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Abstract—For array-based acoustic source enhancement, vari-
ants of multi-channel Wiener filters are commonly used. The
approach includes a Wiener post-filter that requires the si-
multaneous estimation of the power spectral density (PSD) of
the target source and of noise sources for each time-frame.
Conventional methods generally do not exploit prior knowledge,
such as sparsity of the source, in solving this simultaneous
estimation problem. We show that, for common scenarios, the
simultaneous PSD estimation with consideration of prior knowl-
edge can be formulated as a convex optimization problem with
linear constraints. We use monotone operator splitting (MOS)
to solve the constrained optimization problem. Our experiments
confirm that the proposed method improves the accuracy of the
noise PSD estimation, and that the resulting enhanced target
signal is of higher quality.

Index Terms—Microphone array, Wiener post-filter, power
spectral density (PSD) estimation, convex optimization, monotone
operator splitting

I. INTRODUCTION

SPEECH interfaces are commonly used for applications
such as teleconferencing, manipulating a navigation sys-

tem while driving a car, and communicating with a clerk
robot. These environments are often noisy, which may severely
degrade system performance. Hence, technology to improve
the fidelity of the target sound source, which may be located in
any direction, must be used. This has led to extensive research
into microphone array based enhancement methods over the
last few decades.

A commonly used and practical microphone array based
enhancement approach is multi-channel Wiener filtering, or,
more generally, beamforming with Wiener post-filtering (e.g.,
[1], [2]). The Wiener post-filter requires the simultaneous
estimation of the power spectral density (PSD) of a target
source and of that of surrounding noises. In classic papers
[3], [4], toy problems were studied, where a coherent target
source and incoherent/diffuse background noise were mixed in
the observed signals. More recently, effective methods of low
computational complexity have been developed for practical
situations [5], [6], [7]. Representative examples are (i) speech
distortion weighted multichannel Wiener filter (SDW-MWF)
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[8], [9] (ii) the PSD-estimation-in-beamspace method [10]
and its extensions [11], [12], which assumes that coherent
interference noises and background noises are mixed in the
observation and (iii) the method of [13], where both the PSD
of late reverberation and background noise are estimated.

Although the recent methods are effective even in practical
situations, further improvement of the PSD estimation remains
possible. Existing methods do not exploit prior knowledge
about the PSD. For example, the sparsity of the target source
PSD in the short time Fourier transform (STFT)-domain and
the stationarity of the background noise over short time
intervals were not considered before.

In this paper, we propose a method for accurately estimating
PSDs by exploiting prior knowledge derived from reasonable
assumptions, such as sparsity of the target source PSD. The
estimation procedure can often be based on a convex cost
function (e.g., an L1 norm). By taking several constraints
into account, such as the non-negativity of the PSDs, the
overall cost function can be cast into the form of a primal
optimization problem consisting of a sum of convex functions
with several linear equality and/or inequally constraints. Even
if the primal problem is complicated, it can generally be
reformulated as a minimization problem in the form of a sum
of convex functions. It can then be solved with monotone
operator splitting (MOS) techniques (e.g., [14], [15]), where
the optimal values of the variables are found by iterating over
a set of simple problems. To confirm the feasibility of the
proposed procedure, the algorithm will be investigated in the
context of real-world signals captured in reverberant rooms.

This paper is organized as follows. In Sec. II, the problem
formulation and conventional solutions are introduced. Our
proposed method for improving PSD estimation accuracy is
then presented in Sec. III. The effectiveness of the proposed
method is further investigated in Sec. IV. Finally, we conclude
the paper in Sec. V.

II. CONVENTIONAL METHOD

We first formulate the problem in Sec. II-A. After that, a
state-of-the-art conventional solution is described in Sec. II-B.

A. Problem Formulation

We consider M (≥ 2) microphone signals in the STFT do-
main x : J×Z→ CM , where J is a set of discrete frequencies.
We denote the frequency index by ω and the frame-time index
by τ . The signals x are the sum of contributions by a target
source s : J × Z → C, K noise point sources (coherent
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Fig. 1. Signal flow in conventional methods

noise) νk : J × Z → C, and an incoherent background noise
ε : J× Z→ CM :

x(ω, τ) = hS(ω)s(ω, τ) +

K∑
k=1

hCN,k(ω)νk(ω, τ) + ε(ω, τ),

(1)

where hS : J → CM and hCN,k : J → CM are the transfer
functions between the target and the k-th noise point source
and the microphones, respectively. The direction of arrival
(DOA) of the target source θS is assumed to be known.
However, the noise information, such as the noise source DOA,
the number of noise point sources, and background noise level
are assumed unknown.

When the DOA of the target source is known, a beamform-
ing filter wθS : J → CM is applied to emphasize the target
source as:

yθS(ω, τ) = wT
θS

(ω)x(ω, τ), (2)

where the superscript T denotes transposition. The minimum
variance distortionless response (MVDR) method [16] is a
method to design wθS and it is optimal in the L2 sense. A
Wiener filter is then applied to the beamforming output as

zθS(ω, τ) =
φS(ω, τ)

φS(ω, τ) + φN(ω, τ)
yθS(ω, τ), (3)

where φS : J × Z → R and φN : J × Z → R denote the
nonnegative PSD of the target and that of other noises included
in the beamforming output yθS . In this paper, any other spatial
pre-processing was not used. By applying the inverse STFT
to zθS , we obtain an output signal in the time domain.

Our goal is to estimate the nonnegative PSDs {φS, φN} for
each time-frame by analyzing the observed signals x.

B. Conventional Method

We now describe a conventional method for estimating the
PSDs. As modeled in (1), various noises are randomly mixed
in the observed microphone signals. In such situations, it is
particularly difficult to estimate the noise PSD φN because
coherent noise and incoherent (diffuse) background noise are
mixed. Only prior knowledge on their spatial and temporal
characteristics is available. In this case, it is more straightfor-
ward to estimate the PSD of coherent noises φCN and that of
background noise φBN separately.

An approach for separate estimation of the PSDs
{φS, φCN, φBN} is introduced in [11]. The basic signal flow
is shown in Fig. 1. In this approach, the Wiener filtering is

modified to

zθS(ω, τ) =
φS(ω, τ)

φS(ω, τ) + φCN(ω, τ) + φBN(ω, τ)︸ ︷︷ ︸
≈φN(ω,τ)

yθS(ω, τ),

(4)

where the noise PSD is approximated as a sum of the PSDs
of the point noise sources and that of background noise.

To estimate φCN, the PSD-estimation-in-beamspace method
[10], [12] can be used. In this method, multiple fixed beam-
forming outputs, whose focusing/null directions are different,
are used to analyze observed signals. One of the beamformers
wθS is focused on the target. Assuming that K + 1 sound
sources are independent in the STFT domain, the PSDs of
L (≥ 2) beamforming outputs φBF : J × Z → RL and the
PSDs of the sound sources grouped into N (≥ 2) directions
φGS : J× Z→ RN are linearly related asφBF,1(ω, τ)

...
φBF,L(ω, τ)


︸ ︷︷ ︸

φBF(ω,τ)

=

D1,1(ω) . . . D1,N (ω)
...

. . .
...

DL,1(ω) . . . DL,N (ω)


︸ ︷︷ ︸

D(ω)

φGS,1(ω, τ)
...

φGS,N (ω, τ)


︸ ︷︷ ︸

φGS(ω,τ)

(5)

where D : J → RL×N is the power sensitivity of the l-th
beamformer to the n-th direction, Dl,n(ω). The elements in D
can be calculated by averaging sensitivities, which are obtained
by convolving beamformers with array manifold vectors, for
each angular spaces/frequency band. The inverse problem of
(5) can be solved by

φ̂GS(ω, τ) =
[
D†(ω)φBF(ω, τ)

]
+
, (6)

where † and [·]+ are the (pseudo) inverse of a matrix and an
operator that sets non-negative elements of a vector to zero,
respectively. For stably estimating the PSDs, N ≤L is usually
assumed. To reduce computational requirements, the frequency
bins can be grouped into frequency bands. When the first
source (n = 1) is selected to be the target direction θS and
point noise sources are in other directions (n= 2, . . . , N), the
PSDs of the target source and that of incoherent and coherent
noises can be estimated by

φ̂S(ω, τ) = φ̂GS,1(ω, τ), φ̂CN(ω, τ) =

N∑
n=2

φ̂GS,n(ω, τ). (7)

Next, a method to estimate φBN is explained. When the
background noise can be assumed to be stationary, then
minimum statistics tracking [17] in the estimated target PSD
is an effective approach towards this goal:

φ̂BN(ω, τ) = min{φ̂S(ω, τ −Γ), . . . , φ̂S(ω, τ)}, (8)

where Γ is the time interval to calculate minimum statistics.
Although good experimental results were obtained for the

described conventional approaches [10], [11], further perfor-
mance improvement is possible. The conventional methods
do not exploit prior knowledge on {φS, φCN, φBN}. For ex-
ample, the following attributes can additionally be exploited:
(i) the PSD of the target source and those of the noise
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Fig. 2. Signal flow in our proposed method

point sources are sparse and (ii) the sum of the nonnegative
PSDs {φS, φCN, φBN} equals the PSD of the target focusing
beamforming output φyθS

. As will be shown in the following
sections, by exploiting this prior knowledge, we can obtain
improved estimates of the PSDs {φnew

S , φnew
CN , φ

new
BN } using the

values {φ̂S, φ̂CN, φ̂BN} already obtained in (7) and (8).

III. PROPOSED METHOD

A cost function for accurate PSD estimation and its refor-
mulation are introduced in Sec. III-A and III-B, respectively. In
Sec. III-C, a fast PSD estimation algorithm based on monotone
operator splitting (MOS) is derived.

A. New Cost Formulation for Accurate PSD Estimation

Our basic strategy for estimating the PSDs is to represent
prior knowledge by convex, closed and proper (CCP) functions
and linear equality or inequality constraints. Although impos-
ing prior knowledge makes the formulation of the overall cost
function complex, the resulting constrained convex minimiza-
tion problem can be solved by using MOS techniques.

The proposed method assumes that the PSDs estimates
obtained in Sec. II-B provide a rough first estimate of the
PSDs. We then obtain the signal flow shown in Fig. 2.
The estimated PSDs will be denoted as u = [u1, u2, u3]T,
where (u1 = φnew

S (ω, τ)) is the PSD of the target source,
(u2 =φnew

CN (ω, τ)) describes the interfering noises, and (u3 =
φnew

BN (ω, τ)) is the background noise. In the following, we will
estimate the PSD values separately for each time-frame and
each frequency band. The arguments {ω, τ} will be omitted
to simplify notation.

Our method is based on the notion that it is possible to
find cost functions that represent prior knowledge. We provide
three examples, which we will use in our PSD estimation
method:
Prior knowledge 1: Our assumption is that the PSDs
{u1, u2, u3} have values that are near a set of known values
{φ̂S, φ̂CN, φ̂BN}. For this purpose we will use the values
derived in Sec. II-B. A natural cost function is:

F1(u) =
ψ1

2
(u1 − φ̂S)2 +

ψ2

2
(u2 − φ̂CN)2 +

ψ3

2
(u3 − φ̂BN)2,

(9)

where the ψi are positive coefficients that facilitate adjustment
of the cost balance. For later notation, variables/parameters are
summarized by

φ̂=

 φ̂S

φ̂CN

φ̂BN

 , Ψ =

ψ1 0 0
0 ψ2 0
0 0 ψ3

 . (10)

Prior knowledge 2: The PSD of the target source (speech)
and that of interfering noises (speech) are sparse in the STFT
domain. This can be achieved by using an L1 norm:

F2(u) = µ1|u1|+ µ2|u2|, (11)

where the µi are positive weight coefficients. In our experi-
ments in Sec. IV, either the target or the interfering noise is
assumed to be sparse, i.e., either µ1 or µ2 has non zero value.
Prior knowledge 3: The sum of estimated PSDs equals the
PSD of beamforming output φyθS

. This assumption is used in
the modified Wiener filter design (4), but it is not considered
in the PSD estimation procedure (5). Thus, we will enforce
the linear constraint

u1 + u2 + u3 = φyθS
. (12)

The optimization problem is now defined: our objective is
to find the primal variable u that minimizes a sum of F1 of
(9) and F2 of (11) subject to the constraint (12). This is a
linearly constrained convex minimization problem.

Anticipating the optimization approach employed in section
III-C, we use lifting: we introduce an auxiliary variable v
in combination with a constraint that the pairs (u1, u2) and
(v1, v2) are equal:

inf
u,v

F1(u) + F2(v) s.t. Au = v,Bu = c,u � 0, (13)

where the curled inequality symbol � is used to denote gener-
alized inequality, i.e., it represents componentwise inequality
between vectors [18] and the parameters are given by

A =

[
1 0 0
0 1 0

]
, B = [1, 1, 1], c =φyθS

.

We note that (13) is an example cost function. In general
our approach can be used to solve the linearly constrained
minimization of a sum of convex cost functions.

B. Dual problem formulation

It is convenient to solve the dual problem of (13) because
it is an unconstrained convex minimization problem. We
first formulate the Lagrangian of the constrained optimization
problem. The objective of the dual problem is to find the dual
variables {p,q, r} that correspond to the supremum of

sup
p,q,
r�0

inf
u,v

[
F1(u) + F2(v)

+ 〈p,v −Au〉+ 〈q, c−Bu〉 − 〈r,u〉
]
, (14)

where 〈, 〉 denotes the inner product of vectors and the dual
variable r is constrained to be nonnegative because the last
term 〈r,u〉 corresponds to an inequality constraint. The dual
problem (14) can be reformulated as:

inf
p,q,
r�0

F ?1 (ATp+BTq+r)− qTc + F ?2 (−p), (15)
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where F ?i denotes the convex conjugate of Fi:

F ?1 (ATp+BTq+r) = sup
u

(〈
u,ATp+BTq+r

〉
− F1(u)

)
,

(16)

F ?2 (−p) = sup
v

(
〈v,−p〉 − F2(v)

)
. (17)

Since convex conjugate functions F ?i are guaranteed to be
CCP, the dual problem is an unconstrained minimization
problem of a sum of CCP functions as in (15).

The nonnegative constraint on the dual variable r can be
represented by an indicator function. Hence, the problem (15)
can be reformulated as:

inf
ξ
F ?1 (ATp+BTq+r)− qTc+F ?2 (−p)+ι(r�0)(r), (18)

where the dual variables are summarized by ξ=[pT,qT, rT]T

and ι(r�0)(r) is an indicator function to guarantee nonnega-
tivity of r:

ι(r�0) =

{
0 (r � 0)

+∞ (otherwise)
. (19)

Since (18) is composed of CCP functions, it is a convex
optimization problem. However, it is difficult to find update
rules for the variables to reduce the overall cost in (18) because
it includes two different convex conjugate functions and an
indicator function.

C. Monotone Operator Splitting-based Variable Update Rule

Monotone operator splitting (MOS) is a method for finding
update rules when a cost function can be written as the
sum of two relatively simple cost functions. It leads to a
set of interlaced update rules that correspond to the simple
component cost functions. We will use Peaceman-Rachford (P-
R) splitting [19] with a Newton method, which is a particular
form of MOS.

MOS is a natural approach to finding update rules for
the problem (18). The overall cost function (18), is first
decomposed into a sum of two CCP functions G1 and G2:

inf
ξ
G1(ξ) +G2(ξ), (20)

where

G1(ξ) = F ?1 (ATp+BTq+r)− qTc, (21)
G2(ξ) = F ?2 (−p) + ι(r�0)(r). (22)

We denote the subdifferential operators for G1 and G2 as
T1(ξ) = ∂G1(ξ) and T2(ξ) = ∂G2(ξ), respectively. Note that
these operators are monotone as G1 and G2 are CCP functions.
Maximizing (20) corresponds to finding a fixed point of (20):

0 ∈ T1(ξ) + T2(ξ), (23)

where ∈ reflects that its output can be multi-valued when Fi
includes non-differentiable points. The monotone operators Ti

are

T1(ξ) = ∂G1(ξ) =

 A∂pF
?
1 (ATp+BTq+r)

B∂qF
?
1 (ATp+BTq+r)− c

∂rF
?
1 (ATp+BTq+r)

 , (24)

T2(ξ) = ∂G2(ξ) =

−∂pF ?2 (−p)
0

∂rι(r�0)(r)

 . (25)

Before introducing P-R splitting, we define the resolvent
operator Ri and the Cayley operator Ci of Ti, as summarized
in e.g. [15]. For real-time PSD estimation, it is desirable to
accelerate the optimization process of (20). Towards this aim,
the metric in the operators Ri, Ci is adjusted each iteration.
The basic metric in a conventional Ri, Ci is Euclidean, with
a convergence rate that resembles first-order gradient descent.
However, if the metric is linearly generalized, the convergence
rate can benefit from the attributes of a second-order Newton
method. The generalized resolvent and Cayley operators are
defined by:

Ri = (Id + M−1Ti)
−1, (26)

Ci = (Id−M−1Ti)(Id + M−1Ti)
−1

= 2(Id + M−1Ti)
−1 − (Id + M−1Ti)(Id + M−1Ti)

−1

= 2Ri − Id, (27)

where Id denotes the identity operator, (·)−1 denotes the
inverse operator, and M is a positive definite matrix to
accelerate convergence speed (see next subsection). We use a
block-diagonal matrix because we aim to separate the update
procedure for each variable:

M−1 =

M−1
p O

M−1
q

O M−1
r

 , (28)

where {M−1
p ,M−1

q ,M−1
r } are positive definite matrices.

Their design for a fast convergence rate will be discussed later.
We can now derive the P-R splitting method. We first

reformulate the fixed point condition (23) as

0 ∈M−1T1(ξ) + M−1T2(ξ),

0 ∈ (Id + M−1T2)(ξ)− (Id−M−1T1)(ξ), (29)

Let us define ξ′ by ξ ∈ R1(ξ′). Then, (29) can be written as

0 ∈ (Id + M−1T2)R1(ξ′)− (Id−M−1T1)R1(ξ′)

0 ∈ (Id + M−1T2)R1(ξ′)− C1(ξ′),

0 ∈ R1(ξ′)−R2C1(ξ′),

0 ∈ 1

2
(C1 + Id)(ξ′)− 1

2
(C2 + Id)C1(ξ′), (30)

which implies that the fixed point condition can be written as

ξ′ ∈ C2C1(ξ′) (31)

The Cayley operator is a non-expansive operator [14]. If C1

and C2 are contractive, then the Banach fixed-point theorem
shows that (31) specifies a Picard sequence that converges
to the fixed point. We then have a recursive update rule that
cycles through the two Cayley operators.
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It is convenient to rewrite the iteration C2C1 in more
elementary terms. We can then write the iterations in terms
of primal variables {u,v} and dual variables {p,q, r}. Using
the result (27), we can write (31) as four iterative steps:

ξt+1/4 = R1(ξt), (32)

ξt+1/2 = C1(ξt) = 2ξt+1/4 − ξt, (33)

ξt+3/4 = R2(ξt+1/2), (34)

ξt+1 = C2(ξt+1/2) = 2ξt+3/4 − ξt+1/2, (35)

where t is the iteration step index. The resolvent mappings (32)
and (34) are nontrivial because Ri includes the subdifferential
of a convex conjugate function, cf. (24) and (25). Appendix
A shows that (32) can be implemented using an alternating
primal-dual variable update rule as

ut+1 = arg min
u

(
F1(u) +

1

2

〈
M−1

p (Au− p̃t),Au− p̃t
〉

+
1

2

〈
M−1

q (Bu− c− q̃t),Bu− c− q̃t
〉

+
1

2

〈
M−1

r (u− r̃t),u− r̃t
〉)
, (36)

p̃t+1/4 = p̃t −Aut+1, (37)

q̃t+1/4 = q̃t − (But+1 − c), (38)

r̃t+1/4 = r̃t − ut+1, (39)

where ˜ indicates linear mappings p̃ = Mpp, q̃ = Mqq, and
r̃ = Mrr. By combining the dual variable update (37)-(39)
with (33), the dual variable update for each dual variable is
given by

p̃t+1/2 = 2p̃t+1/4 − p̃t = p̃t − 2Aut+1, (40)

q̃t+1/2 = 2q̃t+1/4− q̃t = q̃t−2(But+1−c), (41)

r̃t+1/2 = 2r̃t+1/4 − r̃t = r̃t − 2ut+1. (42)

Using the second resolvent operator (34) is given by

vt+1=arg min
v

(
F2(v)+

1

2

〈
M−1

p (v+p̃t+1/2),v+p̃t+1/2
〉)
,

(43)

p̃t+3/4 = p̃t+1/2 + vt+1, (44)

q̃t+1 = q̃t+1/2, (45)

r̃
t+3/4
i =

{
r̃
t+1/2
i (if r̃t+1/2

i ≥ 0, {1, 2, 3} ∈ i)
0 (otherwise)

, (46)

where the derivation is explained in Appendix A. By com-
bining the dual variable update (44)-(46) with (35), the dual
variable updates for the dual variables are given by

p̃t+1 = 2p̃t+3/4 − p̃t+1/2=p̃t+1/2 + 2vt+1, (47)

r̃t+1
i =

{
2r̃
t+1/2
i −r̃t+1/2

i = r̃
t+1/2
i (if r̃t+1/2

i ≥0, {1, 2, 3}∈i)
2·0− r̃t+1/2

i = −r̃t+1/2
i (otherwise)

.

(48)

Algorithm 1 summarises the optimization procedure (36),
(40)-(42), (43), (47), (48). The procedure is repeated for each
time-frame and frequency band. A small fixed number of
iterations T can be used.

Algorithm 1 P-R splitting based PSD estimation algorithm
Initialization of p̃0, q̃0, r̃0 for each frequency band

for t = 0, . . . , T − 1 do
ut+1= arg minu

(
F1(u)

+ 1
2

〈
M−1

p (Au− p̃t),Au− p̃t
〉

+ 1
2

〈
M−1

q (Bu− c− q̃t),Bu− c− q̃t
〉

+ 1
2

〈
M−1

r (u− r̃t),u− r̃t
〉)

p̃t+1/2= p̃t − 2Aut+1

q̃t+1= q̃t − 2
(
But+1 − c

)
r̃t+1/2= r̃t − 2ut+1

vt+1=arg minv

(
F2(v)+ 1

2

〈
M−1

p (v+p̃t+1/2),v+p̃t+1/2
〉)

p̃t+1= p̃t+1/2 + 2vt+1

for i = 1, . . . , 3 do

r̃t+1
i =

{
r̃
t+1/2
i (if r̃t+1/2

i ≥ 0)

−r̃t+1/2
i (otherwise)

end for
end for

D. Design of M Matrix for Fast Convergence

We discuss a method to design the positive definite matrices
in (28). To facilitate real-time implementation, a suitable se-
lection of {M−1

p ,M−1
q ,M−1

r } is important. In the following,
we summarize the derivations provided in Appendix B and C.
Let the operator M−1Ti satisfy

σLB,i‖ξ−ξ′‖2≤‖M−1Ti(ξ)−M−1Ti(ξ
′)‖2≤σUB,i‖ξ−ξ′‖2,

(49)

where {σLB,i, σUB,i} ∈ [0,∞] and their value range is depen-
dent on M−1. Then, the convergence rate is given by

‖ ξt−ξ∗ ‖2≤ (η1η2)t ‖ ξ0−ξ∗ ‖2, (50)

where ξ∗ is the fixed point of ξ and ηi ∈ [0, 1] is defined by

ηi =

√
1− 4σLB,i

(1 + σUB,i)2
. (51)

(50) indicates that fast convergence will be achieved by
modifying {σLB,i, σUB,i} such that ηi (i = 1, 2) approaches
zero. It is clear from (51) that the optimal value for ηi is
obtained when σLB,i = min(σUB,i,

1
4 (1+σUB,i)

2). This means
that σLB,i = σUB,i = 1

4 (1+σUB,i)
2 only if σUB,i = 1 and the

contraction factor ηi is then equal to 0. For 0 ≤ σUB,i < 1
or σUB,i > 1, the optimal contraction ratio results when
σLB,i = σUB,i. Thus, the contraction ratio ηi satisfies

0 ≤

√
1− 4σUB,i

(1 + σUB,i)2
≤ ηi ≤ 1. (52)

We conclude that optimal contraction ratio, i.e., ηi = 0 is
obtained when

σLB,i = 1, σUB,i = 1. (53)

Substituting (53) into (49) illustrates the meaning of (53). We
then have

‖M−1Ti(ξ)−M−1Ti(ξ
′)‖2 = ‖ξ − ξ′‖2. (54)
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TABLE I
EXPERIMENTAL PARAMETERS

Sampling frequency 16 kHz
FFT analyzing window length 21.3 ms
# of microphones, M 4
# of beamformers, L 3 (L=N)
# of noise point sources, K 2, 4, 6
Length of observed signal 14.0 sec
# of iteration times, T 5
# of frames in minimum statistics, Γ 62
Weight coefficients, Ψ (ψ1, ψ2, ψ3)=(1.0, 1.0, 2.0)

Weight coefficients, µi
µ1=[φ̂CN(ω, τ) − φ̂S(ω, τ)]+,

µ2 = [φ̂S(ω, τ) − φ̂CN(ω, τ)]+

(54) indicates that a semi-optimal design is to select M−1 such
that it locally inverts the linearized Ti at the current variable
value ξt.

Although the overall problem (23) is composed of two
monotone operators T1 and T2, we will try to select M
such that M−1T1 ≈ Id. This is motivated by T2 in (25)
being composed of an L1 norm and an indicator function
and its linearity in a subdifferential domain is unaffected by
multiplication with M−1. From the (9), subdifferential of F1

can be written as

∂F1(u) = Ψ(u− φ̂) (55)

and its inverse operator is given by

∂F−11 (u) = Ψ−1(u) + φ̂. (56)

A basic property of the subdifferential of a convex conjugate
function is ∂F ?1 = ∂F−11 [20]. Hence, T1 in (24) is equal to

T1(ξ) =

 A∂pF
−1
1 (ATp+BTq+r)

B∂qF
−1
1 (ATp+BTq+r)− c

∂rF
−1
1 (ATp+BTq+r)


=

 AΨ−1ATp + A(Ψ−1(BTq + r) + φ̂)

BΨ−1BTq + B(Ψ−1(ATp+r) + φ̂)− c

Ψ−1r + Ψ−1(ATp+BTq) + φ̂

 .
(57)

To satisfy (54) by choosing a good M−1 and recalling that ξ=
[pT,qT, rT]T, we select following positive definite matrices:

M−1
p = (AΨ−1AT)−1 ≈ (AT)†ΨA†, (58)

M−1
q = (BΨ−1BT)−1 ≈ (BT)†ΨB†, (59)

M−1
r = (Ψ−1)−1 = Ψ. (60)

IV. EXPERIMENTS

To verify the practical feasibility of the proposed method,
experiments were conducted using signals recorded in a real
environment with reverberation and background noise. We first
describe the experimental setup and then the results.

A. Experimental Setup

The experimental setup, including the array structure and
impulse response measurement points, is depicted in Fig.
3. The radius of the microphone array was 0.03 m. The
array observation was replicated by convolving dry speech

Fig. 3. Recording situations

with the impulse responses measured in two reverberant
rooms (RT60 at 1.0 kHz: 230, 330 ms). As shown in Fig.
3, the interfering noise sources (K = 2, 4, 6 in number)
were placed at randomly chosen positions located outside an
angular region (of 90 degrees width) that included the target
source. Twenty source arrangements were prepared for each
condition. We convolved speech signals at a loudspeaker with
impulse responses. In addition, we prepared two kinds of
background noise (stationary pink noise and non-stationary
cafeteria noise [21] ). They were convolved with impulse
responses from loudspeakers at the edge of the room floor
and superimposed over the microphone observation at vari-
ous noise levels, which was adjusted to {−20,−10, 0} dB
relative to the averaged target source level. In total, the size
of the data sets was 1.4 hours (= 2 [reverberant rooms] ×
3 [# of interference noises] × 3 [background noise level] ×
20 [source arrangements]×14 [sec]). The parameters are sum-
marized in Table I.
L= 3 beamforming filters were designed with the minimum

variance distortionless response (MVDR) method [16], with
one focused on the target direction θS and the remaining two
with nulls in directions centered on θS, with a directional
spacing of 120 degrees. PSD estimation was conducted for
frequency bands spaced corresponding to the equivalent rect-
angular bandwidth (ERB) [22] scale (44 bands with no overlap
corresponding from 125 to 8000 Hz). The Wiener filter gain
was lower bound at 0.05 to suppress musical noise.

The proposed method was compared with four conventional
methods. These were: fixed MVDR beamformer (Conv. #1)
where the noise spatial correlation matrix is calculated by
using array manifold vectors assuming plane wave propagation
in free field, speech distortion weighted multichannel Wiener
filter (SDW-MWF) (Conv. #2), PSD estimation-in-beamspace
method [10] (Conv. #3), and its extension [11] (Conv. #4).
Note that the target focusing beamformer used in Conv. #2-
4 and the proposed method is the same as the beamformer
used in Conv. #1. In [8], the overall procedure is shown in
its Fig. 1.1 and sidelobe-canceling filter is specified in its
(1.15). For sidelobe-canceling filter design, it is necessary to
estimate the voice activity of the observed signals. However,
the output sound quality varies with VAD accuracy. To avoid
this effect, we have provided accurate VAD information and
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Fig. 4. Relationship between PSD distortion and iteration number T in
proposed method. (left) PSD distortion in target source, (right) PSD distortion
in noise sources. To show behavior of the data distributions, the box plot was
used. After eliminating outliersamples drawn by asterisk ∗, the maximum,
upper quartile (75th percentile), median, lower quartile (25th percentile), and
minimum are marked.

the target/noise spatial correlation matrix can then be esti-
mated. For calculating the sidelobe-canceling filters according
to (1.15) in [8], the target spatial correlation matrix was mixed
in the noise spatial correlation matrix with strength 1/10.

The PSD distortions of target source and noise sources were
computed using the estimated PSDs {u1, u2, u3} as,

PSDdisttarget = 10 log10

Eω,τ [φ̄2S]

Eω,τ [(φ̄S−u1)2]
[dB],

PSDdistnoise = 10 log10

Eω,τ [φ̄2N]

Eω,τ [(φ̄N−(u2 +u3))2]
[dB],

where {φ̄S, φ̄N} is the ground truth of the PSD of target/noise
sources. Since the proposed method (Algorithm 1) is con-
structed with an iterative update form and its performance
varies with the iteration number T , the relationship between
the PSD distortion and T was investigated first. As shown
in Fig. 4, these measures were saturated for around T = 5.
Thus, we selected T = 5 times iteration for the proposed
method. The resulting average calculation times for signals
of 14 seconds duration are shown in Table II. All methods
facilitate real-time computation.

B. Experimental Results

As evaluation measures, we used (i) PSD distortion, (ii)
signal-to-interference and background noise ratio improvement
(SINR-I) and (iii) signal-to-distortion ratio (SDR) [23], and
PESQ [24] as a perceptually relevant metric.

The PSD distortion was calculated for Conv. #3, #4 and
the proposed method because these procedures operate in the
power spectral domain. The results were shown in Fig. 5 that
both target and noise PSDs were estimated most accurately
with the proposed method. The proposed method was par-
ticularly superior over conventional methods w.r.t noise PSD

TABLE II
AVERAGED COMPUTATION TIME FOR 14 SECONDS SIGNALS. (2.60 GHZ

INTEL XEON CPU E5-2650, UNIT: SECONDS)

Conv. #1 Conv. #2 Conv. #3 Conv. #4 Prop
0.27 1.71 0.56 0.86 1.05

K=2 K=4 K=6 K=2 K=4 K=6
Number of noise sources
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Fig. 5. PSD distortion for each number of noise sources K. (left) PSD
distortion in target source, (right) PSD distortion in noise sources.
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Fig. 6. SIR improvement for each number of noise sources K.

estimation accuracy. This can be explained by the newly added
constraint (12), i.e., PSD estimation accuracy of noise sources
can be improved when that of target source is accurately
estimated.

In Figs. 6 and 7, the SINR-I and SDR for each method are
shown. For both measures, the best performance was obtained
with the proposed method. The SINR-I of the proposed
method was improved around 3.4 dB compared with that of
Conv. #4. This is consistent with the results for PSD distortion,
i.e., the proposed method effectively reduces the noise with
only a minimal distortion of the target source. Whereas the
SINR-I scores with Conv. #4 were better than those with Conv.
#3, the SDR scores gave the opposite result. The evaluation
scores were not significantly affected by the reverberation
time and background noise pattern (stationary pink noise/non-
stationary cafeteria noise). Instead of subjective sound quality
tests, we measured the PESQ score for each sample. The
results are shown in Fig. 8. The average PESQ score with
the proposed method was 2.5 while it was 2.1 for Conv. #1
and 2.3 for Conv. #4.

Audio samples used in experiments are available on our
web-cite 1.

1http://www.kecl.ntt.co.jp/icl/ls/members/niwa/
AudioSamples IEEETASLP micmos.zip
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Fig. 7. SDR for each number of noise sources K.
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Fig. 8. PESQ score for each number of noise sources K

V. CONCLUSIONS

A PSD estimation method based on MOS was proposed.
We showed that commonly available prior knowledge on
the PSD, such as sparseness, can be represented by convex
cost functions and linear constraints. The corresponding dual
problem can be written as the sum of two convex functions.
We used Peaceman-Rachford splitting with a Newton method
as a solver for the optimization problem, because it facilitates
the estimation of the PSDs in real-time. From the experimental
results we can conclude that the proposed method is an effec-
tive noise reduction method that results in minimal distortion
of the target source.

APPENDIX

A. Derivation of Algorithm 1

In this Appendix, the variable update rule in Algorithm 1
is derived. First, the update rule associated with the resolvent
operator R1, which corresponds to (32), is derived. Assuming
that two points {p,p′} are related through the resolvent
operator R1, their relationship is

p ∈ R1,p(p
′) = (Id + M−1

p ∂pG1)−1(p′),

0 ∈M−1
p ∂pG1(p) + p− p′,

p̃ ∈ p̃′ − ∂pG1(p), (61)

where ˜ denotes a transformation of the form p̃′ = Mpp
′.

Since the subdifferential operator of G1 w.r.t p is ∂pG1(p) =

A∂pF
?
1 (ATp+BTq+r) and since u ∈ ∂pF ?1 (ATp+BTq+r),

we can rewrite (61) as

p̃ ∈ p̃′ −A∂pF
?
1 (ATp + BTq + r),

p̃ ∈ p̃′ −Au, u ∈ ∂pF ?1 (ATp + BTq + r). (62)

(62) indicates that p̃ can be updated by using the updated u
and the previous point p̃′. (The u-update rule is derived later.
)

For the remaining dual variables q ∈ R1,q(q
′), the relation-

ship among {q,q′,u} is obtained in a similar way, as

q ∈ R1,q(q
′) = (Id + M−1

q ∂qG1)−1(q′),

0 ∈M−1
q ∂qG1(q) + q− q′,

q̃ ∈ q̃′ − ∂qG1(q), (q̃′ = Mqq
′)

q̃ ∈ q̃′ − (B∂qF
?
1 (ATp + BTq + r)− c),

q̃ ∈ q̃′ − (Bu− c), u ∈ ∂qF ?1 (ATp + BTq + r). (63)

For r ∈ R1,r(r
′), we obtain

r ∈ R1,r(r
′) = (Id + M−1

r ∂rG1)−1(r′),

0 ∈M−1
r ∂rG1(r) + r− r′,

r̃ ∈ r̃′ − ∂rG1(r), (r̃′ = Mrr
′)

r̃ ∈ r̃′ − ∂rF ?1 (ATp + BTq + r),

r̃ ∈ r̃′ − u, u ∈ ∂rF ?1 (ATp + BTq + r). (64)

Applying a basic property of the subdifferential of a convex
conjugate function, ∂F1 = (∂F ?1 )−1 (e.g. [20]) to u ∈
∂F ?1 (ATp + BTq + r), we obtain

u ∈ ∂F ?1 (ATp + BTq + r),

∂F1(u) ∈ ATp + BTq + r,

∂F1(u) ∈ ATM−1
p p̃ + BTM−1

q q̃ + M−1
r r̃. (65)

By using (62)-(64), the u-update procedure using dual vari-
ables {p̃′, q̃′, r̃′} is formulated by

0 ∈ ∂F1(u) + ATM−1
p (Au− p̃′)

+ BTM−1
q (Bu− c− q̃′)

+ M−1
r (u− r̃′). (66)

The integral of (66) leads the u-update procedure:

ut+1 = arg min
u

(
F1(u) +

1

2

〈
M−1

p (Au− p̃t),Au− p̃t
〉

+
1

2

〈
M−1

q (Bu− c− q̃t),Bu− c− q̃t
〉

+
1

2

〈
M−1

r (u− r̃t),u− r̃t
〉)
. (67)

By using the updated u, the dual variables are updated in
accord with (62)-(64) as

p̃t+1/4 = p̃t−Aut+1, (68)

q̃t+1/4 = q̃t−(But+1−c), (69)

r̃t+1/4 = r̃t−ut+1. (70)

Thus, the primal-dual update w.r.t. (32) is composed of (67)
and (68)-(70). By using the updated dual variables, (33) results
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in:

p̃t+1/2 = 2p̃t+1/4− p̃t = p̃t−2Aut+1, (71)

q̃t+1/2 = 2q̃t+1/4−q̃t = q̃t−2(But+1−c), (72)

r̃t+1/2 = 2r̃t+1/4− r̃t = r̃t−2ut+1. (73)

Second, we derive variable update rules associated with the
resolvent operator R2

p ∈ R2,p(p
′) = (Id + M−1

p ∂pG2)−1(p′),

0 ∈M−1
p ∂pG2(p) + p− p′,

p̃ ∈ p̃′ − ∂pG2(p), (p̃′ = Mp(p
′)). (74)

Since the subdifferential operator of G2 w.r.t. p is ∂pG2(p) =
−∂pF ?2 (−p) and since v ∈ ∂pF ?2 (−p), we can rewrite (74)
as

p̃ ∈ p̃′ + ∂pF
?
2 (−p),

p̃ ∈ p̃′ + v. (75)

(75) indicates that p̃ can be updated by using updated v and
the previous point p̃′.

The v-update rule is derived from v ∈ ∂F ?2 (−p), as

v ∈ ∂F ?2 (−p),

∂F2(v) ∈ −p,

∂F2(v) ∈ −M−1
p (p̃),

0 ∈ ∂F2(v) + M−1
p (v + p̃′). (76)

The integral of (76) leads the v-update procedure:

vt+1=arg min
v

(
F2(v)+

1

2

〈
M−1

p (v+p̃t+1/2),v+p̃t+1/2
〉)
.

(77)

Following (75), dual variable p is updated by using updated
v and previous point as

p̃t+3/4 = p̃t+1/2 + vt+1, (78)

where the notation follows (34). Thus, the update procedure
in (35) results in

p̃t+1 = 2p̃t+3/4 − p̃t+1/2=p̃t+1/2 + 2vt+1. (79)

Since R2 and C2 do not include a q-update procedure, q
remains unchanged:

qt+1 = qt+1/2. (80)

Finally, the r-update procedure using the resolvent operator
R2 is provided. Two points {r, r′} are associated by

r ∈ R2,r(r
′) = (Id + M−1

r ∂rG2)−1(r′),

0 ∈M−1
r ∂rG2(r) + r− r′,

0 ∈M−1
r ∂rι(r�0)(r) + r− r′,

0 ∈ ∂rι(r̃�0)(r̃) + r̃− r̃′. (81)

The integration of (81) gives

r̃t+1 = arg min
r̃

(
ι(r̃�0)(r̃) +

1

2
‖r̃− r̃t+1/2‖22

)
, (82)

where the notation follows (34). (82) can be calculated bv

r̃
t+3/4
i =

{
r̃
t+1/2
i (if r̃t+1/2

i ≥ 0)

0 (otherwise)
. (83)

Then, the update procedure in (35) results in

r̃t+1
i =

{
2r̃
t+1/2
i − r̃t+1/2

i = r̃
t+1/2
i (if r̃t+1/2

i ≥ 0)

2 · 0− r̃t+1/2
i = −r̃t+1/2

i (otherwise)
.

(84)

B. Attributes of resolvent and Cayley operators

We investigate basic properties of the resolvent operator
(26) and the Cayley operator (27). Let us assume that the
monotonicity of Ti is determined by the following attribute
for any two different two points ξ and ξ′:

γLB,i‖ξ−ξ′‖2≤‖Ti(ξ)− Ti(ξ′)‖2≤γUB,i‖ξ−ξ′‖2, (85)

where γLB,i ∈ [0,∞) and γUB,i ∈ (0,∞]. The value of the
constant varies with the properties of the cost. For example
γLB,i ∈ (0,∞) when Ti is strongly monotone and γUB,i ∈
(0,∞) when Ti is Lipschitz continuous. Applying M−1 to Ti
results in

σLB,i‖ξ−ξ′‖2≤‖M−1Ti(ξ)−M−1Ti(ξ
′)‖2≤σUB,i‖ξ−ξ′‖2,

(86)

where σLB,i ∈ [0,∞) and σUB,i ∈ (0,∞]. The values of σLB,i
and σUB,i change with the design of M.

From (85) and (86) follows the nonexpansive properties of
resolvent operator and Cayley operator:

Theorem A.1: Nonexpansive property of resolvent operator

The contractive ratio for the input/output pairs ξ, ξ′ on the
resolvent operator Ri is given by

1

1+σUB,i
‖ξ−ξ′‖2≤‖Ri(ξ)−Ri(ξ′)‖2≤

1

1+σLB,i
‖ξ−ξ′‖2 .

(87)

Let σLB,i ∈ [0,∞) and σUB,i ∈ (0,∞] hold. Then Ri is a
nonexpansive operator.

Proof: The input/output pairs for the resolvent operator
are ζ =Ri(ξ), ζ′=Ri(ξ

′). They are reformulated by

(Id + M−1Ti)(ζ) = ξ, (Id + M−1Ti)(ζ
′) = ξ′.

By subtracting these, we obtain(
Id+M−1Ti

)
(ζ)−

(
Id+M−1Ti

)
(ζ′) = ξ−ξ′. (88)

Since (Id+M−1Ti) is strongly monotone with (1+σLB,i), its
inverse operator (Id+M−1Ti)

−1 =Ri is Lipschitz continuous
with (1+σLB,i)

−1. By taking the norm of (88), we obtain

‖ ζ−ζ′ ‖2 + ‖M−1Ti(ζ)−M−1Ti(ζ
′) ‖2≥‖ ξ−ξ′ ‖2 . (89)

Since the property of M−1Ti is given by (86), the lower bound
in (87) is obtained.

Theorem A.2: Nonexpansive property of Cayley operator
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The contractive ratio for the input/output pairs on the Cayley
operator Ci satisfies

‖Ci(ξ)− Ci(ξ′) ‖2≤ ηi ‖ ξ − ξ′ ‖2, (90)

where ηi (0 ≤ ηi ≤ 1) is defined by

ηi =

√
1− 4σLB,i

(1 + σUB,i)2
. (91)

Let {σLB,i, σUB,i}∈ [0,∞] hold. Then Ci is a nonexpansive
operator.

Proof: By multiplying (ζ−ζ′)T with (88), we obtain

‖ζ−ζ′‖22
+
〈
ζ−ζ′,M−1Ti(ζ)−M−1Ti(ζ

′)
〉
=〈ζ−ζ′, ξ−ξ′〉.

From the lower bound in (86), we obtain

(1 + σLB,i) ‖ζ−ζ′‖22 ≤ 〈ζ−ζ′, ξ−ξ′〉 . (92)

By taking the squared norm for the input/output pairs χ =
Ci(ξ), χ′=Ci(ξ′), we obtain

‖χ− χ′ ‖22 =‖ 2(ζ − ζ′)− (ξ − ξ′) ‖22
= 4 ‖ζ−ζ′‖22−4 〈ζ−ζ′, ξ−ξ′〉+‖ξ−ξ′‖22 (93a)

≤‖ ξ − ξ′ ‖22, (93b)

where (92) is used for reforming (93a) into (93b), and this
proves the nonexpansive property of Ci. Combining (92) and
(93a) results in

‖χ− χ′‖22≤‖ξ − ξ′‖22 −4σLB,i ‖ζ − ζ′‖22 .

With the lower bound of (87), we obtain

‖χ− χ′‖22 ≤
(

1− 4σLB,i
(1 + σUB,i)2

)
‖ξ − ξ′‖22 .

Hence, we obtain (90).

C. Convergence rate on P-R splitting

In this appendix we investigate the convergence rates of P-R
splitting. Since the contractive ratio of the Cayley operator Ci
is provided by ηi from Theorem A.2, the contractive ratio for
subsequent input/output ξt+1 = C2C1(ξt), ξt = C2C1(ξt−1)
can be bounded by

‖ ξt+1−ξt ‖2≤ η1η2 ‖ ξt−ξt−1 ‖2 . (94)

The difference between variable ξ and its fixed point ξ∗ is
represented by

‖ ξt−ξ∗ ‖2 =‖ ξt − ξt+1 + ξt+1 − ξt+2 + · · · − ξ∗ ‖2

≤
∞∑
r=t

‖ ξr − ξr+1 ‖2

≤
( ∞∑
j=1

(η1η2)
j
)
‖ ξt+2 − ξt+1 ‖2

=
η1η2

1− η1η2
‖ ξt+2 − ξt+1 ‖2 . (95)

Similarly, we obtain

‖ ξt+1−ξ∗ ‖2 ≤
1

1− η1η2
‖ ξt+2 − ξt+1 ‖2 . (96)

From (95) and (96), the following inequality is obtained:

‖ ξt+1−ξ∗ ‖2≤ η1η2 ‖ ξt−ξ∗ ‖2 . (97)

Thus, the convergence rate on the Peaceman-Rachford splitting
is

‖ ξt−ξ∗ ‖2≤ (η1η2)t ‖ ξ0−ξ∗ ‖2 . (98)
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