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A Study on Reference Microphone Selection for
Multi-Microphone Speech Enhancement

Jie Zhang, Huawei Chen and Richard C. Hendriks

Abstract—Multi-microphone speech enhancement methods
typically require a reference position with respect to which
the target signal is estimated. Often, this reference position is
arbitrarily chosen as one of the reference microphones. However,
it has been shown that the choice of the reference microphone
can have a significant impact on the final noise reduction
performance. In this paper, we therefore theoretically analyze
the impact of selecting a reference on the noise reduction perfor-
mance with near-end noise being taken into account. Following
the generalized eigenvalue decomposition (GEVD) based optimal
variable span filtering framework, we find that for any linear
beamformer, the output signal-to-noise ratio (SNR) taking both
the near-end and far-end noise into account is reference depen-
dent. Only when the near-end noise is neglected, the output SNR
of rank-1 beamformers does not depend on the reference position.
However, in general for rank-r beamformers with r > 1 (e.g.,
the multichannel Wiener filter) the performance does depend on
the reference position. Based on these, we propose an optimal
algorithm for microphone reference selection that maximizes
the output SNR. In addition, we propose a lower-complexity
algorithm that is still optimal for rank-1 beamformers, but sub-
optimal for the general r > 1 rank beamformers. Experiments
using a simulated microphone array validate the effectiveness of
both proposed methods and show that in terms of quality, several
dB can be gained by selecting the proper reference microphone.

Index Terms—Speech enhancement, multi-channel beamform-
ing, reference microphone, relative acoustic transfer function,
variable span linear filters, low-rank approximation.

I. INTRODUCTION

DURING the last few decades, speech enhancement and
noise reduction have become widely used in numerous

applications. Usually, it is employed as a front-end step to
improve the speech quality and speech intelligibility in audio
processing scenarios, like speech recognition [1], binaural
hearing aids (HAs) [2], teleconferencing systems [3], source
localization [4] and mobile robot systems [5]. These appli-
cations use both single-microphone algorithms [6]–[8] and
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multi-microphone algorithms [9]–[12]. Compared to single-
microphone noise reduction algorithms, in which only tempo-
ral (spectral) information is exploited, the multi-microphone
counterpart (e.g., beamforming) generally leads to a better
noise reduction performance, as both temporal and spatial
information can be used.

The multi-microphone noise reduction methods can be
classified into 1) linearly constrained beamforming [9], [10],
[13] and 2) unconstrained beamforming [14]–[16]. Two well-
known linearly constrained approaches are the linearly con-
strained minimum variance (LCMV) beamformer and the
minimum variance distortionless response (MVDR) beam-
former [10], [13]. Both are designed to minimize the output
signal variance. The LCMV beamformer can take a set of
linear constraints into account, while the MVDR beamformer
only includes a single linear constraint to guarantee an undis-
torted target signal. Therefore, the MVDR beamformer can be
viewed as a special case of the LCMV beamformer.

Unconstrained beamforming, e.g., the multi-microphone
Wiener filter (MWF) based algorithms, aim at minimizing
the mean square-error (MSE) between the target signal at a
reference position (typically at one of the reference micro-
phones) and the estimated target signal at the same reference
position. The MWF distorts the target signal inevitably, since
no distortionless constraints are taken into account. In order
to alleviate this drawback, one can add a constraint to the
MWF to control the signal distortion level, leading to the
speech distortion weighted MWF (SDW-MWF) [16], which
can then trade-off the noise reduction capability and the signal
distortion level.

Both the linearly-constrained and unconstrained beamform-
ers require a reference position with respect to which the target
signal is estimated. This could be the original source location,
in which case, the beamformers become dependent on the
acoustic transfer function (ATF) of the desired source from
the original location to the microphones. However, often the
reference position is chosen as one of the microphones, which
turns the ATF into a relative acoustic transfer function (RTF).
It is known that under specific conditions, the beamforming
performance is not influenced by the chosen reference micro-
phone [17]–[19]. It is known that this holds when the target
source correlation matrix has rank one and the performance is
measured using the output signal-to-noise ratio (SNR) defined
as the ratio between the variance of the estimated target at the
output of the beamformer and the variance of the processed
far-end noise, i.e., the noise in the beamformer output [19].
However, in practice, it turns out that the chosen reference
microphone does influence the final performance of certain
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beamformers [20]. This depends on the type of beamformers,
the rank of the estimated target correlation matrix and also on
the performance metric that is used.

In order to increase the beamformer performance in practice,
it is thus of relevance to understand the exact relation between
the chosen reference microphone and the final performance. As
a performance metric to optimize, we will constrain ourselves
in this work to the output SNR. However, we will extend this
by including also near-end noise to demonstrate the impact of
reference microphone selection for more general performance
metrics than the conventional output SNR. In the case of
more conventional microphone arrays, the impact of choosing
a reference microphone might be small [20], due to the fact
that the microphones are usually spatially close. In the case of
distributed microphone arrays (i.e., a wireless acoustic sensor
network (WASN)), reference microphone selection can have a
more severe influence on the performance [21], due to the
larger spatial diversity. For instance, it was experimentally
shown in [22] that choosing different reference microphones
heavily affects the speech recognition accuracy (e.g., word
error rates) in meeting recognition scenarios using a distributed
microphone array. In [20], an approach was proposed to
select the optimal reference microphone for the MWF. This
method was refered to as maxoSNR. However, this method
requires to evaluate the performance of all M (the number of
microphones) filters. To overcome this drawback, several sub-
optimal but more practical methods were suggested in [20],
including choosing the microphone that has the highest input
SNR (maxiSNR), selecting the one that is closest to the target
source (minDist) and using the microphone that has the largest
input power (maxEnergy).

Prior to presenting an improved method for reference mi-
crophone selection, we study in this work first more system-
atically the dependence of the output SNR on the microphone
reference. To do so, we consider an extended version of the
output SNR by also including the near-end noise. We will
show that in general, the beamformer performance in terms of
the output SNR always depends on the selected microphone
reference. In addition, we show that even when the near-end
noise can be neglected, the performance of general rank-r
(r > 1) beamformers in terms of the output SNR still depends
on the chosen reference microphone. Only when we consider
rank-1 beamformers (e.g., the MVDR beamformer) without
near-end noise, it indeed follows as already known from [19]
that the output SNR is microphone reference independent.
As the more general case of rank-r (r > 1) beamformers
(e.g., the MWF) with near-end noise resembles the practical
situation, it is of relevance to understand how to choose a
proper reference microphone. We will show that dependent on
the exact setup, the loss in performance by not selecting the
optimal reference microphone can be in the order of several
dB. Based on the theoretical foundings, we propose an optimal
reference microphone selection approach by maximizing the
output SNR of general rank-r beamformers, which is in line
with the selection criterion proposed in [20] and is referred
to as maxoSNR. Instead of verifying the beamformers for
all possible reference microphones, we demonstrate that the
optimal reference microphone can be determined by checking

the diagonal elements of two matrices, which are constructed
by the generalized eigenvalues and eigenvectors of the noise
and noisy correlation matrices. In addition, we present an
alternative selection criterion by considering a semi-definite
programming problem. Furthermore, we show that given the
principal eigenvector, which is basically equivalent to the
RTF in the case of a single target source, searching for its
maximum absolute value gives a sub-optimal solution for the
reference microphone selection. We refer this method to as
maxRTF. Compared to the initial maxoSNR method in [20],
both the proposed maxoSNR and maxRTF methods do not
require to evaluate all possible M filters. As the proposed
maxoSNR and [20] use the same problem formulation and
achieve the same solution, but differ in solvers, we will stick
to the same name in this work. In order to validate the
proposed approach, we conduct experiments using a simulated
microphone array. It is shown that the proposed maxoSNR
method improves the output SNR against other (sub-optimal)
strategies or naive (random) selection, without the need to
evaluate the performance of all M possible filters.

The rest of this paper is structured as follows. Section II
presents the required fundamental knowledge. In Section III,
we summarize the MMSE-based optimal variable span filters.
In Section IV, we theoretically analyze the impact of the signal
rank and the reference microphone on the performance of
MMSE beamformers in terms of output SNR. In Section V, we
propose two reference microphone selection approaches. The
proposed algorithms are validated in Section VI via numerical
simulations. Finally, Section VII concludes this work.

II. FUNDAMENTALS

A. Signal model

In this work, we consider an array of M microphones.
These could be part of a conventional microphone array,
or, a distributed WASN. Let i and k denote the time-frame
index and the frequency-bin index, respectively, in the short-
time Fourier transform (STFT) domain. Assuming an additive
signal model, the acoustic signal at the mth microphone is
then given by

Ym(i, k) = Xm(i, k) +Nm(i, k)

= am(k)S(i, k) +Nm(i, k), (1)

with
• Xm(i, k) the target source STFT coefficient received by

microphone m;
• Nm(i, k) the noise STFT coefficient at the mth micro-

phone, which might include the coherent noise (e.g.,
interference, reverberation) and incoherent noise (e.g.,
sensor self noise);

• am(k) the ATF from the target position to the mth
microphone1;

1In this work, we assume that the single target source keeps static during
the observation time period of interest, as tracking or estimating dynamic
source(s) is beyond the scope of this paper. Under this assumption, the ATF
or RTF of the target source with respect to the microphone array is time-
invariant, i.e., only frequency-dependent.
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• S(i, k) the target source STFT coefficient at the source
position.

Often, instead of the ATF, the RTF is used. This is due
to the fact that the ATF is a scaled version of the RTF and
the scaling factor is hard to determine, while the RTF can
be estimated using e.g., [23]–[27]. The RTF is defined as the
normalized ATF with respect to an arbitrarily chosen reference
microphone n, given by

hn,m(k) = am(k)/an(k), (2)

which can be estimated using the covariance subtraction or
covariance whitening method [23]–[25]. Clearly, when n = m,
hn,m(k) = 1. With the RTF, the signal model in (1) can be
written as

Ym(i, k) = hn,m(k)Xn(i, k) +Nm(i, k). (3)

For notational brevity, we will omit the time-frequency indices
(i, k) in the sequel bearing in mind that all the operations take
place in the STFT domain. Using vector notation, the signal
model can be written as

y = x + n

= aS + n

= hnXn + n, (4)

where

y = [Y1(i, k), Y2(i, k), . . . , YM (i, k)]T ,

x = [X1(i, k), X2(i, k), . . . , XM (i, k)]T ,

n = [N1(i, k), N2(i, k), . . . , NM (i, k)]T ,

a = [a1(k), a2(k), . . . , aM (k)]T ,

hn = [hn,1(f), hn,2(f), . . . , hn,M (f)]T ,

where (·)T denotes the matrix/vector transpose.

B. Second-order statistics

Assuming that the target source and the noise components
are mutually uncorrelated, we can formulate the correlation
matrix of the microphone measurements as

Φyy = E
{
yyH

}
= E

{
xxH

}
+ E

{
nnH

}
= Φxx + Φnn, (5)

where Φxx and Φnn denote the correlation matrix of the signal
component and the correlation matrix of the noise components,
respectively, and E{·} denotes mathematical expectation, and
(·)H the matrix/vector complex conjugate transpose. For the
single target source case, Φxx is a rank-1 matrix in theory,
since by definition we have

Φxx = E
{
xxH

}
, σ2

SaaH , σ2
Xn

hnhHn , (6)

where σ2
S = E

{
|S|2

}
and σ2

Xn
= E

{
|Xn|2

}
denote the

power spectral density (PSD) of the target source and the
PSD of the signal component at the reference microphone
n, respectively. However, in practice the correlation matrices
Φyy, Φnn and Φxx are unknown and have to be estimated.

For example, Φyy can be estimated from the noisy data, Φnn

from the noise-only data using a voice activity detector (VAD),
and Φxx by subtracting the estimated Φnn from Φyy, i.e.,

Φ̂xx = Φ̂yy − Φ̂nn. (7)

Due to inevitable estimation errors, the estimated correlation
matrix Φ̂xx will hardly ever be rank one, even when Φxx

is rank one. For that reason, we consider in the theoretical
analysis of optimal reference microphone selection the case
where Φxx has in general rank r ≥ 1 for rank-r approximating
beamformers.

C. Problem formulation and existing approaches

For the multi-microphone noise reduction problem, the key
step is designing a frequency-dependent spatial filter w =
[w1, w2, . . . , wM ]T . With such a spatial filter, the estimated
speech signal can be obtained as

Ŝ = wHy. (8)

The SNR after beamforming, i.e., the output SNR, is given by

oSNR(k) =
wHΦxxw

wHΦnnw
, (9)

where the denominator only contains the output noise of
the beamformer, i.e., the far-end noise. In our analysis in
Section IV, we will extend this definition with near-end noise,
as this resembles the realistic practical setup and will be shown
to significantly influence the reference microphone selection.
In case Φxx truly has rank r = 1, it is known that the output
SNR as defined in (9) is microphone reference independent.
However, in practice when the estimate of Φxx has rank r > 1,
the output SNR turns out to be reference dependent for general
rank-r beamformers like the MWF. The most intuitive criterion
of reference microphone selection is by maximizing the (mea-
sured) output SNR [20]. Suppose that the mth microphone is
selected as the reference microphone. Let the corresponding
spatial filter be denoted by wm and the resulting output SNR
by oSNRm. The optimal reference microphone selection in
the sense of maximizing the output SNR can be formulated
as the following maxoSNR optimization problem:

nk = arg max
m

oSNRm(k). (10)

In [20], this optimization problem (10) is solved via an
exhaustive search, i.e., designing M filters and evaluating the
output SNR of each filter. The exhaustive search might be
problematic due to the time complexity in designing all M
filters, particularly when M is large, e.g., in WASNs.

As the original maxoSNR requires to examine the per-
formance of all filters, several sub-optimal low-complexity
approaches were also introduced in [20].

1) maxiSNR: Instead of selecting the reference based on
the output SNR, it was proposed in [20] to perform the
selection based on the input SNR. In this case, the reference
is selected as

nk = arg max
m

iSNRm(k), (11)
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with the frequency-dependent input SNR defined as

iSNRm(k) =

∑
i |Xm(i, k)|2∑
i |Nm(i, k)|2

. (12)

Notice that this selection mechanism does not include the filter
wk and leads thus to a sub-optimal solution.

2) minDist: The input SNR and the signal PSD σ2
Xm

are
directly related to the distance between the target source posi-
tion and the microphone. The closer a microphone to the target
source, the larger input SNR it obtains. An alternative sub-
optimal reference selection method was therefore presented
where the microphone that is closest to the target source is
chosen as the reference microphone. Clearly, minDist depends
on the source localization and microphone calibration results.

3) maxEnergy: Another sub-optimal selection procedure
introduced in [20] is based on choosing the microphone that
has the maximum input power, i.e.,

nk = arg max
m

∑
i

|Ym(i, k)|2 , (13)

since in case the noise sources are far away from the micro-
phones or the input SNRs are high, the input power is domi-
nated by the speech component. Note that maxEnergy might
lose validity if the noise source is close to the microphones.

Notice that the maxoSNR, maxiSNR and maxEnergy
are frequency-dependent, and thus might select a different
reference at different frequency bins (i.e., soft selection), while
minDist employs a hard selection. In this work, in order to
avoid an exhaustive search, we will theoretically analyze the
impact of reference microphone selection on the performance
and then propose a low-complexity approach.

III. OPTIMAL BEAMFORMER DESIGN

To guide the reader, we summarize in this section the work
on optimal variable span linear filters presented in [19] and
also based on the work in [28], [29]. We will use these variable
span linear filters in Section IV to get more understanding on
the relation between the optimal reference, the output SNR
and the rank of the (estimated) correlation matrix Φxx.

A. Joint diagonalization

Given two correlation matrices Φxx ∈ CM×M and Φnn ∈
CM×M , the joint diagonalization of such a matrix pencil is
equivalent to solving the generalized eigenvalue decomposi-
tion (GEVD) problem as [30]

ΦxxU = ΦnnUΛ, (14)

where U = [u1, . . . ,uM ] ∈ CM×M contains the generalized
eigenvectors and the diagonal matrix Λ = diag(λ1, . . . , λM )
contains the corresponding eigenvalues. Given matrices U and
Λ, Φxx and Φnn can be jointly diagonalized as

UHΦxxU = Λ, (15)

UHΦnnU = IM , (16)

where IM denotes an M -dimensional identity matrix. Based
on the GEVD of {Φxx,Φnn} and due to the fact that Φnn is
always positive definite, we can see that

Φ−1
nnΦxxU = UΛ, (17)

implying that (λj ,uj),∀j are the right eigenpairs of Φ−1
nnΦxx.

Further, the noisy correlation matrix Φyy can be diagonalized
as

UHΦyyU = Λ + IM . (18)

Therefore, Φxx can be diagonalized by calculating the eigen-
pairs based on the use of noise and noisy correlation matrices.

B. Optimal MMSE beamformer

Given a reference microphone m, the optimal minimum
mean square-error (MMSE) beamformer is formulated as the
following constrained optimization problem [16], [19], [31]

min
w

E
[
|wHx−Xm|2

]
s.t. E

[
|wHn|2

]
≤ c,

(19)

where 0 ≤ c ≤ σ2
Nm

with σ2
Nm

denoting the noise PSD at the
reference microphone. Applying this MMSE beamformer to
the input noisy microphone signals, the signal component at
the reference microphone is estimated.

In order to formulate different types of linear beamformers
as a function of the generalized eigenvectors, the solution of
(19) is defined in the form

w = Uν, (20)

where ν ∈ CM . Substituting w = Uν into (19), we obtain

ν = (Λ + µIM )
−1

UHΦxxem, (21)

where em is a column vector with the mth element equal
to one and zeros elsewhere. Notice that em functions as
a selection vector selecting microphone m as the reference
microphone. Consequently, the optimal beamformer is thus
given by

w = U (Λ + µIM )
−1

UHΦxxem, (22)

where the Lagrange multiplier µ ≥ 0 is chosen such that
νHν = c. Different choices of µ can trade off the signal
distortion level and noise reduction performance. The resulting
beamformer is referred to as the speech distortion weighted
multichannel Wiener filter (SDW-MWF) [32], [33].

C. Low-rank approximation for beamformer design

Let P ≤ M be the rank of Φxx. In theory, Rank(Φxx)
is equal to the number of the sources of interest. However,
due to the estimation errors in the noise and noisy correlation
matrices, P can be greater. In many applications, one makes
a rank-r approximation of Φxx, where r ≤ P ≤ M [11],
[19], [28], [30]. Letting U−H = Q = [q1, . . . ,qM ], we can
decompose Φxx as

Φxx = QΛQH =
M∑
j=1

λiqjq
H
j . (23)
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Further, it is easy to verify that

Φnn = QQH , QHΦ−1
nnΦxx = ΛQH , (24)

which means that qi,∀i are the left eigenvectors of Φ−1
nnΦxx.

For the single speech source scenario with Φxx rank-1, the
normalized principal eigenvector q1 gives the RTF [23]–[25].

Consequently, with Q, a rank-r approximation of Φxx can
be constructed by exploiting the r-maximum eigenvalues and
the corresponding eigenvectors as

Φ̂xx = QrΛrQ
H
r =

r∑
j=1

λjqjq
H
j . (25)

Substituting the low-rank approximation of Φxx into (22), the
rank-r optimal MMSE beamformer is given by

wr = Ur (Λr + µIr)
−1

ΛrQ
H
r em. (26)

Choosing particular values for r and/or µ, well-known special
cases of wr are obtained.

1) Classic MWF: In case µ = 1 and r = P = M , we can
see that

wMWF = U (Λ + I)
−1

UH︸ ︷︷ ︸
Φ−1

yy

QΛQH︸ ︷︷ ︸
Φxx

ek, (27)

since UHQ = IM (i.e., the left and right eigenvectors are
bi-orthogonal). This filter is known as the classic MWF.

2) Rank-1 beamformer: In case r = 1, we obtain the rank-1
beamformer as

w1 =
λ1q

∗
1m

λ1 + µ
u1, (28)

where q∗1m = qH1 em denotes the complex conjugate of the
mth element of q1.

3) MVDR beamformer: In case r = 1 and µ = 0, we obtain
the classic MVDR beamformer as

wMVDR = q∗1mu1, (29)

which is a special case of the rank-1 beamformer. By setting
proper required parameters, one can obtain different variants of
the optimal MMSE beamformer, e.g., see [19] for an overview.

IV. PERFORMANCE ANALYSIS

In this section, we will analyze the dependence of the
output SNR of the MMSE beamformers on the reference
microphone m. In realistic speech communication systems,
as Fig. 1 shows, it is required not only to enhance the target
signal, but also to play out the enhanced speech signal for the
listener. The speech quality and speech intelligibility of the
beamformer output signal then also depend on the acoustic
noise in the listening environment, as the enhanced signal
would be acoustically mixed with the near-end noise in a noisy
environment [34]. For this, we first extend the definition of the
frequency-dependent output SNR to also include the near-end
noise. That is,

oSNRnear
m =

wHΦxxw

wHΦnnw + σ2
U

, (30)

where σ2
U denotes the near-end noise variance of the noise

in the environment of the listener that gets acoustically mixed
with the beamformer output. In Fig. 4 and Fig. 5, we visualize
the combination of the far-end and near-end scenarios.
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Figure 1. An illustrative example of realistic speech communication systems
consisting of the far-end beamforming and near-end listening modules.

A. Rank-r beamformer with near-end noise

Using the rank-r optimal filter given in (26) with 1 ≤ r ≤
M , the near-end output SNR in (30) can be calculated as

oSNRnear
m =

wH
r Φxxwr

wH
r Φnnwr + σ2

U

=
eHmAem

eHmBem + σ2
U

, (31)

where the matrices A and B are given by

A = QrΛr (Λr + µIr)
−1

UH
r ΦxxUr (Λr + µIr)

−1
ΛrQ

H
r ,

B = QrΛr (Λr + µIr)
−1

UH
r ΦnnUr (Λr + µIr)

−1
ΛrQ

H
r .

By inspection, we have

UH
r ΦxxUr = UH

r QΛQHUr

=
[
Ir 0r×(M−r)

]
Λ
[
Ir 0(M−r)×r

]T
= Λr,

UH
r ΦnnUr = UH

r QQHUr = Ir.

As a consequence, we obtain

A = QrΛr (Λr + µIr)
−1

Λr (Λr + µIr)
−1

ΛrQ
H
r

=

r∑
j=1

λ3j
(λj + µ)2

qjq
H
j , (32)

B = QrΛr (Λr + µIr)
−1

(Λr + µIr)
−1

ΛrQ
H
r

=

r∑
j=1

λ2j
(λj + µ)2

qjq
H
j . (33)

The output SNR of rank-r beamformers is thus given by

oSNRnear
m =

∑r
j=1

λ3
j

(λj+µ)2
|qmj |2∑r

j=1

λ2
j

(λj+µ)2
|qmj |2 + σ2

U

, (34)

which is clearly reference microphone dependent via the factor
qmj included in the summation over j.

B. Rank-r beamformer without near-end noise

If σ2
U = 0, i.e., the near-end noise is neglected, the far-end

output SNR of the rank-r beamformer is then given by

oSNRfar
m =

eHmAem
eHmBem

=

∑r
j=1

λ3
j

(λj+µ)2
|qmj |2∑r

j=1

λ2
j

(λj+µ)2
|qmj |2

, (35)

which is still reference microphone dependent via the factor
qmj . This dependence implies that the selection of a reference
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Figure 2. The narrowband far-end output SNR in terms of rank r using the
nth microphone as the reference without near-end noise.

microphone also affects the noise reduction performance of
general rank-r beamformers (e.g., the conventional MWF,
SDW-MWF) without near-end noise, certainly when imple-
mented with the estimated (higher rank) correlation matrices.

C. Rank-1 beamformer without near-end noise

As a special case, applying the rank-1 beamformers, the
far-end output SNR is given by

oSNRfar
m =

uH1 Φxxu1

uH1 Φnnu1
= λ1. (36)

Obviously, the rank-1 beamformer is capable of maximizing
the output SNR, which equals the maximum generalized eigen-
value. Therefore, for all rank-1 beamformers (e.g., MVDR
beamformer, maximum SNR beamformer), the far-end out-
put SNR (i.e., when neglecting the near-end noise) is then
reference microphone independent.

Furthermore, the output SNR of any rank-r beamformer
cannot exceed the maximum eigenvalue. An illustrative exam-
ple of the output SNR in terms of the rank r is shown in Fig. 2.
We use a uniform linear array (ULA) consisting of M = 8
microphones and design the rank-r optimal beamformer given
in (26) for noise reduction. In this case, one can choose any
microphone as the reference. It is clear that for r = 1, the
maximum output SNR is obtained independent of the reference
microphone. For any rank-r beamformer with 2 ≤ r ≤ M ,
the output SNR depends on the reference. With an increase in
the rank, the performance decreases. This also follows from
Theorem 1.

Theorem 1. Given the same reference microphone, the far-end
output SNR of rank-r MMSE beamformers satisfies [19]

λ1 = oSNRr=1 ≥ oSNRr=2 ≥ · · · ≥ oSNRr=M . (37)

Proof. Letting xj =
λ2
j

(λj+µ)2
|qmj |2 > 0,∀j = 1, . . . , r, then

it can be shown that

oSNRr=1 − oSNRr=2 = λ1 −
λ1x1 + λ2x2
x1 + x2

=
(λ1 − λ2)x2
x1 + x2

≥ 0,

since λ1 ≥ λ2 ≥ . . . ,≥ λM . This can be easily generalized
to show oSNRr=j ≥ oSNRr=j+1 for j ≥ 2. This completes
the proof.

Altogether, we can conclude that in general the output SNR
of any rank-r beamformer is affected by the reference, and
only when σ2

U = 0, the rank-1 beamformers are not affected
by the reference microphone. Next, we will optimize the
output SNR given in (30) for the general case via reference
microphone selection.

V. PROPOSED REFERENCE SELECTION APPROACH

In this section, we will propose two reference microphone
selection approaches.

A. maxoSNR

Typically, the estimated correlation matrix Φ̂xx has a rank
Rank(Φ̂xx) > 1 because of inaccuracies in the estimated
correlation matrices (which are estimated using a limited
amount of data). Based on the previous analysis, we know
from (36) that for rank-1 beamformers, with the absence
of near-end noise the output SNR does not depend on the
reference regardless of the actual rank Rank(Φ̂xx). However,
generally, when the near-end noise is also present, for any
rank-r beamformer, it holds that they do depend on the
reference microphone. Their performance is thus affected by
the chosen reference for any r. The MMSE beamformers are
calculated per frequency bin and for each frequency bin the
narrowband SNR can be quite different depending on the
reference microphone. Therefore, we first propose to optimize
the frequency-dependent output SNR by selecting a reference
microphone for each frequency bin individually. At the end of
this subsection, this will be extended to broadband reference
selection where one microphone is selected for the complete
frequency range. In line with (30), the frequency-dependent
optimal reference microphone can be determined by solving
the following problem formulation:

nk = arg max
m

oSNRnear
m = arg max

m

eHmAem
eHmCem

,

s.t. 1TMem = 1, em ∈ {0, 1}M ,
(38)

where 1M denotes an M -dimensional all-ones column vector,
and the constraints are to force that only one element in ek
equals one, and C = B + σ2

UI. Clearly, this is a Boolean
optimization problem, which can be maximized by taking the
maximum of the element-wise division between the diagonal
elements of A and C. As an alternative, we can also solve
this as a semi-definite programming (SDP) problem. To do so,
we first relax (38) as

max
em,η

eHmAem/η

s.t. eHmCem ≤ η
1TMem = 1, em ∈ {0, 1}M ,

(39)

by introducing a new variable η > 0. Note that the first
constraint can be re-written as a linear inequality constraint
using the Schur complement [35][

C−1 em
eTm η

]
� OM+1, (40)
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due to the fact that C is positive definite. Furthermore, if we
relax ek using the continuous surrogates as 0 ≤ em[i] ≤ 1,∀i,
we can reformulate (38) as the following SDP problem [35]:

max
em,η

eHmAem/η

s.t.

[
C−1 em
eTm η

]
� OM+1

1TMem = 1, em ∈ [0, 1]M ,

(41)

which can be solved using a toolbox like CVX [36]. In
principal, (39) can be seen as a special case of the general
microphone subset selection problem proposed in [37], as only
one microphone needs to be selected. The final reference mi-
crophone is given by the index of the maximum value of em.
The proposed selection method is performed per frequency
bin, that is, the reference microphone might be changing across
frequencies, thus referred to as narrowband maxoSNR. Note
that different from [20], the proposed maxoSNR method (ei-
ther by simply checking the diagonal elements of the matrices
A and C or by considering the SDP problem) does not need
to design M filters and includes the effect of the near-end
noise. Also, checking the diagonal elements and considering
the SDP problem lead to the same reference selection.

In order to use the same microphone as the reference
for all frequency bins (i.e., broadband selection), one can
consider to maximize the broadband output SNR instead of
the narrowband SNR as in (38). That is,

n = arg max
m

∑
k eHmA(k)em∑

k (eHmB(k)em + σ2
U )

= arg max
m

∑
k eHmA(k)em∑

k eHm (B(k) + σ2
UIM ) em

= arg max
m

eHm
∑
k A(k)em

eHm
∑
k C(k)em

, (42)

where C(k) = B(k) +σ2
UIM , subject to the constraints given

in (38). Taking the summations
∑
k A(k) and

∑
k C(k) as

two individual matrices, (42) can then be solved using exactly
the same two techniques presented earlier in this section,
which gives the optimal single reference microphone across
all frequencies. We will refer to this method as the broadband
maxoSNR reference selection method.

B. maxRTF

By ignoring the Boolean constraints in (38), (38) can be
relaxed as

max
ψ

ψHAψ

ψHBψ + σ2
U

, (43)

where ψ ∈ CM . Due to the fact that the matrices A and B
are positive definite, for any ψ we know that ψHAψ > 0 and
ψHBψ > 0. Further, since B = QrΛ2Q

H
r , where

Λ2 = Λr (Λr + µIr)
−1

(Λr + µIr)
−1

Λr,

ψHBψ is thus bounded by

λ2r

(λr + µ)
2 ≤ ψ

HBψ ≤ λ21

(λ1 + µ)
2 . (44)

Therefore, we obtain

ψHAψ

ψHBψ + σ2
U

=

ψHAψ
ψHBψ

1 +
σ2
U

ψHBψ

≥
ψHAψ
ψHBψ

1 +
σ2
U (λ1+µ)

2

λ2
1

, (45)

since σ2
U

ψHBψ
≥ 0 with equality obtained when ψ = q1. As a

consequence, (43) can be optimized by maximizing the scaled
lower bound, i.e., solving the generalized Rayleigh quotient
problem:

max
ψ

g(ψ) =
ψHAψ

ψHBψ
. (46)

For this, we need the following theorem.

Theorem 2. For ψ ∈ CM , g(ψ) is bounded by

λM ≤ g(ψ) ≤ λ1,

the minimum is obtained if and only if ψ = qM , and the
maximum is obtained if and only if ψ = q1.

Proof. From the analysis in Section IV, we know that A =
QrΛ1Q

H
r and B = QrΛ2Q

H
r , where Λ1 is given by

Λ1 = Λr (Λr + µIr)
−1

Λr (Λr + µIr)
−1

Λr

= Λ2Λr.

Therefore, we have A = QrΛ2ΛrQ
H
r = BΛr, since Λr is

a diagonal matrix. The GEVD of the matrix pencil {A,B} is
then given by

AQr = BΛrQr, (47)

or equivalently by B−1AQr = ΛrQr. Maximizing or mini-
mizing the generalized Rayleigh quotient ψ

HAψ
ψHBψ

turns out to
be solving the GEVD problem. Therefore, the maximum can
be obtained when ψ = q1 (e.g., the principal eigenvector) and
the minimum is obtained when ψ = qM (i.e., the eigenvector
corresponding to the minimum eigenvalue). This completes
the proof.

In this case, the optimal unknown is given by the principal
eigenvector q1. Motivated by this, selecting the reference
microphone by searching for the maximum absolute value of
q1 gives a sub-optimal solution as

nk = arg max
m
|qm1|2. (48)

Remark 1. For any rank-1 MMSE beamformer, the reference
dependent near-end output SNR is given by

oSNRnear
m =

wH
1 Φxxw1

wH
1 Φnnw1 + σ2

U

=
αmλ1

αm + σ2
U

, (49)

where

αm =

(
λ1

λ1 + µ

)2

|q1m|2, (50)

implying that optimizing (48) enables an optimal reference in
the sense of SNR. This is due to the fact that the reference-
dependent SNR monotonically increases with |q1m|2, i.e.,
maximizing oSNRnear

m is equivalent to optimizing |q1m|2 in the
rank-1 case. For a higher-rank case, (48) is then sub-optimal.

Since the RTF is equivalent to the principal left eigenvec-
tor [23]–[25], we thus refer to (48) as the proposed narrowband
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Figure 3. A microphone array based speech enhancement system.

maxRTF method. Similarly to the broadband maxoSNR
method, we can also design a broadband maxRTF procedure
by choosing the microphone whose RTF has the maximum
average power over all frequencies, i.e.,

n = arg max
m

F∑
k=1

|q1m(k)|2 /F, (51)

where F is the total number of frequency bins.

VI. EXPERIMENTAL RESULTS

In this section, the proposed reference selection algorithms
for the MMSE beamformers are evaluated using a simulated
microphone array. Section VI-A shows the experimental setup.
In Section VI-B and Section VI-C, the instrumental speech
quality and speech intelligibility are evaluated, respectively. In
Section VI-D, we evaluate the performance of two often-used
filters, i.e., the MWF and MVDR beamformer. The proposed
maxoSNR method and the proposed maxRTF will be com-
pared to the reference methods maxiSNR [20], minDist [20],
maxEnergy [20] and a random reference selection procedure.
For the maxiSNR and maxEnergy methods, which are in-
troduced as a narrowband selection procedure in [20], the
corresponding broadband versions will also be compared2. For
the minDist method, we assume that the source-microphone
distances are known, which in practice need to be estimated.
The performance of the average random selection method
is a broadband selection that is evaluated by averaging the
performance that is obtained by all possible M filters. In order
to clearly observe the superiority of the proposed methods over
the baselines, we use “prop.” to indicate the proposed methods
in the legends of graphs.

A. Experimental setup

We use a conventional ULA consisting of M = 8 omni-
directional microphones with a spacing of 2 cm. The micro-
phones are indexed as m ∈ {1, 2, · · · , 8} from left to right.

2Each narrowband method considers reference selection for each frequency
bin individually, that is, different frequency bins might use a difference micro-
phone as the reference. The broadband maxiSNR method can be designed
by choosing the microphone having the maximum average input SNR over
all frequencies, and the broadband maxEnergy method by choosing the
microphone having the maximum average energy, such that their reference
for all frequency bins keeps the same. Note that minDist and the random
selection method are already broadband.

We consider a simulated 2D room with dimensions (4× 3) m
as Fig. 3 depicts, where a single target source and a coherent
interfering point source are located at (1, 2) m and (3, 1) m,
respectively. The target speech source is a 5 minute audio
stream that is obtained by concatenating several speech signals
originating from the TIMIT database [38]. The interfering
source is a stationary Gaussian speech shaped noise signal.
The sampling frequency is 16 kHz. The ATFs are generated
using the toolbox in [39]. All the filtering processes take place
in the STFT domain, where a square-root Hann window of
50 ms for segmentation with 50% overlap, and the estimated
speech signal is recovered via inverse STFT. Due to the
thermal noise of electronic devices, we model the microphone
self noise using a zero-mean uncorrelated Gaussian noise
at an SNR of 40 dB. The reverberation time is set to be
T60 = 200 ms. The trade-off parameter is set to be µ = 1.
Further, the source-to-interference ratio (SIR) is set to be 0 dB.
In order to focus on the influence of reference microphone
selection, we assume that an ideal VAD is available, such
that the microphone recordings can be classified into noise-
only segments and speech-plus-noise segments, and during
these two periods the correlation matrices Φnn and Φyy are
estimated using the average smoothing method, respectively.
Throughout the numerical simulations, the actual rank of the
estimated autocorrelation matrix Φ̂xx is P = M due to the
limited amount of measurements.

As evaluation metrics, we use the SNR gain to measure
the speech quality, and the gain in short-time objective in-
telligibility (STOI) [40] and the gain in speech intelligibility
in bits (SIIB) [41], [42] to measure the instrumental speech
intelligibility. The SNR gain (denoted by ∆SNR) is obtained
by subtracting the input SNR from the output SNR, similarly
for ∆STOI and ∆SIIB. The STOI score is to measure the
instrumental intelligibility of a speech signal, which represents
the correlation between the short-time temporal envelopes of
the clean and enhanced (or noisy) signals, and has been shown
to be highly correlated to human speech intelligibility score.
The STOI score ranges from 0 to 1, and the higher it is, the
more intelligible the speech is. The SIIB score measures the
amount of information shared between the clean speech (i.e.,
the talker at the start point of a realistic speech communication
system) and the degraded speech (i.e., the listener at the end
point) in bits per second (bps), and has been shown to be
more reliable than STOI for a larger diversity of processing
conditions [42]. Similarly to STOI, the higher the SIIB score
is, the more intelligible the obtained speech is. In simulations,
we set the total number of frequency bins to be F = 1024.

B. Instrumental speech quality

In order to study the impact of the rank-r approximation
of Φ̂xx on the noise reduction performance, we first show
the SNR gain of the rank-r MMSE beamformer in terms
of the rank-r approximation of the beamformers summarized
in Section III using different reference microphone selection
methods in Fig. 4. To model the near-end noise, we add zero-
mean Gaussian noise at a variance of σ2

U = 10−4 to the
beamformer output. The target to near-end noise ratio (TNNR)
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Figure 4. The SNR gain of the MMSE beamformers in terms of the rank r
with TNNR = 40 dB.

is around 40 dB. For implementation, after the noise and noisy
correlation matrices Φ̂nn and Φ̂yy are estimated, we use the r
eigenvectors corresponding to the r-maximum eigenvalues and
the corresponding eigenvalues (minus one) of {Φ̂yy, Φ̂nn} to
perform the rank-r approximation of Φ̂xx. As expected from
the theoretical analysis, with an increase in the rank, the SNR
gain of all comparison methods decreases. From Fig. 4, we
can observe that for any rank-r case, the SNR gain depends
on the reference microphone in case the near-end noise is taken
into account. As expected from Section V-B, for the rank-1
case the narrowband maxoSNR and maxRTF obtain the same
SNR gain, as they are equivalent in this case. The proposed
narrowband maxoSNR method achieves the best performance
in SNR gain, and the proposed narrowband maxRTF approach
is near-optimal. In general, the narrowband selection procedure
outperforms the corresponding broadband counterpart with
respect to the SNR. Notably, with an increase in the rank, the
selection of a reference microphone has a more severe impact
on the performance of MMSE beamformers, e.g., the SNR
gap between the proposed method and maxEnergy becomes
larger. Interestingly, comparing the broadband methods, the
performance of the proposed broadband maxoSNR, maxRTF,
the broadband maxiSNR and minDist approaches overlaps,
which is better than the random selection method. That is, in
the broadband sense the microphone that is located closest to
the target source is optimal for maximizing the SNR gain. For
the full-rank case, the proposed narrowband and broadband
maxoSNR methods can improve the SNR gain by 3 dB and
0.5 dB compared to the random selection, respectively.

In Fig. 5, we show the SNR gain of the rank-1 beamformer
in terms of the rank r for σ2

U = 0. It is clear that for r = 1,
the SNR gain of rank-1 MMSE beamformers is reference inde-
pendent without near-end noise being taken into account, and
the maximum SNR gain is achieved. Furthermore, the SNR
gain of the rank-1 MMSE beamformers in terms of the TNNR
is shown in Fig. 6. It is clear that for the rank-1 case, the
proposed narrowband maxoSNR and maxRTF methods are
equivalent. The SNR gain of all reference selection methods
based rank-1 MMSE beamformers increases with an increase
in the TNNR (i.e., a decrease in the near-end noise variance
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Figure 5. The SNR gain of the MMSE beamformers in terms of the rank r
that is used for approximating Φ̂xx without near-end noise, i.e., σ2
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Figure 6. The SNR gain of the rank-1 MMSE beamformer in terms of TNNR.

σ2
U ). When the near-end noise is negligible, all the considered

reference selection methods obtain a similar performance,
that is, the reference does not affect the near-end output
SNR. In case the variance of the near-end noise increases,
selecting a proper reference becomes more important for rank-
1 beamformers, as the performance gap between the proposed
narrowband methods and other approaches becomes larger.

C. Instrumental speech intelligibility

In this section, we evaluate the reference selection algo-
rithms in terms of the predicted instrumental intelligibility with
the TNNR fixed to be 40 dB. Fig. 7(a) shows the STOI gain
in terms of the rank r that is used for approximating Φ̂xx.
The proposed broadband maxoSNR, broadband maxRTF,
broadband maxiSNR and minDist methods all select the
first microphone as the reference, resulting in the maximum
improvement in STOI. In Fig. 7(a), it is clear that the broad-
band methods (except for the broadband maxEnergy and the
random method) can achieve a better speech intelligibility
compared to the narrowband approaches, while in Fig. 4
the narrowband method achieves a better SNR gain. All the
narrowband methods (except for the narrowband maxEnergy)
have a similar performance in terms of intelligibility. We
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Table I
NEAR-END NOISE REDUCTION PERFORMANCE USING THE CLASSIC MWF (µ = 1, r = M ) AND THE MVDR BEAMFORMER (µ = 0, r = 1).

Method MWF (µ = 1, r = M ) MVDR (µ = 0, r = 1)
∆SNR ∆STOI ∆SIIB ∆PESQ RefMic (#) ∆SNR ∆STOI ∆SIIB ∆PESQ RefMic (#)

prop. narrow maxoSNR 32.738 0.350 220.61 1.423 1 (213) 37.301 0.352 183.43 1.384 1 (201)
prop. narrow maxRTF 31.894 0.352 195.37 1.423 1 (211) 37.301 0.352 206.89 1.384 1 (201)
narrow maxiSNR 31.613 0.354 199.98 1.437 1 (241) 36.986 0.355 217.09 1.402 1 (243)
narrow maxEnergy 29.517 0.334 167.21 1.345 8 (239) 36.690 0.345 218.52 1.312 8 (237)
broad maxoSNR, maxRTF
broad maxiSNR, minDist

29.905 0.392 320.76 1.508 1 (1024) 36.518 0.383 325.73 1.474 1 (1024)

broad maxEnergy 29.130 0.313 158.28 1.395 8 (1024) 36.192 0.335 197.57 1.356 8 (1024)
broad random 29.319 0.354 212.77 1.471 4 (1024) 36.283 0.354 228.38 1.436 4 (1024)
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Figure 7. The STOI gain and the SIIB gain (in bits per second) in terms of the rank r with TNNR = 40 dB.

can conclude that, in general, the narrowband procedure is
better in SNR gain, while the broadband version is better
in terms of speech intelligibility. This is due to the fact
that the narrowband methods change the reference micro-
phone across frequencies, that is, the phase and magnitude
of the target signal might change per frequency, which will
influence the speech intelligibility. Interestingly, the narrow-
band maxEnergy (which might use different microphones as
the reference across frequencies) outperforms the broadband
maxEnergy (which uses microphone 8 as the reference for
all frequencies) in both SNR and STOI, as the signal recorded
by microphone 8 is dominated by the noise source. Fig. 7(b)
shows the speech intelligibility in terms of the SIIB gain
(in bits per second). These results are similar to Fig. 7(a).
Comparing the proposed broadband maxoSNR to the random
selection method, it is clear that apart from the signal quality in
terms of SNR, the speech intelligibility can also be improved
by choosing a proper reference microphone. That is, in practice
the reference microphone should not be arbitrarily chosen, as
this will harm the performance.

D. Evaluation of MWF and MVDR

Finally, we consider two often-used spatial filters, i.e., the
classic MWF (i.e., µ = 1, r = M ) and the rank-1 MVDR
beamformer (i.e., µ = 0, r = 1) with TNNR = 40 dB. The
speech enhancement performance is shown in Table I, where
we also show the gain in the perceptual evaluation of speech

quality (PESQ) [43], denoted by ∆PESQ. We also indicate
the microphone index that is most frequently chosen as the
reference microphone and the corresponding times it is chosen
by different approaches. The performance of the broadband
maxoSNR, maxRTF, maxiSNR and minDist approaches is
identical, as they all select the first microphone as the reference
for all frequencies. Therefore, we show these methods in one
row together in Table I. The proposed narrowband maxoSNR
obtains the best output SNR. Given the source-microphone
distance, the broadband minDist method obtains the best
predicted speech intelligibility improvement. This is due to the
fact that the closest microphone has the maximum input SNR
and its recording is dominated by the clean signal component.
However, the minDist is an impractical method, due to the
unavailability of the source-microphone distance. In this case,
the proposed broadband methods can be applied to obtain
an informative reference. Randomly choosing a reference
microphone can do better than the maxEnergy method, but
it is still worse than using more elaborate strategies (e.g., the
proposed methods, maxiSNR and minDist). The broadband
maxEnergy method uses microphone 8 as the reference, but
achieves the worst performance, as this microphone is closest
to the coherent interfering source and its measurement is
dominated by the noise source. The conclusions in terms of
PESQ gain are similar to the conclusions related to speech
intelligibility gain. Altogether, we see that we gain about 3
dB in terms of SNR by selecting the right reference micro-
phone and increase the predicted instrumental intelligibility as
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Figure 8. Spectrograms: (a) clean signal, (b) noisy signal at microphone 1, enhanced signals using (c) narrowband maxoSNR, (d) narrowband maxRTF, (e)
maxiSNR, (f) maxEnergy, (g) random selection, and (h) broadband maxoSNR. Note that the enhanced signals of the broadband maxoSNR, maxRTF,
maxiSNR and minDist approaches are the same, as they use the same microphone as the reference.

measured by SIIB with around 100 bps. Finally, we show the
spectrograms of the clean, noisy and enhanced signals using
different reference selection approaches for the MWF in Fig. 8.
It is obvious that the spectrograms of the proposed methods are
more similar to that of the clean signal than that of comparison
approaches, particularly in the square area.

VII. CONCLUSIONS

In this paper, we systematically investigated the impact of
choosing a reference microphone on the spatial filtering based
multi-microphone noise reduction problem. From theoretical
analysis, we found that for any rank-r MMSE beamformer, the
near-end output SNR including the near-end noise depends on
the reference. If and only if the near-end noise is neglected, the
output SNR of rank-1 beamformers (e.g., MVDR) is reference
independent. The proposed narrowband maxoSNR method
is optimal for MMSE beamformers in SNR. In addition,
the proposed narrowband maxRTF approach is sub-optimal
in terms of SNR. For the rank-1 beamformers, maxoSNR
and maxRTF are equivalent. The broadband version of both
methods reduces to the optimal minDist case, i.e., selecting
the microphone closest to the target source as the reference
for all frequencies. Using a simulated microphone array, it was
shown that the proposed narrowband maxoSNR and maxRTF
approaches can improve the signal SNR as compared to other
practical reference microphone selection methods. In general,
the narrowband selection procedure can improve the SNR,
while the broadband counterpart is beneficial for improving
the speech intelligibility. It is reasonable that the effectiveness
of the proposed methods are also valid in other more complex

multichannel noise reduction scenarios, as the proposed theory
was built without strict assumptions on the number of sources,
the positional relationship between the target source and the
interfering source, etc.
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