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Robust Constrained MFMVDR Filters for
Single-Channel Speech Enhancement Based on

Spherical Uncertainty Set
Dörte Fischer , Member, IEEE, and Simon Doclo , Senior Member, IEEE

Abstract—Aiming at exploiting speech correlation across con-
secutive time-frames in the short-time Fourier transform do-
main, the multi-frame minimum variance distortionless response
(MFMVDR) filter for single-channel speech enhancement has been
proposed. The MFMVDR filter requires an accurate estimate of
the normalized speech correlation vector in order to avoid speech
distortion and artifacts. In this paper we investigate the potential of
using robust MVDR filtering techniques to estimate the normalized
speech correlation vector as the vector maximizing the total signal
output power within a spherical uncertainty set, which corresponds
to imposing a quadratic inequality constraint. Whereas the singly-
constrained (SC) MFMVDR filter only considers the quadratic
inequality constraint to estimate the (non-normalized) speech cor-
relation vector, the doubly-constrained (DC) MFMVDR filter inte-
grates a linear normalization constraint into the optimization prob-
lem to directly estimate the normalized speech correlation vector.
To set the upper bound of the quadratic inequality constraint for
each time-frequency point, we propose to use a trained non-linear
mapping function that depends on the a-priori signal-to-noise ratio
(SNR). Experimental results for different speech signals, noise
types and SNRs show that the proposed constrained approaches
yield a more accurate estimate of the normalized speech correlation
vector than a state-of-the-art maximum-likelihood (ML) estimator.
An instrumental and a perceptual evaluation show that both con-
strained MFMVDR filters lead to less speech and noise distortion
but a lower noise reduction than the ML-MFMVDR filter, where
the DC-MFMVDR filter is preferred in terms of overall quality
compared to the SC-MFMVDR and ML-MFMVDR filters.

Index Terms—Multi-Frame MVDR Filter, single-microphone
speech enhancement, speech interframe correlation.

I. INTRODUCTION

S PEECH communication devices such as hearing aids or
mobile phones are often used in acoustically challenging

situations, where the desired speech signal is affected by ambient
noise. In these situations, speech quality and speech intelligibil-
ity may be degraded, especially at low signal-to-noise ratios

Manuscript received April 12, 2020; revised September 23, 2020; accepted
November 6, 2020. Date of publication December 7, 2020; date of current
version January 14, 2021. This work was supported in part by Joint Lower
Saxony-Israeli Project ATHENA and the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy
EXC 2177/1 - Project ID 390895286. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Xiaodong
Cui. (Corresponding author: Dörte Fischer.)

The authors are with the Department of Medical Physics and Acoustics and
the Cluster of Excellence Hearing4all, University of Oldenburg, 26 129 Old-
enburg, Germany (e-mail: doerte.fischer@uni-oldenburg.de; simon.doclo@uni-
oldenburg.de).

Digital Object Identifier 10.1109/TASLP.2020.3042013

(SNRs), such that speech enhancement algorithms are required
to suppress the undesired noise while keeping speech distortion
low [1]–[4]. Depending on the number of available microphones,
both single-channel as well as multi-channel speech enhance-
ment algorithms were proposed. In this paper we focus on
single-channel algorithms in the short-time Fourier transform
(STFT) domain exploiting concepts proposed for multi-channel
algorithms.

In single-channel speech enhancement algorithms, it is often
assumed that neighboring STFT coefficients are uncorrelated
over time and frequency, which is a valid assumption when using
sufficiently long analysis frames (in the order of 20–30 ms) with
a relatively small overlap (in the order of 50%) [3]. Hence, an
estimate of the speech STFT coefficients can be obtained by
applying a (real- or complex-valued) gain to the noisy speech
STFT coefficients at each time-frequency point independently.
Frequently used examples are the conventional Wiener gain [2],
[3] and the minimum mean-square error logarithmic short-time
spectral amplitude (LogSTSA) estimator [5]. In addition, nu-
merous approaches based on deep learning have recently been
proposed to estimate the spectro-temporal gain [6]–[9]. In this
paper, we will however focus on conventional speech enhance-
ment approaches.

Since, it is more realistic to assume that neighboring STFT
coefficients are correlated over time and/or frequency, especially
when using short analysis frames and/or a large overlap, speech
correlation across time-frames was considered in [10]–[17],
while speech correlation across frequency-bands was considered
in [18], [19] and speech correlation across both time-frames as
well as frequency-bands was considered in [20], [21]. Based
on a multi-frame signal model, where the normalized speech
correlation vector represents the speech correlation between the
current and previous time-frames, it was proposed in [1], [11]
to estimate the speech STFT coefficients by applying an multi-
frame minimum variance distortionless response (MFMVDR)
filter to the noisy speech STFT coefficients. The MFMVDR
filter aims at minimizing the total signal output power while
not distorting correlated speech components. Conceptually, the
single-channel MFMVDR filter is similar to the multi-channel
MVDR beamformer [22], [23] when interpreting time-frames
as microphone inputs and the speech correlation vector as the
steering vector of the desired speech source.

The MFMVDR filter requires estimates of the noisy speech
correlation matrix and the (highly time-varying) normalized
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speech correlation vector. Several approaches were proposed
to estimate the normalized speech correlation vector from the
noisy speech STFT coefficients. In [12] a maximum-likelihood
(ML) estimator was derived based on the assumption that the
normalized speech and noise correlation vectors follow multi-
variate Gaussian distributions, while in [14] it was proposed to
estimate the normalized speech correlation vector by applying
the Wiener-Khinchin theorem on estimated periodograms in a
high frequency-resolution filterbank. In [24], we showed that
accurately estimating the normalized speech correlation vector is
crucial since even small estimation errors may lead to a degraded
performance of the MFMVDR filter, causing speech distortion
and unpleasant artifacts in the background noise.

In the area of multi-channel processing, i.e., beamforming,
several techniques were proposed to increase the robustness of
MVDR beamformers against estimation errors in the steering
vector. One of the most popular approaches is diagonal load-
ing, imposing a quadratic inequality constraint on the filter
vector [25]. However, since diagonal loading does not explic-
itly address uncertainty of the steering vector, several other
approaches were proposed, e.g., by imposing (equality and/or
inequality) constraints on the so-called mismatch vector, i.e., the
difference between the steering vector and the presumed steer-
ing vector [26]–[34]. The robust MVDR beamformers in [28],
[30] estimate the steering vector as the vector maximizing the
total signal output power of the MVDR beamformer within a
spherical uncertainty set. Inspired by these robust multi-channel
approaches, in this paper we investigate the potential of esti-
mating the normalized speech correlation vector as the vector
maximizing the total signal output power of the MFMVDR filter
within a spherical uncertainty set. This corresponds to imposing
a quadratic inequality constraint on the mismatch vector, i.e.,
the difference between the speech correlation vector and the
presumed normalized speech correlation vector, e.g., the ML
estimate in [12]. We propose two constrained MFMVDR filters.
The singly-constrained (SC) MFMVDR filter only considers
the quadratic inequality constraint on the mismatch vector to
estimate the (non-normalized) speech correlation vector and
applies normalization afterwards. On the other hand, the doubly-
constrained (DC) MFMVDR filter integrates the (linear) nor-
malization constraint into the optimization problem and directly
estimates the normalized speech correlation vector by solving
an optimization problem with two constraints. Since oracle
simulations (i.e., assuming that the speech and noise signals are
available) at different SNRs show that the norm of the mismatch
vector decreases with increasing SNR, we propose to train a
non-linear mapping function that depends on the a-priori SNR
to set the upper bound of the spherical uncertainty set for each
time-frequency point. Preliminary results for the SC-MFMVDR
filter were already presented in [16].

The remainder of this paper is structured as follows. In
Section II, the multi-frame signal model is presented. In
Section III, the MFMVDR filter is reviewed and state-of-the-
art methods to estimate the noisy speech correlation matrix
and the normalized speech correlation vector are discussed. In
Section IV, the proposed constrained MFMVDR filters based
on a spherical uncertainty set as well as the proposed mapping

function to set the upper bound of the spherical uncertainty
set are presented. In Section V, an instrumental and perceptual
performance comparison between both constrained MFMVDR
filters, the state-of-the-art ML-MFMVDR filter [12], the oracle
MFMVDR filter and the LogSTSA estimator [5] is provided for
different speech signals, noise types and SNRs. The results show
that the proposed constrained MFMVDR filters result in a more
conservative noise reduction performance with a more natural
speech quality and less noise distortion than the ML-MFMVDR
filter, where the DC-MFMVDR filter is preferred in terms of
overall quality.

II. MULTI-FRAME SIGNAL MODEL

We consider a single-channel setup, where the speech signal
x(t) is degraded by additive noise n(t), with t denoting the time
index. In the STFT domain, the complex-valued noisy speech
STFT coefficient Y (k,m) at frequency-band k and time-frame
m is given by

Y (k,m) = X(k,m) +N(k,m) , (1)

withX(k,m) andN(k,m) denoting the speech and noise STFT
coefficients, respectively. For conciseness, in the remainder of
the paper the frequency-band index k will be omitted if not
required.

In single-frame speech enhancement approaches [2], [3], [5],
[6], [8] the speech STFT coefficientX(m) is typically estimated
by applying a (real-valued) gainG(m) to the noisy speech STFT
coefficient Y (m), i.e.,

X̂(m) = G(m)Y (m) . (2)

In multi-frame speech enhancement approaches [1], the L-
dimensional noisy speech vector y(m) is defined as

y(m) =
[
Y (m), Y (m− 1), . . . , Y (m− L+ 1)

]T
, (3)

where [·]T denotes the transpose operator. Using (1), the noisy
speech vector y(m) can be written as

y(m) = x(m) + n(m) , (4)

where the speech vector x(m) and the noise vector n(m) are
defined similarly as y(m) in (3). The speech STFT coefficient
X(m) is then estimated by applying a (complex-valued) FIR
filter h(m) to the noisy speech vector y(m), i.e.,

X̂(m) = hH(m)y(m) , (5)

where [·]H denotes the Hermitian operator. The filter h(m)
contains the L time-varying filter coefficients, i.e.,

h(m) =
[
H0(m), H1(m), . . . , HL−1(m)

]T
. (6)

Assuming that the speech and noise signals are uncorrelated,
i.e., E[x(m)nH(m)] = 0, with E[·] the expectation opera-
tor, the L× L-dimensional noisy speech correlation matrix
Φy(m) = E[y(m)yH(m)] is given by

Φy(m) = Φx(m) +Φn(m) , (7)
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where Φx(m) = E[x(m)xH(m)] and Φn(m) = E[n(m)nH(m)]

denote the speech and noise correlation matrices, respectively.
To exploit the speech correlation across time-frames, it was

proposed in [1], [11] to decompose the speech vector x(m)
into the temporally correlated speech component s(m) and the
temporally uncorrelated speech component x′(m) with respect
to the speech STFT coefficient X(m), i.e.,

x(m) = s(m) + x′(m) = γx(m)X(m) + x′(m) , (8)

where the (highly time-varying) normalized speech correlation
vector γx(m) is defined as

γx(m) =
E [x(m)X∗(m)]

E [|X(m)|2] =
Φx(m)e

eTΦx(m)e
, (9)

where ∗ denotes the complex-conjugate operator and

e =
[
1, 0, . . . , 0

]T
is an L-dimensional selection vector. Due

to the normalization term eTΦx(m)e, which corresponds to the
speech power spectral density (PSD)φX(m) = E[|X(m)|2], the
first element of the normalized speech correlation vector is equal
to 1, i.e.,

eTγx(m) = 1 , (10)

which will be referred to as the normalization constraint.
Substituting (8) into (4), we obtain the multi-frame signal

model

y(m) = γx(m)X(m) + x′(m) + n(m) (11)

where we consider the uncorrelated speech component x′(m)
as an interference.

Similarly to (9), the normalized noisy speech correlation vec-
tor γy(m) and the normalized noise correlation vector γn(m)
are defined as

γy(m) =
Φy(m) e

eTΦy(m)e
, γn(m) =

Φn(m) e

eTΦn(m)e
, (12)

with eTΦy(m)e and eTΦn(m)e corresponding to the
noisy speech PSD φY (m) = E[|Y (m)|2] and the noise PSD
φN (m) = E[|N(m)|2], respectively. Using (7), (9) and (12), it
can be easily shown that

φY (m)γy(m) = φX(m)γx(m) + φN (m)γn(m) , (13)

such that the normalized speech correlation vector can be written
as

γx(m) =
ξ(m) + 1

ξ(m)
γy(m)− 1

ξ(m)
γn(m) , (14)

where ξ(m) = φX(m)/φN (m) denotes the a-priori SNR.

III. MULTI-FRAME MVDR FILTER

In [1], [11], the MFMVDR filter for single-channel speech
enhancement was proposed, which aims at minimizing the total
signal output power while not distorting the correlated speech

component1, i.e.,

min
h(m)

hH(m)Φy(m)h(m), s.t. hH(m)γx(m) = 1. (15)

Solving this optimization problem yields the MFMVDR filter
vector

hMFMVDR(m) =
Φ−1

y (m)γx(m)

γH
x (m)Φ−1

y (m)γx(m)
(16)

with the signal output power φout
Y (m) equal to

φout
Y (m) = E

[|hH
MFMVDR(m)y(m)|2]

=
1

γH
x (m)Φ−1

y (m)γx(m)
. (17)

As can be seen from (16), the MFMVDR filter requires an
estimate of the noisy speech correlation matrix Φy(m) and the
normalized speech correlation vector γx(m), which need to be
estimated from the noisy speech STFT coefficients. In [24] we
showed that the MFMVDR filter is more sensitive to estimation
errors in the normalized speech correlation vector compared
to estimation errors in the noisy speech correlation matrix.
Hence, it is crucial to accurately estimate the normalized speech
correlation vector and/or to make the MFMVDR filter more
robust against estimation errors (as considered in this paper).

A. Noisy Speech Correlation Matrix

Estimating the noisy speech correlation matrix from the noisy
speech STFT coefficients can be performed rather straightfor-
wardly by applying first-order recursive smoothing, i.e.,

Φ̂y(m) = αyΦ̂y(m− 1) + (1− αy)y(m)yH(m) , (18)

where Φ̂y(m) denotes the estimated noisy speech correlation
matrix and αy is a smoothing parameter. As suggested in [12],
to avoid numerical problems we apply diagonal loading before
computing the inverse of Φ̂y(m), i.e.,

Φ̂
−1

y (m) =

⎛⎝Φ̂y(m) +
κtr

[
Φ̂y(m)

]
L

IL

⎞⎠−1

, (19)

where κ denotes a small scaling parameter, the operator tr[·] de-
notes the trace of a matrix andIL denotes theL× L-dimensional
identity matrix.

B. Normalized Speech Correlation Vector

When assuming the noise n(m) to be available (which is of
course not the case in practice), an oracle estimate of the noise
correlation matrix Φ̂

o
n(m) can be obtained similarly to (18) as

Φ̂
o
n(m) = αnΦ̂

o
n(m− 1) + (1− αn)n(m)nH(m) , (20)

1Although a more appropriate name would be multi-frame minimum power
distortionless response (MFMPDR) filter, we decided to keep the original
terminology from [11].
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where αn is a smoothing parameter. Similarly to (12), an oracle
estimate of the normalized noise correlation vector can hence
be obtained as

γ̂o
n(m) =

Φ̂
o
n(m) e

eT Φ̂
o
n(m)e

. (21)

Using Φ̂y(m) in (18), an estimate of the normalized noisy
speech correlation vector γ̂y(m) can be obtained similarly to
(12). Hence, using (14) and (21) an oracle estimate of the
normalized speech correlation vector can be obtained as

γ̂o
x(m) =

ξ̂o(m) + 1

ξ̂o(m)
γ̂y(m)− 1

ξ̂o(m)
γ̂o
n(m) , (22)

with ξ̂o(m) an oracle estimate of the a-priori SNR given by

ξ̂o(m) =
eT

(
Φ̂y(m)− Φ̂

o
n(m)

)
e

eT Φ̂
o
n(m)e

. (23)

Since in practice the noise n(m) is obviously not available,
both the normalized noise correlation vector as well as the
a-priori SNR need to be estimated from the noisy speech STFT
coefficients in order to be able to estimate the normalized speech
correlation vector based on (14). Assuming that the normalized
speech correlation vector γx(m) and the normalized noise cor-
relation vector γn(m) follow multivariate complex Gaussian
distributions, the ML estimate of the normalized speech corre-
lation vector γx(m) was derived in [12] as

γ̂ML
x (m) =

ξ̂(m) + 1

ξ̂(m)
γ̂y(m)− 1

ξ̂(m)
μγn

(24)

with ξ̂(m) an estimate of the a-priori SNR and μγn
the mean

normalized noise correlation vector, which is solely determined
by the frame overlap and the STFT analysis window and hence
assumed constant for all time-frequency points [12].

To estimate the a-priori SNR, several estimators such as
the decision-directed approach (DDA) [35] or cepstro-temporal
smoothing [36] were proposed. In this paper we have used the
DDA, i.e.,

ξ̂(m)=βDDA
|X̂(m−1)|2
φ̂N (m−1)

+(1−βDDA)max

[
|Y (m)|2
φ̂N (m)

−1, 0

]
,

(25)

with βDDA denoting a weighting parameter and φ̂N (m) an esti-
mate of the noise PSD for which we used the speech-presence-
probability-based noise PSD estimator proposed in [37].

Simulation results in [12], [16], [24] showed that the accuracy
of the ML estimate in (24) strongly depends on the a-priori
SNR estimate ξ̂(m). Especially at low a-priori SNRs, the ML
estimate may become very large, such that the estimation er-
ror between γ̂ML

x (m) and the oracle estimate γ̂o
x(m) becomes

very large. This may cause correlated speech components to
be mistakenly interpreted as uncorrelated, resulting in speech
distortion and unpleasant artifacts in the background noise [12],

[24], [38]. Examples of audio samples are available on-
line (see https://uol.de/en/sigproc/research/audio-demos/multi-
frame-speech-enhancement/constrained-mfmvdr-filters).

IV. CONSTRAINED MFMVDR FILTERS BASED ON SPHERICAL

UNCERTAINTY SET

Aiming at improving the robustness against estimation errors
in the normalized speech correlation vector, in this section we
propose two constrained MFMVDR filters. Inspired by the ro-
bust MVDR beamformers (also called robust Capon beamform-
ers) in [28], [30], we propose to estimate the normalized speech
correlation vector as the vector maximizing the total signal
output power of the MFMVDR filter within a spherical uncer-
tainty set. This corresponds to imposing a quadratic inequality
constraint on the mismatch vector with respect to the presumed
normalized speech correlation vector. Section IV-A presents the
singly-constrained MFMVDR filter, which only considers the
quadratic inequality constraint, whereas Section IV-B presents
the doubly-constrained MFMVDR filter, which jointly consid-
ers the quadratic inequality constraint as well as the (linear)
normalization constraint. Section IV-C discusses a trained non-
linear mapping function to set the upper bound of the spherical
uncertainty set for each time-frequency point. For conciseness,
the time-frame index m will be omitted in this section, although
it should be realized that all calculations are performed for each
time-frequency point.

A. Singly-Constrained (SC) MFMVDR Filter

Given a presumed normalized speech correlation vector γ̃x,
e.g., the ML estimate γ̂ML

x in (24), the mismatch vector with
respect to the (unknown) normalized speech correlation vector
γx is defined as δx = γx − γ̃x, with εx = ||δx||22. We now
define the spherical uncertainty set comprising all vectors whose
squared distance to the presumed normalized speech correlation
vector γ̃x is smaller than or equal to a bound ε ≥ 0, i.e.,

Γ =
{
γ = γ̃x + δ | ‖δ‖22 ≤ ε

}
. (26)

Similarly to the robust MVDR beamformer in [28], we pro-
posed in [16] to compute the (non-normalized) speech correla-
tion vector for the SC-MFMVDR filter as the vector maximizing
the total signal output power of the MFMVDR filter in (17)
within the spherical uncertainty set in (26), i.e.,

γ̂SC
x = argmax

γ

1

γHΦ−1
y γ

, s.t. ‖γ − γ̃x‖22 ≤ ε , (27)

which is equivalent to

γ̂SC
x = argmin

γ
γHΦ−1

y γ, s.t. ‖γ − γ̃x‖22 ≤ ε (28)

For an exemplary noisy speech correlation matrix Φy and
L = 2, Fig. 1 visualizes the quadratic cost function γHΦ−1

y γ in
(28), together with an exemplary presumed normalized speech
correlation vector γ̃x and bound ε. Obviously, the bound ε in
(28) plays an important role and should be chosen in accordance
with the accuracy of the presumed normalized speech correlation

https://uol.de/en/sigproc/research/audio-demos/multi-frame-speech-enhancement/constrained-mfmvdr-filters
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Fig. 1. Quadratic cost function in (28) with exemplary presumed normalized
speech correlation vector γ̃x and bound ε.

vector γ̃x, i.e., if ||γx − γ̃x||22 is large, then ε should be large,
whereas if ||γx − γ̃x||22 is small, then ε should be small.

The minimum of the quadratic cost functionγHΦ−1
y γ is given

by γ̂x = 0, which is obviously undesired. In order to avoid this
solution, the bound ε should be chosen such that

ε < ‖γ̃x‖22 . (29)

Under this condition and considering the convex nature of the
quadratic cost function in (28), the inequality constraint in (28)
can be replaced by an equality constraint, i.e.,

γ̂SC
x = argmin

γ
γHΦ−1

y γ, s.t. ‖γ − γ̃x‖22 = ε . (30)

This constrained optimization problem can be solved using
the method of Lagrange multipliers [39]. The Lagrangian func-
tion is given by

fSC(γ, λ) = γHΦ−1
y γ + λ

(
‖γ − γ̃x‖22 − ε

)
, (31)

with λ the Lagrange multiplier. Setting the gradient of fSC(γ, λ)
with respect to γ

∇γf
SC(γ, λ) = 2Φ−1

y γ + 2λ(γ − γ̃x) (32)

equal to zero, yields

γ = λ
(
Φ−1

y + λIL
)−1

γ̃x . (33)

Applying the matrix inversion lemma, we obtain the SC speech
correlation vector γ̂SC

x (λ) as

γ̂SC
x (λ) = γ̃x − (λΦy + IL)

−1γ̃x (34)

Setting the partial derivative of fSC(γ, λ) in (31) with respect to
λ equal to zero and substituting (34) results in

gSC(λ) =
∂fSC(γ, λ)

∂λ
=

∥∥∥(λΦy + IL)
−1 γ̃x

∥∥∥2
2
− ε = 0,

(35)

which should be solved for the Lagrange multiplier λ.
Let the eigenvalue decomposition (EVD) of the noisy speech

correlation matrix be given by

Φy = UQUH , (36)

where the columns ofU contain the orthogonal eigenvectors and
the diagonal elements of the diagonal matrix Q are the corre-
sponding eigenvalues, with q0 ≥ q1 ≥ · · · ≥ qL−1. By defining

zγ̃ = UH γ̃x , (37)

and using (36) and (37) in (35), we obtain

gSC(λ) =

L−1∑
l=0

|zγ̃(l)|2
(1 + λql)2

= ε (38)

with zγ̃(l) denoting the l-th element of zγ̃ . This non-linear
equation in the Lagrange multiplier λ can be solved, e.g., using
Newton’s method [39]. The solution is then used in (34), yielding
the SC speech correlation vector γ̂SC

x . Since the normalization
constraint in (10) is typically not satisfied, resulting in a scaling
inaccuracy, normalization is performed by dividing γ̂SC

x with its
first element. However, there is no guarantee that the normalized
SC speech correlation vector satisfies the quadratic inequality
constraint in (26), i.e., lies within the spherical uncertainty set.
Using the normalized SC speech correlation vector in (16) results
in the SC-MFMVDR filter.

B. Doubly-Constrained (DC) MFMVDR Filter

Since it is not guaranteed that the normalized SC speech corre-
lation vector satisfies both the quadratic inequality constraint in
(26) as well as the (linear) normalization constraint in (10), in this
section we propose to estimate the normalized speech correlation
vector as the vector maximizing the total signal output power of
the MFMVDR filter while satisfying both constraints, i.e.,

γ̂DC
x = argmin

γ
γHΦ−1

y γ, s.t. ‖γ − γ̃x‖22 ≤ ε,

eTγ = 1

(39)

This doubly-constrained optimization problem can be trans-
formed into a singly-constrained optimization problem by de-
composing the L-dimensional vector γ as

γ =

[
1
−d

]
= e−Ed , (40)

with d an (L− 1)-dimensional vector and the L× (L− 1)-
dimensional matrix E defined as

E =

[
01×L-1

IL-1

]
. (41)

Similarly, theL-dimensional vectors γ̂DC
x and γ̃x can be decom-

posed as

γ̂DC
x =

[
1

−d̂
DC
x

]
= e−Ed̂

DC
x (42)

γ̃x =

[
1

−d̃x

]
= e−Ed̃x . (43)

Instead of estimating γ̂DC
x , it is hence sufficient to estimate d̂

DC
x ,

which can be done by substituting (40), (42) and (43) into (39),
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i.e.,

d̂
DC
x = argmin

d
(e−Ed)H Φ−1

y (e−Ed) ,

s.t.
∥∥∥d− d̃x

∥∥∥2 ≤ ε, (44)

transforming the doubly-constrained optimization problem in
(39) into a singly-constrained optimization problem.

Based on the definition of the normalized noisy speech cor-
relation vector γy in (12) and using the decomposition

γy =

[
1

−dy

]
, (45)

the L× L-dimensional noisy speech correlation matrix Φy can
be decomposed as

Φy =

[
φY −φY d

H
y

−φY dy Dy

]
, (46)

with Dy an (L− 1)×(L− 1)-dimensional matrix. Using
blockwise inversion, the matrix Φ−1

y is equal to

Φ−1
y =

[
aY bHy
by S−1

y

]
, (47)

with Sy the (L− 1)× (L− 1)-dimensional Schur comple-
ment [39], i.e.,

Sy = Dy − φY dyd
H
y , (48)

and

aY = φ−1
Y + dH

y S−1
y dy , (49)

by = S−1
y dy. (50)

Using (47), the optimization problem in (44) can hence be
reformulated as

d̂
DC
x = argmin

d
aY − bHy d− dHby + dHS−1

y d,

s.t.
∥∥∥d− d̃x

∥∥∥2
2
≤ ε

(51)

which is similar but obviously not the same as the optimization
problem in (28).

For an exemplary noisy speech correlation matrix Φy and
L = 3, Fig. 2 visualizes the quadratic cost functionaY − bHy d−
dHby + dHS−1

y d, together with an exemplary presumed vector

d̃x (part of γ̃x) and bound ε. In comparison to Fig. 1, the
quadratic cost function is shifted upwards by the scalar aY and
shaped by the term −bHy d− dHby . Similarly as in Section IV-
A, for the optimization problem in (51) the bound ε plays an
important role and should be chosen in accordance with the
accuracy of the presumed vector d̃x.

The minimum of the quadratic cost function aY − bHy d−
dHby + dHS−1

y d is given by d̂x = Syby , which using (50)
is equal to dy . Using this solution, or consequently γy , in (16)
results in the MFMVDR filter being equal to the selection vector
e, which is obviously undesired. In order to avoid this solution,

Fig. 2. Quadratic cost function in (51) with exemplary vector d̃x (part of γ̃x),
vector dy (part of γy) and bound ε.

the bound ε should be chosen such that

ε <
∥∥∥d̃x − dy

∥∥∥2
2
. (52)

Under this condition and considering the convex nature of the
quadratic cost function in (51), the inequality constraint in (51)
can be replaced by an equality constraint, i.e.,

d̂
DC
x = argmin

d
aY − bHy d− dHby + dHS−1

y d ,

s.t.
∥∥∥d− d̃x

∥∥∥2
2
= ε . (53)

Similarly to (30), this constrained optimization problem can be
solved using the method of Lagrange multipliers [39], where the
Lagrangian function is now given by

fDC(d, μ) = aY − bHy d− dHby + dHS−1
y d

+ μ

(∥∥∥d− d̃x

∥∥∥2
2
− ε

)
, (54)

withμ the Lagrange multiplier. Setting the gradient of fDC(d, μ)
with respect to d

∇df
DC(d, μ) = 2S−1

y d− 2by + 2μ(d− d̃x) (55)

equal to zero, yields

d =
(
S−1

y + μIL-1
)−1

(
by + μd̃x

)
. (56)

Applying the matrix inversion lemma, we obtain the vector

d̂
DC
x (μ) as

d̂
DC
x (μ) =

(
IL-1 − (μSy + IL-1)

−1
)(

1

μ
by + d̃x

)
(57)

Setting the partial derivative of fDC(d, μ) in (54) with respect
to μ equal to zero and substituting (57) results in

gDC(μ) =
∂fDC(d, μ)

∂μ
(58)

=

∥∥∥∥(μSy + IL-1)
−1

(
1

μ
by + d̃x

)
− 1

μ
by

∥∥∥∥2
2

− ε = 0 ,
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which should be solved for the Lagrange multiplier μ.
Let the EVD of the Schur complement Sy in (48) be given

by

Sy = V CV H , (59)

where the columns ofV contain the orthogonal eigenvectors and
the diagonal elements of the diagonal matrix C are the corre-
sponding eigenvalues, with c0 ≥ c1 ≥ · · · ≥ cL−2. By defining

zd̃ = V H d̃x, (60)

zb = V Hby, (61)

and using (59), (60) and (61) in (58), we obtain

gDC(μ) =

L−2∑
l=0

|zb(l)cl − zd̃(l)|2
(1 + μcl)2

= ε (62)

with zd̃(l) and zb(l) denoting the l-th element of zd̃ and zb, re-
spectively. This non-linear equation in the Lagrange multiplierμ
can be solved similarly to (38), e.g., using Newton’s method [39].

The solution is then used in (57), to obtain d̂
DC
x , and subsequently

in (42), yielding the normalized DC speech correlation vector
γ̂DC
x . Using γ̂DC

x in (16) results in the DC-MFMVDR filter.
It should be noted that due to the EVD in (36) and (59)

and solving the non-linear equations in (38) and (62), the com-
putational complexity for the constrained MFMVDR filters is
obviously larger than for the ML-MFMVDR filter, where the
computational complexity for the SC-MFMVDR filter and the
DC-MFMVDR filter is similar.

C. Bound of the Spherical Uncertainty Set

As already mentioned, the bound ε of the spherical uncertainty
set in (26) plays a crucial role for both constrained optimization
problems in that it should be chosen in accordance with the accu-
racy of the presumed normalized speech correlation vector γ̃x.
In order to ensure that the oracle normalized speech correlation
vector γ̂o

x in (22) lies within the spherical uncertainty set (and
hence can be found as a solution of the constrained optimization
problems), the bound ε should be larger than or equal to the
oracle bound ε̂o = ‖γ̂o

x − γ̃x‖22.
In this paper, we will use the ML estimate γ̂ML

x in (24) as the
presumed normalized speech correlation vector γ̃x. Since the
accuracy of the ML estimate strongly depends on the a-priori
SNR estimate ξ̂ in (25), we propose to train a (non-linear) map-
ping function between the oracle bound ε̂o

ML = ‖γ̂o
x − γ̂ML

x ‖22
and the a-priori SNR estimate ξ̂. For a wide range of speech and
noise signals (30 TIMIT sentences [40], speech-shaped noise,
two traffic and babble noise signals [41]) and a broadband SNR
range of 0 dB to 15 dB in 5 dB steps, Fig. 3 shows the normalized
joint probability density function (PDF) of the oracle bound ε̂o

ML

and the a-priori SNR estimate ξ̂ (for all time-frequency points).
It can be clearly observed that the oracle bound decreases with
increasing a-priori SNR. Fitting a linear function (in log-log
scale) to the maximum value of the normalized PDF for each

Fig. 3. Normalized joint PDF of the oracle bound ε̂o
ML and the a-priori SNR

estimate ξ̂ with the mapping function ε̂Map in red.

a-priori SNR estimate ξ̂ yields the mapping function

ε̂Map(ξ̂dB) = 10(−1.983̂ξdB+2)/10 (63)

with ξ̂dB = 10 log10(ξ̂). This mapping function is shown in red
in Fig. 3.

V. EVALUATION

In this section, we analyze the performance of the proposed
constrained MFMVDR filters based on a spherical uncertainty
set. After discussing the algorithm implementation framework
in Section V-A and defining the instrumental performance
measures in Section V-B, in Section V-C we compare the
estimation accuracy of the proposed normalized SC and DC
speech correlation vector estimates with the ML estimate. For
different noise types and SNRs, in Section V-D, V-E and V-F
we compare the instrumental and perceptual speech quality of
the proposed SC-MFMVDR and DC-MFMVDR filters with
the oracle MFMVDR filter, the state-of-the-art ML-MFMVDR
filter [12] and the (single-frame) LogSTSA estimator [5] as a
reference speech enhancement algorithm.

A. Implementation Framework

In order to exploit speech correlation across time-frames, for
the MFMVDR filters we use a highly temporally resolved STFT
framework at a sampling frequency of 16 kHz with a frame
length of 4 ms, i.e., K = 64 frequency-bands, and an overlap of
75%, resulting in a frame shift of 1 ms. As the STFT analysis and
synthesis window we use a square-root Hann window. Similarly
as in [12], the number of consecutive time-frames is set to L =
18, resulting in 21 ms of data used in each filtering operation.

The smoothing parameters for the noisy speech correlation
matrix in (18) and the oracle noise correlation matrix in (20) are
experimentally set to αy = αn = 0.9, resulting in a smoothing
window of 10 ms. The scaling parameter in (19) is set to κ =

0.001. The a-priori SNR estimate ξ̂ required for the ML estimate
γ̂ML
x in (24) and the bound ε̂Map in (63), is computed using the

DDA in (25) with a weighting parameter of βDDA = 0.70.
Although the main objective is to compare the perfor-

mance of the proposed constrained MFMVDR filters with the
ML-MFMVDR filter, we will also consider the single-frame
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LogSTSA estimator as a reference single-channel speech en-
hancement algorithm. For a fair comparison, the LogSTSA
estimator is implemented using an equivalent frame length
of 21 ms and an overlap of 50%. The a-priori SNR for the
LogSTSA estimator is also estimated using the DDA in (25)
with a weighting parameter of βDDA = 0.98 and the noise PSD
estimator proposed in [37]. To reduce the amount of speech
distortion and to mask artifacts in the background noise, a lower
limit of −17 dB is applied to the LogSTSA estimator.

For the evaluation, we use 60 sentences from the TIMIT
database [40], spoken by different speakers (10 male, 10 female)
as speech signals. As noise signals, we use speech-shaped noise,
traffic, babble and factory noise signals [41]. The considered
broadband SNR range is −5 dB to 20 dB in 5 dB steps. We
made sure that the evaluation data differs from the data used for
training the mapping function in Section V-C.

B. Instrumental Performance Measures

The accuracy of the normalized speech correlation vector
estimates is evaluated in terms of the mean-square error (MSE)
between the oracle normalized speech correlation vector in (22)
and the estimated normalized speech correlation vector, i.e.,

MSE =
1

|F∗|
∑

k,m∈F∗

‖γ̂o
x(k,m)− γ̂x(k,m)‖22

‖γ̂o
x(k,m)‖22

, (64)

where |F∗| denotes the cardinality of either the set of time-
frequency points that contain noise-only (|FN |) or speech-and-
noise (|FY |), which are defined as time-frequency points with
an oracle a-priori SNR estimate ξ̂o(k,m) smaller or larger than
−5 dB, respectively. Furthermore, we classify time-frequency
points whose normalized squared error is larger than 200 as
outliers and exclude them from the MSE calculation in (64).

To evaluate the performance of the MFMVDR filters and
the LogSTSA estimator, several instrumental performance mea-
sures are used. Speech quality and speech intelligibility are
evaluated using the perceptual evaluation of speech quality
(PESQ) [3], [42] and the short-time objective intelligibility
(STOI) [43] improvements, respectively, compared to the noisy
speech signal, using the clean speech signal as the reference
signal. Furthermore, the performance is evaluated in terms
of speech distortion and noise reduction using the segmental
speech SNR (segSSNR) and the segmental noise reduction
(segNR) [44], defined as

segSSNR =
10

|S|
∑
s∈S

log10

∑T
t=1 x

2(sT + t)∑T
t=1 [x(sT + t)− x̃(sT + t)]2

,

(65)

segNR =
10

|S|
∑
s∈S

log10

∑T
t=1 n

2(sT + t)∑T
t=1 ñ

2(sT + t)
, (66)

where T denotes the segment length (T = 160, corresponding
to 10 ms) and S is the set of segments that contain speech-and-
noise, defined as segments whose energy is larger than −45 dB
with respect to the maximum segment energy. The signals x̃(t)
and ñ(t) denote the processed speech and noise signals. Note

Fig. 4. Average MSE and percentage of outliers for the normalized ML, SC
and DC speech correlation vector estimates using the oracle bound ε̂o

ML and the
mapping function ε̂Map for different SNRs. The lower and upper parts of the bars
represent the performance in speech-and-noise and noise-only time-frequency
points, respectively.

that higher SegSSNR values indicate less speech distortion and
higher SegNR values indicate more noise reduction. In addition,
to evaluate the noise distortion, more in particular the presence
of musical noise artifacts in the processed signal, we use the
weighted log kurtosis ratio ΔΨlog [45], which was shown to
correlate well with perceptual listening results. This measure is
defined as the natural logarithm of the ratio of the weighted kur-
tosis of the processed noise STFT coefficients Ñ(k,m) and the
input noise STFT coefficients N(k,m). Note that the perceived
amount of noise distortion, especially musical noise, is lowest
when ΔΨlog = 0 and higher ΔΨlog values, i.e., ΔΨlog > 0,
indicate more noise distortion.

C. Accuracy of the Normalized Speech Correlation Vector
Estimates

In this section, we compare the accuracy of the proposed
normalized SC and DC speech correlation vector estimates γ̂SC

x

and γ̂DC
x with the ML estimate γ̂ML

x . To evaluate the proposed
mapping function ε̂Map for the bound of the spherical uncertainty
set in (63), we compare the performance of the SC and DC
estimates using the oracle bound ε̂o

ML and using the mapping
function ε̂Map.

For different SNRs, Fig. 4 depicts the performance, averaged
over all combinations of speech and noise signals, in terms of
the MSE in (64) and the percentage of outliers in speech-and-
noise time-frequency points (lower bar) and noise-only time-
frequency points (upper bar). It can be clearly observed for all
SNRs that the SC and DC estimates achieve a considerably lower
MSE than the ML estimate, where the DC estimate achieves
the lowest MSE of all considered estimates (both in speech-
and-noise and noise-only time-frequency points). This shows
that the accuracy of the normalized speech correlation vector
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Fig. 5. Spectrograms of (a) clean speech signal, (b) noisy speech signal, corrupted by traffic noise at 5 dB SNR, and the processed signals using (c) LogSTSA
estimator, (d) oracle MFMVDR filter, (e) ML-MFMVDR filter, (f) SC-MFMVDR filter, and (g) DC-MFMVDR filter.

estimate can be substantially improved by jointly considering the
quadratic inequality constraint and the normalization constraint
(see Section IV-B).

Furthermore, it can be observed for both the SC and DC
estimates that the MSE obtained using the proposed mapping
function ε̂Map is similar to the MSE obtained using the oracle
bound ε̂o

ML, showing that the proposed mapping function is
a good approximation. In addition, whereas the ML estimate
causes a large amount of outliers, resulting in speech distortion
and unpleasant artifacts in the background noise, it can be
observed that no outliers occur for the SC and DC estimates.

In conclusion, these results show that the SC and DC estimates
are more accurate than the ML estimate, with the DC estimate
achieving the highest estimation accuracy.

D. Instrumental Evaluation

In this section, the performance of the proposed SC-
MFMVDR and DC-MFMVDR filters using the mapping func-
tion ε̂Map is evaluated and compared with the oracle MFMVDR
(O-MFMVDR) filter using the oracle normalized speech cor-
relation vector γ̂o

x(m) in (22) and the state-of-the-art ML-
MFMVDR filter [12]. As already mentioned, although the main
objective is to compare the proposed constrained MFMVDR
filters with the ML-MFMVDR filter, we also consider the single-
frame LogSTSA estimator as reference algorithm.

For a speech signal from the TIMIT database corrupted by
traffic noise at 5 dB SNR, Fig. 5 depicts the spectrograms of the
clean speech and noisy speech signals and the processed signals
using the LogSTSA estimator and the MFMVDR filters. First,
it can be observed that the spectrogram of the oracle MFMVDR
filter in Fig. 5(d) is very similar to the spectrogram of the clean
speech signal in Fig. 5(a). Second, it can be observed that the
LogSTSA estimator in Fig. 5(c) clearly reduces the background
noise, but also suppresses the speech signal. Third, it can be
observed that all blind MFMVDR filters in Fig. 5(e)-(g) reduce

less noise than the LogSTSA estimator, but clearly preserve the
speech signal better (especially at high frequencies). Among
the blind MFMVDR filters there is a trade-off between speech
distortion and noise reduction, which will be investigated in
more detail in Section V-E.

For different SNRs, Fig. 6 depicts the results, averaged over
all combinations of speech and noise signals, in terms of the
considered instrumental performance measures, i.e., segSSNR
(speech distortion), segNR (noise reduction), ΔΨlog (noise dis-
tortion), ΔPESQ (speech quality) and ΔSTOI (speech intelligi-
bility). First, it can be observed that the oracle MFMVDR filter
clearly outperforms all other filters in terms of all instrumental
performance measures. Second, it can be observed that the
constrained MFMVDR filters yield larger segSSNR values (i.e.,
less speech distortion) but smaller segNR values (i.e., less noise
reduction) than the ML-MFMVDR filter and the LogSTSA es-
timator. Among the blind MFMVDR filters, the DC-MFMVDR
filter yields the largest segSSNR values, which are close to the
oracle MFMVDR results. This can be explained by the high
estimation accuracy of the normalized DC speech correlation
vector (see Fig. 4). The more conservative noise reduction
performance of the SC-MFMVDR and DC-MFMVDR filters
compared to the ML-MFMVDR filter (especially at low SNRs)
can be explained by the additional robustness constraints. Please
note that although the estimation accuracy of the SC and DC
normalized speech correlation vector estimates is quite good, it
is not good enough for the SC-MFMVDR and DC-MFMVDR
filters to reach the performance of the oracle MFMVDR filter.
Third, it can be observed that the constrained MFMVDR filters
yield lowerΔΨlog values (i.e., less noise distortion) than the ML-
MFMVDR filter and the LogSTSA estimator, and that among
the blind MFMVDR filters, the DC-MFMVDR filter yields the
lowest ΔΨlog values. Fourth, the ΔPESQ results indicate that at
low SNRs a better overall quality is obtained by the constrained
MFMVDR filters than the ML-MFMVDR filter, whereas at high
SNRs a better overall quality is obtained by the ML-MFMVDR
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Fig. 6. Average segmental speech SNR (segSSNR), segmental noise reduction
(segNR), weighted log kurtosis ratio (ΔΨlog), PESQ improvement (ΔPESQ)
and STOI improvement (ΔSTOI) obtained using the LogSTSA estimator,
the oracle MFMVDR (O-MFMVDR) filter, the ML-MFMVDR filter and the
proposed SC-MFMVDR, and DC-MFMVDR filters for different SNRs.

filter than the constrained MFMVDR filters. However, since
in [12], [38] is was reported that the ML-MFMVDR filter intro-
duces unpleasant artifacts, e.g., musical noise in the background
noise, and informal listening experiments suggest that for the
constrained MFMVDR filters the speech sounds more natural
and less musical noise is present than for the ML-MFMVDR
filter for all SNRs, we decided to conduct a formal listening test
in Section V-F. Finally, theΔSTOI results indicate no speech in-
telligibility improvement at low SNRs for all blind filters, where
the ML-MFMVDR filter and the LogSTSA estimator yield
lower ΔSTOI values than the constrained MFMVDR filters.

E. Trade-off Between Speech Distortion and Noise Reduction

As already mentioned, for the blind MFMVDR filters a trade-
off exists between speech distortion (segSSNR values) and noise
reduction (segNR values). To further investigate this trade-off, in

Fig. 7. Average segSSNR vs. average segNR for the T-MFMVDR filter for
different values of βT, the ML-MFMVDR filter, the SC-MFMVDR filter, the
DC-MFMVDR filter, and the LogSTSA estimator (SNR = 0 dB).

this section we consider the trade-off MFMVDR (T-MFMVDR)
filter, which uses a normalized speech correlation vector defined
as

γ̂T
x(m) = βT γ̂ML

x (m) + (1− βT) γ̂y(m) , (67)

with γ̂y(m) the normalized noisy speech correlation vector and
βT a trade-off parameter. When βT is equal to zero, γ̂T

x(m) =
γ̂y(m) and the T-MFMVDR filter is equal to the selection vector
e, i.e., no speech distortion is introduced but also no noise reduc-
tion is obtained. When βT is equal to one, γ̂T

x(m) = γ̂ML
x (m)

and the T-MFMVDR filter is equal to the ML-MFMVDR filter,
i.e., leading to the highest noise reduction but also highest speech
distortion of the considered blind MFMVDR filters.

For an SNR of 0 dB, Fig. 7 depicts the segSSNR results vs.
the segNR results, averaged over all combinations of speech and
noise signals, for the T-MFMVDR filter for different values of
the trade-off parameter βT, the ML-MFMVDR filter (βT = 1),
the SC-MFMVDR and DC-MFMVDR filters and the LogSTSA
estimator. For the T-MFMVDR filter, it can be observed that with
increasing βT the segSSNR value decreases while the segNR
value increases. Note that for βT = 0, the segSSNR value is
equal to infinity, while the segNR value is equal to zero. It can be
observed that compared to the T-MFMVDR filter the proposed
DC-MFMVDR filter achieves a segSSNR value that is 6.5 dB
higher at the same segNR value and a segNR value that is 1.5 dB
higher at the same segSSNR value. In contrast compared to the
T-MFMVDR filter, the SC-MFMVDR filter leads to a segSSNR
value that is 2 dB lower at the same segNR values and a segNR
value that 3 dB lower at the same segSSNR value. The LogSTSA
estimator results in a higher segNR value than the T-MFMVDR
filter for βT = 1 (i.e., the ML-MFMVDR filter) but a lower
segSSNR value.

These results show that the DC-MFMVDR filter achieves a
better trade-off between noise reduction and speech distortion
than a comparable trade-off MFMVDR filter.

F. Perceptual Evaluation

In this section, we perceptually compare the speech en-
hancement performance of the SC-MFMVDR filter, the
DC-MFMVDR filter, the ML-MFMVDR filter, the oracle
MFMVDR filter and the LogSTSA estimator using a subjective
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listening test. For two speech signals and two acoustic scenarios
(noise types), we conducted a procedure similar to the multi
stimulus test with hidden reference and anchor (MUSHRA) [46],
evaluating three attributes: (a) overall quality, (b) speech distor-
tion and (c) noise reduction. For attribute (a), the participants
were asked to rate the overall signal quality of the test signals
with respect to a reference signal. For attribute (b), the partici-
pants were asked to rate how distorted the speech component of
the test signals sounds with respect to a reference signal. For at-
tribute (c), the participants were asked to rate how noticeable the
amount of noise reduction of the test signals is with respect to a
reference signal. As speech signals, we used two sentences from
the TIMIT database [40], spoken by a male and a female speaker.
To generate both acoustic scenarios, we mixed the speech signals
with traffic noise and babble noise taken from the NOISEX-92
database [41] at 5 dB SNR. For each attribute, acoustic scenario
and speech signal, in addition to the processed signals a noisy
speech signal, a hidden reference and an anchor were presented
to the participants. For the attributes (a) and (b), the (hidden)
reference was the noisy speech signal at 20 dB SNR. The anchor
was the speech signal low-pass filtered at 3 kHz, corrupted with
the noise at −5 dB and processed with an aggressive Wiener
gain using a weighting parameter of βDDA = 0.97 and a lower
limit of −20 dB. For the attribute (c), the (hidden) reference
was the unprocessed noisy speech signal at 5 dB SNR, while the
anchor was a noisy speech signal at 20 dB SNR. For the sake of
completeness, for attribute (c) we also presented the anchor for
the attributes (a) and (b) as a test signal. Hence, for each attribute,
acoustic scenario and speech signal, the participants compared
eight test signals with a reference signal, i.e., either a noisy
speech signal at 20 dB SNR for the attributes (a) and (b) or the
unprocessed noisy speech signal at 5 dB SNR for the attribute (c).
Examples of audio samples for all test signals are available on-
line (see https://uol.de/en/sigproc/research/audio-demos/multi-
frame-speech-enhancement/constrained-mfmvdr-filters).

A total of 11 self-reported normal-hearing participants in the
range of 22 to 39 years participated in the subjective listening
test. Due to the COVID-19 pandemic, the experiment took place
in quiet rooms at the participants’ home. The signals were
presented diotically to the participants, using their own sound
cards and over-the-ear headphones.

The listening test consisted of two phases. First, the partici-
pants were trained to familiarize themselves with the presented
signals and to adjust the volume to a comfortable level. Second,
the participants were instructed to rate the test signals according
to the three aforementioned attributes on a continuous scale
from 0 to 100 using sliders in a graphical user interface. For the
attribute (a) overall quality, 0 was labeled with “bad” and 100
with “excellent,” while for the attribute (b) speech distortion,
0 was labeled with “extremely distorted” and 100 with “not
distorted,” and for the attribute (c) noise reduction, 0 was labeled
with “extremely noticeable” and 100 with “not noticeable”. The
participants were allowed to listen to the reference signal and
all test signals as often as they wanted. The participants were
instructed to rate at least one test signal with a score of 100,
which should correspond to the hidden reference. The order of

Fig. 8. Averaged MUSHRA scores for the attributes (a) overall quality, (b)
speech distortion and (c) noise reduction, for a hidden reference, an anchor, a
noisy speech signal and the processed signals using the LogSTSA estimator,
the oracle MFMVDR (O-MFMVDR) filter, the ML-MFMVDR filter and the
proposed SC-MFMVDR and DC-MFMVDR filters for SNR = 5 dB. On each
box, the central horizontal line is the median, the edges of the box are the 25-th
and 75-th percentiles and the whiskers extend to 1.5 times the interquartile range
from the median. The means are indicated by × markers. Outliers are indicated
by + markers.

the presentation of the test signals and acoustic scenarios were
randomized between all participants.

For each attribute, a statistical analysis was conducted using
the resulting MUSHRA scores of both speech signals and both
acoustic scenarios. Since the data are normally distributed, as
shown by the Shapiro-Wilk test, a repeated-measures analysis
of variance (ANOVA) [47] was performed with factors “acoustic
scenario” and “algorithm”. Since the statistical analysis showed
no significant influence of the factor “acoustic scenario” for all
attributes, we averaged the MUSHRA scores over both acoustic
scenarios. Since the statistical analysis showed a significant
influence of the factor “algorithm” for all attributes, we tested for
statistically significant differences between the algorithm mean
values by conducting a post-hoc pairwise comparison t-test with
Bonferroni correction. Fig. 8 depicts the averaged MUSHRA
scores for all three attributes using boxplots. The t-test results

https://uol.de/en/sigproc/research/audio-demos/multi-frame-speech-enhancement/constrained-mfmvdr-filters
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TABLE I
OVERVIEW OF THE T-TEST RESULTS FOR THE ATTRIBUTE OVERALL QUALITY.

THE ASTERISKS DENOTE RESULTS THAT ARE STATISTICALLY SIGNIFICANT

(*** p < 0.001, ** p < 0.01, * p < 0.05) AND O DENOTES RESULTS THAT

ARE NOT STATISTICALLY SIGNIFICANT (p > 0.05)

TABLE II
OVERVIEW OF THE T-TEST RESULTS FOR THE ATTRIBUTE SPEECH DISTORTION.

THE ASTERISKS DENOTE RESULTS THAT ARE STATISTICALLY SIGNIFICANT

(*** p < 0.001, ** p < 0.01, * p < 0.05) AND O DENOTES RESULTS THAT

ARE NOT STATISTICALLY SIGNIFICANT (p > 0.05)

are presented in Tables I– III, with asterisks denoting statistically
significant differences and o denoting not statistically significant
differences.

In terms of the attribute (a) overall quality (cf. Fig. 8(a) and
Table I), the mean score for the hidden reference was equal to 100
and the anchor was rated with the lowest mean score of 3.9, as
desired. The mean score for the unprocessed noisy speech signal
at 5 dB SNR was equal to 32.7, which is significantly lower
than for all processed signals, except for the ML-MFMVDR
filter and the SC-MFMVDR filter with mean scores of 19.3
and 42.6, respectively. For the LogSTSA estimator, the oracle
MFMVDR filter and the DC-MFMVDR filter, the mean score
was equal to 58.8, 82.6 and 55.2, respectively. The statistical
analysis showed that the oracle MFMVDR filter was rated sig-
nificantly higher than all blind algorithms. While the differences
between the LogSTSA estimator, the SC-MFMVDR filter and
the DC-MFMVDR filter are not statistically significant, these
mean scores are significantly higher than the mean score of the
ML-MFMVDR filter, while only the LogSTSA estimator and

TABLE III
OVERVIEW OF THE T-TEST RESULTS FOR THE ATTRIBUTE NOISE REDUCTION.

THE ASTERISKS DENOTE RESULTS THAT ARE STATISTICALLY SIGNIFICANT

(*** p < 0.001, ** p < 0.01, * p < 0.05) AND O DENOTES RESULTS THAT

ARE NOT STATISTICALLY SIGNIFICANT (p > 0.05)

the DC-MFMVDR filter were rated significantly higher than
the unprocessed noisy speech signal.

In terms of the attribute (b) speech distortion (cf. Fig. 8(b) and
Table II), the mean score of the hidden reference was equal to
100 and the anchor was rated with the lowest mean score of 6.7,
as desired. The unprocessed noisy speech signal at 5 dB SNR
was rated with the highest mean score of 90.4, followed by the
oracle MFMVDR filter with a mean score of 76.5 and the DC-
MFMVDR filter with a mean score of 73.6. These differences are
not statistically significant. The DC-MFMVDR filter was rated
significantly higher than the ML-MFMVDR filter with a mean-
score of 43.2, but there was no statistically significant difference
between the DC-MFMVDR filter and the SC-MFMVDR filter
with a mean score of 51.9. Except for the ML-MFMVDR filter,
the MFMVDR filters were rated significantly higher than the
LogSTSA estimator, with a mean score of 28.2.

In terms of the attribute (c) noise reduction (cf. Fig. 8(c)
and Table III), the mean score of the hidden reference (in this
case the unprocessed noisy speech signal at 5 dB) was equal
to 100 and the anchor (in this case the noisy speech signal
at 20 dB SNR) was rated with the lowest mean score of 9.3,
as desired. The oracle MFMVDR filter was rated with a mean
score of 16.6. For the LogSTSA estimator, the ML-MFMVDR
filter, the SC-MFMVDR filter and the DC-MFMVDR filter,
the mean score was equal to 35.6, 44.8, 55.5 and 75.1, re-
spectively. All blind algorithms were rated significantly worse
than the oracle MFMVDR filter. Although the difference be-
tween the LogSTSA estimator and the ML-MFMVDR filter is
not statistically significant, the LogSTSA estimator was rated
significantly better than the SC-MFMVDR and DC-MFMVDR
filters. Although the difference between the SC-MFMVDR filter
and the ML-MFMVDR filter is not statistically significant, the
ML-MFMVDR filter was rated significantly better than the
DC-MFMVDR filter.

In conclusion, these results show that the perceived overall
quality for the SC-MFMVDR filter and the DC-MFMVDR filter
is significantly better than for the ML-MFMVDR filter and
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shows no statistically significant difference to the LogSTSA
estimator. This can presumably be explained by the fact that all
considered algorithms produce different artifacts and distortions
in the speech and noise signals, which may be perceived and
rated differently by the listeners. Although the perceived amount
of noise reduction for the DC-MFMVDR filter is clearly lower
than for the ML-MFMVDR filter, the SC-MFMVDR filter and
the LogSTSA estimator, this is apparently compensated by the
extremely low perceived speech distortion. Hence, the DC-
MFMVDR is most suitable for applications where low speech
distortion is considered to be more important than much noise
reduction.

VI. CONCLUSION

In this paper we investigated the potential of using concepts
proposed for robust MVDR beamforming in the context of
single-channel multi-frame speech enhancement. We proposed
two constrained MFMVDR filters that estimate the normalized
speech correlation vector as the vector maximizing the total
signal output power within a spherical uncertainty set. This
corresponds to imposing a quadratic inequality constraint on
the mismatch vector with respect to the presumed normalized
speech correlation vector. While the SC-MFMVDR filter only
considers the quadratic inequality constraint and applies the
required normalization afterwards, the DC-MFMVDR jointly
considers the quadratic inequality constraint and the linear nor-
malization constraint in the optimization problem. To set the
upper bound of the spherical uncertainty set, we proposed to
use a trained non-linear mapping function that depends on the
a-priori SNR.

Simulation results show that the proposed approaches to
estimate the normalized speech correlation vector clearly lead
to a more accurate estimate than the ML estimate, with the
DC estimate achieving the highest estimation accuracy. An
instrumental evaluation for different noise types and SNRs
indicates that although the proposed constrained MFMVDR
filters lead to a more conservative noise reduction than the
ML-MFMVDR filter and the logarithmic short-time spectral am-
plitude estimator, especially the DC-MFMVDR filter produces
less speech and noise distortions than the ML-MFMVDR filter.
Moreover, the DC-MFMVDR filter achieves a better trade-off
between noise reduction and speech distortion than a comparable
trade-off MFMVDR filter. The results of a perceptual listening
test show that the perceived overall quality for the proposed
constrained MFMVDR filters is significantly better than for the
ML-MFMVDR filter.
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