ad-
versely affected by reverberation, noise, interference, and periods
of speech inactivity. In dynamic scenarios, where the sources and
microphone platforms may be moving, the signals are additionally
affected by variations in the source-sensor geometries. In prac-
tice, approaches to sound source localization and tracking are
often impeded by missing estimates of active sources, estimation
errors, as well as false estimates. The aim of the LOCAlization
and TrAcking (LOCATA) Challenge is an open-access framework
for the objective evaluation and benchmarking of broad classes of
algorithms for sound source localization and tracking. This article
provides a review of relevant localization and tracking algorithms
and, within the context of the existing literature, a detailed evalua-
tion and dissemination of the LOCATA submissions. The evaluation
highlights achievements in the field, open challenges, and identifies
potential future directions.

Index Terms—Acoustic signal processing, source localization,
source tracking, reverberation.

I. INTRODUCTION

THE ABILITY to localize and track acoustic events is
a fundamental prerequisite for equipping machines with

awareness of their surrounding environment. Source localization
provides estimates of positional information, e.g., Directions-of-
Arrival (DoAs) or source-sensor distance, of acoustic sources in
scenarios that are either permanently static, or static over finite
time intervals. Source tracking extends source localization to
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dynamic scenarios by exploiting ‘memory’ from information
acquired in the past in order to infer the present and predict the
future source locations. It is commonly assumed that the sources
can be modelled as point sources.

Situational awareness acquired through source localization
and tracking benefits applications such as beamforming [1]–[3],
signal extraction based on Blind Source Separation (BSS) [4]–
[7], automatic speech recognition [8], acoustic Simultaneous
Localization and Mapping (SLAM) [9], [10], and motion plan-
ning [11], with wide impact on applications in acoustic scene
analysis, including robotics and autonomous systems, smart
environments, and hearing aids.

In realistic acoustic environments, reverberation, background
noise, interference and source inactivity lead to decreased lo-
calization accuracy, as well as missed and false detections of
acoustic sources. Furthermore, acoustic scenes are often dy-
namic, involving moving sources, e.g., human talkers, and mov-
ing sensors, such as microphone arrays integrated into mobile
platforms, such as drones or humanoid robots. Time-varying
source-sensor geometries lead to continuous changes in the
direct-path contributions of sources, requiring fast updates of
localization estimates.

The performance of localization and tracking algorithms is
typically evaluated using simulated data generated by means
of the image method [12], [13] or its variants [14]. Evalua-
tion by real-world data is a crucial requirement to assess the
relevant performance of localization and tracking algorithms.
However, open-access datasets recorded in realistic scenarios
and suitable for objective benchmarking are available only for
scenarios involving static sources, such as loudspeakers, and
static microphone array platforms. To provide such data also for
a wide range of dynamic scenarios, and thus foster reproducible
and comparable research in this area, the LOCAlization and
TrAcking (LOCATA) challenge provides a novel framework for
evaluation and benchmarking of sound source localization and
tracking algorithms, entailing:

1) An open-access dataset [15] of recordings from four mi-
crophone arrays in static and dynamic scenarios, com-
pletely annotated with the ground-truth positions and ori-
entations for all sources and sensors, hand-labelled voice
activity information, and close-talking microphone signals
as reference.

2) An open-source software framework [16] of comprehen-
sive evaluation measures for performance evaluation.
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3) Results for all algorithms submitted to the LOCATA chal-
lenge for benchmarking of future contributions.

The LOCATA challenge corpus aims at providing a wide
range of scenarios encountered in acoustic signal processing,
with an emphasis on speech sources in dynamic scenarios.
The scenarios represent applications in which machines should
be equipped with the awareness of the surrounding acoustic
environment and the ability to engage with humans, such that
the recordings are focused on human speech sources in the
acoustic far-field. All recordings contained in the corpus were
made in a realistic, reverberant acoustic environment in the
presence of ambient noise from a road in front of the building.
The recording equipment was chosen to provide a variety of
sensor configurations. The LOCATA corpus therefore provides
recordings from arrays with diverse apertures. All arrays inte-
grate omnidirectional microphones in a rigid baffle. The majority
of arrays use consumer-type low-cost microphones.

The LOCATA corpus was previously described in [17], [18],
and the evaluation measures were detailed in [19]. This paper
provides the following additional and substantial contributions:

• A concise, yet comprehensive literature review, providing
the background and framing the context of the approaches
submitted to the LOCATA challenge.

• A detailed discussion of the benchmark results submitted
to the LOCATA challenge, highlighting achievements, open
challenges, and potential future directions.

This paper is organized as follows: Section II summarizes the
scope of the LOCATA challenge. Sections III and IV summarize
the LOCATA challenge tasks and corpus. Section V reviews
the literature on acoustic source localization and tracking in the
context of the approaches submitted to the LOCATA challenge.
Section VI details and discusses the evaluation measures. The
benchmarked results are presented in Section VII. Conclusions
are drawn and future directions discussed in Section VIII.

II. SCOPE OF THE LOCATA CHALLENGE AND CORPUS

Evaluation of localization and tracking approaches is often
performed in a two-stage process. In the first stage, microphone
signals are generated using simulated room impulse responses
in order to control parameters, such as the reverberation time,
signal-to-noise ratio, or source-sensor geometries. The second
stage validates the findings based on measured impulse re-
sponses using a typically small number of recordings in real
acoustic environments.

Since the recording and annotation of data is expensive and
time-consuming, available open-access recordings are typically
targeted at specific scenarios, e.g., for static sources and ar-
rays [20], or for moving sources [21]. For comparisons of dif-
ferent algorithms across a variety of scenarios, the measurement
equipment (notably microphone arrays) should be identical, or
at least equivalent in all scenarios. In addition, annotation with
ground-truth should be based on the same method, especially
for assessing tracking performance.

A. Related Challenges and Corpora

Previous challenges related to LOCATA include, e.g., the
CHiME challenges [22] for speech recognition, the ACE

challenge [23] for acoustic parameter estimation, and the
REVERB challenge [24] for reverberant speech enhancement.
These challenges provide datasets of the clean speech signals
and microphone recordings across a variety of scenarios,
sound sources, and recording devices. In addition to the audio
recordings, accurate ground-truth positional information of the
sound sources and microphone arrays are required for source
localization and tracking in LOCATA.

Available datasets of audio recordings for source localization
and tracking are either limited to a single scenario, or are targeted
at audio-visual tracking. For example, the SMARD dataset [20]
provides audio recordings and the corresponding ground-truth
positional information obtained from multiple microphone ar-
rays and loudspeakers in a low-reverberant room (T60 ≈ 0.15 s).
Only a static single-source scenario is considered, involving
microphone arrays and loudspeakers at fixed positions in an
acoustically dry enclosure. The DIRHA corpus [25] provides
multichannel recordings for various static source-sensor scenar-
ios in three realistic, acoustic enclosures.

For dynamic scenarios, corpora targeted at audio-visual track-
ing, such as the AV16.3 dataset [21], typically involve multiple
moving human talkers. The RAVEL and CAMIL datasets [26],
[27] provide camera and microphone recordings from a rotating
robot head. Annotation of the ground-truth source positions
is typically performed in a semi-automatic manner, where hu-
mans label bounding boxes on small video segments. Therefore,
ground-truth source positions are available only as 2D pixel
positions, specified relative to the local frame of reference of
the camera. For evaluation of acoustic source localization and
tracking algorithms, the mapping from the pixel positions to
DoAs or Cartesian positions is required. In practice, this map-
ping is typically unknown and depends on the specific camera
used for the recordings.

For the CLEAR challenge [28], pixel positions were inter-
polated between multiple cameras in the environment in or-
der to estimate the Cartesian positions of the sound sources.
The CLEAR challenge provided audio-visual recordings from
seminars and meetings involving moving talkers. In contrast to
LOCATA, which also involves moving microphone arrays, the
CLEAR corpus is based on static arrays only.

Infrared tracking systems are used for accurate ground-truth
acquisition in [29] and by the DREGON dataset [30]. However,
the dataset in [29] provides recordings from only a static, linear
microphone array. DREGON is limited to signals emitted by
static loudspeakers. Moreover, the microphone array is inte-
grated in a drone, whose self-positions are only known from
the motor data and may be affected by drift due to wear of the
mechanical parts [31].

III. LOCATA CHALLENGE TASKS

The scenarios contained in the LOCATA challenge corpus are
represented by multichannel audio recordings and correspond-
ing positional data. The scenarios were designed to be represen-
tative of practical challenges encountered in human-machine in-
teraction, including variation in orientation, position, and speed
of the microphone arrays as well as the talkers. Audio signals
emitted in enclosed environments are subject to reverberation.
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TABLE I
LOCATA CHALLENGE TASKS

Hence, dominant early reflections often cause false detections of
source directions, whilst late reverberation, as well as ambient
noise, can lead to decreased localization accuracy. Furthermore,
temporally sparse or intermittently active sources, e.g., human
speakers, result in missing detections during pauses. Mean-
while, interference from competing, concurrent sources requires
multi-source localization approaches to ensure that situational
awareness can be maintained. In practice, human talkers are
directional and highly spatially dynamic, since head and body
rotations and translations can lead to significant changes in the
talkers positions and orientations within short periods of time.
The challenge of localization in dynamic scenarios, involving
both source and sensor motion, is to provide accurate estimates
for source-sensor geometries that vary significantly over short
time frames.

Therefore, machines must be equipped with sound source
localization algorithms that prove to be robust against reverbera-
tion, noise, interference, and temporal sparsity of sound sources
for static as well as time-varying source-sensor geometries. The
scenarios covered by the LOCATA corpus are therefore aligned
with six increasingly challenging tasks, listed in Table I.

The controlled scenarios of Task 1, involving a single, static
sound source, facilitate detailed investigations of the adverse
affects of reverberation and noise on source localization. Crucial
insights about the robustness against interference and overlap-
ping speech from multiple, simultaneously active sources can be
investigated using the static, multi-source scenarios in Task 2.
Using the data for Task 3, the impact of source directivity, as well
as head and body rotations for human talkers, can be studied.
Task 4 provides the recordings necessary to address the ambi-
guities arising in scenarios involving multiple moving human
talkers, such as occlusion and shadowing of crossing talkers,
the resolution of individual speakers, and the identification and
initialization of new speaker tracks, subject to periods of speech
inactivity. The fully dynamic scenarios in Task 5 and Task 6
are designed to bridge the gap between traditional signal pro-
cessing applications that typically rely on static array platforms,
and future directions in signal processing, progressing towards
mobile, autonomous systems. Specifically, the data provides the
framework required to identify and tackle challenges such as
the self-localization of arrays [9], [10] and the integration of
acoustic data for motion planning [33].

IV. LOCATA DATA CORPUS

A. Recording Setup

The recordings for the LOCATA data corpus were conducted
in the computing laboratory at the Department of Computer Sci-
ence at the Humboldt Universität zu Berlin, which is equipped

with the optical tracking system OptiTrack [34]. The room size
is 7.1× 9.8× 3 m3 with a reverberation time of about 0.55 s.

1) Microphone Arrays: The following four microphone ar-
rays were used for the recordings (see [18]):

Robot head: A pseudo-spherical array with 12 microphones
integrated into a prototype head for the humanoid robot NAO
(see Fig. 1(a)), developed as part of the EU-funded project
‘Embodied Audition for Robots (EARS)’ [35], [36].

Eigenmike: The Eigenmike by mh acoustics, which is a spher-
ical microphone array equipped with 32 microphones inte-
grated in a rigid baffle of 84 mm diameter [32].

Distant talking Interfaces for Control of Interactive TV
(DICIT) array: A planar array providing a horizontal aper-
ture of width 2.24 m, and sampled by 15 microphones, realiz-
ing four nested linear uniform sub-arrays (see Fig. 1(b)) with
inter-microphone distances of 4, 8, 16 and 32 cm respectively
(see also [37]).

Hearing aids: A pair of non-commercial hearing aids (Siemens
Signia, type Pure 7 mi) mounted on a head-torso simulator
(HMS II of HeadAcoustics). Each hearing aid (see Fig. 1(c)) is
equipped with two microphones (Sonion, type 50GC30-MP2)
with an inter-microphone distance of 9 mm. The Euclidean
distance between the hearing aids at the left and right ear of
the head-torso simulator is 157 mm.

The array geometries were selected to sample the diversity
of commonly used arrays in a meaningful and representative
way. The multichannel audio recordings were performed with a
sampling rate of 48 kHz and synchronized with the ground-
truth positional data acquired by the OptiTrack system (see
Section IV-C). A detailed description of the array geometries
and recording conditions is provided by [18].

B. Speech Material

For Tasks 1 and 2, involving static sound sources, anechoic
utterances from the Centre for Speech Technology Research
(CSTR) Voice Cloning ToolKit (VCTK) dataset [38] were
played back at 48 kHz sampling rate using Genelec 1029 A &
8020 C loudspeakers. For Tasks 3 to 6, involving moving sound
sources, 5 non-native human talkers read randomly selected
sentences from the CSTR VCTK dataset. The talkers were
equipped with a DPA d:screet SC4060 microphone near their
mouth, such that the close-talking speech signals were recorded.
The anechoic and close-talking speech signals were provided
to participants as part of the development dataset, but were
excluded from the evaluation dataset.

C. Ground-Truth Positional Data

For the recordings, a 4× 6 m2 area was chosen within the
7.1× 9.8× 3 m3 room. Along the perimeter of the recording
area, 10 synchronized and calibrated Infra-Red (IR) OptiTrack
Flex 13 cameras were installed. Groups of reflective markers,
detectable by the IR sensors, were attached to each source (i.e.,
loudspeaker or human talker) and microphone array. Each group
of markers was arranged with a unique, asymmetric geometry,
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Fig. 1. Schematics of microphone array geometries of (a) the robot head, (b) the DICIT array, (c) the hearing aids used for the LOCATA corpus recordings.
Schematics of the Eigenmike can be found in [32].

allowing the OptiTrack system to identify, disambiguate, and
determine the orientation of all sources and arrays.

The OptiTrack system provided estimates of each marker
position with approximately 1 mm accuracy [34] and at a frame
rate of 120 Hz by multilateration using the IR cameras. Isolated
outliers of the marker position estimates, caused by visual occlu-
sions and reflections of the IR signals off surfaces, were handled
in a post-processing stage that reconstructed missing estimates
and interpolated false estimates. Details about the experimental
setup are provided in [18].

Audio data was recorded in a block-wise manner and each
data block was labeled with a time stamp generated by the
global system time of the recording computer. On the the same
computer, positional data provided by the OptiTrack system
was recorded in parallel. Every position sample was labeled
with a time stamp. After each recording was finished, the
audio and positional data were synchronized using the time
stamps.

For DoA estimation, local reference frames were specified
relative to each array centre as detailed in [18]. For convenient
transformations of the source coordinates between the global
and local reference frames, the corpus provides the translation
vectors and rotation matrices for all arrays for each time stamp.
Source DoAs are defined within each array’s local reference
frame.

D. Voice Activity Labels

The Voice-Active Periods (VAPs) for the recordings of the
LOCATA datasets were determined manually using the source
signals, i.e., the signals emitted by the loudspeakers (Task 1 and

2) and the close-talking microphone signals (Tasks 3 to 6). The
VAP labels for the signals recorded at the distant microphone
arrays were obtained from the VAP labels for the source signals
by accounting for the sound propagation delay between each
source and the microphone array as well as the processing delay
required to perform the recordings. The propagation delay was
determined using the ground-truth positional data. The process-
ing delay was estimated based on the cross-correlation between
the source and recorded signals.

The ground-truth VAP labels were provided to the participants
of the challenge as part of the development dataset but were
excluded from the evaluation dataset.

V. LOCALIZATION SCENARIOS, METHODS, AND SUBMISSIONS

Localization systems process the microphone signals either
as one batch for offline applications and static source-sensor
geometries, or using a sliding window of samples for dynamic
scenes. For each window, the instantaneous estimates of the
source positions are estimated either directly from the signals, or
using spatial cues inferred from the data, such as Time Delays of
Arrival (TDoAs). To avoid spatial aliasing, nearby microphone
pairs or compact arrays are typically used for localization. A
few approaches are available to range estimation for acoustic
sources, e.g., by exploiting the spatio-temporal diversity of a
moving microphone array [10], [52], or by exploiting character-
istics of the room acoustics [53], [54]. Nevertheless, in general, it
is typically difficult to obtain reliable range estimates using static
arrays. As such, the majority of source localization approaches
focus on the estimation of the source DoAs, rather than the
three-dimensional positions. In the following, the term ‘source
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TABLE II
SUMMARY OF LOCALIZATION AND TRACKING FRAMEWORKS SUBMITTED TO THE LOCATA CHALLENGE

localization’ will be used synonymously with DoA estimation
unless otherwise stated.

Due to reverberation, noise, and non-stationarity of the source
signals, the position estimates at the output of the localization
system are affected by false, missing and spurious estimates,
as well as localization errors. Source tracking approaches in-
corporate spatial information inferred from past observations
by applying spatio-temporal models of the source dynamics
to obtain smoothed estimates of the source trajectories from
the instantaneous DoA estimates presented by the localization
system.1

This section provides the background and context for the
approaches submitted to the LOCATA challenge so that the sub-
missions can be related to each other and the existing literature
in the broad area of acoustic source localization (see Table II and
Fig. 2). As such, it does not claim the technical depth of surveys
like those specifically targeted at sound source localization for
robotics, or acoustic sensor networks, e.g., [55]–[57]. The struc-
ture of the review is aligned with the LOCATA challenge tasks
as detailed in Section III. Details of each submitted approach
are provided in the corresponding LOCATA proceedings paper,
provided in the references below. Among the 16 submissions
to LOCATA, 15 were sufficiently well documented to allow
consideration in this paper. 11 were submitted from academic
research institutions, 2 from industry, and 2 were collaborations
between academia and industry. The global scope of the chal-
lenge is reflected by the geographic diversity of the submissions
originating from the Asia (3 submissions), Middle East (2 sub-
missions) and Europe (10 submissions).

1We note that, within the context of the LOCATA challenge, the following dis-
cussion focuses on speech, i.e., non-stationary wideband signals corresponding
to energy that is concentrated in the lower acoustic frequency bands.

Fig. 2. Submissions to the LOCATA Challenge, ordered by Challenge Task
(see Table I). Numbers indicate the submission ID. White shade: approaches
incorporating source localization only. Grey shade: Approaches incorporating
source localization and tracking.

A. Single-Source Localization

The following provides a review of approaches for localiza-
tion of a single, static source, such as a loudspeaker.

1) Time Delay Estimation: If sufficient characteristics of a
source signal are known a priori, the time delay between the
received signals obtained at spatially diverse microphone posi-
tions can be estimated and exploited to triangulate the position
of the emitting sound source. Time Delay Estimation (TDE) ef-
fectively maximizes the ‘synchrony’ [58] between time-shifted
microphone outputs in order to identify the source position. A
brief summary of TDE techniques is provided in the following.
Details and references can be found in, e.g., [3, Chap. 9].

The TDoA, τm,�(xs), of a signal emitted from source position,
xs, between two microphones, m and �, at positions xm and x�,
respectively, is given by:

τm,�(xs) �
fs
c
(‖xs − xm‖ − ‖xs − x�‖) , (1)
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where fs is the sampling frequency, c is the speed of sound,
and ‖ · ‖ denotes the Euclidean norm. If the source signal
corresponds to white Gaussian noise and is emitted in an ane-
choic environment, the TDoA between two microphones can
be obtained by identifying the peaks in the cross-correlation
between microphone pairs. Since speech signals are often nearly
periodic for short intervals, the cross-correlation may exhibit
spurious peaks that do not correspond to spatial correlations. The
cross-correlation is therefore typically generalized to include
a weighting function in the Discrete-Time Fourier Transform
(DTFT) domain that causes a phase transform to pre-whiten the
correlated speech signals, an approach referred to as General-
ized Cross-Correlation (GCC)-PHAse Transform (PHAT). The
GCC, Rm,�(τ), is defined as:

Rm,�(τ) �
1

2π

∫ π

−π

φm,�(e
jω)Sm(ejω)S∗

� (e
jω) ejω τdω,

(2)

where Sm(ejω) denotes the DTFT of the received signal, sm,
at microphone m, and ∗ denotes the complex conjugate. The
PHAT corresponds to a weighting function, φm,�(e

jω), of the
GCC, where

φm,�(e
jω) � |Sm(ejω)S∗

� (e
jω)|−1. (3)

The signal models underpinning the GCC as well as its alterna-
tives rely on a free-field propagation model of the sound waves.
Therefore, in reverberant environments, spectral distortions and
temporal correlations due to sound reflections often lead to
spurious peaks in the GCC function. The presence of multiple,
simultaneously active sources can cause severe ambiguities in
the distinction of peaks due to the direct path of sources from
peaks arising due to reflections.

To explicitly model the reverberant channel, the fact that the
Time-of-Arrival (ToA) of the direct-path signal from a source
impinging on a microphone corresponds to a dominant peak in
the Acoustic Impulse Response (AIR) can be exploited. The
EigenValue Decomposition (EVD) [59], realized by, e.g., the
gradient-descent constrained Least-Mean-Square (LMS) algo-
rithm, can be applied for estimation of the early part of the
relative impulse response. The work in [60] extracts the TDoA
as the main peak in the relative impulse response corresponding
to the Relative Transfer Function (RTF) [61] for improved ro-
bustness against reverberation and stationary noise. The concept
of RTFs was also used in [62] for a supervised learning approach
for TDoA estimation.

For localization, it is often desirable to estimate the source
directions from TDoA estimates, e.g., using multi-dimensional
lookup tables [63], by triangulation using Least Squares (LS)
optimization if the array geometry is known a priori [64], [65], or
by triangulation based on the intersection of interhyperboloidal
spatial regions formed by the TDoA estimates, e.g., [66], [67].

The following single-source tracking approaches were sub-
mitted to the LOCATA challenge:

ID 3 [41] combines TDE for localization with a particle filter
(see Section V-C1) for tracking using the DICIT array for the
single-source Tasks 1, 3 and 5.

ID 4 [42] combines DoA estimation using the direct-path RTF
approach in [62] with a variational Expectation-Maximization
(EM) algorithm [68] (see Section V-C2) for multi-source
tracking using the robot head for all Tasks.

ID 8 [45] combines TDE (see Section V-A1) with binaural
features (see Section V-A2) for localization and applies a
wrapped Kalman filter [69] for source tracking using the
hearing aids in the single-source Tasks 1, 3 and 5.

2) Binaural Localization: The Head-Related Transfer Func-
tions (HRTFs) [70] at a listener’s ears encapsulate spatial cues
about the relative source position including Interaural Level
Differences (ILDs), Interaural Phase Differences (IPDs), and
Interaural Time Differences (ITDs) [71]–[73], equivalent to
TDoAs, and are used for source localization in, e.g., [74]–[78].

Sources positioned on the ‘cone of confusion’ lead to ambigu-
ous binaural cues that cannot distinguish between sources in the
frontal and rear hemisphere of the head [79], [80]. Human sub-
jects resolve front-back ambiguities by movements of either their
head [81]–[83] or the source controlled by the subject [84], [85].
Changes in ITDs due to head movements are more significant for
accurate localization than changes in ILDs [86]. In [87], the head
motion is therefore exploited to resolve front-back ambiguity
for localization algorithms. In [88], the attenuation effect of an
artificial pinna attached to a spherical robot head is exploited in
order to identify level differences between signals arriving from
the frontal and rear hemisphere of the robot.

The following binaural localization approaches were submit-
ted to the LOCATA challenge:

ID 8 [45] combines TDE (see Section V-A1) with IPDs for
localization and apply a wrapped Kalman filter [69] (see
Section V-C1) for source tracking using the hearing aids in
the single-source Tasks 1, 3 and 5.

3) Beamforming and Spotforming: Beamforming and spot-
forming techniques can be applied directly to the raw sensor
signals in order to ‘scan’ the acoustic environment for positions
corresponding to significant sound intensity [89]–[92]. In [93],
a beam is steered in each direction corresponding to a grid, X ,
of discrete candidate directions. Hence, the Steered Response
Power (SRP), PSRP(x), is:

PSRP(x) =

M∑
m=1

M∑
�=1

Rm,�(τm,�(xs)), (4a)

where M is the number of microphones. An estimate, x̂s, of the
source positions is obtained as:

x̂s = argmax
x∈X

PSRP(x). (5)

Similar to GCC, SRP relies on uncorrelated source signals
and, hence, may exhibit spurious peaks when evaluated for
speech signals. Therefore, SRP-PHAT [94] applies PHAT for
pre-whitening of SRP.

The following beamforming approaches were submitted to
the LOCATA challenge:

ID 6 [43] applies SRP-PHAT for the single-source Tasks 1, 3,
and 5 using the robot head and the Eigenmike.
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ID 7 [44] combines diagonal unloading beamforming [95] for
localization with a Kalman filter (see Section V-C1) for source
tracking using a 7-microphone linear subarray of the DICIT
array for the single-source Tasks 1, 3 and 5.

4) Spherical Microphone Arrays: Spherical microphone ar-
rays [96] sample the soundfield in three dimensions using mi-
crophones that are distributed on the surface of a spherical and
typically rigid baffle. The spherical geometry of the array ele-
ments facilitates efficient computation based on an orthonormal
wavefield decomposition. The response of a spherical micro-
phone array can be described using spherical harmonics [97].
Equivalent to the Fourier series for circular functions, the spher-
ical harmonics form a set of orthonormal basis functions that
can be used to represent functions on the surface of a sphere.
The sound pressure impinging from the direction, Ω = [θ, φ]T ,
on the surface a spherical baffle with radius, r, from plane
wave with unit amplitude and emitted from the source DoA,
Φs = [θs, φs]

T , with elevation, θs, and azimuth, φs, is given
by [98]:

fnm(k, r,Ω) =

∞∑
n=0

n∑
m=−n

bn(kr) (Y
m
n (Φ))∗ Y m

n (Ω), (6)

where k is the wavenumber, the weights, bn(·), are available
for many array configurations, and Y m

n (·) denotes the spherical
harmonic of order n and degree m.

Therefore, existing approaches to source localization can be
extended to the signals in the domain of spherical harmonics.
A Minimum Variance Distortionless Response (MVDR) beam-
former [2] is applied for near-field localization in the domain of
spherical harmonics in [99]. The work in [14], [100] proposes
a ‘pseudo-intensity vector‘ approach that steers a dipole beam-
former along the three principal axes of the coordinate system
in order to approximate the sound intensity using the spherical
harmonics coefficients obtained from the signals acquired from
a spherical microphone array.

The following approaches, targeted at spherical microphone
arrays, were submitted to the LOCATA challenge:

ID 10 [47] combines localization using the first-order ambison-
ics configuration of the Eigenmike with a particle filter (see
Section V-C1) for Tasks 1–4.

ID 12 [48] extends MUltiple SIgnal Classification (MUSIC)
(see Section V-B) to processing in the domain of spherical
harmonics of the Eigenmike signals for Tasks 1 and 2.

ID 15 [50] applies the subspace pseudo-intensity approach
in [101] to the Eigenmike signals in the static-source
Task 1.

ID 16 [50] extends the approach of ID 15 for the static multi-
source Task 2 by incorporating source counting.

B. Multi-Source Localization

This subsection reviews multi-source localization ap-
proaches. Beyond the algorithms submitted to the LOCATA
challenge, approaches based on, e.g., blind source separa-
tion [102]–[105] can be used for multi-source localization.

1) Subspace Techniques: Since spatial cues inferred from
the received signals may not be sufficient to resolve between
multiple, simultaneously active sources, subspace-based lo-
calization techniques rely on diversity between the different
sources. Specifically, assuming that the sources are uncorrelated,
subspace-based techniques, such as MUSIC [106] or Estima-
tion of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [107]–[109] resolve between temporally overlapping
signals by mapping the received signal mixture to a space where
the source signals lie on orthogonal manifolds.

MUSIC [106] exploits the subspace linked to the largest
eigenvalues of the correlation matrix to estimate the locations of
N sources. The fundamental assumption is that the correlation
matrix, R, of the received signals can be decomposed, e.g.,
using Singular Value Decomposition (SVD) [110], into a signal
subspace, Us = [U1

s . . . ,UN
s ], consisting of N uncorrelated

plane-wave signals, Un
s for n ∈ {1, . . . , N}, and an orthogonal

noise subspace. The spatial spectrum from direction, Ω, for
plane wave, n ∈ {1, . . . , N}, is:

PMUSIC(Ω) =
(
vT (Ω)

(
I−Un

s (U
n
s )

H
)
v∗(Ω)

)−1
, (7)

where H denotes the Hermitian transpose, I denotes the identity
matrix, and v corresponds to the steering vector. MUSIC exten-
sions to broadband signals, such as speech, can be found in,
e.g., [63], [111]. However, the processing of correlated sources
remains challenging since highly correlated sources correspond
to a rank-deficient correlation matrix, such that the signal and
noise space cannot be separated effectively. This is particularly
problematic in realistic acoustic environments, since reverber-
ation corresponds to a convolutive process, in contrast to the
additive noise model underpinning MUSIC.

For improved robustness in reverberant conditions, [112]
introduce a ‘direct-path dominance’ test. The test retains only
the time-frequency bins that exhibit contributions of a single
source, i.e., whose spatial correlation matrix corresponds to a
rank-1 matrix, hence reducing the effects of temporal smear-
ing and spectral correlation induced by reverberation. For im-
proved computational efficiency, [101] replaces MUSIC with
the pseudo-intensity approach in [100].

The following subspace-based localization approaches were
submitted to the LOCATA challenge:

ID 2 [40] utilizes DoA estimates from MUSIC as inputs to a
Probability Hypothesis Density (PHD) filter [113], [114] (see
Section V-C2) for Task 4, evaluated for all four arrays.

ID 11 [48] utilizes the direct-path dominance test [112] and
MUSIC in the Short-Time Fourier Transform (STFT) domain
for the robot head signals for static-source Tasks 1 and 2.

ID 12 [48] extends the approach of ID 11 to processing in the
domain of spherical harmonics (see Section V-A4) of the
Eigenmike signals for Tasks 1 and 2.

ID 13 [49] applies MUSIC for localization and a Kalman filter
(see Section V-C1) for tracking to single-source Tasks 1 and
3 using the robot head and the Eigenmike.

ID 14 [49] extends the approach of ID 13 to apply the General-
ized EVD (GEVD) to MUSIC.
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ID 15 and 16 [50] apply the subspace pseudo-intensity approach
in [101] (see Section V-A4) to the Eigenmike signals in Tasks
1 and 2, respectively.

2) Supervised Learning and Neural Networks: Data-driven
approaches can be used to exploit prior information available
from large-scale datasets. The work in [115] assumes that
frequency-dependent ILD and IPD values are located on a
locally linear manifold. In a supervised learning approach, the
mapping between the binaural cues and the source locations
is learnt from annotated data using a probabilistic piecewise
affine regression model. A semi-supervised approach is pro-
posed in [116] that uses RTF values input features in order to
learn the source locations based on manifold regularization.

To avoid the efforts for hand-crafted signal models, neural
network-based (’deep’) learning approaches can also be ap-
plied to sound source localization. Previous approaches use
hand-crafted input vectors including established localization
parameters such as GCC [117], [118], eigenvectors of the spatial
coherence matrix [119], [120] or ILDs and cross-correlation
function in [121]. TDoAs were used in, e.g., [122], [123], to
reduce the adverse affects of reverberation. End-to-end learning
for given acoustic environments uses either the time-domain
signals or the STFT-domain signals only as the input for the
network. In [124], the DoA of a single desired source from a
mixture of the desired source and an interferer is estimated by
a Deep Neural Network (DNN) with separate models for the
desired source and the interferer. In [125], DoA estimation is
considered as a multi-label classification problem, where the
range of candidate DoA values is divided into small sectors,
each sector representing one class.

The following approaches were submitted to LOCATA:

ID 1 [39] proposes a classifier based on linear discriminant
analysis and trained using features based on the amplitude
modulation spectrum of the hearing aid signals for Task 1.

ID 9 [46] uses a DNN regression model for localization of the
source DoA for Task 1 using four microphone signals of the
DICIT array.

C. Tracking of Moving Sources

Source localization approaches provide instantaneous esti-
mates of the source DoAs, independent of information acquired
from past observations. The DoA estimates are typically un-
labelled and cannot be easily associated with estimates from
the past. In order to obtain smoothed source trajectories from
the noisy DoA estimates, tracking algorithms apply a two-stage
process that a) predicts potential future source locations based
on past information, and b) corrects the localized estimates by
trading off the uncertainty in the prediction against the estima-
tion error of the localization system.

1) Single-Source Tracking: Tracking algorithms based on
Bayesian inference aim to estimate the marginal posterior Prob-
ability Density Function (pdf) of the current state of the source,
conditional on the full history of observations. In the context of
acoustic tracking, the source state often corresponds to either

the Cartesian source position, x(t), or the DoA, Φ(t), at time
stamp, t. The state may also contain the source velocity and
acceleration. The observations correspond to estimates of either
the source position,y(t), TDoAs, τm,�(x(t)), or DoA,ω(t) pro-
vided by the localization system. Assuming a first-order Markov
chain and observations in the form of DoAs, the posterior pdf
can be expressed as:

p (Φ(0 : t′) | ω(1 : t′))

= p (Φ(0))

t′∏
t=1

p (Φ(t) | Φ(0 : t− 1),ω(1 : t)) , (8)

where Φ(0 : t′) � [ΦT (0), . . . ,ΦT (t′)]T . Using Bayes’s theo-
rem:

p (Φ(t) | Φ(0 : t− 1),ω(1 : t))

=
p (ω(t) | Φ(t)) p (Φ(t) | Φ(t− 1))∫

P p (ω(t) | Φ(t)) p (Φ(t) | Φ(t− 1)) dΦ(t)
,

(9)

where p(ω(t) |Φ(t)) is the likelihood function, p(Φ(t) |Φ(t−
1)) is the prior pdf, determined using a dynamical model, and P
is the support ofΦ(t). For online processing, it is often desirable
to estimate sequentially the filtering density, p(Φ(t) |ω(1 : t)),
instead of (9). For linear Gaussian state spaces [126], where
the dynamical model and the likelihood function correspond to
normal distributions, the filtering density reduces to a Kalman
filter [127], [128].

However, the state space models used for acoustic tracking are
typically non-linear and/or non-Gaussian [10], [53]. For exam-
ple, in [129], [130], the trajectory of Cartesian source positions
is estimated from the TDoA estimates. Since the relationship
between a source position and the corresponding TDoAs is non-
linear, the integral in (9) is analytically intractable. The particle
filter is a widely used sequential Monte Carlo method [131]
that approximates the intractable posterior pdf by importance

sampling of a large number of random variates, {φ̂(i)
(t)}Ii=1, -

or ‘particles’ -, from a proposal distribution, g(Φ(t) |Φ(0 :
t− 1),ω(1 : t)), i.e.,

p (Φ(t) | Φ(0 : t− 1),ω(1 : t)) ≈
I∑

i=1

w(i)(t) δ
Φ̂

(i)
(t)
(Φ(t)),

(10)

where δ denotes the Dirac measure, and the importance weights,
w(i)(t), are given by:

w(i)(t) = w(i)(t− 1)
p (ω(t) | Φ(t)) p (Φ(t) | Φ(t− 1))

g (Φ(t) | Φ(0 : t− 1),ω(1 : t))
.

(11)

The authors of [129], [130] rely on prior importance sam-
pling [132] from the prior pdf. Each resulting particle is assigned
a probabilistic weight, evaluated using the likelihood function of
the TDoAs estimates. The work in [133] uses the SRP function
instead of TDoA estimates as observations. Rao-Blackwellized
particle filters [134] are applied in [135], [136] instead of prior
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importance sampling. Resampling algorithms [137]–[141] en-
sure that only stochastically relevant particles are retained and
propagated in time.

The tracking accuracy is highly dependent on the specific
algorithm used for localization. Moreover, tracking approaches
that rely on TDoA estimates are crucially dependent on accurate
calibration [142] and synchronization [143]. To relax the depen-
dency on calibration and synchronization, DoA estimates can be
used as observations instead of TDoA estimates. To appropri-
ately address the resulting non-Gaussian state-space model, a
wrapped Kalman filter is proposed in [69] that approximates
the posterior pdf of the source directions by a Gaussian mixture
model, where the mixture components account for the various
hypotheses that the state at the previous time step, the predicted
state at the current time step, or the localized DoA estimate
may be wrapped around π. To avoid an exponential explosion
of the number of mixture components, mixture reduction tech-
niques [144] are required.

Rather than approximating the angular distribution by a Gaus-
sian mixture, a von Mises filter, based on directional statis-
tics [145], [146], is proposed in [53]. The Coherent-to-Diffuse
Ratio (CDR) [147], [148] is used as a measure of reliability of the
DoA estimates in order to infer the unmeasured source-to-sensor
range.

The following single-source tracking approaches were sub-
mitted to the LOCATA challenge:

ID 3 [41] combines TDE (see Section V-A1) for localization
with a particle filter for tracking using the DICIT array for the
single-source Tasks 1, 3 and 5.

ID 7 [44] combines diagonal unloading beamforming [95] (see
Section V-A3) for localization with a Kalman filter for source
tracking using a 7-microphone linear subarray of the DICIT
array for Tasks 1, 3 and 5.

ID 8 [45] combines TDE (see Section V-A1) with IPDs (see
Section V-A2) for localization and apply a wrapped Kalman
filter [69] for source tracking using the hearing aids for Tasks
1, 3 and 5.

ID 10 [47] combines localization using the first-order ambison-
ics configuration (see Section V-A4) of the Eigenmike with a
particle filter for Tasks 1-4.

ID 13 and ID 14 [49] apply variants of MUSIC (see
Section V-B1) for localization and a Kalman filter for tracking
the source DoAs for Tasks 1 and 3 using the robot head and
the Eigenmike.

2) Multi-Source Tracking: For multiple sources, not only the
source position, but also the number of sources is subject to
uncertainty. However, this uncertainty cannot be accounted for
within the classical Bayesian framework.

Heuristic data association techniques are often used to asso-
ciate existing tracks and observations, as well as to initialize new
tracks. Data association partitions the observations into track
‘gates’ [149], or collars, around each predicted track in order to
eliminate unlikely observation-to-track pairs. Only observations

within the collar are considered when evaluating the track-
to-observation correlations. Nearest-neighbour approaches de-
termine a unique assignment between each observation and
at most one track by minimizing an overall distance metric.
However, in dense, acoustic environments, such as the cocktail
party scenario [150], [151], many pairs between tracks and
observations may result in similar distance values, and hence a
high probability of association errors. For improved robustness,
probabilistic data association can be used instead of heuristic
gating procedures, e.g., the Probabilistic Data Association Filter
(PDAF) [152], [153], or Joint Probabilistic Data Association
(JPDA) [154], [155].

To avoid explicit data association, the work in [68] models
the observation-to-track associations as discrete latent variables
within a variational EM approach for multi-source tracking.
Estimates of the latent variables provide the track-to-observation
associations. The work in [156] extends the variational EM
in [68] to a incorporate a von Mises distribution [53] for robust
estimation of the DoA trajectories.

To incorporate track initiation and termination in the pres-
ence of false and missing observations, the states of multiple
sources can be formulated as realizations of a Random Finite Set
(RFS) [114], [157]. In contrast to random vectors, RFSs capture
not only the time-varying source states, but also the unknown
and time-varying number of sources. Finite set statistics [158],
[159] provide the mathematical mechanisms to treat RFSs within
the Bayesian paradigm. Since the pdf of RFS realizations is
combinatorially intractable, its first-order approximation, the
PHD filter [114] provides estimates of the intensity function –
as opposed to the pdf – of the number of sources and their
states.

The PHD filter was applied in [160], [161] for the tracking
of the positions of multiple sources from the TDoA estimates.
Due to the non-linear relationship between the Cartesian source
positions and TDoA estimates, the prediction and update for
each hypothesis within the PHD filter is realized using a particle
filter as previously detailed in Section V-C1. A PHD filter for
bearing-only tracking from the localized DoA estimates was
proposed in [162], incorporating a von Mises mixture filter for
the update of the source directions. The work in [9], [10] applies
a PHD filter in order to track the source positions from DoA
estimates for SLAM.

The following multi-source tracking approaches were sub-
mitted to the LOCATA challenge:

ID 2 [40] utilizes DoA estimates from MUSIC (see
Section V-B1) as inputs to a PHD filter [113], [114] with
intensity particle flow [163] for Task 4, using all four arrays.

ID 4 [42] combines DoA estimation using the direct-path RTF
approach in [62] (see Section V-A1) with the variational EM
algorithm in [68] for all Tasks using the robot head.

VI. EVALUATION MEASURES

This section provides a discussion of the performance mea-
sures used for evaluation of the LOCATA challenge.
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Fig. 3. Tracking ambiguities. Colors indicate unique track IDs.

A. Source Localization and Tracking Challenges

In realistic acoustic scenarios, source localization algorithms
are affected by a variety of challenges (see Fig. 3). Fast local-
ization estimates using a small number of time frames often
result in estimation errors for signals that are affected by late
reverberation and noise. Sources are often missed, e.g., due to
periods of voice inactivity, for distant sources corresponding to
low signals levels, or for sources oriented away from the sensors.
False estimates arise due to, e.g., strong early reflections mis-
taken as the direct path of a source signal, or reverberation caus-
ing temporal smearing of speech energy beyond the endpoint
of a talker’s utterance, and due to overlapping speech energy
in the same spectral bins for multiple, simultaneously active
talkers.

Source tracking algorithms typically use localization esti-
mates as observations. To distinguish inconsistent false esti-
mates from consistent observations, tracking approaches often
require multiple, consecutive observations of the same source
direction or position before a track is initialized. Furthermore,
track termination rules are necessary to distinguish between
speech endpoints and missing estimates. To avoid premature
track deletions due to short-term missing estimates, track termi-
nation rules are often based on the lapsed time since the last track
update. Uncertainty due to the onsets and endpoints of speech
activity may therefore lead to a latency between the onsets
and endpoints of speech and the initialization and termination,
respectively, of the corresponding source track.

In practice, uncertainty in the source dynamical model and in
the observations may lead to divergence of the track from the
ground-truth trajectory of an inactive source. In multi-source
scenarios, track divergence may also occur by mistakenly updat-
ing a source’s track with estimates of a different, nearby source.
As a consequence, track swaps may occur due to the divergence
of a track to the trajectory of a different source. Furthermore, a
track may be broken if the track is not assigned to any source for
one or more time steps, i.e., the assignment between a source
and its estimates is temporarily ‘interrupted’.

Measures selected for the objective evaluation are:

Estimation accuracy: The distance between a source position
and the corresponding localized or tracked estimate.

Estimation ambiguity: The rate of false estimates directed away
from sound sources.

Track completeness: The robustness against missing detections
in a track or a sequence of localization estimates.

Track continuity: The robustness against fragmentations due
to track divergence or swaps affecting a track or a sequence
of localization estimates.

Track timeliness: The delay between the speech onset and either
the first estimate in a sequence of localization estimates, or at
track initialization.

The evaluation measures detailed in the following subsections
are defined based on the following nomenclature. A single
recording of duration Trec, including a maximum number of
Nmax sources, is considered. Each source n ∈ {1, . . . , Nmax} is
associated with A(n) periods of activity of duration T (a, n) =
Tend(a, n)− Tsrt(a, n) for a ∈ {1, . . . , A(n)}, where Tsrt(a, n)
and Tend(a, n), respectively, mark the start and end time of the
VAP. The corresponding time step indices are tsrt(a, n) ≥ 0
and tend(a, n) ≥ tsrt(a, n). Each VAP corresponds to an utter-
ance of speech, which is assumed to include both voiced and
unvoiced segments. Δvalid(a, n) and Lvalid(a, n), respectively,
denote the duration and the number of time steps in which
source n is assigned to a valid track during VAP a. Participants
were required to submit azimuth estimates of each source for a
sequence of pre-specified time stamps, t, corresponding to the
rate of the optical tracking system used for the recordings. Each
azimuth estimate had to be labelled by an integer-valued Identity
(ID), k = 1, . . . ,Kmax, where Kmax is the maximum number
of source IDs in the corresponding recording. Therefore, each
source ID establishes an assignment from each azimuth estimate
to one of the active sources.

B. Individual Evaluation Measures

To highlight the various scenarios that need to be accounted
for during evaluation, consider, for simplicity and without loss
of generality, the case of a single-source scenario, i.e.,Nmax = 1,
where N(t) = 1 during speech activity and N(t) = 0 if the
source is inactive. A submission either results in K(t) = 0,
K(t) = N(t) = 1 or K(t) > N(t), where N(t) and K(t), re-
spectively, denote the true and estimated number of sources ac-
tive at t. IfK(t) = 0, the source is either inactive, i.e.,N(t) = 0,
or the estimate of an active source is missing, if N(t) = 1. For
K(t) = 1, the following scenarios are possible. a) The source is
active, i.e.,N(t) = 1, and the estimate corresponds to a typically
imperfect estimate of the ground-truth source direction. b) The
source is active, N(t) = 1, but its estimate is missing, whereas
a false estimate, e.g., pointing towards the direction of an early
reflection, is provided. c) The source is inactive, i.e., N(t) = 0,
and a false estimate is provided. Evaluation measures are there-
fore required that quantify, per recording, any missing and false
estimates as well as the estimation accuracy of estimates in
the direction of the source. Prior to performance evaluation, an
assignment of each source to a detection must be established
by gating and source-to-estimate association, as detailed in
Section VI-B1 and Section VI-B2. The resulting assignment is
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for evaluation of the estimation accuracy, completeness, conti-
nuity, and timeliness (see Section VI-B3 and Section VI-B4).

1) Gating Between Sources and Estimates: Gating [164]
provides a mechanism to distinguish between estimation errors,
missing, and false estimates. Gating removes improbable as-
signments of a source with estimates corresponding to errors
exceeding a preset threshold. Any estimate removed by gating
is counted as a false estimate. If no detection lies within the gate
of a source, the source is counted as missed. The gating threshold
needs to be selected carefully: If set too low, estimation errors
may lead to unassociated sources where a distorted estimate
along an existing track is classified as a false estimate and the
source estimate is considered as missing. In contrast, if the gating
threshold is set too high, a source may be incorrectly assigned
to a false track.

For evaluation of the LOCATA challenge, the gating threshold
is selected such that the majority of submissions within the
single-source Tasks 1 and 3 is not affected. As will be shown in
the evaluation in Section VII, a threshold of 30◦ applied to the
azimuth error allows to identify systematic false estimates.

2) Source-to-Estimate Association: For K(t) > 1, source
localisation may be affected by false estimates both inside and
outside the gate. Data association techniques are used to assign
the source to the nearest estimate within the gate. Spurious
estimates within the gate are included in the set of false estimates.
At every time step, a pair-wise distance matrix corresponding
to the angular error between each track and each source is
evaluated. The optimum source-to-estimate assignment is es-
tablished using the Munkres algorithm [165] that identifies the
source-to-estimate pairs corresponding to the minimum overall
distance. Therefore, each source is assigned to at most one track
and vice versa.

Source-to-estimate association therefore allows to distinguish
estimates corresponding to the highest estimation accuracy from
spurious estimates. Similar to data association discussed in
Section V, and by extension of the single-source case, gating
and association establish a one-to-one mapping of each active
source with an estimate within the source gate. Any unassociated
estimates are considered false estimates, whereas any unassoci-
ated sources correspond to missing estimates.

Based on the assignments between sources and estimates,
established by gating and association, the evaluation measures
are defined to quantify the estimation errors and ambiguities as
a single value per measure, per recording. For each assignment
between a source and an estimate, the measures detailed in
the following are applied to quantify, as a single measure per
recording, the estimation accuracy, ambiguity, track complete-
ness, continuity, and timeliness (see Section VI-A).

For brevity, a ‘track’ is synonymously used in the following
to describe both, the trajectory of estimates obtained from a
tracker, as well as a sequence of estimates labelled with the same
ID by a localization algorithm. The sequence of ground-truth
source azimuth values of a source is referred to as the source’s
ground-truth azimuth trajectory.

3) Estimation Accuracy: The angular errors are evaluated
separately in azimuth and elevation for each assigned source-
to-track pair for each time stamp during VAPs. The azimuth and

elevation error, dφ(φ(t), φ̂(t)) and dθ(θ(t), θ̂(t)), respectively,
are defined as:

dφ

(
φ(t), φ̂(t)

)
= mod

(
φ(t)− φ̂(t) + π, 2π

)
− π, (12a)

dθ

(
θ(t), θ̂(t)

)
= θ(t)− θ̂(t), (12b)

where mod(q, r) denotes the modulo operator for the dividend,
q, and the divisor, r; φ(t) ∈ [−π, π) and θ(t) ∈ [0, π] are the
ground-truth azimuth and elevation, respectively; and φ̂(t) and
θ̂(t) are the azimuth and elevation estimates, respectively.

4) Ambiguity, Track Completeness, Continuity, and Timeli-
ness: In addition to the angular errors, multiple, complementary
performance measures are used to quantify estimation ambigu-
ity, completeness, continuity, and timeliness.

At each time step, the number of valid, false, missing, broken,
and swapped tracks are counted. Valid tracks are identified as
the tracks assigned to a source, whereas false tracks correspond
to the unassociated tracks. The number of missing tracks is
established as the number of unassociated sources. Broken tracks
are obtained by identifying each source that was assigned to
a track at t− 1, but are unassociated at t, where t and t− 1
must correspond to time steps within the same voice-activity
period. Similar to broken tracks, swapped tracks are counted
by identifying each source that was associated to track ID j ∈
{1, . . . ,Kmax}, and is associated to track ID, � ∈ {1, . . . ,Kmax},
where j 
= �.

Subsequently, the following measures of estimation ambigu-
ity, completeness, continuity, and timeliness are evaluated:
Probability of detection (pd) [164]: A measure of complete-
ness, evaluating for each source and voice-activity period the
percentage of time stamps during which the source is associated
with a valid track.
False Alarm Rate (FAR) [166]: A measure of ambiguity, eval-
uating the number of false estimates per second. The FAR can
be evaluated over the duration of each recording [53], in order
to provide a gauge of the effectiveness of any Voice Activity
Detector (VAD) algorithms that may have been incorporated in a
given submitted localization or tracking framework. In addition,
the FAR is evaluated in this paper over the duration of each VAP
in order to provide a measure of source counting accuracy of
each submission.
Track Latency (TL) [166]: A measure of timeliness, evaluating
the delay between the onset and the first detection of source n
in VAP a.
Track Fragmentation Rate (TFR) [167]: A measure of conti-
nuity, indicating the number of track fragmentations per second.
The number of fragmentations corresponds to the number of
track swaps plus the number of broken tracks.

The evaluation measures defined above therefore quantify
errors and ambiguities by single numerical values per mea-
sure, per recording. These individual measures can also be
used to quantify, across all recordings in each task, the mean
of and standard deviation in the estimation accuracy and
ambiguity as well as the track completeness, continuity and
timeliness.
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C. Combined Evaluation Measure

The Optimal SubPattern Assignment (OSPA) metric [168]
and its variants, e.g., [169], correspond to a comprehensive mea-
sure that consolidates the cardinality error in the estimated num-
ber of sources and the estimation accuracy across all sources into
a single distance metric at each time stamp of a recording. The
OSPA therefore provides a measure that combines the estimation
accuracy, track completeness and timeliness. The OSPA selects,
at each time stamp, the optimal assignment of the subpatterns
between sources and combines the sum of the corresponding
cost matrix with the cardinality error in the estimated number of
sources. Since the OSPA is evaluated independently of the IDs
assigned to the localization and tracking estimates, the measure
is agnostic to uncertainties in the identification of track labels.

The OSPA [113], [170] is defined as:

OSPA(Φ̂(t),Φ(t)) �
[

1

K(t)
min

π∈ΠK(t)

N(t)∑
n=1

dc(φn(t), φ̂π(n)(t))
p+(K(t)−N(t))cp

] 1
p

,

(13)

forN(t) ≤ K(t), where Φ̂(t) � {φ̂1(t), . . . , φ̂K(t)(t)} denotes
the set of K(t) track estimates; Φ(t) � {φ1(t), . . . , φN(t)(t)}
denotes the set of N(t) ground-truth sources active at t;
1 ≤ p < ∞ is the order parameter; c is the cutoff parame-
ter; ΠK(t) denotes the set of permutations of length N(t)

with elements {1, . . . ,K(t)} [170]; dc(φn(t), φ̂π(n)(t)) �
min (c, abs(dφ(φn(t), φ̂π(n)(t)))), where abs(·) denotes the ab-
solute value; dφ(·) is the angular error (see (12)); and π(n) de-
notes the nth element of each subset π ∈ Π. For N(t) > K(t),
the OSPA distance is evaluated as OSPA(Φ(t), Φ̂(t)) [170]. The
impact of the choice of p and c is discussed in [168]. In this paper,
c = 30◦.

To provide further insight into the OSPA measure, we note that
the term 1

K(t) minπ∈ΠK(t)

∑N(t)
n=1 dc(φn(t), φ̂π(n)(t))

p evalu-
ates the average angular error by comparing each angle estimate
against every ground-truth source angle. The OSPA is therefore
agnostic of the estimate-to-source association. The cardinality
error is evaluated as K(t)−N(t). The order parameter, p,
determines the weighting of the angular error relative to the
cardinality error.

Due to the dataset size of the LOCATA corpus, a compre-
hensive analysis of the OSPA at each time stamp for each
submission, task, array, and recording is impractical. Therefore,
the analysis of the LOCATA challenge results is predominantly
based on the mean and variance of the OSPA across all time
stamps and recordings for each task.

VII. EVALUATION RESULTS

The following section presents the performance evaluation for
the LOCATA challenge submissions using the measures detailed
in Section VI. The evaluation in Section VII-A focuses on the
single-source tasks 1, 3 and 5. Section VII-B presents the results
for the multi-source tasks 2, 4 and 6.

The evaluation framework establishes an assignment between
each ground-truth source location and a source estimate for
every time stamp during voice-active periods in each recording,
submission, task, and array (see Section VI). The azimuth error
in (12a) between associated source-to-track pairs is averaged
over all time stamps and all recordings. The resulting average
azimuth errors for each task, submission, and array are provided
in Table III. The baseline (BL) corresponds to the MUSIC
implementation as detailed in [19]. One submission (ID 5) is
not included in the discussion as details of the method are not
available at the time of writing. Two further submissions (ID 13
and ID 14) are also not included due to inconclusive results.

A. Single-Source Tasks 1, 3, 5

1) Task 1 - Azimuth Accuracy: For Task 1, involving a single,
static source and a static microphone array, average azimuth
accuracies of around 1◦ can be achieved (see Table III). Notably,
Submission 3 results in 1.0◦ using the DICIT array by combining
TDE with a particle filter for tracking; Submission 11 results in
an average azimuth accuracy of 0.7◦ using the robot head; and
Submission 12 achieves an accuracy of 1.1◦ using the Eigen-
mike. Submissions 11 and 12 are MUSIC implementations,
applied to the microphone signals in the STFT domain and
domain of spherical harmonics, respectively.

A possible reason for the performance of Submissions 11 and
12 is that MUSIC does not suffer from spatial aliasing if applied
to arrays that incorporate a large number of microphones. As
such, the overall array aperture can be small for low noise
levels. Therefore, the performance of the two MUSIC-based
Submissions 11 (robot head) and 12 (Eigenmike) is comparable.
Moreover, for the Eigenmike, Submission 12 (1.1◦) leads to
improvements of the SRP-based Submissions 6 (6.4◦) and 7
(7.0◦).

For the pseudo-intensity-based approaches that were applied
to the Eigenmike, Submission 10 achieves an azimuth accu-
racy of 8.9◦ by extracting pseudo-intensity vectors from the
first-order ambisonics and applying a particle filter for tracking.
Submission 15, which extracts the pseudo-intensity from the sig-
nals in the domain of spherical harmonics and applies subspace-
based processing, results in 8.1◦. The pseudo-intensity-based
Submissions 10 and 15 lead to a performance degradation of ap-
proximately 7◦, compared to the MUSIC-based Submission 12,
also applied in the domain of spherical harmonics. The reduced
accuracy may be related to the resolution of the spatial spectra
provided by the pseudo-intensity-based approaches compared
to MUSIC. The spatial spectrum is computed using MUSIC
by scanning each direction in a discrete grid, specified by the
steering vector. In contrast, pseudo-intensity-based approaches
approximate the spatial spectrum by effectively combining the
output of three dipole beamformers, steered along the x-, y-,
and z-axis relative to the array. Therefore, compared to MUSIC,
pseudo-intensity approaches evaluate a coarse approximation of
the spatial spectrum, but require reduced computational load.

A performance degradation from the 12-channel robot head
to the 32-channel Eigenmike is observed for the submissions
that involved both arrays. For ground-truth acquisition using
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TABLE III
AVERAGE AZIMUTH ERRORS DURING VAP. SUBMISSIONS CORRESPONDING TO MINIMUM AVERAGE ERRORS ARE HIGHLIGHTED IN BOLD FONT. COLUMN COLOUR

INDICATES TYPE OF ALGORITHM, WHERE WHITE INDICATES FRAMEWORKS INVOLVING ONLY DOA ESTIMATION (SUBMISSION IDS 1, 6, 9, 11, 12, 15, 16 AND THE

BASELINE (BL)), AND GREY INDICATES FRAMEWORKS THAT COMBINE DOA ESTIMATION WITH SOURCE TRACKING (SUBMISSION IDS 2, 3, 4, 7, 8, 10)

the OptiTrack system, the reflective markers were attached to
the shockmount of the Eigenmike, rather than the baffle of the
array, to minimize shadowing and scattering effects, see [17],
[18]. Therefore, a small bias in the DoA estimation errors is
possible due to rotations of the array within the shockmount.
Nevertheless, this bias is expected to be significantly smaller
than some of the errors observed for the Eigenmike in Table III.
Possible reasons are that 1) the irregular array topology of
the robot head may lead to improved performance for some
of the algorithms, or that 2) the performance improvements in
localization accuracy may be related to the larger array aperture
of the robot head, compared to the Eigenmike. However, with
the remaining uncertainty regarding the actual implementation
of the algorithms, conclusions remain somewhat speculative at
this point.

Submission 6, applying SRP-PHAT to a selection of micro-
phone pairs, results in average azimuth errors of 1.5◦ using the
robot head and 6.4◦ using the Eigenmike. Similar results of 1.8◦

and 7.0◦ for the robot head and Eigenmike, respectively, are ob-
tained using Submission 7, which combine an SRP beamformer
for localization with a Kalman filter for tracking. Therefore, the
SRP-based approaches in Submissions 6 and 7, applied without
and with tracking, respectively, lead to comparably accurate
results.

Table III also highlights a significant difference in the per-
formance results between the approaches submitted to Task 1
using the DICIT array. Submission 3 achieves an average az-
imuth accuracy of 1.0◦ by combining GCC-PHAT with a par-
ticle filter. Submission 7, combining SRP beamforming and a
Kalman filter, results in a small degradation to 2.2◦ in average
azimuth accuracy. Submission 9 leads to a decreased accuracy

of 9.1◦. Submission 3 uses the subarray of microphone pairs
corresponding to 32 cm spacings to exploit spatial diversity
between the microphones; Submission 7 uses the 7-microphone
linear subarray at the array centre; Submission 9 uses three
microphones at the centre of the array, with a spacing of 4 cm,
to form two microphone pairs. A reduction of the localization
accuracy can therefore be intuitively expected for Submission 9,
compared to Submissions 3 and 7, due to a) the reduced number
of microphones, and b) the reduced inter-microphone spacing,
and hence reduced spatial diversity of the sensors.

For the hearing aids in Task 1, both Submissions 1 and 8 result
in comparable azimuth errors of 8.5◦ and 8.7◦ respectively. The
recordings for the hearing aids were performed separately from
the remaining arrays, and are therefore not directly comparable
to the results for other arrays. Nevertheless, a reduction in
azimuth accuracy for the hearing aids is intuitively expected
due to the small number of microphones integrated in each of
the arrays.

To conclude, we note that the results for the static single-
source Task 1 indicate a comparable performance between the
submissions that incorporate localization and those submissions
that combine localization with source tracking. Since the source
is static, long blocks of data can be used for localization. Fur-
thermore, temporal averaging can be applied across data blocks.
Therefore, since a dynamical model is not required for the
static single-source scenario, localization algorithms can apply
smoothing directly to the DoA estimate, without the need for
explicit source tracking.

2) Task 3 - Azimuth Accuracy: In the following, S135 =
{3, 4, 6, 7, 8} denotes the set of submissions that were evaluated
for Tasks 1, 3 and 5. For Task 3, involving a single, moving
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Fig. 4. Azimuth estimates for Task 3, recording 4 for (a) azimuth estimates for
Submissions 3, 6, 7. As a reference, the ground-truth range between the robot
head and the source is shown in (b).

source, a small degradation is observed in the azimuth error over
S135 from 4.3◦ for Task 1 to 5.5◦ for Task 3. For example, Sub-
mission 7 leads to the lowest average absolute error in azimuth
with only 3.1◦ for Task 3 using the robot head, corresponding
to a degradation of 1.3◦ compared to Task 1. The accuracy of
Submission 3 reduces from 1.0◦ for Task 1 to 1.8◦ for Task 3.

The reduction in azimuth accuracy from static single-source
Task 1 to moving single-source Task 3 is similar for all sub-
missions. Trends in performance between approaches for each
array are identical to those discussed for Task 1. The overall
degradation in performance is therefore related to differences
in the scenarios between Task 1 and Task 3. Recordings from
human talkers are subject to variations in the source orientation
and source-sensor distance. The orientation of sources directed
away from the microphone array leads to a decreased direct-path
contribution to the received signal. Furthermore, with increasing
source-sensor distance, the noise field becomes increasingly
diffuse. Hence, reductions in the Direct-to-Reverberant Ratio
(DRR) [23] due to the source orientation, as well as the CDR
due to the source-sensor distance, result in increased azimuth
estimation errors.

To provide further insight into the results for Task 3, Fig. 4
provides a comparison for recording 4 of the approaches leading
to the highest accuracy for each array, i.e., Submission 7 using
the robot head, Submission 3 using the DICIT array, and Sub-
mission 6 using the Eigenmike. For Submission 7, accurate and
smooth tracks of the azimuth trajectories are obtained during
VAPs. Therefore, diagonal unloading SRP beamforming clearly
provides power maps of sufficiently high resolution to provide
accurate azimuth estimates whilst avoiding systematic false

detections in the directions of early reflections. Moreover, appli-
cation of the Kalman filter provides smooth azimuth trajectories.

Similar results in terms of the azimuth accuracy are obtained
for Submission 3, combining GCC-PHAT with a particle filter
for the DICIT array. However, due to the lack of a VAD, tempo-
rary periods of track divergence can be observed for Submission
3 around periods of voice inactivity, i.e., between [3.9, 4.4] s and
[8.5, 9.2] s.

For the voice-active period between [16.9, 19.6] s, the results
of Submission 7 are affected by a significant number of missing
detections, whilst the results for Submission 3 exhibits diverging
track estimates. Fig. 4(b) provides a plot of the range between
the source and robot head, highlighting that the human talker is
moving away from the arrays between [15.1, 20] s. Therefore, the
Cross-Power Spectral Density (CPSD)-based VAD algorithm
of Submission 7 results in missing detections of voice activity
with decreasing CDR. For Submission 3 and 6, that do not
involve a VAD, the negative DRR leads to missing and false
DoA estimates in the direction of early reflections. Therefore,
increasing DoA estimation errors are observed in voice-active
periods during which the source-sensor distance increases be-
yond 2 m.

3) Task 5 - Azimuth Accuracy: The mean azimuth accuracy
over S135, averaged over the corresponding submissions and
arrays, decreases from 5.5◦ for Task 3, using static arrays, to 9.7◦

for Task 5, using moving arrays. Despite the reduced number
of submissions for Task 5, the overall performance trends are
similar to those in Task 1 and Task 3 (see Table III).

The trend of an overall performance degradation is related to
the increasingly challenging conditions. Similar to Task 3, the
motion of the source and arrays lead to time-varying source-
sensor distances and source orientations relative to the array.
Furthermore, due to the motion of the array, it is crucial that
the microphone signals in Task 5 are processed over analysis
windows of sufficiently short duration.

4) Tasks 1, 3, 5. Impact of Gating on Azimuth Accuracy:
To illustrate the effect of gating on the evaluation results, the
evaluation was repeated without gating by assigning each source
to its closest estimate.2 Table IV provides the difference in the
average azimuth errors with and without gating. In Table IV,
entries with value 0.0 indicate that evaluation with and without
gating lead to the same result. Entries with values greater than
0.0 highlight that the azimuth error increases without gating,
i.e., the submitted results are affected by outliers outside of the
gating collar.

For the majority of submissions, a gating threshold of 30◦

results in improved azimuth accuracies in the range of 0.1◦ to 4◦

across Tasks 1, 3 5. A significant number of outliers are observed
for Submissions 1, 7 and 8. To reflect outliers in the analysis of
the results, evaluation measures, such as the FAR and probability
of detection, are required in addition to the average azimuth error.

2Even though Tasks 1, 3 and 5 correspond to single-source scenarios, gating
and association is required for evaluation, since azimuth estimates corresponding
to multiple source IDs were provided for some submissions.
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TABLE IV
DIFFERENCE IN AVERAGE AZIMUTH ERRORS WITH AND WITHOUT GATING, EVALUATED FOR SINGLE-SOURCE TASKS 1, 3, 5 FOR ALL SUBMISSIONS AND THE

BASELINE (BL). SUBMISSIONS UNAFFECTED BY GATING, AND HENCE OUTLIERS, ARE HIGHLIGHTED IN BOLD FONT

Fig. 5. Probability of detection (bars) and standard deviation over recordings
(whiskers) for Tasks 1, 3, 5, for each submission and array. Legends indicate the
submission IDs available for each of the tasks.

5) Completeness and Ambiguity: As detailed in Section VI,
the track cardinality and probability of detection are used as eval-
uation measures of the track completeness. For single-source
scenarios, the track completeness quantifies the robustness of
localization and tracking algorithms against changes in the
source orientation and source-sensor distance. Furthermore, the
FAR is used as an evaluation measure of the track ambiguity,
quantifying the robustness against early reflections and noise in
the case of the single-source scenarios.

The probability of detection and FAR, averaged over all
recordings in each task, are shown in Fig. 5 and Fig. 6, re-
spectively. The results indicate that the probability of detection
between Tasks 1, 3 and 5 remains approximately constant, with

Fig. 6. FAR for Task 1 involving single static loudspeakers (a) for entire
recording duration, and (b) during voice-activity periods only.

a trend towards a small reduction in pd, when changing from
static to dynamic sources.

The results also highlight that Submissions 11 and 12, corre-
sponding to the highest average azimuth accuracy for Task 1
using the robot head and Eigenmike (see Section VII-A1),
exhibit 100% probability of detection. The same submissions
also correspond to a comparatively high FAR of 50 false esti-
mates per second, averaged across all recordings for Task 1 and
evaluated for the full duration of each recording (see Fig. 6(a)).
These results are indicative of the fact that Submissions 11
and 12 do not incorporate VAD algorithms. For comparison,
Fig. 6(b) depicts the average FARs for Task 1 evaluated during
voice-activity only. The results in Fig. 6(b) clearly highlight a
significant reduction in the FAR for Submissions 3, 6, 11, which
do not incorporate VAD.

Fig. 7(a), selected from Submission 6 for Task 3 and record-
ing 2, shows that estimates during periods of voice inactivity are
affected by outliers, which are removed from the measure for
azimuth accuracy due to the gating process, and are accounted
for in the FAR. The majority of DoA estimates provided during
voice-activity correspond to smooth tracks near the ground-truth
source azimuth. In the time interval [15.1, 17] s, the estimates
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Fig. 7. Comparison of (a) azimuth estimates for Task 3, recording 2 using the
Eigenmike for Submissions 6, 7, and (b) ground-truth range between the source
and the Eigenmike array origin. Results indicate outliers during voice inactivity
for Submission 6 and temporary track divergence during voice activity between
[15.1, 17] s for Submissions 6 and 7.

exhibit a temporary period of track divergence. The results for
Submission 7 in Fig. 7(a) highlight that outliers during voice
inactivity are avoided since the submission incorporates VAD.
The results also indicate diverging track estimates in the interval
[15.1, 17] s. The track divergence affecting both submissions
is likely caused by the time-varying source-sensor geometry
due to the motion of the source. Fig. 7(b) highlights that the
source is moving away from the array after 13 s. As the source
orientation is directed away from the array, the contribution of
the direct-path signal decreases, resulting in reduced estimation
accuracy in the source azimuth. The reduction in azimuth accu-
racy eventually results in false estimates outside of the gating
threshold.

6) Timeliness: The track latency is used as an evaluation
measure of the timeliness of localization and tracking algo-
rithms. Therefore, the track latency quantifies the sensitivity of
algorithms to speech onsets, and the robustness against temporal
smearing at speech endpoints.

Fig. 8 shows the track latency, averaged across all recordings
for Tasks 1, 3 and 5. Submissions 1, 3, 6, 8, 9, 11 and 12 do
not incorporate VAD. Hence, estimates are provided at every
time stamp for all recordings. Submissions 3 and 8 incorporate
tracking algorithms, where the source estimates are propagated
through voice-inactive periods by track prediction. Submissions
1, 11 and 12, submitted for only the static tasks, estimate the
average azimuth throughout the full recording duration and
extrapolate the estimates across all time steps.

Therefore, for Task 1, Submissions 1, 3, 11 and 12 correspond
to 0 s track latency throughout. However, these algorithms also
correspond to high FARs, when the FAR is evaluated across
voice-active and inactive periods (see Fig. 6(a)). Submissions
3 and 8, which do not involve a VAD and were submitted to
the tasks involving moving sources, result in track latencies of

Fig. 8. Track latency (bars) and standard deviation over recordings (whiskers)
for Tasks 1, 3 and 5, for each submission and array. Legends indicate the
submission IDs available for each of the tasks.

below 0.2 s for Tasks 3 and 5, where the extrapolation of tracks
outside of VAPs is non-trivial.

Submission 4 incorporates a VAD that estimates voice activity
as a side-product of the variational EM algorithm for tracking.
The results show that Submission 4 effectively detects speech
onsets, leading to negligible track latencies across Tasks 1, 3 and
5. Submission 10, incorporating the noise Power Spectral Den-
sity (PSD)-based VAD of [171], detects speech onsets accurately
in the static source scenario in Task 1. However, the track latency
for Task 3, involving a moving source, increases to 0.35 s. It is
important to note that Submissions 7 and 10 incorporate Kalman
or particle filters with heuristic approaches to track initialization.
Therefore, it is likely that track initialization rules - rather than
the VAD algorithms - lead to delays in the confirmation of newly
active sources.

B. Multi-Source Tasks 2, 4, 6

1) Accuracy: For the multi-source Tasks 2, 4 and 6, the
results in Table III indicate similar trends as discussed for the
single-source Tasks 1, 3 and 5. However, the overall performance
of all submissions for Tasks 2, 4 and 6 is decreased compared
to Tasks 1, 3 and 5.

The reduction in azimuth accuracy is due to the adverse ef-
fects of interference from multiple simultaneously active sound
sources. Due to the broadband nature of speech, the speech
signals of multiple talkers often correspond to energy in the
overlapping time-frequency bins, especially for talkers with
similar voice pitch. Therefore, localization approaches that rely
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Fig. 9. Track fragmentation rate (bars) and standard deviation over recordings
(whiskers) for Tasks 2, 4, 6, for each submission and array.

on the W -disjoint orthogonality of speech may result in biased
estimates of the DoA (see, e.g., Submission 4).

Robustness against interference can be achieved by incor-
porating time-frequency bins containing the contribution of a
single source only, e.g., at the onset of speech. For example,
Submission 11 and 12 incorporate the Direct Path Dominance
(DPD)-test in [112], and result in azimuth accuracies of 2.0◦ and
1.4◦, respectively, for the robot head and Eigenmike in Task 2,
compared to 0.7◦ and 1.1◦ in Task 1.

An increasing number of sources also results in an increas-
ingly diffuse sound field in reverberant environments. For data-
dependent beamforming techniques [1], the directivity pattern
of the array is typically evaluated based on the signal and noise
levels. For increasing diffuse noise, it is therefore expected
that the performance of beamforming techniques decreases in
multi-source scenarios.

In addition to a reduction in the angular accuracy, ambiguities
arising in scenarios involving multiple, simultaneously active
sound sources result in missing and false DoA estimates, affect-
ing the completeness, continuity, and ambiguity of localization
and tracking approaches.

2) Continuity: The TFR is used as an evaluation measure for
track continuity (see Section VII). Fig. 9 provides the TFRs for
Tasks 2, 4 and 6 for each array and submission and averaged
over the recordings.

The results indicate that the subspace-based Submissions
11, 12 and 16 are robust to track fragmentation. Although the
submissions rely on the assumption of W -disjoint orthogonal

Fig. 10. Azimuth estimates and VAD for Submission 4 using the robot head
for (a)–(b) Task 2, (c)–(d) Task 4, and (e)–(f) Task 6.

sources, localization is performed only on a subset of frequency
bins that correspond to the contribution of a single source. In
contrast, BSS-based approaches assume that the W -disjoint
orthogonality applies to all frequency bands required for the
reconstruction of the source signals.
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TABLE V
AVERAGE OSPA RESULTS. COLUMN COLOUR INDICATES TYPE OF ALGORITHM, WHERE WHITE INDICATES FRAMEWORKS INVOLVING ONLY DOA ESTIMATION

(SUBMISSION IDS 11, 12, 16 AND THE BASELINE (BL)), AND GREY INDICATES FRAMEWORKS THAT COMBINE DOA ESTIMATION WITH

SOURCE TRACKING (SUBMISSION IDS 2, 4, 10)

The advantage of subspace-based processing for robustness
against track fragmentation is reinforced when comparing the
results for Submission 10, based on pseudo-intensity vec-
tors for ambisonics, against Submission 16, using subspace
pseudo-intensity vectors in the domain of spherical harmon-
ics. The azimuth accuracies of both submissions are compara-
ble, where Submission 10 results in an average azimuth error
of 7.3◦ and Submission 16 leads to 7.1◦ in Task 2. In con-
trast, Submission 10 leads to 0.3 fragmentations per second,
whereas Submission 16 exhibits only 0.07 fragmentations per
second.

Comparing the results for static Task 2 against the moving-
source Task 4 and the fully dynamic Task 6, the results in Fig. 9
highlight increasing TFRs across submissions. For example,
Submission 4, the only approach that was submitted for all
three multi-source tasks, corresponds to 0.53 fragmentations per
second for Task 2, involving multiple static loudspeakers, to 0.64
fragmentations per second for Task 4, involving multiple moving
human talkers, and to 0.71 fragmentations per second for Task 6
involving multiple moving human talkers and moving arrays.
The increasing TFR is due to the increasing spatio-temporal
variation of the source azimuth between the three tasks. Task 2
corresponds to constant azimuth trajectories of the multiple
static loudspeakers, observed from static arrays (see Fig. 10(a),
showing the azimuth estimates for Task 2, recording 5). The
motion of the human talkers that are observed from static arrays
in Task 4 correspond to time-varying azimuth trajectories within
limited intervals of azimuth values. For example, for Task 4,
recording 4 shown in Fig. 10(c), source 1 is limited to azimuth
values in the interval between [6, 24]◦, whilst source 2 is limited
between [−66, 50]◦. The motion of the moving sources and
moving arrays in Task 6 result in azimuth trajectories that vary
significantly between [−180, 180]◦ (see Fig. 10(e) for the az-
imuth estimates provided for Task 6, recording 2). Furthermore,
the durations of recordings for Task 4 and Task 6 are substantially
longer than those for Task 2. As to be expected, periods of speech
inactivity and the increasing time-variation of the source azimuth
relative to the arrays result in increasing TFRs when comparing
Task 2, Task 4, and Task 6.

3) OSPA - Accuracy vs. Ambiguity, Completeness and Con-
tinuity: The results for the OSPA measure, averaged over all
recordings for the multi-source Tasks 2, 4 and 6, is summarized
for order parameters p = {1, 5} (see (13)) in Table V. In contrast
to the averaged azimuth errors in Table III, the OSPA results trade
off the azimuth accuracy against cardinality errors, and hence
false and missing track estimates. For example, the results for
Task 2 in Table III indicate a significant difference in the results
for Submission 12 (1.4◦) and Submission 16 (7.1◦). In contrast,
due to false track estimates during periods of voice inactivity,
Table V highlights only a small difference between the OSPA
for Submissions 12 and 16.

To provide intuitive insight into the OSPA results and the
effect of the order parameter, p, Fig. 11 compares the azimuth
estimates obtained using Submissions 2 and 10 for the Eigen-
mike, Task 4, Recording 1.

The results highlight distinct jumps of the OSPA between
periods during which a single source is active and the onsets of
periods of two simultaneously active sources. During periods
of voice inactivity, detection errors in the onsets of speech
lead to errors corresponding to the cutoff threshold of c = 30◦.
Therefore, the cardinality error dominates the OSPA when
N(t) = 0 and K(t) > 0. During VAPs where N(t) = K(t),
the OSPA is dominated by the angular error between each
estimate and the ground-truth direction of each source, resulting
in values in the range of [0, 20]◦. For N(t) = K(t), the order
parameter, p, does not affect the results since the cardinality
error is K(t)−N(t) = 0. During periods where K(t) < N(t),
the cardinality error causes the OSPA to increase to between
[15, 30]◦. The OSPA increases with the order parameter p.

The results highlight that both approaches are affected by
cardinality errors, indicated by jumps in the OSPA. For Submis-
sion 10, which incorporates VAD, the cardinality errors arise
predominantly due to missing detections and broken tracks
(see Fig. 11(d)). In contrast, Submission 2 is mainly affected
by false estimates during voice inactivity. Since Submission 2
does not involve a VAD, tracks are propagated through periods
of voice inactivity using the prediction step of the tracking
filter. Temporary periods of track divergence therefore lead to
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Fig. 11. Azimuth trajectories and corresponding OSPA metric for recording
1 of Task 4 for (a)–(b) Submission 2 using the Eigenmike, (c)–(d) Submission
10 using the Eigenmike. The VAD periods are shown in (e).

estimates that are classified as false estimates by gating and data
association.

VIII. CONCLUSION

The open-access LOCATA challenge data corpus of real-
world, multichannel audio recordings and open-source eval-
uation software provides a framework to objectively bench-
mark state-of-the-art localization and tracking approaches. The
challenge consists of six tasks, ranging from the localization
and tracking of a single static loudspeaker using static micro-
phone arrays to fully dynamic scenes involving multiple moving

sources and microphone arrays on moving platforms. Sixteen
state-of-the-art approaches were submitted for participation in
the LOCATA challenge, one of which needed to be discarded for
evaluation due to the lack of documentation. Seven submissions
corresponded to sound source localization algorithms, obtaining
instantaneous estimates at each time stamp of a recording. The
remaining submissions combined localization algorithms with
source tracking, where spatio-temporal models of the source
motion are applied in order to exploit constructively knowl-
edge of the history of the source trajectories. The submis-
sions incorporated localization algorithms based on time-delay
estimation, subspace processing, beamforming, classification,
and deep learning. Source tracking submissions incorporated
the Kalman filter and its variants, particle filters, variational
Bayesian approaches and PHD filters.

The controlled scenarios of static single-source in Task 1
are used to evaluate the robustness of the submissions against
reverberation and noise. The results highlighted azimuth estima-
tion accuracies of up to approximately 1.0◦ using the pseudo-
spherical robot head, spherical Eigenmike and planar DICIT
array. For the hearing aids, recorded separately but in the same
environment, the average azimuth error was 8.5◦. Interference
from multiple static loudspeakers in Task 2 leads to only small
performance degradations of up to 3◦ compared to Task 1.
Variations in the source-sensor geometries due to the motion of
the human talkers (Tasks 3 and 4), or the motion of the arrays and
talkers (Tasks 5 and 6) affect predominantly the track continuity,
completeness and timeliness.

The evaluation also provides evidence for the intrinsic suit-
ability of a given approach for particular arrays or scenarios.
For static scenarios (i.e., Tasks 1 and 2), subspace approaches
demonstrated particularly accurate localization using the Eigen-
mike and the robot head incorporating a large number of micro-
phones. Time delay estimation combined with a particle filter
resulted in the highest azimuth estimation accuracy for the planar
DICIT array. Tracking filters were shown to reduce FARs and
missing detections by exploiting models of the source dynamics.
Specifically, the localization for moving human talkers in Tasks
3–6 benefits from the incorporation of tracking in dynamic
scenarios, resulting in azimuth accuracies of up to 1.8◦ using
the DICIT array, 3.1◦ using the robot head, and 7.2◦ using the
hearing aids.

Results for the Eigenmike highlighted that localization using
spherical arrays benefits from signal processing in the domain of
spherical harmonics. The results also indicated that the number
of microphones in an array, to some extent, can be traded off
against the array aperture. This conclusion is underpinned by
the localization results for the 12-microphone robot head that
consistently outperformed the 32-microphone Eigenmike for
approaches evaluated for both arrays. Nevertheless, increasing
microphone spacings also lead to increasingly severe effects
of spatial aliasing. As a consequence, all submissions for the
2.24 m-wide DICIT array used subarrays of at most 32 cm
inter-microphone spacings.

Several issues remain open challenges for localization and
tracking approaches. Intuitively, localization approaches benefit
from accurate knowledge of the onsets and endpoints of speech
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to avoid false estimates during periods of speech inactivity. Sev-
eral approaches therefore incorporated voice activity detection
based on power spectral density estimates, zero-crossing rates,
or by implicit estimation of the onsets and endpoints of speech
from the latent variables estimated within a variational Bayesian
tracking approach. For the single-source scenarios, particularly
low track latency was achieved by the submission based on
implicit estimation of the voice activity periods. However, for the
multi-source scenarios, approaches incorporating voice activity
detection led to increased track fragmentation rates.

Morover, whereas sufficiently long frames are required to
address the non-stationarity of speech, dynamic scenes involving
moving sources and/or sensors require sufficiently short frames
to accurately capture the spatio-temporal variation of the source
positions. Therefore, in dynamic scenes, estimation errors due
to the non-stationarity of speech must be traded off against
biased DoA estimates due to spatio-temporal variation in the
source-sensor geometries when selecting the duration of the
microphone signals used for localization. In combination with
the adverse effects of reverberation and noise, non-stationary
signals in dynamic scenes therefore often lead to erroneous,
false, missing, spurious DoA estimates in practice.

To conclude, current research is predominantly focused on
static scenarios. Only a small subset of the approaches submitted
to the LOCATA challenge address the difficult real-world tasks
involving multiple moving sources. The challenge evaluation
highlighted that there is significant room for improvement,
and hence substantial potential for future research. Except for
localizing a single static source in not too hostile scenarios
none of the problems is robustly solved to the extent desirable
for, e.g., informed spatial filtering with high spatial resolution.
Therefore, research on appropriate localization and tracking
techniques remains an open challenge and the authors hope that
the LOCATA dataset and evaluation tools will be found useful
to also evaluate future progress.

Inevitably, there are substantial practical limitations in setting
up data challenges. In the case of LOCATA, it has resulted in the
use of only one acoustic environment because of the need for
spatial localization of the ground-truth. Future challenges may
beneficially explore variation in performance across different
environments.
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[47] S. Kitić and A. Guérin, “TRAMP: Tracking by a realtime ambisonic-
based particle filter,” in Proc. LOCATA Challenge Workshop - Satellite
Event IWAENC, Tokyo, Japan, Sep. 2018.

[48] L. Madmoni, H. B. On, H. Morgenstern, and B. Rafaely, “Description of
algorithms for Ben-Gurion University submission to the LOCATA chal-
lenge,” in Proc. LOCATA Challenge Workshop - Satell. Event IWAENC,
Tokyo, Japan, Sep. 2018.

[49] K. Nakadai, K. Itoyama, K. Hoshiba, and H. G. Okuno, “MUSIC-based
sound source localization and tracking for tasks 1 and 3,” in Proc.
LOCATA Challenge Workshop - Satell. Event IWAENC, Tokyo, Japan,
Sep. 2018.

[50] A. H. Moore, “Multiple source direction of arrival estimation using sub-
space pseudointensity vectors,” in Proc. LOCATA Challenge Workshop -
Satell. Event IWAENC, Tokyo, Japan, Sep. 2018.

[51] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity
detection,” IEEE Signal Process. Lett., vol. 6, no. 1, pp. 1–3, Jan. 1999.

[52] C. Evers, Y. Dorfan, S. Gannot, and P. A. Naylor, “Source tracking using
moving microphone arrays for robot audition,” in Proc. IEEE Intl. Conf.
Acoust., Speech Signal Process., New Orleans, LA, USA, Mar. 2017.

[53] C. Evers, E. A. P. Habets, S. Gannot, and P. A. Naylor, “DoA reliability
for distributed acoustic tracking,” IEEE Signal Process. Lett., vol. 25,
no. 9, pp. 1320–1324, Sep. 2018.

[54] A. Brendel and W. Kellermann, “Learning-based acoustic source-
microphone distance estimation using the coherent-to-diffuse power ra-
tio,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2018,
pp. 61–65.

[55] S. Argentieri, P. Danès, and P. Souères, “A survey on sound source
localization in robotics: From binaural to array processing methods,”
Comput. Speech Lang., vol. 34, no. 1, pp. 87–112, 2015.

[56] C. Rascon and I. Meza, “Localization of sound sources in robotics: A
review,” Robot. Auton. Syst., vol. 96, pp. 184–210, 2017.

[57] M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, and B. Lee,
“A survey of sound source localization methods in wireless acoustic
sensor networks,” in Proc. Wireless Acoust. Sensor Netw. Appl., May
2017.

[58] M. Souden, J. Benesty, and S. Affes, “Broadband source localization
from an eigenanalysis perspective,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 18, no. 6, pp. 1575–1587, Aug. 2010.

[59] J. Benesty, “Adaptive eigenvalue decomposition algorithm for passive
acoustic source localization,” J. Acoust. Soc. Amer., vol. 107, no. 1,
pp. 384–391, 2000.

[60] T. G. Dvorkind and S. Gannot, “Time difference of arrival estimation of
speech source in a noisy and reverberant environment,” Signal Process.,
vol. 85, no. 1, pp. 177–204, 2005.

[61] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement us-
ing beamforming and nonstationarity with applications to speech,”
IEEE Trans. Signal Process., vol. 49, no. 8, pp. 1614–1626, Aug.
2001.

[62] X. Li, L. Girin, R. Horaud, and S. Gannot, “Estimation of the direct-
path relative transfer function for supervised sound-source localiza-
tion,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 11,
pp. 2171–2186, Nov. 2016.

[63] J. P. Dmochowski, J. Benesty, and S. Affes, “Broadband MUSIC: Op-
portunities and challenges for multiple source localization,” in Proc.
Workshop Appl. Signal Process. Audio Acoust., New Paltz, NY, USA,
Oct. 2007, pp. 18–21.

[64] B. Berdugo, M. A. Doron, J. Rosenhouse, and H. Azhari, “On direction
finding of an emitting source from time delays,” J. Acoust. Soc. Amer.,
vol. 105, no. 6, pp. 3355–3363, 1999.

[65] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-time
passive source localization: A practical linear-correction least-squares
approach,” IEEE Trans. Speech Audio Process., vol. 9, no. 8, pp. 943–956,
Nov. 2001.

[66] H. Cao, Y. T. Chan, and H. C. So, “Maximum likelihood TDOA esti-
mation from compressed sensing samples without reconstruction,” IEEE
Signal Process. Lett., vol. 24, no. 5, pp. 564–568, May 2017.

[67] H. Sundar, T. V. Sreenivas, and C. S. Seelamantula, “TDOA-based
multiple acoustic source localization without association ambiguity,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 11,
pp. 1976–1990, Nov. 2018.

[68] X. Li, Y. Ban, L. Girin, X. A. Pineda, and R. Horaud, “Online localiza-
tion and tracking of multiple moving speakers in reverberant environ-
ments,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 1, pp. 88–103,
Mar. 2019.

[69] J. Traa and P. Smaragdis, “A wrapped Kalman filter for azimuthal speaker
tracking,” IEEE Signal Process. Lett., vol. 20, no. 12, Dec. 2013.

[70] J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Local-
ization. Cambridge, MA, USA: MIT Press, 1983.

[71] G. F. Kuhn, “Model for the interaural time differences in the azimuthal
plane,” J. Acoust. Soc. Amer., vol. 62, no. 1, pp. 157–167, 1977.

https://hal.inria.fr/inria-00564708
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html


EVERS et al.: LOCATA CHALLENGE: ACOUSTIC SOURCE LOCALIZATION AND TRACKING 1641

[72] F. L. Wightman and D. J. Kistler, “The dominant role of lowfrequency
interaural time differences in sound localization,” J. Acoust. Soc. Amer.,
vol. 91, no. 3, pp. 1648–1661, 1992.

[73] D. Wang and G. J. Brown, Computational Auditory Scene Analysis:
Principles, Algorithms, and Applications. Hoboken, NJ, USA: Wiley,
2006.

[74] M. Raspaud, H. Viste, and G. Evangelista, “Binaural source localization
by joint estimation of ILD and ITD,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 18, no. 1, pp. 68–77, Jan. 2010.

[75] M. Farmani, M. S. Pedersen, Z. Tan, and J. Jensen, “Informed sound
source localization using relative transfer functions for hearing aid appli-
cations,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 3,
pp. 611–623, Mar. 2017.

[76] M. Farmani, M. S. Pedersen, Z. Tan, and J. Jensen, “Bias-compensated
informed sound source localization using relative transfer functions,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 7, pp. 1275–
1289, Jul. 2018.

[77] E. L. Benaroya, N. Obin, M. Liuni, A. Roebel, W. Raumel, and S.
Argentieri, “Binaural Localization of multiple sound sources by non-
negative tensor factorization,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 26, no. 6, pp. 1072–1082, Jun. 2018.

[78] A. Shashua and T. Hazan, “Non-negative tensor factorization with appli-
cations to statistics and computer vision,” in Intl. Conf. Mach. Learning,
New York, NY, USA, 2005, pp. 792–799.

[79] E. H. A. Langendijk and A. W. Bronkhorst, “Contribution of spectral
cues to human sound localization,” J. Acoust. Soc. Amer., vol. 112, no. 4,
pp. 1583–1596, 2002.

[80] T. V. den Bogaert, E. Carette, and J. Wouters, “Sound source localization
using hearing aids with microphones placed behind-the-ear, in-the-canal,
and in-the-pinna,” Int. J. Audiology, vol. 50, no. 3, pp. 164–176, 2011.

[81] H. Wallach, “The role of head movement and vestibular and visual cues
in sound localization,” J. Exp. Psychol., vol. 27, pp. 339–368, 1940.

[82] J. Burger, “Front-back discrimination of the hearing systems,” Acta
Acustica United Acustica, vol. 8, no. 5, pp. 301–302, 1958.

[83] W. R. Thurlow, J. W. Mangels, and P. S. Runge, “Head movements during
sound localization,” J. Acoust. Soc. Amer., vol. 42, no. 2, pp. 489–493,
1967.

[84] F. L. Wightman and D. J. Kistler, “Resolution of front–back ambiguity in
spatial hearing by listener and source movement,” J. Acoust. Soc. Amer.,
vol. 105, no. 5, pp. 2841–2853, 1999.

[85] S. Perrett and W. Noble, “The contribution of head motion cues to
localization of low-pass noise,” Perception Psychophys., vol. 59, no. 7,
pp. 1018–1026, Jan. 1997.

[86] D. M. Leakey, “Some measurements on the effects of interchannel
intensity and time differences in two channel sound systems,” J. Acoust.
Soc. Amer., vol. 31, no. 7, pp. 977–986, 1959.

[87] P. A. Hill, P. A. Nelson, O. Kirkeby, and H. Hamada, “Resolution of
front–back confusion in virtual acoustic imaging systems,” J. Acoust.
Soc. Amer., vol. 108, no. 6, pp. 2901–2910, 2000.

[88] U.-H. Kim, K. Nakadai, and H. G. Okuno, “Improved sound source
localization and front-back disambiguation for humanoid robots with
two ears,” in Recent Trends in Applied Artificial Intelligence, M. Ali,
T. Bosse, K. V. Hindriks, M. Hoogendoorn, C. M. Jonker, and J. Treur,
Eds. Berlin, Germany: Springer, 2013, pp. 282–291.

[89] W. Bangs and P. Schultheis, “Space-time processing for optimal param-
eter estimation,” Signal Process., pp. 577–590, 1973.

[90] W. Hahn and S. Tretter, “Optimum processing for delay-vector estimation
in passive signal arrays,” IEEE Trans. Inf. Theory, vol. 19, no. 5, pp. 608–
614, Sep. 1973.

[91] M. Wax and T. Kailath, “Optimum localization of multiple sources by
passive arrays,” IEEE Trans. Acoust., Speech, Signal Process., vol. 31,
no. 5, pp. 1210–1217, Oct. 1983.

[92] M. Taseska and E. A. P. Habets, “Spotforming: Spatial filtering with
distributed arrays for position-selective sound acquisition,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 24, no. 7, pp. 1291–1304,
Jul. 2016.

[93] M. Omologo, P. G. Svaizer, and R. D. Mori, Acoustic Transduction. San
Diego, CA, USA: Academic, 1998, pp. 23–69.

[94] H. F. Silverman, Y. Yu, J. M. Sachar, and W. R. Patterson, “Performance
of real-time source-location estimators for a large-aperture microphone
array,” IEEE Trans. Acoust., Speech, Signal Processs., vol. 13, no. 4,
pp. 593–606, Jul. 2005.

[95] D. Salvati, C. Drioli, and G. L. Foresti, “A low-complexity robust
beamforming using diagonal unloading for acoustic source localization,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26, no. 3, pp. 609–
622, Mar. 2018.

[96] B. Rafaely, Fundamentals of Spherical Array Processing, Springer Top-
ics in Signal Processing. Berlin, Germany: Springer, 2015.

[97] B. Rafaely, “Analysis and design of spherical microphone arrays,” IEEE
Trans. Speech Audio Process., vol. 13, no. 1, pp. 135–143, Jan. 2005.

[98] B. Rafaely, “Plane-wave decomposition of the sound field on a sphere by
spherical convolution,” J. Acoust. Soc. Amer., vol. 116, no. 4, pp. 2149–
2157, 2004.

[99] L. Kumar and R. M. Hegde, “Near-field acoustic source localization
and beamforming in spherical harmonics domain,” IEEE Trans. Signal
Process., vol. 64, no. 13, pp. 3351–3361, Jul. 2016.

[100] D. Jarrett, E. A. P. Habets, and P. A. Naylor, Theory and Applications
of Spherical Microphone Array Processing. Berlin, Germany: Springer,
2016.

[101] A. H. Moore, C. Evers, and P. A. Naylor, “Direction of arrival estimation
in the spherical harmonic domain using subspace pseudointensity vec-
tors,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 1,
pp. 178–192, Jan. 2017.

[102] H. Sawada, R. Mukai, and S. Makino, “Direction of arrival estimation for
multiple source signals using independent component analysis,” in Proc.
Int. Symp. Signal Process. Appl., Jul. 2003, vol. 2, pp. 411–414.

[103] A. Lombard, Y. Zheng, H. Buchner, and W. Kellermann, “TDOA estima-
tion for multiple sound sources in noisy and reverberant environments
using broadband independent component analysis,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 19, no. 6, pp. 1490–1503, Aug. 2011.

[104] M. I. Mandel, R. J. Weiss, and D. P. W. Ellis, “Model-based expectation-
maximization source separation and localization,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 382–394, Feb.
2010.

[105] R. J. Weiss, M. I. Mandel, and D. P. Ellis, “Combining localization cues
and source model constraints for binaural source separation,” Speech
Commun., vol. 53, no. 5, pp. 606–621, 2011.

[106] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.

[107] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[108] H. Teutsch and W. Kellermann, “EB-ESPRIT: 2D localization of multiple
wideband acoustic sources using eigen-beams,” in Proc. IEEE Intl. Conf.
Acoust., Speech Signal Process., Mar. 2005.

[109] H. Teutsch and W. Kellermann, “Detection and localization of multiple
wideband acoustic sources based on wavefield decomposition using
spherical apertures,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Las Vegas NV, USA, Mar. 2008, pp. 5276–5279.

[110] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” J. Soc. Ind. Appl. Math. Ser. B Numerical Anal.,
vol. 2, no. 2, pp. 205–224, 1965.

[111] H. L. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory. New York, NY, USA: Wiley,
2002.

[112] O. Nadiri and B. Rafaely, “Localization of multiple speakers under
high reverberation using a spherical microphone array and the direct-
path dominance test,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 22, no. 10, Oct. 2014, pp. 1494–1505.

[113] B. Ristic, Particle Filters for Random Set Models, 1st ed. New York, NY,
USA: Springer, 2013.

[114] R. P. S. Mahler, Statistical Multisource Multitarget Information Fusion.
Norwood, MA, USA: Artech House, 2007.

[115] A. Deleforge and R. Horaud, “2D sound-source localization on the bin-
aural manifold,” in Proc. IEEE Workshop Mach. Learn. Signal Process.,
Santander, Spain, Sep. 2012, pp. 1–6.

[116] B. Laufer-Goldshtein, R. Talmon, and S. Gannot, “Semi-supervised
sound source localization based on manifold regularization,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 24, no. 8, pp. 1393–1407,
Aug. 2016.

[117] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A
learning-based approach to direction of arrival estimation in noisy and
reverberant environments,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Apr. 2015, pp. 2814–2818.

[118] E. L. Ferguson, S. B. Williams, and C. T. Jin, “Sound source localization
in a multipath environment using convolutional neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2018, pp. 2386–
2390.

[119] R. Takeda and K. Komatani, “Sound source localization based on deep
neural networks with directional activate function exploiting phase in-
formation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Mar. 2016, pp. 405–409.



1642 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

[120] R. Takeda and K. Komatani, “Unsupervised adaptation of deep neural
networks for sound source localization using entropy minimization,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2017,
pp. 2217–2221.

[121] N. Ma, T. May, and G. J. Brown, “Exploiting deep neural networks
and head movements for robust binaural localization of multiple sources
in reverberant environments,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 12, pp. 2444–2453, Dec. 2017.

[122] M. R. Bai, S. Lan, and J. Huang, “Time difference of arrival (TDOA)-
based acoustic source localization and signal extraction for intelligent
audio classification,” in Proc. IEEE Sensor Array Multichannel Signal
Process. Workshop, Jul. 2018, pp. 632–636.

[123] F. Grondin, F. Glass, I. Sobieraj, and M. D. Plumbley, “Sound event
localization and detection using CRNN on pairs of microphones,” in
Proc. Detection Classification Acoustic Scenes Events Workshop, New
York, NY, USA, Oct. 2019.

[124] N. Ma, J. A. Gonzalez, and G. J. Brown, “Robust binaural localization of a
target sound source by combining spectral source models and deep neural
networks,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 26,
no. 11, pp. 2122–2131, Nov. 2018.

[125] S. Chakrabarty and E. A. P. Habets, “Multi-speaker localization using
convolutional neural network trained with noise,” in Proc. ML4Audio
Workshop NIPS, 2017.

[126] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I: Mod-
elling, State Space Analysis, Stability and Robustness, Texts in Applied
Mathematics. Berlin, Germany: Springer, 2005.

[127] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME–J. Basic Eng., vol. 82, pp. 35–45, 1960.

[128] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Boston, MA, USA: Artech
House, 2004.

[129] D. B. Ward, E. A. Lehmann, and R. C. Williamson, “Particle filtering
algorithms for tracking an acoustic source in a reverberant environ-
ment,” IEEE Trans. Speech Audio Process., vol. 11, no. 6, pp. 826–836,
Nov. 2003.

[130] E. A. Lehmann and R. C. Williamson, “Particle filter design using
importance sampling for acoustic source localisation and tracking in
reverberant environments,” EURASIP J. Adv. Signal Process., vol. 2006,
Jun. 2006, Art. no. 017021.

[131] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Meth-
ods in Practice, Information Science and Statistics. Berlin, Germany:
Springer, 2001.

[132] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3,
pp. 197–208, 2000.

[133] M. F. Fallon and S. J. Godsill, “Acoustic source localization and tracking
of a time-varying number of speakers,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 20, no. 4, pp. 1409–1415, May 2012.

[134] P. Li, R. Goodall, and V. Kadirkamanathan, “Estimation of parameters in
a linear state space model using a Rao-blackwellised particle filter,” IEE
Proc. - Control Theory Appl., vol. 151, no. 6, pp. 727–738, Nov. 2004.

[135] X. Zhong and J. R. Hopgood, “Particle filtering for TDOA based acous-
tic source Ttracking: Nonconcurrent multiple talkers,” Signal Process.,
vol. 96, pp. 382–394, 2014.

[136] A. Levy, S. Gannot, and E. A. P. Habets, “Multiple-hypothesis extended
particle filter for acoustic source localization in reverberant environ-
ments,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 19, no. 6,
pp. 1540–1555, Aug. 2011.

[137] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle
filtering: Classification, implementation, and strategies,” IEEE Signal
Process. Mag., vol. 32, no. 3, pp. 70–86, May 2015.

[138] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[139] M. Bolic and P. M. D. and, “New resampling algorithms for particle fil-
ters,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2003,
vol. 2, pp. II–589.

[140] M. Halimeh, C. Hümmer, A. Brendel, and W. Kellermann, “Hybrid
particle filtering based on an elitist resampling scheme,” in Proc. Sensor
Array Multichannel Signal Process. Workshop, Jul. 2018, pp. 257–261.

[141] M. Halimeh, A. Brendel, and W. Kellermann, “Evolutionary resampling
for multi-target tracking using probability hypothesis density filter,” in
Proc. Eur. Signal Process. Conf., Sep. 2018, pp. 647–651.

[142] A. Plinge, F. Jacob, R. Haeb-Umbach, and G. A. Fink, “Acoustic micro-
phone geometry calibration: An overview and experimental evaluation
of state-of-the-art algorithms,” IEEE Signal Process. Mag., vol. 33, no. 4,
pp. 14–29, Jul. 2016.

[143] D. Cherkassky and S. Gannot, “Blind synchronization in wireless acous-
tic sensor networks,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 25, no. 3, pp. 651–661, Mar. 2017.

[144] D. J. Salmond, “Mixture reduction algorithms for point and extended
object tracking in clutter,” IEEE Trans. Aerosp. and Electron. Syst.,
vol. 45, no. 2, pp. 667–686, Apr. 2009.

[145] K. V. Mardia and P. E. Jupp, Directional Statistics, vol. 494. Hoboken,
NJ, USA: Wiley, 2009.

[146] K. V. Mardia, “Bayesian analysis for bivariate Von Mises distributions,”
J. Appl. Statist., vol. 37, no. 3, pp. 515–528, 2010.

[147] M. Jeub, C. Nelke, C. Beaugeant, and P. Vary, “Blind estimation of the
coherent-to-diffuse energy ratio from noisy speech signals,” in Proc. Eur.
Signal Process. Conf., Aug. 2011, pp. 1347–1351.

[148] S. Braun et al., “Evaluation and comparison of late reverberation power
spectral density estimators,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 26, no. 6, pp. 1056–1071, Jun. 2018.

[149] S. S. Blackman, “Association and fusion of multiple sensor data,”
in Multitarget-Multisensor Tracking: Advanced Algorithms, Y. Bar-
Shalom, Ed. Norwood, MA, USA: Artech House, 1990, ch. 6, pp. 187–
218.

[150] E. C. Cherry, “Some experiments on the recognition of speech, with one
and with two ears,” J. Acoust. Soc. Amer., vol. 25, no. 5, pp. 975–979,
1953.

[151] S. Haykin and Z. Chen, “The cocktail party problem,” Neural Comput.,
vol. 17, no. 9, pp. 1875–1902, 2005.

[152] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with
probabilistic data association,” Automatica, vol. 11, no. 5, pp. 451–460,
1975.

[153] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data associ-
ation filter,” IEEE Control Syst. Mag., vol. 29, no. 6, pp. 82–100, Dec.
2009.

[154] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Sonar tracking of multiple
targets using joint probabilistic data association,” IEEE J. Ocean. Eng.,
vol. 8, no. 3, pp. 173–184, Jul. 1983.

[155] T. Gehrig and J. McDonough, “Tracking multiple speakers with proba-
bilistic data association filters,” in Multimodal Technologies for Percep-
tion of Humans, R. Stiefelhagen and J. Garofolo, Eds. Berlin, Germany:
Springer, 2007, pp. 137–150.

[156] Y. Ban, X. Alameda-Pineda, C. Evers, and R. Horaud, “Tracking
multiple audio sources with the von mises distribution and varia-
tional em,” IEEE Signal Process. Lett., vol. 26, no. 6, pp. 798–802,
Jun. 2019.

[157] R. P. S. Mahler, Adv. in Statistical Multisource-Multitarget Information
Fusion . Artech House, 2014.

[158] R. P. S. Mahler, “Statistics 101 for multisensor, multitarget data fusion,”
IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, Jan. 2004.

[159] R. P. S. Mahler, ““Statistics 102” for multisource-multitarget detection
and tracking,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 3, pp. 376–
389, Jun. 2013.

[160] W.-K. Ma, B.-N. Vo, S. S. Singh, and A. Baddeley, “Tracking an unknown
time-varying number of speakers using TDOA measurements: A random
finite set approach,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3291–
3304, Sep. 2006.

[161] H. Pessentheiner, “Localization, characterization, and tracking of
harmonic sources with applications to speech signal process-
ing,” Ph.D. dissertation, Graz Univ. Technol., Graz, Austria, Jan.
2017.
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