
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 1

A Divide-and-Conquer Approach
to the Summarization of Long Documents

Alexios Gidiotis and Grigorios Tsoumakas

Abstract—We present a novel divide-and-conquer method for the neural summarization of long documents. Our method exploits the
discourse structure of the document and uses sentence similarity to split the problem into an ensemble of smaller summarization
problems. In particular, we break a long document and its summary into multiple source-target pairs, which are used for training a
model that learns to summarize each part of the document separately. These partial summaries are then combined in order to produce
a final complete summary. With this approach we can decompose the problem of long document summarization into smaller and
simpler problems, reducing computational complexity and creating more training examples, which at the same time contain less noise
in the target summaries compared to the standard approach. We demonstrate that this approach paired with different summarization
models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance. Our best models
achieve results that are on par with the state-of-the-art in two two publicly available datasets of academic articles.

Index Terms—Summarization of long documents, neural summarization, text summarization, natural language processing, deep
learning

F

1 INTRODUCTION

SUMMARIZATION is closely related to data compression
and information understanding, both of which are key

to information science and retrieval. Being able to produce
informative and well-written document summaries has the
potential to greatly improve the success of both information
discovery systems and human readers that are trying to
quickly skim large numbers of documents for important
information. Indeed, automatic summarization has been
recently recognized as one of the most important natural
language processing (NLP) tasks, yet one of the least solved
ones [1].

This work is concerned with the neural summarization
of long documents, such as academic articles and finan-
cial reports. In previous years, neural summarization ap-
proaches have mainly focused on short pieces of text that
typically come from news articles [2], [3], [4], [5], [6], [7], [8],
[9]. This is also reflected in the amount of datasets that exist
for this particular problem [10], [11], [12], [13].

Summarizing long documents is a very different prob-
lem to newswire summarization. In academic articles for
example, the input text can range from 2,000 to 7,000 words,
while in the case of newswire articles it rarely exceeds 700
words [14]. Similarly, the expected summary of a news
article is less than 100 words long, while the abstract of an
academic article can easily exceed 200 words.

The increased input and output length lead neural
summarization methods to a much higher computational
complexity, making it extremely hard to train models that
have enough capacity to perform this task. This is more

• A. Gidiotis is with the School of Informatics, Aristotle University of
Thessaloniki, Thessaloniki, Greece and also with Atypon Hellas, Vasilissis
Olgas 212, Thessaloniki, Greece (e-mail: gidiotis@csd.auth.gr)

• G. Tsoumakas is with the School of Informatics, Aristotle University of
Thessaloniki, Thessaloniki, Greece (e-mail: greg@csd.auth.gr).

prominent with abstractive summarization models where
the complexity of text generation becomes prohibitive for
very long sequences. Most importantly, long documents
introduce a lot of noise to the summarization process. In-
deed, one of the major difficulties in summarizing a long
document is that large parts of the document are not really
key to its narrative and thus should be ignored. Finally,
long summaries typically contain a number of diverse key
information points from a document, which are more diffi-
cult to produce, compared to the more focused information
contained in short summaries.

Certain methods have tried to address these problems by
limiting the size of the input document, either by selecting
specific sections that are more informative [15], or by first
employing a more efficient extractive model that learns to
identify and select the most important parts of the input
[16], [17]. While this reduces the noise and the computa-
tional cost in processing a long document, there remain
the computational cost and information diversity issues in
producing a long summary. In the context of Transformer
models with self-attention, sparse attention mechanisms
such as Big Bird [18] manage to increase the input length
by a large amount but they still cannot scale to very long
summaries.

In contrast to the above methods that aim to produce
a complete summary at once, we propose a novel divide-
and-conquer approach that first breaks both the document
and its target summary into multiple smaller source-target
pairs, then trains a neural model that learns to summarize
these smaller document parts, and finally during inference
aggregates the partial summaries in order to produce a
final complete summary. By decomposing the problem of
long document summarization into smaller summarization
problems, our approach reduces the computational com-
plexity of the summarization task. At the same time, our
approach increases the number and, more importantly, the

ar
X

iv
:2

00
4.

06
19

0v
3

 [
cs

.C
L

]
 2

3
Se

p
20

20

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2

quality of the training examples by having source and target
summary pairs that are focused on a specific aspect of the
text, which results in better alignment between them and
less noise. This leads to a decomposition of the summariza-
tion problem into simpler summarization problems that are
easier to learn. Empirical results on two publicly available
datasets of academic articles, show that our approach can
enhance the ability of summarization models and lead to
overall improved results. We show that using a 3 years-old
sequence-to-sequence model [4], our approach manages to
achieve surprisingly good results, surpassing recent more
advanced models [14], [15]. In addition, when paired with a
very strong Transformer model such as PEGASUS [19] our
method produces results that are on par with the state-of-
the-art on both datasets.

This paper is based on past work [20] that assumed the
existence of structured summaries, such as those available
for some of the biomedical articles indexed in PubMed.
Here we lift this assumption by using sentence level Rouge
similarities in order to match sentences of the summary
with parts of the document and automatically create source-
target pairs for training. This is a key advancement, since the
vast majority of academic documents are not accompanied
by structured abstracts. Also, such an approach makes this
work applicable to any type of document, from academic ar-
ticles to blog posts and financial documents. Ultimately, our
proposed method allows advanced summarization methods
to be used in a number of different applications that previ-
ously might have been infeasible.

The rest of this work is structured as follows. Section
2 gives a brief overview of the related work. Section 3
describes in detail the proposed method. Section 4 presents
the experimental setup and Section 5 discusses the results
of our experiments. Finally, Section 6 concludes this works
and points to future work directions.

2 RELATED WORK

A variety of solutions have been proposed to the problem
of automatic summarization. These include simple unsuper-
vised methods [21], [22], graph-based methods that involve
arranging the input text in a graph and then using ranking
or graph traversal algorithms in order to construct the
summary [23], [24], [25], [26] and neural methods, which
are discussed in more detail in the following subsection.
Subsequently we review related work on long document
summarization and summarization of academic articles,
which are the most common type of long documents in the
summarization literature. Finally, we provide and overview
of summarization datasets with emphasis on academic arti-
cle summarization.

2.1 Neural text summarization

Closely following the advances in neural machine transla-
tion [27], [28], [29] and language modeling [30], [31] and,
fueled by the increased availability of computational re-
sources as well as large annotated datasets [11], [12], [13],
neural summarization is nowadays achieving state-of-the-
art results.

Extractive methods aim to select the salient sentences
from the input and combine them, typically by concatena-
tion, in order to generate a summary. This is usually ap-
proached as a binary classification problem, where for each
sentence the model decides whether it should be included
in the summary or not [6], [32], [33]. On the other hand,
abstractive methods try to encode the input into a hidden
representation and then use a decoder conditioned on that
representation to generate the summary [2], [3], [6], [7], [8],
[9], [19], [34]. In addition to these two main categories, there
also exist hybrid approaches that combine both extractive
and abstractive methods either by using pointer-generators
[4], [5], [14], [20], [35] or by fusing extractive and abstractive
models [16], [17].

In order to encode the input text, different methods
are using different variations of encoders based on RNNs
[4], [5], [15], [17], [33], [35] or convolutional networks [16].
One notable addition here is [36] which introduces the
Rotational Unit of Memory (RUM). RUM is a different type
of RNN unit that can be superior to conventional LSTMs in
some summarization scenarios. Finally, given the increased
popularity and success of large pre-trained Transformers
[29] in various NLP tasks, many recent methods employ
Transformer models [6]. Towards that direction a variety of
pre-training objectives have been suggested that are better
suited for the task of abstractive summarization [7], [8], [9],
[19].

In an effort to enhance performance and address some
common shortcomings of neural summarization models,
policy learning [37] has been proposed [5], [16], [35], [38],
[39] to further improve summarization performance.

2.2 Long document summarization

Most of the aforementioned approaches are mainly focused
on summarizing short documents (e.g. news articles), in
order to produce short summaries (e.g. headlines).

In cases where the input and target sequences are longer,
for example academic articles, the complexity of models
that process the complete article at once increases dramati-
cally making such methods infeasible. Different approaches
attempt to solve this problem by exploiting the structure
of a document. For example, [35] makes use of multiple
“encoder agents” where each one processes a different
paragraph of the input. A decoder is based on the hidden
states of all agents in order to generate the final summary.
The model is trained end-to-end using a combination of
Maximum Likelihood Estimation (MLE) and Reinforcement
Learning (RL) objectives. This approach exploits the struc-
ture of an article to shorten the input sequences of each
encoding agent. On the other hand, the dependency be-
tween encoder agents makes it hard to parallelize, while the
single decoder still experiences the same difficulties with
long output sequences.

Also, [16] uses a hybrid model with an “extractor agent”
that selects salient sentences and an “abstractor agent” that
re-writes each of the extracted sentences separately. Each
submodel is trained separately with MLE and then the full
end-to-end model is trained with RL. This model achieves
significant improvements in performance as well as speed
during training and decoding. However, while this method,

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 3

effectively reduces the complexity of the abstractive model
that works on single sentences, the extractive model still has
to process the whole document. Although extractive models
are much more efficient when processing long sequences,
there is a limit to the amount of information they can process
at once.

Lastly, Big Bird [18] tries to deal with the problem of long
document summarization by replacing the full self-attention
of Transformer models with a sparse attention mechanism
that can scale to inputs that are many times longer. This
helps the model use a lot more context when summarizing a
document and scale to a lot longer sequences without losing
the advantages of full attention. Nevertheless, this method
might struggle to scale to documents of arbitrary length and
does little to exploit the underlying structure of documents.

In contrast, we treat each section of the text as a separate
summarization instance and as a result our method is easily
parallelizable. Furthermore, each summarization instance
has to deal with significantly shorter input and output
sequences than each of these methods. By exploiting the
structure of a document it is possible to scale to documents
of arbitrary length such as review papers or financial re-
ports. On the downside, the lack of communication during
the summarization of different sections may lead to section-
level repetitions.

2.3 Summarizing academic articles
Existing approaches for summarizing academic articles in-
clude extractive models that perform sentence selection [33],
[40], [41], [42] and hybrid models that first select and then
re-write sentences from the full text [14], [15]. In addition,
the Pre-training with Extracted Gap-sentences for Abstrac-
tive SUmmarization Sequence-to-sequence (PEGASUS) [19]
model is a Transformer encoder-decoder pre-trained on
massive corpora of documents (Web and news articles) that
has demonstrated great potential on various summarization
benchmarks, including academic articles. The optimization
objective of PEGASUS is called Gap Sentence Generation
(GSG), where whole sentences of the input are masked and
the model attempts to generate these gap-sentences from
the rest of the input. This objective was proposed by the
authors of the PEGASUS paper, because it is better aligned
with the summarization task and allows for better adapta-
tion of the model during fine-tuning and overall improved
performance. The performance and scaling capabilities of
PEGASUS can be further improved with the addition of the
sparse attention mechanism of Big Bird.

2.4 Summarization datasets
A number of publicly available datasets of short articles,
such as the New York Times [11], Gigaword [12], CNN/Daily
Mail [10] and Newsroom [13] are commonly used as a bench-
mark for many of the earlier summarization methods [4],
[5], [16], [35], [43].

When focusing on the task of academic article summa-
rization, several large scale datasets have been introduced.
The arXiv and PubMed datasets [14] were created using
open access articles from the corresponding popular repos-
itories. PMC-SA [20] is a dataset of open access articles
from PubMed Central, where the abstract of each article is

structured into sections similar to the full text. Finally, the
Science Daily dataset [36] was created by crawling stories
from the Science Daily web site1. Each story is about a
recent scientific paper and is also accompanied by a short
summary that is used as target for training and evaluation.

In addition to the datasets mentioned above, there is also
the TAC2014 biomedical summarization dataset2. TAC2014
contains 20 topics, each consisting of one reference article
and several articles citing it. Additionally, each reference
article is accompanied by four scientific summaries that are
written by domain experts. This dataset has been used in
the earlier literature [41], but since it is rather small, it is not
suitable for the training of neural summarization models.
Another more recent dataset that is focused on scientific
articles from the Computational Linguistics domain is the
dataset of the CL-SciSumm 2016 shared task [44]. It is
composed of 30 annotated sets of open access citing and
reference papers accompanied by hand-written summaries.
This is also a rather small dataset that is not suitable for
neural summarization approaches. Finally, ScisummNet [45]
is a medium scale dataset of 1,000 articles from the Compu-
tational Linguistics domain that are manually-annotated for
summarization.

3 OUR APPROACH

We propose a divide-and-conquer approach for the sum-
marization of long documents. In this section, we present
a training algorithm for the partial summarization systems
as well as the methodology we are following at prediction
time. Finally, we discuss different model variants that can
be combined with this approach.

3.1 Divide-and-conquer summarization
We argue that a very efficient way of dealing with long
documents is to train a summarization model that learns
to summarize separately the different sections of the doc-
ument. Our approach assumes that long documents are
structured into discrete sections and exploits this discourse
structure by working on each section separately. Each sec-
tion of the document is treated as a different example during
the training of the model by pairing it with a distinct
summarization target.

A first idea for achieving this pairing would be to use the
whole summary of the document as target for each different
section. However, this approach would be problematic for
a couple of reasons. First of all, having very long target
sequences is very demanding in terms of computational
resources. This problem would be even more apparent if
instead of an RNN model we decided to use a Transformer-
based model, since the computational complexity and mem-
ory requirements of full attention Transformers explode
for very long sequences. Secondly, the summary will most
likely include information that is irrelevant to some sections
of the document. For example, information about the con-
clusions of an academic article in its abstract will most likely
be irrelevant to the section describing the methods. As a
result, it would be impossible for the model to generate

1. https://www.sciencedaily.com/
2. http://www.nist.gov/tac/2014

https://www.sciencedaily.com/
http://www.nist.gov/tac/2014

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 4

these parts of the target sequence and this may result in
poor performance.

We introduce Divide-ANd-ConquER (DANCER) sum-
marization, a method that automatically splits the summary
of a document into sections and pairs each of these sec-
tions to the appropriate section of the document, in order
to create distinct target summaries. Splitting a summary
into sections is not straightforward, apart from the limited
case of structured abstracts of academic articles [20]. In
DANCER we employ ROUGE metrics [46] in order to match
each part of the summary with a section of the document.
Similar to [15], a summary is represented as a list of M
sentences A = (a1, . . . , aM). In addition, each document is
represented as a list of K sections (s1, . . . , sK) and each
section sk of the document as a list of N sentences sk =
(sk1 , . . . , s

k
N). We compute the ROUGE-L precision, between

each sentence of the summary am and each sentence of the
document skn. Given two word sequences x = (x1, . . . , xI)
and y = (y1, . . . , yL) with lengths I and L respectively, the
longest common sub-sequence (LCS) is the common sub-
sequence with the maximum length. If LCS(x, y) is the
length of the longest common sub-sequence of x and y,
then ROUGE-L precision between x and y, PLCS(x, y) is
computed as follows:

PLCS(x, y) =
LCS(x, y)

L
(1)

In more detail, once we have computed the ROUGE-L
precision between the summary sentence am and all the
sentences of the document, we find the full text sentence
skmax
nmax

with the highest ROUGE-L precision score and we
assign am to be part of the summary of section kmax.
We repeat this process until all sentences of the summary
have been assigned to one document section. Then we
group all summary sentences by section and concatenate
the sentences corresponding to the same section in order to
create the target summary for that section.

This approach is mainly inspired by the input-target
sentence alignment method that is commonly used to create
sentence level targets for extractive summarization [16], [43].
In the extractive summarization context, ROUGE metrics
are used in order to match each target sentence with the
most similar input sentence. We extend this idea and use the
most similar input sentence as an indicator to find the most
relevant section of the input for each target sentence and
then group target sentences based on their corresponding
sections. Other sentence similarity metrics such as BLEU
could also be explored in this setup but we leave this for
future work.

During training, each section of the document is used
as input text and the corresponding part of the summary is
the target summary. The training itself is performed with
simple teacher forcing [47], where we are minimizing the
negative log likelihood of the target summary sequence
y = (y1, . . . , yN) given the input sequence x.

loss = −
N∑
t=1

logP (yt|y1, . . . yt−1, x) (2)

We have found that this training strategy has several
advantages over other methods proposed in the literature.

Firstly, by breaking down the problem into multiple smaller
problems we greatly reduce the complexity and make it
much easier to solve. We believe that this is a very efficient
way to approach the summarization of long documents,
since it greatly reduces the length of both the input and
more importantly, the output sequences. Also, since the
target summaries for each section are selected based on the
ROUGE-L scores of each sentence, we create a better and
more focused matching between the source and the target
sequences and avoid having parts of the target summary
that are irrelevant to the input sequence. This property
prevents us from penalizing the model for not predicting
information that was absent in the input text.

Secondly, by splitting each training document into mul-
tiple input-target pairs we create a lot more training exam-
ples. This is especially beneficial for neural summarization
models because by splitting each document into multiple
examples we can effectively make use of more training
content. This becomes clearer if we think of a neural sum-
marization decoder as a conditional language model that
cannot process an unlimited amount of text from each
training example. The way that we approach the training
allows us to effectively distribute the source and target texts
into more training examples and thus enable us to train our
model on a larger amount of textual content which leads to
improved output quality.

Finally, the method itself is simple and model agnos-
tic and can employ different summarization models, from
encoder-decoder RNNs to Transformers. It can also be com-
bined with other more sophisticated methods that perform
sentence extraction before the main summarization process,
since it has been observed that pointer neural networks
sometimes struggle at selecting relevant parts of the input.

3.2 Section selection

When working with long structured documents it is usually
the case that not all sections of the document are key to the
document. If we take as an example an academic article, sec-
tions like literature review or background are not essential
when trying to summarize the main points of the article. On
the other hand, sections like the introduction and conclusion
usually include quite a lot of the important information
that we want to include in the summary. Another similar
example would be financial reports that are also structured
in sections. Some of those sections, usually referred to as
“front-end” sections, include key information and reviews
that are core to the narrative, while others consist mostly
of financial statements and are less useful for producing a
summary [48].

What’s more, by trying to include sections that are not
really important to the overall summary we can possibly
end up adding a lot of noise and overall reducing the quality
of the generated summary. With that in mind we decided
that by selecting specific section types and only including
those into the summary we can improve the overall quality
of the summarization results.

We are following the same approach described in [20]
in order to select the sections we want to use for summa-
rization. First we classify each section into different section
types like introduction, methods and conclusion based on a

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 5

TABLE 1
Here we present the different section types and the common keywords

that are used in order to classify them. If the header of a section
includes any of the keywords associated with a specific section type it
is classified in that section type. Sections that can’t be matched with

any section type are ignored.

section keywords
introduction introduction, case

literature background, literature, related
methods method(s), techniques, methodology

results result(s), experimental, experiment(s)
conclusion conclusion(s), concluding, discussion, limitations

Fig. 1. The distribution of summary sentences per section type after the
section classification and alignment using DANCER. For the PubMed
dataset the sentences are more evenly distributed among the intro-
duction, methods, results and conclusion sections while for the arXiv
dataset the majority of sentences is assigned to the introduction and
methods section. In both dataset it can be clearly seen that the literature
section is almost never matched with any summary sentences.

heuristic keyword matching of some common keywords
in the section header. The specific keywords used for the
classification are presented in Table 1.

Based on experiments on the arXiv and PubMed
datasets, we have found that for each document the abstract
has on average∼ 6.5 and∼ 6.3 sentences respectively. After
classifying the article sections and pairing them with the
target summaries created by DANCER we end up having
the distribution of target sentences per section type shown
in Figure 1.

From this distribution we observe that the majority of
summary sentences, especially for the arXiv dataset, are
assigned to the introduction section followed by the methods
and conclusion sections. The results section is paired with
significantly fewer sentences while the literature section is
almost never matched with any summary sentences. Based
on that observation, when generating the summary we
select and use only the sections of the full text that are classi-
fied introduction, methods, results and conclusion ignoring the
literature section.

This simple method very effectively allows us to filter
out parts of the article that are less important for the
summary, like the literature review, and leads to summaries
that are more focused.

One of the obvious weaknesses of this method is that
in some articles the section headers cannot be matched by

the heuristic rules and as a result they will be discarded by
the heuristic method. Exploring more sophisticated meth-
ods that use machine learning to identify the type of
each section should be explored in future work. Although
these section categories are meaningful when working on
academic articles, if the proposed method is extended to
different domains (e.g. financial documents), then a new
categorization of sections would be required. Towards that
direction, a sound idea would be to use machine learning in
order to do the section selection. In that scenario a machine
learning model can be used in order to make the decision if
a given section should be included in the summary. This di-
rection that closely resembles hybrid extractive-abstractive
summarization models (although it works on a section level
instead of a sentence level) also requires further exploration
in future work.

3.3 Model variants
Here we will describe the different summarization models
that we combined with DANCER for our experiments.
The first model is an RNN based Pointer-Generator model
similar to [4] in two different variants. The second is the
PEGASUS model [19] which is based on Transformers.

3.3.1 Pointer-Generator
The Pointer-Generator model is based on the sequence-to-
sequence RNN paradigm that has been widely adopted
in the pre-Transformer literature. The sequence-to-sequence
architecture includes an encoder of bidirectional LSTM units
that encodes the input in it’s hidden state and a uni-
directional LSTM decoder that autoregressively generates
the output one word at a time. Given an input sequence
x = (x1, . . . , xT) the encoder produces a sequence of hid-
den states h. On each time step t the decoder takes as input
the encoder state h, the previous word and has a hidden
state st.

This model is also equipped with an attention mecha-
nism similar to [28] that generates an attention distribution
at each decoder step as in equations 3 and 4 where v, Wh,
Ws and battn are learned during training.

et = vT tanh(Whh+Wss
t + battn) (3)

αt = softmax(et) (4)

From the attention distribution we produce a context
vector h∗t as shown in equation 5. The context vector is a
sum of the encoder hidden states weighted by the attention
distribution αt.

h∗t =

T∑
i=1

αt
ihi (5)

The context vector is concatenated with the decoder
state st and fed through two linear layers to produce the
vocabulary distribution Pvocab as shown in equation 6. This
is essentially the probability distribution over all words in
the vocabulary given the input sequence x and the sequence
y generated so far. Again here V ′, V , b′ and b are learnable
parameters.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 6

Pvocab = softmax(V ′(V [st, h∗t] + b) + b′) (6)

Finally, the model also uses a copying mechanism [4],
[49] that has the ability to copy a specific token directly
from the input based on a switch mechanism. The token
generated at each time step is determined by the vocabulary
distribution Pvocab and the pointer generator probability
pgen as shown in equations 7 and 8. Vectors wT

h∗, ws, wt
x

and scalar bptr are learnable parameters, σ is the sigmoid
function and Pfinal(w) is the probability of generating word
w.

pgen = σ(wT
h∗h
∗t + wss

t + wt
xx

t + bptr) (7)

Pfinal(w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

αt
i (8)

This specific model architecture was proposed by [4] and
its variants have been adopted in various other works [5],
[14], [20], [35]. Figure 2 better illustrates the full Pointer-
Generator model.

One of the advantages of this model is the ability to both
extract tokens from the input and generate new tokens with
a language model. The language model has the ability to
rewrite parts of the text and improve the fluency of the
generated text. The copying mechanism is especially impor-
tant in the case of scientific articles because they include a
lot of out-of-vocabulary technical terms as well as symbols.
Those cannot possibly be covered by a fixed vocabulary
since this will lead to a huge vocabulary and thus make the
computational cost of the embedding and softmax layers
prohibitive.

3.3.2 Rotational Unit of Memory
Incorporating rotational units of memory (RUM) into a
sequence-to-sequence model can lead to improved summa-
rization results [36]. In particular, including RUM units in
the model results in larger gradients during training thus
leading to a more stable training and better convergence. In
contrast, the gates of LSTM units typically have tanh acti-
vation functions and as a result the gradients very quickly
become small despite using gradient clipping. We created a
variant of our model, where we replaced the LSTM units of
the decoder with RUM units. We decided to keep the LSTM
units for the encoder, since it has been shown that a mixture
of both unit types is usually advantageous [36].

3.3.3 PEGASUS
The PEGASUS model is a Transformer based sequence-to-
sequence model that is pre-trained on massive corpora of
unsupervised data (Web and news articles). The model itself
is a standard Transformer encoder-decoder similar to [7]
and [8]. The pre-trained model can be further fine-tuned
for summarization tasks and is selected here because it
has demonstrated great potential on various summarization
benchmarks, including CNN/Daily Mail [10], Gigaword
[34], NEWSROOM [13], arXiv and PubMed [14].

What makes the PEGASUS model a promising approach
for the summarization task is its pre-training strategy. Gap

Sentence Generation (GSG) is a self-supervised objective
engineered specifically for abstractive summarization. By
masking whole sentences from a document and generating
these gap-sentences from the rest of the document encour-
ages the model to understand the whole-document and gen-
erate sentences in a summary-like fashion. In addition, they
propose a strategy that aims to choose important sentences
for masking rather than randomly selected ones.

One key difference of the PEGASUS model with the
Pointer-Generator model is that it operates at the level of
subword tokens instead of word tokens. This is a common
practice for many Transformer models [29], [30], [31] and
enables the model to learn and use a wide variety of words
with only a limited vocabulary. In particular, the pre-trained
version of PEGASUS uses a vocabulary built with the Sen-
tencePiece Unigram algorithm [50] although the authors of
the paper also experimented with Byte Pair Encoding (BPE)
[51]. The use of subword vocabularies is in fact so effective
that there is no need to employ copying mechanisms in the
context of this model.

3.4 Compiling the article summary

When we are generating the summary of an article, the
following steps are taken. We split the article in sections
and select the appropriate sections to use. Then we autore-
gressively generate a summary for each section of the input
text using simple beam search decoding [52], [53]. Finally,
we compose the complete summary by concatenating the
individual summaries.

Since the summarization of each section is independent
of the other sections, our approach is highly parallelizable.
At test time, we can very easily process all sections of the
document in parallel and thus make the summary gener-
ation a lot faster. This can be ideal for systems that are
trying to offer summarization as an online service, where
the efficiency of the model is an important factor.

One common problem with this type of generative mod-
els is that parts of the input might be attended multiple
times resulting in repetitions and, in certain situations,
the whole decoded sequence may end up in a degenerate
repetitive text. This behavior is especially prominent in
RNN models. In order to deal with this issue, multiple
different approaches have been proposed in the literature.
We avoided using the coverage mechanism proposed in [4],
since this approach modifies the training strategy and adds
more complexity to the model. Instead, for our Pointer-
Generator model, we opted for a simpler yet effective ap-
proach that tries to deal with repetition at the decoding
phase and was proposed by [5]. During beam search de-
coding we prevent the decoder from outputting the same
trigram multiple times. In order to do this we set the output
probability p(yt) = 0, when outputting yt would create a
trigram already existing in the generated hypothesis of the
current beam.

For the PEGASUS model, based on our experimental
results there was a minimal number of repetitions within the
section summaries generated by the model. This means that
we did not need to use a repetition avoidance mechanism.

Although the aforementioned methods can effectively
deal with word and sentence level repetitions, they cannot

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 7

Fig. 2. Architecture of the core Pointer-Generator model. For each decoder timestep the model has a probability to either generate words from a
fixed vocabulary or copy words from the source text.

deal with section level repetitions. Since each individual
summary does not have access to the summaries of other
sections it is possible that certain information might be
repeated in multiple section summaries. The exploration
of different strategies that can address this issue is left for
future work.

4 EXPERIMENTAL SETUP

Here we describe the experiments we conducted with
DANCER and the different summarization models on two
different datasets in order to demonstrate the effectiveness
of the method. We first introduce the two datasets and
present the details of the models we are using as well as
the training and evaluation setup.

4.1 Data
We employed two large-scale publicly available summariza-
tion datasets that focus on scientific papers, namely arXiv
and PubMed [14]. The arXiv dataset was created directly
from LATEX files that were taken from the arXiv repository of
electronic preprints. The files were processed and converted
to plain text using Pandoc3 to preserve section information.
All citation markers and math formulas were replaced by
special tokens. The resulting dataset includes approximately
215k documents with abstracts. The average full text length
is 6,913 words and the average abstract length is 292 words.

3. https://pandoc.org

The PubMed dataset was created from the XML files
that are part of the Open Access collection of the PubMed
Central (PMC) repository. In contrast to the arXiv dataset,
the citation markers were completely removed, while the
math equations were converted to plain text. This dataset
consists of approximately 133k documents with abstracts.
The average full text length is 3,224 words and the average
abstract length is 214 words.

Although there is an obvious inconsistency between the
pre-processing steps applied to the two datasets we decided
to not perform any additional pre-processing in order to
be comparable with previously published work. For the
same reason we use the predefined training, validation and
test set splits. Both datasets are already processed in such
a way that only the first level section headings are used
as section information and all subsections headings were
included as plain text. Also, all figures and tables have
already been removed along with text styling options for
both datasets. As discussed in Section 3, our method splits
each document into multiple training examples based on the
discourse structure of the document. As a result, we end up
with a lot more training examples than documents. Detailed
statistics for both datasets are presented in Table 2.

https://pandoc.org

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 8

TABLE 2
Statistics about the two datasets that are used in our experiments.
Since we are creating multiple examples from each document the

example and target lengths are much smaller than the document and
summary lengths respectively.

Arxiv PubMed
documents 215k 133k

examples 584,396 385,229
avg. document length (words) 6,913 3,224
avg. summary length (words) 292 214
avg. example length (words) 1,018 639

avg. target length (words) 69 69

4.2 Model details
4.2.1 Pointer-Generator
Our LSTM Pointer-Generator model is implemented in Ten-
sorflow and is based on the original implementation4 of
[4]. The hyperparameter selection is similar to the setup
suggested in [4]. Our model has a bidirectional LSTM layer
of 256 units for the encoder and a unidirectional LSTM layer
of 256 units for the decoder.

We restrict the vocabulary to 50,000 word tokens for both
the input and output and use word embeddings of size 128.
We do not use pre-trained word embeddings, but rather
learn them from scratch during training, as suggested in
[4].

Our models were trained on a single Nvidia 1080 GPU
with a batch size of 16. We train all of our models using
Adagrad [54] with 0.15 learning rate and initialize the accu-
mulator to 0.1. We clip the gradients to have a maximum
norm of 2, but avoid using any regularization. During
training we are regularly (every 3,000 steps) measuring the
loss and the ROUGE-1 F-score on the validation set of the
dataset in order to monitor the learning of our model. We
end the training when the validation loss stops improving.

For the training, input sequences are truncated to 500
word tokens while padding the shorter ones with zeros to
the same length. In our experiments we found that the target
sequences created with DANCER rarely exceed 100 words
and the average target length is 69 words as shown in Table
2. Considering that fact we restrict the length of each target
summary to the first 100 words for computational efficiency.
We have found that it is preferable to train with the full
length sequences from the beginning of the training rather
than starting off with highly truncated sequences and then
increasing the sequence length after convergence. This is in
contrast to the common practice suggested in [4]. We believe
one possible reason might be that training with very short
and generic sequences first could lead the model to converge
into a local optimum and have a hard time getting out of
there once the sequence length is increased.

For the prediction phase, we use beam search decoding
with 4 beams and generate a maximum of 120 tokens
per section. We are also using the mechanism described
previously to avoid repeating the same trigrams. Once we
have generated a summary for each section, we concatenate
the generated summaries in order to get the final summary.

For the RUM variant of the Pointer-Generator model
we keep the encoder part the same but we replace the

4. https://github.com/abisee/pointer-generator

LSTM units of the decoder with RUM units. The RUM unit
implementation is taken from the original code5 of [36]. All
other parameters are similar to the ones used for the LSTM
based model.

4.2.2 PEGASUS
We are using the pre-trained PEGASUS model and the
Tensorflow code6 that was open-sourced by the authors of
the paper. The model itself is the PEGASUSLARGE model
described in the paper. It has 16 Transformer blocks for the
encoder and decoder with hidden size of 1,024 units, 16 self-
attention heads and feed-forward layer size of 4,096 units.
It is pre-trained on a combination of the C4 and HugeNews
datasets with the GSG objective. We are using the check-
points open sourced by the authors of the PEGASUS paper
to initialize our model and further fine-tune them using
DANCER on the arXiv and PubMed datasets.

Our models are fine-tuned on a cloud compute instance
with a single Nvidia Tesla T4 GPU. We fine-tune using
Adafactor [55] with a learning rate of 0.0001 and a batch
size of 6 due to GPU memory limitations. During our
fine-tuning we are using input sequences of 512 subwords
and target sequences of 128 subwords. This is different
than the original PEGASUS setup that uses 1,024 and 256
subwords respectively again due to limited resources. The
rest of the hyper-parameters are identical to the ones used
in the original paper. The subword vocabulary used is the
Unigram vocabulary that was built and open sourced by
the PEGASUS paper and has 96,000 subwords. The arXiv
model is fine-tuned with DANCER for 60k steps, while the
PubMed model is fine-tuned for 40k steps. Our models were
not extensively fine-tuned since this was outside the scope
of our paper. Therefore, additional hyper-parameter tuning
and more fine-tuning steps could potentially lead to even
better performance.

For the prediction phase, we use beam search decoding
with 5 beams and generate a maximum of 128 tokens per
section and then combine them to get the final summary.

4.3 Baselines and state-of-the-art methods
We compare DANCER with several well known extractive
and abstractive baselines as well as state-of-the-art methods.
The baseline methods we are comparing against are a simple
Lead-10 extractor, which extracts the first 10 sentences of
the input, LexRank [23], SumBasic [22], LSA [21], Atten-
tion Seq2Seq [2], [3], [34], Pointer-Generator Seq2Seq [4],
Discourse-Aware Summarizer [14] Sent-CLF, Sent-PTR and
TLM-I+E [15]. Attention Seq2Seq is an abstractive sequence-
to-sequence model with attention. Pointer-Generator is
similar to our LSTM Pointer-Generator model without
DANCER. Discourse-Aware Summarizer is a hierarchical
extension of the Pointer-Generator model. Sent-CLF and
Sent-PTR are extractive models also based on hierarchical
LSTMs whith Sent-CLF treating the sentence selection as a
sequence classification problem while Sent-PTR uses a sen-
tence pointer to select which sentences to extract. TLM-I+E
is a hybrid model that first uses either Sent-PTR or Sent-CLF
to extract sentences and then a Transformer language model

5. https://github.com/rdangovs/rotational-unit-of-memory
6. https://github.com/google-research/pegasus

https://github.com/abisee/pointer-generator
https://github.com/rdangovs/rotational-unit-of-memory
https://github.com/google-research/pegasus

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 9

TABLE 3
ROUGE F1 results on arXiv test set. Underlined are the top performing
models in each category while bold is the overall top performing model.

Model Type ROUGE-1 ROUGE-2 ROUGE-L
SumBasic Ext 29.47 6.95 26.3
LexRank Ext 33.85 10.73 28.99

LSA Ext 29.91 7.42 25.67
Lead-10 Ext 35.52 10.33 31.44

Sent-CLF Ext 34.01 8.71 30.41
Sent-PTR Ext 42.32 15.63 38.06

Attention Seq2Seq Abs 29.3 6.00 25.56
PEGASUS Abs 44.21 16.95 38.83

BigBird-PEGASUS Abs 46.63 19.02 41.77
Pointer-Generator Mix 32.06 9.04 25.16
Discourse-Aware Mix 35.8 11.05 31.8

TLM-I+E Mix 42.43 15.24 24.08
Our Models

DANCER LSTM Mix 41.87 15.92 37.61
DANCER RUM Mix 42.7 16.54 38.44

DANCER PEGASUS Abs 45.01 17.60 40.56

similar to [31] conditioned on the extracted sentences to
generate the summary text. State-of-the-art models include
the original PEGASUS model fine-tuned without DANCER
on the two datasets and the BigBird-PEGASUS variant that
is based on the pre-trained PEGASUS model extended with
sparse attention.

5 RESULTS AND DISCUSSION

The results of our experiments on the arXiv and PubMed
datasets are shown in Tables 3 and 4 respectively. We are
reporting the full-length F-score of the ROUGE-1, ROUGE-
2 and ROUGE-L metrics [46] computed using the official
pyrouge package7. All our reported ROUGE scores have a
95% confidence interval of at most ±0.25 as reported by the
official ROUGE script. The results of SumBasic, LexRank,
LSA, Attention Seq2Seq, Pointer-Generator Seq2Seq and
Discourse-Aware Summarizer are taken directly from [14],
while the results of Sent-CLF, Sent-PTR and TLM-I+E
come from [15]. Finally, results of PEGASUS and BigBird-
PEGASUS are taken from [18].

5.1 Transformer vs LSTM vs RUM

Looking at the comparisons between the different DANCER
variants we can see that the PEGASUS model is the clear
winner. This is expected since it is a much more powerful
and advanced model which makes use of extensive unsu-
pervised pre-training. The price for the better performance
is the increased requirements in terms of memory and
processing power of PEGASUS compared to the simpler
RNN models.

On the other hand both RNN models exhibit similar
performance with the RUM model outperforming the LSTM
model on the arXiv dataset, while performing slightly worse
on PubMed. Given the observation that LSTM based models
tend to copy more phrases from the source than RUM based
models [36], we hypothesize that the target abstracts in
PubMed include a higher amount of text that is copied
directly from the full text, compared to arXiv.

7. https://pypi.org/project/pyrouge/0.1.3

TABLE 4
ROUGE F1 results on PubMed test set. Underlined are the top
performing models in each category while bold is the overall top

performing model.

Model Type ROUGE-1 ROUGE-2 ROUGE-L
SumBasic Ext 37.15 11.36 33.43
LexRank Ext 39.19 13.89 34.59

LSA Ext 33.89 9.93 29,70
Lead-10 Ext 37.45 14.19 34.07

Sent-CLF Ext 45.01 19.91 41.16
Sent-PTR Ext 43.3 17.92 39.47

Attention Seq2Seq Abs 31.55 8.52 27.38
PEGASUS Abs 45.97 20.15 41.34

BigBird-PEGASUS Abs 46.32 20.65 42.33
Pointer-Generator Mix 35.86 10.22 29.69
Discourse-Aware Mix 38.93 15.37 35.21

TLM-I+E Mix 41.43 15.89 24.32
Our Models

DANCER LSTM Mix 44.09 17.69 40.27
DANCER RUM Mix 43.98 17.65 40.25

DANCER PEGASUS Abs 46.34 19.97 42.42

Fig. 3. The percentage of N-grams that are copied directly from the
source to the target summary for both datasets. The percentages are
high for both datasets but for the PubMed dataset we observe a higher
percentage of copied 2-grams, 3-grams, 4-grams. This implies that the
abstracts of the articles are in fact very much extractive and as a result
this dataset favors extractive approaches more.

In order to validate this hypothesis we computed the
percentage of n-grams in the target summaries that are
copied from the source. In Figure 3 we show these percent-
ages for both datasets. It is clear that the target abstracts in
the PubMed dataset have a greater percentage of copied 2-
grams, 3-grams and 4-grams compared to the arXiv dataset.

In addition, we found that when using a decoder with
RUM units, the training is more stable than when using a
decoder with LSTM units and converges steadily at a lower
loss value. This is in line with the observation that RUM
based models exhibit larger gradients and as a result have
more robust training compared to LSTM based models [36].
On the other hand, we also found that models with a RUM
based decoder need more steps to converge to the final loss,
compared to models with an LSTM based decoder.

Overall, based on our experiments and analysis of the
three different DANCER models, we conclude that the
DANCER PEGASUS model is clearly superior to the RNN
models. Nevertheless, when combined with DANCER both
RNN models achieve a surprisingly good performance,

https://pypi.org/project/pyrouge/0.1.3

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 10

although not as good as the PEGASUS model. This leads
us to believe that there might still be some merit in using
RNN sequence-to-sequence models especially in some low
resource scenarios.

5.2 DANCER vs baselines and the state of the art
Based on the numbers of tables 3 and 4 we can see that
DANCER works well with both the Pointer-Generator and
the PEGASUS model. DANCER improves the performance
of the Pointer-Generator model by almost 10 ROUGE-1
points which is a very significant improvement considering
that the underlying model is the same. This model is also
on par with models such as TLM-I+E as well as Sent-PTR
despite using a significantly simpler architecture.

When combined with stronger models such as PEGASUS
we can see that DANCER can still lead to improved results
with minimal additional effort and resources. Moreover,
we empirically show that DANCER can take advantage of
strong pre-trained models, such as PEGASUS, and increase
the effectiveness of task specific fine-tuning.

Our experiments show that DANCER PEGASUS is on
par with the BigBird-PEGASUS model, which is the current
state-of-the-art, without modifying the underlying model
architecture of PEGASUS. With that in mind, it is possible
that a combination of BigBird-PEGASUS with DANCER
could further improve results although it was not in the
scope of this work to explore that. Furthermore, more ex-
tensive optimization of the DANCER PEGASUS model, as
well as additional training could lead to even better results
but this was not the focus of this work. In general, the
experimental results suggest that DANCER is a very easy
to implement way to boost the performance of different
summarization models with minimal additional effort and
resources.

Going back to Figure 3, we notice that both datasets
have a high percentage of text copied directly from the
source, which explains the high performance of all ex-
tractive approaches, even simple ones, like LexRank and
Lead-10. Usually it is way easier for extractive models to
achieve higher ROUGE scores due to the way that ROUGE
metrics are calculated. Since the metric is purely based on
the overlap of the the generated text with the target text and
in many cases the target summary includes a parts that are
copied from the source input, ROUGE scores clearly favor
extractive summarization approaches. Nevertheless, we can
see that advanced abstractive models such as PEGASUS,
BigBird-PEGASUS and DANCER PEGASUS manage to out-
perform most extractive models by a significant margin.
This is important since abstractive summarization is a more
challenging task, but also more closely resembles the way
humans do summarization.

In the Appendix of this paper we present sample sum-
maries for a couple of papers generated by our models
trained on the arXiv dataset. These samples demonstrate
the quality of the summaries we can produce using our
proposed methods as well as directly compare the outputs
produced by the different summarization models.

6 CONCLUSION

We presented DANCER, a novel summarization method for
long documents. We focused on the summarization of aca-

demic articles, but the same method can easily be applied to
different types of long documents, such as financial reports.
We have demonstrated quantitatively through experiments
on the arXiv and PubMed datasets that this method com-
bined with a basic sequence-to-sequence RNN model can
still achieve good performance. We also show that using a
stronger model such as PEGASUS we can achieve results
that are on par with the state-of-the-art on both datasets.

We have also evaluated the advantages of using a com-
bination of LSTM and RUM units inside the sequence-to-
sequence model in terms of ROUGE F1 as well as training
stability and convergence. We have found that including
RUM units in the decoder of the model can lead to a more
stable training and better convergence as well as improved
ROUGE scores, when the target sequence includes less text
directly copied from the source sequence.

Overall, we have focused on the effectiveness of our
proposed method regardless of the complexity of the core
model. We emphasize that DANCER is a simple yet ef-
fective extension that can boost the performance of differ-
ent summarization models with minimal additional effort
and resources. In future work we would like to combine
DANCER with more complex summarization models that
could potentially further improve summarization quality as
well as apply DANCER summarization on domains other
than academic articles.

REFERENCES

[1] R. Socher, “Boiling the Information Ocean,” 2020. [Online].
Available: http://tiny.cc/45ohlz

[2] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence sum-
marization with attentive recurrent neural networks,” in Proceed-
ings of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
2016, pp. 93–98.

[3] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre, and B. Xiang,
“Abstractive Text Summarization using Sequence-to-sequence
RNNs and Beyond,” in Proceedings of the 2016 SIGNLL Conference
on Computational Natural Language Learning. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2016, pp. 280–
290.

[4] A. See, P. J. Liu, and C. D. Manning, “Get To The Point: Summa-
rization with Pointer-Generator Networks,” in Proceedings of the
2017 Annual Meeting of the Association for Computational Linguistics,
2017, pp. 1073–1083.

[5] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” in Proceedings of the 2018 International
Conference on Learning Representations, 2018.

[6] Y. Liu and M. Lapata, “Text Summarization with Pretrained En-
coders,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3721–
3731.

[7] K. Song, X. Tan, T. Qin, J. Lu, and T. Y. Liu, “MASS: Masked
sequence to sequence pre-training for language generation,” in
Proceedings of the 2019 International Conference on Machine Learning,
2019, pp. 5926–5936.

[8] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H.-W. Hon, “Unified language model pre-training
for natural language understanding and generation,” in Advances
in Neural Information Processing Systems, 2019, pp. 13 042–13 054.

[9] Y. Yan, W. Qi, Y. Gong, D. Liu, N. Duan, J. Chen, R. Zhang, and
M. Zhou, “ProphetNet: Predicting Future N-gram for Sequence-
to-Sequence Pre-training,” arXiv preprint arXiv:2001.04063, 2020.

[10] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay,
M. Suleyman, and P. Blunsom, “Teaching machines to read and
comprehend,” in Advances in Neural Information Processing Systems,
2015, pp. 1693–1701.

[11] E. Sandhaus, “The new york times annotated corpus,” 2008.

http://tiny.cc/45ohlz

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 11

[12] C. Napoles, M. Gormley, and B. Van Durme, “Annotated giga-
word,” in Proceedings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extraction, 2012, pp. 95–
100.

[13] M. Grusky, M. Naaman, and Y. Artzi, “Newsroom: A Dataset
of 1.3 Million Summaries with Diverse Extractive Strategies,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2018, pp. 708–719.

[14] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang,
and N. Goharian, “A Discourse-Aware Attention Model for Ab-
stractive Summarization of Long Documents,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2018, pp.
615–621.

[15] S. Subramanian, R. Li, J. Pilault, and C. Pal, “On Extractive and
Abstractive Neural Document Summarizationwith Transformer
Language Models,” arXiv preprint arXiv:1909.03186, 2019.

[16] Y. C. Chen and M. Bansal, “Fast abstractive summarization with
reinforce-selected sentence rewriting,” in Proceedings of the 2018
Annual Meeting of the Association for Computational Linguistics, 2018,
pp. 675–686.

[17] S. Gehrmann, Y. Deng, and A. Rush, “Bottom-Up Abstractive
Summarization,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2019, pp. 4098–4109.

[18] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. On-
tanon, P. Pham, A. Ravula, Q. Wang, and L. Yang, “Big bird: Trans-
formers for longer sequences,” arXiv preprint arXiv:2007.14062,
2020.

[19] J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “PEGASUS: Pre-training
with Extracted Gap-sentences for Abstractive Summarization,”
arXiv preprint arXiv:1912.08777, 2019.

[20] A. Gidiotis and G. Tsoumakas, “Structured Summarization of
Academic Publications,” in Communications in Computer and In-
formation Science. Cham: Springer International Publishing, 2020,
vol. 1168 CCIS, ch. 57, pp. 636–645.

[21] J. Steinberger and K. Jezek, “Using latent semantic analysis in text
summarization and summary evaluation,” in Proceedings of the
2004 International Conference on Information System Implementation
and Modeling, 2004, pp. 93–100.

[22] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova, “Be-
yond SumBasic: Task-focused summarization with sentence sim-
plification and lexical expansion,” Information Processing & Man-
agement, vol. 43, no. 6, pp. 1606–1618, 2007.

[23] G. Erkan and D. R. Radev, “LexRank: Graph-based lexical cen-
trality as salience in text summarization,” Journal of Artificial
Intelligence Research, vol. 22, pp. 457–479, 2004.

[24] H. Van Lierde and T. W. Chow, “Query-oriented text summariza-
tion based on hypergraph transversals,” Title: Information Process-
ing & Management, vol. 56, no. 4, pp. 1317–1338, 2019.

[25] H. Zheng and M. Lapata, “Sentence Centrality Revisited for
Unsupervised Summarization,” in Proceedings of the 2019 Annual
Meeting of the Association for Computational Linguistics, 2019, pp.
6236–6247.

[26] M. Mohamed and M. Oussalah, “SRL-ESA-TextSum: A text sum-
marization approach based on semantic role labeling and explicit
semantic analysis,” Information Processing & Management, vol. 56,
no. 4, pp. 1356 – 1372, 2019.

[27] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems, 2014, pp. 3104–3112.

[28] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” in Proceedings of the
2015 International Conference on Learning Representations, 2015.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing Systems, 2017, pp. 5998–
6008.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[31] Radford Alec, Wu Jeffrey, Child Rewon, Luan David, Amodei
Dario, and Sutskever Ilya, “Language Models are Unsupervised
Multitask Learners — Enhanced Reader,” OpenAI Blog, vol. 1,
no. 8, 2019.

[32] R. Nallapati, B. Zhou, and M. Ma, “Classify or select: Neural ar-

chitectures for extractive document summarization,” arXiv preprint
arXiv:1611.04244, 2016.

[33] E. Collins, I. Augenstein, and S. Riedel, “A Supervised Approach
to Extractive Summarisation of Scientific Papers,” in Proceedings
of the 2017 Conference on Computational Natural Language Learning,
2017, pp. 195–205.

[34] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2015, pp. 379–389.

[35] A. Celikyilmaz, A. Bosselut, X. He, and Y. Choi, “Deep Commu-
nicating Agents for Abstractive Summarization,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 6 2018,
pp. 1662–1675.

[36] R. Dangovski, L. Jing, P. Nakov, M. Tatalović, and M. Soljačić,
“Rotational Unit of Memory: A Novel Representation Unit for
RNNs with Scalable Applications,” Transactions of the Association
for Computational Linguistics, vol. 7, pp. 121–138, 2019.

[37] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in Proceedings of
the 2017 Conference on Computer Vision and Pattern Recognition, 2017,
pp. 7008–7024.

[38] Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy, “Deep transfer
reinforcement learning for text summarization,” in Proceedings of
the 2019 SIAM International Conference on Data Mining. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, 2019,
pp. 675–683.

[39] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking Sentences
for Extractive Summarization with Reinforcement Learning,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2018, pp. 1747–1759.

[40] V. Qazvinian, D. R. Radev, S. M. Mohammad, B. Dorr, D. Zajic,
M. Whidby, and T. Moon, “Generating extractive summaries of sci-
entific paradigms,” Journal of Artificial Intelligence Research, vol. 46,
pp. 165–201, 2013.

[41] A. Cohan and N. Goharian, “Scientific Article Summarization Us-
ing Citation-Context and Article Discourse Structure,” in Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language
Processing. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2015, pp. 390–400.

[42] ——, “Scientific document summarization via citation contextu-
alization and scientific discourse,” International Journal on Digital
Libraries, vol. 19, no. 2-3, pp. 287–303, 2018.

[43] R. Nallapati, F. Zhai, and B. Zhou, “SummaRuNNer: A Recurrent
Neural Network Based Sequence Model for Extractive Summa-
rization of Documents.” in AAAI, 2017, pp. 3075–3081.

[44] K. Jaidka, M. K. Chandrasekaran, S. Rustagi, and M. Y. Kan,
“Overview of the CL-SciSumm 2016 Shared Task,” in Proceedings of
the 2016 joint workshop on Bibliometric-enhanced Information Retrieval
and Natural language processing for Digital Libraries, 2016, pp. 93–
102.

[45] M. Yasunaga, J. Kasai, R. Zhang, A. R. Fabbri, I. Li, D. Friedman,
and D. R. Radev, “ScisummNet: A Large Annotated Corpus and
Content-Impact Models for Scientific Paper Summarization with
Citation Networks,” in Proceedings of the 2019 AAAI Conference on
Artificial Intelligence, 2019, pp. 7386–7393.

[46] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Proceedings of the 2004 Workshop on Text Summarization
Branches Out, Post Conference Workshop of ACL, 2004.

[47] R. J. Williams and D. Zipser, “Gradient-based learning algorithms
for recurrent networks and their computational complexity,” Back-
propagation: Theory, architectures, and applications, vol. 1, pp. 433–
486, 1995.

[48] M. El-Haj, “MultiLing 2019: Financial Narrative Summarisation,”
in Proceedings of the 2019 Workshop MultiLing 2019: Summarization
Across Languages, Genres and Sources, 2019, p. pp. 610.

[49] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Ad-
vances in Neural Information Processing Systems, vol. 2015-January,
2015.

[50] T. Kudo, “Subword regularization: Improving neural network
translation models with multiple subword candidates,” in Proceed-
ings of the 2018 Annual Meeting of the Association for Computational
Linguistics, vol. 1, 2018, pp. 66–75.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 12

[51] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016 - Long Papers,
vol. 3, 2016.

[52] A. Graves, “Sequence transduction with recurrent neural net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[53] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio
chord recognition with recurrent neural networks,” in Proceedings
of the 2013 International Society for Music Information Retrieval Con-
ference, 2013, pp. 335–340.

[54] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[55] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with
sublinear memory cost,” in 35th International Conference on Machine
Learning, ICML 2018, vol. 10, 2018.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 13

APPENDIX
EXAMPLES OF GENERATED SUMMARIES

In order to demonstrate the high quality of the abstracts produced by our models, we generated summaries from a couple
of notable papers in our field. We are presenting examples generated from both the DANCER LSTM Pointer-Genarator
and DANCER PEGASUS models as well as the ROUGE1-F1 scores for comparison. The models used to generate those
summaries were trained on the arXiv dataset. We also provide the original abstract of each paper for reference and
comparison purposes.

In the case of the first paper shown in Table 5 we see that although the PEGASUS model performs better in terms
of ROUGE1 score, neither of the two models achieve very good results and both generated summaries are significantly
different from the original abstract. On the other hand, for the second paper shown in Table 6 we see that both models
achieve high scores with the Pointer-Generator model outperforming the PEGASUS model.

TABLE 5

Title BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Original abstract We introduce a new language representation model called BERT, which stands for Bidirectional Encoder

Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford
et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be
finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such
as question answering and language inference, without substantial taskspecific architecture modifications.
BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5
point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement)

Pointer-Generator summary Language model pre-training has been shown to be effective for improving many natural language processing
tasks (Dai and Le, 2015; Radford et al., 2018). The major limitation is that standard language models are
unidirectional, and this limits the choice of architectures that can be used during pre-training. We argue
that current techniques restrict the power of the pre-trained representations, especially for the fine-tuning
approaches. The BERT model is trained on unlabeled data over different pre-training tasks. For finetuning,
the BERT model is first initialized with the pre-trained parameters, and all of the parameters are fine-tuned
using labeled data from the downstream tasks. These results enable the same pre-trained model to successfully
tackle a broad set of NLP tasks. In particular, these findings enable even low-resource tasks to benefit from deep
unidirectional architectures. Our major contribution is further generalizing these findings to deep bidirectional
architectures.

ROUGE1-F1 35.0
PEGASUS summary Language model pre-training has been shown to be effective for improving many natural language processing

tasks such as sentence-level paraphrasing and entity recognition tasks. However, current approaches to
pre-trained language models are restricted to unidirectional language models. In this paper, we propose a
new approach to pre-trained language models based on bidirectional encoder transformers (BERT). BERT is
inspired by the pre-training objective of cloze task (Taylor et al., 1953), where the goal is to predict some
masked language representations from the input. We introduce BERT and its detailed implementation in this
paper. The BERT model is first initialized with the pre-trained parameters, and all of the parameters are fine-
tuned using labeled data from the downstream tasks. Rich unsupervised pre-training is an integral part of
many language understanding systems. In particular, these results enable even low-resource tasks to benefit
from deep unidirectional architectures. Our major contribution is further generalizing these findings to deep
bidirectional architectures, allowing the same pre-trained model to successfully tackle a broad set of NLP tasks.

ROUGE1-F1 36.52

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 14

TABLE 6

Title Neural Machine Translation by Jointly Learning to Align and Translate
Original abstract Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional

statistical machine translation, the neural machine translation aims at building a single neural network that can
be jointly tuned to maximize the translation performance. The models proposed recently for neural machine
translation often belong to a family of encoderdecoders and encode a source sentence into a fixed-length
vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-
length vector is a bottleneck in improving the performance of this basic encoderdecoder architecture, and
propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that
are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With
this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-
based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the
(soft-)alignments found by the model agree well with our intuition.

Pointer-Generator summary Neural machine translation is a newly emerging approach to machine translation, recently proposed by
Kalchbrenner and Blunsom (2013), Sutskever et al. (2014) and Cho et al., (2003) which consists of the encoder
and the decoder for a language pair that are jointly trained to maximize the probability of a correct translation
given a source sentence. We show that the proposed approach of jointly learning to align and translate achieves
significantly improved translation performance. The performance of the RNNsearch is as high as that of the
conventional phrase-based translation system (Moses), when only the sentences consisting of known words
are considered. This is a significant achievement, considering that Moses uses a separate monolingual corpus
(418m words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec. One of the
motivations behind the proposed approach was the basic encoder-decoder approach to underperform with
long sentences. We show that the proposed approach provides an intuitive way to inspect the (soft-) alignment
between the words in a generated translation and those in a source sentence. This is done by visualizing
the annotation weights. In this paper, we propose a novel approach to neural machine translation, called an
encoder-decoder approach, encodes a whole input sentence into a fixed-length vector from which a translation
will be decoded. We conjectured that the proposed RNNsearch outperforms the conventional encoder-decoder
model (RNNencdec) significantly, regardless of the sentence length and that it is much more robust to the
length of a source sentence.

ROUGE1-F1 54.17
PEGASUS summary Neural machine translation is a newly emerging approach to machine translation, recently proposed by

Kalchbrenner and Blunsom, Sutskever et al. and Cho et al. The proposed RNNsearch outperforms the con-
ventional RNNencdec when only the sentences consisting of known words are considered. More importantly,
the performance of the RNNsearch is as high as that of the conventional phrase-based translation system
(Moses) when only the sentences consisting of known words are considered. The proposed approach provides
an intuitive way to inspect the (soft-)alignment between the words in a generated translation. This is done by
visualizing the weights associated with the annotation of the source sentence and those associated with the
annotation of the target word. The conventional approach to neural machine translation, called an encoder-
decoder approach, encodes a whole input sentence into a fixed-length context vector from which a translation
will be decoded. We conjectured that the use of a fixed-length context vector is problematic for translating long
sentences, based on a recent empirical study reported by Cho et al.

ROUGE1-F1 52.12

	1 Introduction
	2 Related work
	2.1 Neural text summarization
	2.2 Long document summarization
	2.3 Summarizing academic articles
	2.4 Summarization datasets

	3 Our Approach
	3.1 Divide-and-conquer summarization
	3.2 Section selection
	3.3 Model variants
	3.3.1 Pointer-Generator
	3.3.2 Rotational Unit of Memory
	3.3.3 PEGASUS

	3.4 Compiling the article summary

	4 Experimental setup
	4.1 Data
	4.2 Model details
	4.2.1 Pointer-Generator
	4.2.2 PEGASUS

	4.3 Baselines and state-of-the-art methods

	5 Results and discussion
	5.1 Transformer vs LSTM vs RUM
	5.2 DANCER vs baselines and the state of the art

	6 Conclusion
	References
	Appendix: Examples of generated summaries

