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Tackling Perception Bias in Unsupervised Phoneme
Discovery Using DPGMM-RNN Hybrid Model

and Functional Load
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Abstract—The human perception of phonemes is biased against
speech sounds. The lack of correspondence between perceputal
phonemes and acoustic signals forms a big challenge in designing
unsupervised algorithms to distinguish phonemes from sound. We
propose the DPGMM-RNN hybrid model that improves phoneme
categorization by relieving the fragmentation problem. We also
merge segments with low functional load, which is the work done by
segment contrasts to differentiate between utterances, just like hu-
mans who convert unambiguous segments into phonemes as units
for immediate perception. Our results show that the DPGMM-RNN
hybrid model relieves the fragmentation problem and improves
phoneme discriminability. The minimal functional load merge
compresses a segment system, preserves information and keeps
phoneme discriminability.

Index Terms—Unsupervised phoneme discovery, perception of
phonemes, DPGMM, RNN, functional load, zerospeech.

I. INTRODUCTION

D EEP neural network technology has recently achieved
great success by learning from a large amount of human

annotated data. Although annotating such linguistic units as
words and phonemes is essential for applying deep learning to
the spoken language processing, it is expensive, time consum-
ing, and requires expert knowledge of specific languages. One
solution is to directly identify phoneme-like units from speech
by machine learning (unsupervised phoneme discovery) instead
of human annotation.

Unsupervised phoneme discovery [1], [2] or similar tasks
[3]–[5] have been explored by different experiment settings with
different measurements. Recently the Zero Resource Speech
Challenge [6] was organized to compare the performance of
these methods. Typical methods include neural network tech-
nology, such as representation learning by autoencoder [7]–[9]
or discriminative training by ABnet [10], traditional clustering
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such as GMM [11] or k-means [11], [12], and nonparamet-
ric clustering such as the Dirichlet Process Gaussian Mixture
Model (DPGMM) trained by Gibbs sampling [1], or variational
inference [13], [14]. Among them, DPGMM, which is acoustic
clustering, achieved the top performance at Zerospeech 2015
and 2017 [15], [16].

An acoustic driven approach (e.g., DPGMM clustering) iden-
tifies different acoustic patterns and treats them as different lin-
guistic units such as phonemes. It sometimes discovers acoustic
segments that do not agree with phonemes. For example, in
Japanese, /r/ and /l/ are acoustically different without distin-
guishing the meaning of the utterances, and thus they are treated
as the same phoneme. Sometimes abrupt or local changes, such
as a sudden burst of air that is released at the stop of /p/, create
several acoustic segments inside one phoneme.

To tackle the problems of the acoustic driven approach, we
propose an alternative perception driven approach and introduce
the concept of the perception bias of phonemes (against acoustic
speech) and two methods to deal with it.

A. Bias of Phoneme Perception

Identifying phonemes from natural speech is challenging.
Early studies on the high correlation between sound spectra and
isolated phonemes provided encouragement that the problem
could be solved. For example, we can identify vowels by formant
values or stops by silent periods, which are verified by the speech
synthesis practice [19], [20]. However, seeking phonemes from
the spectrum in spontaneous speech flow is frustrating. While
we are listening to some phonemes, features, or breaks at certain
moments, we cannot find enough evidence about them from
the spectrum [21]. The spectrum faithfully reacts to energy of
different frequencies at a certain moment; it doesn’t react to
the sound history or subsequent sounds. However, our phoneme
perception is biased. Instead of merely momentarily decoding
the speech, our perception is influenced by the expectation of
what will come next or our speaking and hearing experience. The
lack of correspondence between speech perception and sound
stream forms a central challenge in phoneme discovery from
spontaneous speech [22].

The human perception of phonemes is biased against speech
sounds. For example, when a virtually identical burst happens
before /i/, /a/, or /u/, we tend to hear /pi/, /ka/, or /pu/ [21] because
we hear them while referencing how we say them [22]. Since the
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Fig. 1. Example [17] that shows problems of DPGMM clustering in unsupervised phoneme discovery from TIMIT corpus [18]. Top layer is spectrogram followed
by DPGMM label, phoneme, and word layers. In second layer, each color denotes one specific type of DPGMM cluster. Red, solid-lined rectangles show that
complex acoustics such as fricatives with high frequency and vowels with rapid formant change cause fragmental DPGMM clusters; small black circles show that
we can improve categorization of identical phoneme if there are no fragments; red, dash-lined rectangles show two acoustically different segments disambiguated
by surroundings, which should be same phoneme, are treated as different clusters.

lips are close together when we generate /i/ and /u/, this bilabial
articulation may interpret the burst as /p/; when the tongue
is relatively low and back when we generate /a/, dorso-velar
articulation may interpret the burst as /k/. Visual context can
also bias our perception [23]. When hearing a recording /ba/
while watching a video of a face saying /ga/, the listeners report
that they hear /da/. The compromise between visual and auditory
information indicates that with accurate visual information, we
can probably correct the phonemes.

Human perception has an “auto filling” ability for perceiving
phonemes in sound streams [24]. Even when a phoneme (with
its transition cues) is replaced by noise, people report they hear it
and don’t notice any noise or its location. Our lexicon knowledge
influences our perception of phonemes. By adding an identical,
intermediate sound between /d/ and /t/ in front of “ask” and
“ash,” Ganong found that people reported hearing “task” rather
than “dask” and “dash” rather than “tash” [25]. Sometimes
our perception relies less on lexical knowledge and more on
the probability of sequences of phonemes (e.g., compensation
for co-articulation varies with phonotactic probability [26]).
A person’s speaking and listening experiences, including the
segment probabilities or sequences as well as how he says or
hears these segments to achieve economical communication,
also implicitly bias his perception.

Phoneme perception categorizes acoustic sounds [22], which
shows another fundamental perceptual bias. If we create linearly
changed acoustic stimuli between two phonemes, such as /t/ and
/d/, our perception nonlinearly jumps from one category to an-
other because we cannot identify different acoustic realizations
inside one phoneme category.

The above studies show that our phoneme perception is bi-
ased. Perception bias becomes a big problem in unsupervised
phoneme discovery (Zero Resource Speech Challenge [27],
as we introduced at the beginning of our paper), which asks
machines to learn phonemes from acoustic speech in an un-
supervised way [1], [27]. A machine learning algorithm dis-
covers objective acoustic segments from speech, while humans
annotate subjective perceptual phonemes as underground truth
with perception bias. For example, in Fig. 1, the clustering

algorithm treats the same phoneme /æ/ in ‘example’ and ‘and’
as different acoustic segments because their acoustical spectra
are quite different; it treats the same phoneme /f/ in ‘for,’ ‘farm,’
and ‘fields’ as different acoustic segments by faithfully record-
ing the acoustic fragmental realizations inside the phoneme
category.

In the following sections, this paper proposes two methods
to tackle the disagreement between phonemes and acoustic
signals caused by the perceptual bias for unsupervised phoneme
discovery.

B. DPGMM-RNN Model and Phoneme Categorization

Machines can directly get discrete segments by applying such
clustering algorithms as K-means [11], [12], GMM [11], or
DPGMM clustering [1], [13], [14] from the acoustic features.
The DPGMM algorithm [28] retained the state-of-the-art ap-
proach in the Zerospeech 2015 and 2017 [15], [16].

However, framewisely clustering acoustic features to get seg-
ments suffers from the intra-phoneme fragmentation problem
(Fig. 1). First, these traditional clustering algorithms cannot
fully capture the temporal information of speech features. As
long as the spatial distribution of these acoustic features in high-
dimensional space does not change, such clustering algorithms
as K-means or GMM always get similar results because they
ignore the time order of these features. The DPGMM algorithm
introduces the Dirichlet Process (DP) to help dynamically create
new clusters at every moment based on the frequency of the
clusters of all the previous frames without considering their
order [29]. Theoretically, DP is infinitely exchangeable; joint
distribution doesn’t depend on the order of data if they are infinite
[30]. We believe DPGMM involves weak temporal contextual
modeling for finite sequential data clustering. Second, in ac-
tual unsupervised phoneme discovery practices, after carefully
tuning the parameters (e.g., DPGMM’s concentration param-
eter, which is closely related to the number of clusters), such
optimal performances (in discriminating phonemes in different
languages) always create more clusters than the number of
phonemes in normal human languages [16], [17]. Third, the
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Fig. 2. Graphical model of Dirichlet Process Gaussian Mixture Model
(DPGMM). We generate parameters of weights (π = π1, . . . , πk, . . .), means,
and variances ((μ,Σ) = (μ1,Σ1), . . . , (μk,Σk), . . .) for Gaussians from
stick-breaking process (with concentration parameter α) and normal-inverse-
Wishart distribution (with parameter β = (μ0, λ,Σ0, ν)) respectively. We
then generate each frame of speech feature Xi of data X = X1, . . . ,Xn

by first sampling one Gaussian with mean μk and variance Σk indicated
by hidden variable Zi = k according to weights, and sampling Xi from
that Gaussian cluster. The box, with (Zi,Xi) inside, is a simplified no-
tation of all n data points (features) with their indicator hidden variables
((Z1,X1), . . . , (Zi,Xi), . . . , (Zn,Xn)).

DPGMM algorithm creates small clusters inside one phoneme—
the fragmentation problem—with such a complex acoustic struc-
ture as a fricative with high-frequency components or a vowel
with a sharp format change [17]. The DPGMM algorithm tries
to get higher resolution by struggling to discriminate among
acoustically complex phonemes, which also tends to increase
the number of clusters overall.

Human perception of speech is categorical [31]. We don’t hear
intra-phoneme fragmental details when discriminating complex
phonemes [24], [31]. For general sounds, for example, people
can discriminate about 2000 different pitches, but they can only
identify about seven absolute ones [22]. For speech sounds, how-
ever, similar discriminability and identifiability of phonemes
make people fail to discriminate the acoustic variations inside
each phoneme category [31]. If we believe one phoneme type is
a set of segments, then our biased perception cannot distinguish
within the set, including the unstable fragmental acoustic realiza-
tions, created from the clustering algorithm, of these segments.

In this paper, we propose the DPGMM-RNN hybrid model,
which uses RNN to relieve the DPGMM intra-phoneme frag-
mentation problem. Assume that human perception is hierar-
chical at low-level perception. At the first run, very low-level,
bottom-up unbiased clustering can get fragmental details with
sufficient discriminability of the segments from the raw stimuli
of speech by air vibration. At the second run, the ear uses a prim-
itive top-down acoustical contextual refinement and pays little
attention to the variations inside one phoneme. Such perceptual
refinement can be achieved by RNN mapping ( Fig. 3). We train
RNN intensively by remembering the phoneme (DPGMM clus-
ters) at every moment of speech by listening to a chunk of sound
that includes that moment. Listening by chunks helps integrate
long acoustical contexts as a whole instead of concentrating on
random short-time fragmental changes over a few frames. After
RNN remembers different chunk realizations for each phoneme,
it has the ability to identify the sounds. We show that RNN

Fig. 3. Three steps to construct DPGMM-RNN hybrid model for unsupervised
phoneme discovery: using RNN to relieve segmentation problem of DPGMM
clusters.

refinement relieves the fragmentation problem inside phoneme
categories.

Moreover, facing the weak contextual modeling of DPGMM,
whose joint likelihood does not depend on the order of the
observed data when they are infinite [30] and mainly captures
acoustic information at the frame level, RNN refinement with
chunks of successive frames instead of single frames of speech
can rediscover such temporal structures as formant transitions,
which cross several frames and are important acoustic cues to
perceptually discriminate phonemes in spontaneous speech [22].

In human perception, top-down contextual constraints, not
only acoustical or phonemic ones but also linguistic and lexical
ones help correct or remove the segments that are wrongly
discovered to make them closer to phoneme units [25]. In
previous research [32]–[34] on infant phoneme acquisition, the
words and phonemes are assumed to be acquired at the same
period and jointly optimize each other, supported by phoneme-
lexicon joint discovery by adaptor grammar framework [35]
and hierarchical nonparametric Bayesian model [36]. Language
model of discovered segments was trained to optimize phoneme
discovery [37]. In our proposed DPGMM-RNN hybrid model,
RNN remembers the statistical structure, reflecting on such
contextual constraints at the phonetic and lexicon levels, of
audio segments from DPGMM clusters. For example, if the
DPGMM clustering algorithm confuses ‘bite’ with ‘kite’ inside
an utterance that contains the sound ‘dog,’ RNN can correct
such mistakes because sounds ‘dog’ and ‘bite’ are semantically
correlated. RNN remembers their co-occurrence.

C. Functional Load and Economical Principle

Phonemes are not the only discrete perceptual categories
decoded from acoustic implementations. They also compose the
hierarchical linguistic structure that represents knowledge for
communication. From the view of economical communication,
we want to maintain the information transmission rate and
simultaneously reduce the structure of the phoneme sequence
and the size of the phoneme system.



WU et al.: TACKLING PERCEPTION BIAS IN UNSUPERVISED PHONEME DISCOVERY 351

People communicate economically by perceptually identify-
ing only a few types of sound patterns (phonemes) and convey
complex ideas with a few tokens of linguistic or perceptual units
during a single utterance (low bit rate). An economical phoneme
system is required by the physiological constraints of the human
auditory system. First, we can only use a few segments to quickly
convey information. For example, if you listen to a YouTube
video of recorded speech and increase its speed fourfold, hearing
all of the linguistic units or completely comprehending the
speech is almost impossible. More than 30 phonemes per second
exceeds the normal temporal resolving power of the human ear
[38]. Second, the normal human ear has limited capability to
identify sounds, usually considerably fewer than 40 sounds (for
segments under 50 milliseconds in casual conversation) when
people communicate rapidly in daily life [39]. When designing
algorithms for phoneme discovery, just considering the acoustics
may be inadequate, and such knowledge as global frequency
or information load over the segments becomes important for
optimizing the high information rate constrained by the human
ear’s listening ability.

Unsupervised phoneme discovery needs economical repre-
sentation from continuous speech while correctly discriminating
among phonemes [27] (with low bit rate and low discriminative
error). Removing such non-linguistic information as speakers
and stress increases economical representation. Mean and Vari-
ance Normalization (MVN) and Vocal Tract Length Normal-
ization (VTLN) can normalize speaker information [16], and
speaker-adversarial learning [40] creates speaker independent
features [41]. Maximum Likelihood Linear Transform (MLLT)
and Speaker Adaptive Training (SAT) deal with the speaker
variability of acoustic features [42]. Economical representation
comes from compression. PCA and LDA compress the acoustic
features [43], and auto-encoder reduces their dimensions [8].
However, low-dimensional continuous features are never as
efficient as discrete features or discrete segments. The Vector
Quantised-Variational AutoEncoder (VQ-VAE) can quantize
speech acoustic features [11].

In this paper, we design a phoneme system that is eco-
nomical over the language’s structure because a phoneme sys-
tem’s function not only acoustically discriminates the phonemes
themselves but more importantly distinguishes the language
utterances [21]. For example, we get such a discrete segment
sequence as ‘A B C 12 13 14 D 12 13 14 E 12’ from speech.
The simplest local structure is center segments with first order
surroundings: <s >-A-B A-B-C B-C-12 . . . 12-13-14 . . . 12-
13-14 . . . 14-E-12 E-12-< s>. For this toy language, segment
‘B’ is always surrounded as ‘A-B-C’; segment ‘13’ is always
surrounded as ‘12-13-14’. We describe that segments ‘B’ and
‘13’ have a complementary distribution [21]. If we design a
phoneme system for this toy language, then ‘B’ and ‘13’ should
be the same phoneme, because they are disambiguated by (‘A’,
‘C’) and (‘12’, ‘14’).

We propose to merge the segments with low functional load
[17], [44] , which is defined as the segment contrasts’ work to
differentiate utterances [21], [45]–[47]. Segments with low func-
tional load can usually be disambiguated by their surroundings
and convey little information [45].

Merging segments with low functional load follows the gen-
eral economical principle of speech communication [48], which
argues that as long as we can convey the essential information,
we don’t focus on clearly hearing each sound or its acoustic
details.

We propose the DPGMM-RNN hybrid model for decoding
segments from speech signals. The DPGMM algorithm finds
fragmental segments, while RNN fixes the fragmentation prob-
lem. We also merge unambiguous segments with small func-
tional load to get a more efficient segment system.

From the view of using machine learning to track the bias of
human perception, our DPGMM-RNN hybrid model achieves
better phoneme categorization by solving the fragmentation
problem. Merging segments with low functional load just like
done by humans turns unambiguous segments into phonemes
and qualifies them as units for immediate perception [22].

In our evaluation of our proposals, we use conditional entropy,
which is the average number of clusters per phoneme for mea-
suring the fragmental level of the discovered segments. We also
use the ABX discriminability score [49], which is the cluster
represenation’s ability in discriminating among phoneme.

II. METHOD

A. DPGMM-RNN Hybrid Model: Relieve
Fragmentation Problem

The DPGMM-RNN hybrid model combines DPGMM clus-
tering and RNN reconstruction. Let us first briefly introduce the
former.

1) DPGMM Clustering Algorithm: We can treat DPGMM
as an infinite GMM with density function p(xi) =∑∞

k=1 πkp(xi|μk,Σk) (alternatively, p(xi) =
∑∞

k=1 p(Zi =
k)p(xi|Zi = k)).

This generative model (Fig. 2) is defined by the follow-
ing procedures. It samples mixture weights {πk}∞k=1 from the
stick-breaking process [50] (with concentration parameter α)
and the means and variances {μk,Σk}∞k=1 from the normal-
inverse-Wishart (NIW) distribution (with a belief of mean μ0,
the belief of variance Σ0, the belief-strength of mean λ, and the
belief-strength of variance ν). It also samples Gaussian cluster
indicator hidden variable Zi by mixture weights and each data
point Xi by the Gaussian cluster indicated by Zi. We sum-
marize this sampling procedure by describing the dependency
relation of the random variables of the joint distribution of model
DPGMM(α,NIW(μ0, λ,Σ0, ν)) in Fig. 2.

Given the model definition and data {xi}ni=1, we can infer
from the Gibbs sampling to get posterior p(zi|xi) and the cluster
of any data point xi by k∗ = argmaxk p(zi = k|xi).

2) DPGMM-RNN Hybrid Model: We generally construct
the DPGMM-RNN hybrid model using RNN to refine the
DPGMM clusters. We apply the hybrid model to the unsu-
pervised phoneme discovery, which uses RNN to relieve the
fragmentation problem of the DPGMM clusters in three steps
(Fig. 3):
� DPGMM clustering: after extracting the features from the

raw audio, we apply the DPGMM clustering algorithm to
get a cluster label for each feature frame. Many DPGMM
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Fig. 4. Relationship between evaluation metrics (homogeneity, completeness,
and v-measure) and mismatching problems (fragmentation, oversegmentation,
and undersegmentation). All metrics range between 0 to 1; higher value means
better matching.

segments (successive frames with identical cluster labels)
are fragmental, which are much shorter (one or few frames)
than phonemes in human language (Fig. 1). We use RNN
to relieve this fragmentation problem.

� RNN training: we train the RNN model by mapping from
a feature segment to the DPGMM cluster label of the
last frame of that segment. RNN uses a shared memory
to remember the tendency that momentarily produced the
DPGMM cluster label from the nearest acoustic segment.

� RNN reconstruction: we use RNN to get the posterior
vector framewisely by inputting the speech segment. The
dimension of the maximum probability in the posterior
vector is chosen as the output cluster label. The RNN
reconstruction of cluster labels helps relieve the fragmen-
tation problem ( Fig. 5). For example, DPGMM fragmental
structure “a a b a a” in several successive frames is usually
revised by RNN to “a a a a a.”

B. Minimal Functional Load Merge: Compress
Segment System

Assume that the speech segments of a language are a discrete
label sequence, and our goal is to compress the language’s label
set.

We merge the labels that can be disambiguated by their
surroundings by brute-forcely recording the surroundings for
each label. Another equivalent way [45] is to merge the labels
that bear the minimal functional load [44], [51].

1) Theory of Functional Load: The functional load of a set
of labels is computed by the loss of the language’s entropy after
merging these labels [51]:

FL(α) =
H(L)−H(Lα)

H(L)
, (1)

where α is the set of labels, H(L) is the entropy of language
L, and H(Lα) is the language’s entropy after α is merged. The
entropy of the language is computed by the relative frequency
of the strings of labels:

H(L) = − 1

K

n∑
i=1

p(si) log p(si) , (2)

where si is a string of labels and K is the length of the strings
(See Appendix for an example of the computation of functional
load).

Algorithm 1: Compress With Minimal Functional Load.
while the label set exceeds a threshold do
1) Functional load calculation: compute the functional

load of each pair of labels for the language.
2) Merge decision: merge the label pair with the

minimum functional load.

(x*, y*) = arg min
(x,y)

FL(x, y) (3)

3) Update: renew the label sequence (the language) by
merging optimal label pair (x*, y*) by treating x* and
y* as indential label.

end while

2) Compression with Minimal Functional Load: We find a
set of labels to merge by greedily merging pairs with minimal
functional load [44] (Algorithm 1).

III. EVALUATION METRIC

We evaluated our generated segments with conditional
entropy-based measurements (conditional perplexity, homo-
geneity, completeness, and v-measure) and psychology-based
measurements (ABX discriminability score and ABX error rate).

We proposed the DPGMM-RNN hybrid model to relieve
the fragmentation problem of DPGMM clusters. To measure
the fragmental level of the generated representation, we com-
puted the average number of cluster types corresponding to one
phoneme type, conditional perplexity, with the exponential of
the conditional entropy of cluster C conditioned on phoneme
truth T with base 2:

ppl(C|T ) = 2H(C|T ), (4)

H(C|T ) =
∑
t

p(t)H(C|T = t)

= −
∑
t

p(t)
∑
c

p(c|t) · logp(c|t)

= −
∑
t

nt

n

∑
c

nct

nt
· log nct

nt
, (5)

where n is the number of frames, nt is the number of frames of
phoneme truth t, and nct is the number of frames annotated as
phoneme t and clustered as cluster c.

However, the conditional perplexity is insufficient to describe
the matching degree of the generated clusters and the under-
ground phonemes. For example, if we generate identical clusters
for the whole corpus, which means that no fragments exist. Then
conditional perplexity of cluster given phoneme is the lowest,
however, the discovered identical clusters mismatch the different
phonemes.

In another word, the conditional perplexity detects an overseg-
mention problem that one phoneme has several cluster segments
inside, but it ignores the undersegmention problem that one
cluster segment covers several phonemes. Besides the amount of
clusters per phoneme class (the conditional perplexity), we also
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Fig. 5. Utterance ‘Fat showed in loose rolls beneath the shirt’ with id FADG0_SI1909 from TIMIT test set to show neural network helps solve fragmentation
problems. Top layer is spectrogram followed by phoneme layer, DPGMM, and RNN layers. RNN16 is short for DPGMM-RNN hybrid model with 16 contextual
frames. Red rectangles show neural network reduces fragmental problem; table shows more details of agreement of classes and clusters in two segments (red circles
for better cases in relieving fragmentation problem, black ones for worse cases).

need the amount of phoneme classes per cluster as an additional
measurement.

Completeness, homogeneity, and v-measure (Fig. 4) are
measurements [52] (similar to accuracy, recall, and F-score)
that reflect the matching degree between generated clusters and
underground phonemes using normalized conditional entropy.
Completeness c, homogeneity h, and v-measure v (harmonic
mean of h and c) are defined as follows:

c = 1− H(C|T )
H(C)

, (6)

h = 1− H(T |C)

H(T )
, (7)

v =
c · h
c+ h

. (8)

We compute the entropy and the conditional entropy by the rela-
tive frequency, similar to Eq. (5) of the framewise samples from
generated cluster C and phoneme truth T . All three measure-
ments were normalized between 0 to 1 (as H(T ) ≥ H(T |C)),
and the higher value shows better matching between the gener-
ated clusters and the underground phonemes. High completeness
shows that each phoneme type almost ‘completely’ (complete-
ness) corresponds to a unique generated cluster type; high ho-
mogeneity shows that one cluster type should correspond to the
‘same’ (homogeneity) phoneme truth type.

As shown in Fig. 4, low completeness indicates that the cluster
representation is fragmental or oversegmental with respect to
the phoneme truth. Low homogeneity indicates undersegmental.
Only high v-measure indicates that the representation is neither
oversegmental (fragmental) nor undersegmental because the
clusters agree with the phonemes.

In addition to the above conditional entropy-based mea-
surements, which are based on the global frequency, we also
evaluate our representation by the discriminability of the local

phoneme segments using psychological measurements: ABX
discriminability score (or its reverse: ABX error rate) [49].

In auditory perception experiments, we used the ABX test
to measure a subject’s ability to discriminate between sound
categories A and B. The subject hears sound A, then sound B,
and finally a third sound X that is either from category A or
category B. Here we assume X belongs to category A. If the
perception distance between A and X is less than that of B and
X, then the subject will think sounds X and A are from the same
category, which indicates he can discriminate between category
A and category B.

If we replace the subjective perception distance with the
objective distance of our cluster representation (e.g., the cosine
distance between the one-hot representation of the clusters),
then the ABX test can measure the ability of the clusters to
discriminate among different sound segments: ABX discrim-
inability score. For example, given triphone a-p-a as A, another
triphone a-b-a as B, and a third triphone a-p-a as X, based on
a cluster presentation of triphones, if the distance between A
and X is smaller than that between B and X, then the ABX
discriminability score of the triplet (A, B, X) is +1, and otherwise
the ABX discriminability score is −1.

In theory, we can also define the discriminability score be-
tween the triphone category pair (c1, c2) [53] by taking samples
A and X from c1 and sample B from c2 and define score s and
its point estimator as follows:

s(c1, c2) = p(d(A,X) < d(B,X)|A,X ∈ c1, B ∈ c2)

+
1

2
p(d(A,X) = d(B,X)|A,X ∈ c1, B ∈ c2)

=
1

m(m− 1)n

∑
a∈c1

∑
x∈(c1−{a})

∑
b∈c2

(δd(a,x)<d(b,x) +
1

2
δd(a,x)=d(b,x)), (9)
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where δc is the indicator function (taking value 1 if condition c is
true and 0 if c is false). Coefficient m is the number of triphones
of the c1 category, and n is the number of triphones of the c2
category. Metric d is any distance of the cluster representation
between triphone segments, which are extracted by the phoneme
annotation. We computed three specific distances between the
triphone segments, with possible different number of frames,
by Dynamic Time Warping (DTW) based on a frame-to-frame
cosine distance (cos), symmetric Kullback-Leibler divergence
(kl), and edit distance (edit) [53].

We computed the frame-to-frame distances between two
frame feature vectors x = (x1, . . . , xD) and y = (y1, . . . , yD)
with identical dimension D according to the following equations:

dcos(x, y) =
x · y
|x||y| =

∑D
i=1 xiyi√∑D

i=1 x
2
i

√∑D
i=1 y

2
i

, (10)

where dcos(x, y) is the cosine distance between the two features
and |x| and |y| are their magnitudes.

dkl(x, y) =
1

2
KL(x||y) + 1

2
KL(y||x)

=
1

2

D∑
i=1

xilog
xi

yi
+

1

2

D∑
i=1

yilog
yi
xi

,

(11)

where dkl(x, y) is the symmetric Kullback-Leibler divergence
between the two features and KL(x||y) is the Kullback-Leibler
divergence. Note that here the feature x = (x1, . . . , xD) should
be a distribution under the constraint that

∑D
i=1 xi = 1; the

feature y also should follow the constraint.

dedit(x, y) = dD,D(x, y)

di,j(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max(i, j) if min(i, j) = 0,

min

⎧⎪⎨
⎪⎩

di−1,j(x, y) + 1

di,j−1(x, y) + 1

di−1,j−1(x, y) + δxi �=yj

otherwise,

(12)

where dedit(x, y) is the edit distance between strings x1x2...xD

and y1y2...yD, notation di,j(x, y) is the edit distance between
x1x2...xi and y1y2...yj , and δc is an indicator function (taking
value 1 if condition c is true and 0 if c is false). Note that we
assume the features take a binary value at each dimension.

The ABX error rate [53] is defined as one minus the average
of the discriminability scores of all the category pairs with
corresponding triplets A, B and X. If (A, B, X) comes from
the same speaker, we call it the ABX error rate within speakers.
If (A, X) and (B, X) come from different speakers, then we call
it the ABX error rate across speakers.

IV. DATASET AND EXPERIMENT SETUP

A. Dataset

We analyzed the DPGMM-RNN hybrid model with the test
set of the TIMIT corpus [18], which contains 0.81 hours read
speech with 1344 English utterances.

We compared the DPGMM-RNN hybrid model with the
methods that achieved the top results in Zerospeech 2019 [27]
with English read speech: 5941 training utterances spoken by
100 speakers (about 15 hours and 40 minutes) and 455 test
utterances spoken by 24 speakers (about 28 minutes).

We tested the performance of the DPGMM clusters after min-
imum functional load compression using the Xitsonga corpus
of African read speech with about 2 hours and 29 minutes of
segments provided by Zerospeech 2015 [6].

B. Experiment Setup

We used 39-dimensional MFCC+Δ+ΔΔ acoustic features
(25-ms frame size and 10-ms frame shift) with mean and vari-
ance normalization and vocal tract length normalization.

We obtained clusters with the DPGMM algorithm using the
same parameter setting as previous works [16], [43] with a
toolkit [28]. We set the concentration parameter to 1 and the
mean and variance of the prior to the global mean and the global
variance of the MFCC features with belief-strengths 1 and 42.
We got cluster labels after 1500 sampling iterations.

Our DPGMM-RNN hybrid model uses clusters from the
DPGMM algorithm as targets. We used an RNN that contains
3 layers of LSTM with input layer and hidden layer sizes of 39
and 512, and output layer size matching the number of DPGMM
clusters. The training of RNN uses 20 epochs with a batch size
of 256.

We trained RNN from discrete DPGMM cluster labels with
cross entropy loss, denoted as “RNNLabel;” we also trained
RNN from continuous DPGMM posteriorgrams with MSE loss,
denoted as “RNNPost.” We experimented with RNN with dif-
ferent contexts. First, we explored the length of the context
with “RNNn” that denotes the DPGMM-RNN hybrid model
with an RNN trained with n past contextual frames with cross
entropy loss. Second, we explored the directions of the context:
“RNN_forward,” “RNN_backward,” and “RNN_bidirectional.”
For example, when using eight frames of acoustic features as
RNN input context, “RNN_forward” takes a current frame along
with eight past frames, “RNN_bidirectional” takes a current
frame along with four past frames and four future frames, and
“RNN_backward” takes a current frame and eight future frames.

We got the conditional entropy-based measurements (condi-
tional perplexity, completeness, homogeneity, and v-measure)
by python and Scikit-learn [54]. We computed the ABX discrim-
inability scores and the ABX error rates with a toolkit provided
by Zerospeech 2015 and compared the DPGMM methods with
other methods proposed in Zerospeech 2019 with its official
evaluation program.

V. RESULT

A. DPGMM-RNN Hybrid Model and Fragmentation Problem

We first use two examples to illustrate how the DPGMM-
RNN hybrid model relieved the fragmentation problem and later
demonstrate the quantitative metrics of the fragmentation level,
such as conditional entropy and completeness, in Sections V-B
and V-C.
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Fig. 6. Utterance example from TIMIT test set to show fragmental level of segments decreases by applying stronger contextual modeling of DPGMM-RNN
hybrid model; RNNn denotes DPGMM-RNN hybrid model with n contextual frames as RNN input.

Fig. 5 shows that the DPGMM algorithm generates fragmental
segments inside phonemes, and some fragments disappear after
applying RNN reconstruction (as shown by red circles).

Fig. 6 shows that the DPGMM-RNN hybrid model decreases
tiny fragments using RNN by accepting longer chunks, each of
which is composed of the current frame and its past successive
contextual frames, with stronger contextual modeling.

B. Distinctive Features and Fragmentation Problem

We explored why the fragmentation problem happens, how
the sensitivity of the acoustics of the DPGMM clustering al-
gorithm is associated with distinctive features, and how the
proposed DPGMM-RNN hybrid model reacts to different dis-
tinctive features. After partitioning the set of phonemes into
groups by distinctive features, we computed the conditional
perplexity for each phoneme group to determine the average
number of clusters per phoneme (the fragmental level) for each
distinctive feature. Fig. 7(a) shows the following results.
� The vowels are more fragmental than the consonants;

voiced consonants are more fragmental than unvoiced ones.
� The vowels from front to back became more and more

fragmental when the first and second formants became
closer and harder to differentiate (Fig. 7(b)).

� The fricatives are the most fragmental consonants, which
involve high-frequency components in the speech signals
(Fig. 7(c)) and irregularity and rapid changes of acoustics.

� The DPGMM-RNN hybrid model (RNNn) can relieve
the fragmentation problem of the DPGMM clusters
(DPGMM) by decreasing the conditional perplexity for
each distinctive feature.

� We computed the relative decrease ratio of the conditional
perplexity between DPGMM and RNN16. Features that
are more fragmental decreased more, except for affricatives
and nasals.

� Even after applying RNN to relieve the fragmental prob-
lem, the conditional perplexity, which is the average num-
ber of clusters per phoneme, remained high for each fea-
ture, roughly between 5 to 20.

C. Analysis of Cluster Agreement With Phoneme Class

1) Overall Performance: Fig. 8 shows that the DPGMM-
RNN hybrid models (RNNLabel, RNNPost) outperformed the

Fig. 7. Upper subfigure (a): conditional perplexity to show fragmental level
for each distinctive feature; RNNn denotes DPGMM-RNN hybrid model with
n contextual frames. Middle subfigure (b): spectrogram of vowels from front
to back; first and second formants are marked by red bars. Lower subfigure
(c): Spectrogram of fricatives with high-frequency noisy components. We ex-
tended highest frequency from 4000 to 10000 Hz compared to subfigure (a) to
see high-frequency components of fricatives (inside red rectangle).

DPGMM algorithm (DPGMM) for homogeneity, completeness,
and v_measure.

Since direct RNN learning from the discrete DPGMM label
always gets better results than from the continuous DPGMM
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Fig. 8. Homogeneity, completeness, and v_measure scores of TIMIT test set to
show matching degree between clusters and phonemes. Dashed line is DPGMM
clustering scores, and solid and dotted lines are DPGMM-RNN hybrid model
scores. RNNLabel learns from discrete DPGMM cluster label with cross entropy
loss; RNNPost learns from the continuous DPGMM posteriorgram with MSE
loss. RNNn denotes DPGMM-RNN hybrid model with n contextual frames.

posteriorgram, in later experiments, our hybrid model learned
from the label (RNNn or RNNLabel) by default.

2) Contextual Modeling: As we increase the length of the
context of the DPGMM-RNN hybrid model, the v_measure be-
comes larger (Fig. 8), showing better matching of the generated
model clusters and the underground phoneme classes.

The DPGMM-RNN hybrid model utilizes the RNN to redis-
cover the hidden statistical structure of the speech under the
supervision of the noisy DPGMM clusters. The hybrid model
can correct the DPGMM cluster labels even with 0 contextual
frame (RNN0), because the RNN always classifies each acoustic
frame by choosing the most likely DPGMM cluster label with the
maximum probability, such that the RNN correctly relabels some
fragmental DPGMM clusters with extremely low probabilities
from Gibbs sampling given the acoustic features.

Fig. 10 shows that the hybrid model gains better v_measure
by learning the RNN from both past and future acoustic features
(RNN_bidirectional) compared to merely learning from the past
(RNN_forward or RNNn) or the future (RNN_backward). Since

Fig. 9. Number of cluster types from DPGMM clustering (blue bar) and that
from DPGMM-RNN hybrid models with 0, 4, 8, and 16 contextual frames
(orange bars).

Fig. 10. v_measure of DPGMM-RNN hybrid model with different context
models. For example, when using eight frames of acoustic features as RNN
input context, RNN_forward takes a current frame along with eight past frames,
RNN_bidirectional takes a current frame along with four past frames and four
future frames, and RNN_backward takes a current frame and eight future frames.

the implementation of simpler models needs less effort and
makes it easier for communities to reproduce our results, most
DPGMM-RNN hybrid models of this paper used the simplest
strategy: learning mapping from past acoustic features (RNNn).

3) Oversegmentation and Undersegmentation: RNN0 (the
hybrid model without a contextual frame for RNN) has relatively
low homogeneity and high completeness (Fig. 8), which suffers
from the possible undersegmentation problem: the number of
cluster types of RNN0 is lower than the others (Fig. 9). RNN4
(hybrid model with four contextual frames for RNN) has rela-
tively high homogeneity and low completeness (Fig. 8), which
suffers from the possible oversegmentation problem: the number
of RNN4 cluster types is higher than the other hybrid models
(Fig. 9). Both homogeneity and completeness increase from
RNN8 to RNN16.

4) Representation Compression: Fig. 9 shows that the
DPGMM-RNN hybrid model (RNNn) generates fewer cluster
types than the DPGMM algorithm (DPGMM) and can compress
the DPGMM clusters by ignoring the unstable ones with low
probabilities, which makes the number of generated clusters
nearer to the numbers of phonemes of the normal human lan-
guages.

5) Performance per Utterance: Besides the above compar-
isons between the v_measures of the whole corpus, we also
did paired t-tests on the v_measures of the utterances of the
timit test set. Except for the DPGMM-RNN hybrid model with
0 contextual frames (RNN0), all the other hybrid models with
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Fig. 11. Average ABX discriminability score within speakers (upper subfig-
ure) and across speakers (lower subfigure) on TIMIT test corpus. We compared
average ABX discriminability scores of all n triplets (A, B and X) between
DPGMM algorithm (DPGMM) and DPGMM-RNN hybrid model of 16 contex-
tual frames (RNN16) with cosine distance (cos), Kullback-Leibler divergence
(kl), and Levenshtein distance (edit). Significance of paired t-test is indicated
by stars: **** means p ≤ 0.0001, ** means p ≤ 0.01, and * means p ≤ 0.05.
Error bar is 95% confidence interval; error is annotated above.

longer contexts (RNN4, RNN8, and RNN16) significantly out-
performed the DPGMM algorithm (DPGMM) on v_measures
with p-value p ≤ 0.0001.

D. Analysis of Cluster Discriminability of Phoneme
Categories

As well as the information theory inspired by measures based
on the relative frequency at the global corpus level, we measured
the ability of our generated clusters for discriminating the tri-
phone categories by computing the ABX discriminability scores
[6] at the local segmental level.

Fig. 11 shows that the clusters from our proposed DPGMM-
RNN hybrid model more effectively discriminate the phonemes
than those from the DPGMM algorithm in ABX discriminability
scores with three distances across and within speakers. The
performance improvement shows statistical significance with
the paired t-test. The error bar of the 95% confidence interval
shows that the hybrid model achieved fewer errors than the
DPGMM algorithm in ABX discriminability scores.

E. DPGMM-RNN Hybrid Model in Zerospeech 2019

Fig. 12 shows that the DPGMM-RNN hybrid model is better
at discriminating phonemes (which is the decrease of the ABX

Fig. 12. ABX error rate and bit rate on English dataset of Zerospeech 2019
[27] (decreases simultaneously with stronger context modeling). Solid lines
show ABX error rates with cosine distance, KL divergence and edit distance
using the primary vertical axis; dashed line shows bit rate of generated clusters
using secondary vertical axis. DPGMM means DPGMM clustering algorithm
(without RNN contextual modeling); DPGMM-RNNn (RNNn) means hybrid
model (with n RNN contextual frames).

error rate across different distances) and compressing repre-
sentation (which is the decrease of the bit rate of the one-hot
representation of clusters) compared to the DPGMM algorithm.

As the number of contextual frames increases, the ABX error
rates and the bit rates gradually decrease. We choose RNN48
(about three or four syllables [55] as RNN context) as the result
of our DPGMM-RNN model for Zerospeech 2019 because the
error rates with the cosine distance and KL divergence start
increasing and that with the edit distance is still decreasing.

The Fig. 12 shows a sharp decrease in the bit rate and the
ABX error rates between the DPGMM clustering algorithm
and the DPGMM-RNN hybrid model. However, within the
DPGMM-RNN models, increasing the length of the contexts
slightly decreases the ABX error rate or the bit rate in Zerospeech
2019. The reason might be explained by its English training
set, which only contains very short utterances, where the mean
duration per utterance is 2.063 seconds, and the three longest
utterance durations are 14, 7.99, and 7.82 seconds. When we
increase the length of the context of the DPGMM-RNN hybrid
model, we expect to capture both the acoustic structure of each
phoneme and the statistical structure of a short sequence of
several phonemes. This effect of modeling long contexts is
relatively weak because most of the utterances of the English
training corpus of Zerospeech 2019 are triphones instead of
complete sentences of natural utterances. Longer contextual
modeling doesn’t show its full power on the dataset when all
of the utterances are short.

The VQ-VAE [11], [56] and Factorized Hierarchical Varia-
tional Auto-encoder (FHVAE) [57] systems got the top ABX
error rate results in Zerospeech 2019 [27]. We compared the
system of the DPGMM-RNN hybrid model with these top
systems with official toolkits from Zerospeech 2019 (Table I).

The best Zerospeech 2019 system used VQ-VAE [56] to
quantize the MFCC acoustic features with several centroids. The
system also uses a speaker-adversarial approach [40] to make the
final representation speaker independent. Although our system
of the DPGMM-RNN hybrid model (RNN48) got a relatively
low ABX error rate, it had a slightly higher bit rate than the
VQ-VAE based system.



358 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE I
ABX ERROR RATE AND BIT RATE OF DPGMM-RNN HYBRID MODELS

(RNN48 AND BIRNN16) AND TOP MODELS FROM ZEROSPEECH 2019. THE

PROVIDED ZEROSPEECH BASELINE USES DPGMM CLUSTERS TRAINED BY

VARIATIONAL INFERENCE. VQ-VAE EXTRACTS DISCRETE REPRESENTATION

WITH SPEAKER-ADVERSARIAL ENHANCEMENT (VQ-VAE). ADVERSARIAL

MULTI-TASK LEARNING IS USED ON DPGMM CLUSTERS OBTAINED FROM

ACOUSTIC FEATURES AFTER FHVAE TRANSFORMATION (FHVAE). OUR

MODELS FIRST GET DPGMM CLUSTERS (DPGMM) FROM WHICH WE TRAIN

THE DPGMM-RNN HYBRID MODEL USING THE UNIDIRECTIONAL RNN WITH

48 CONTEXTUAL FRAMES (RNN48). CONTEXTUAL MODELING OF THE HYBRID

MODEL IS FURTHER ENHANCED USING THE BIDIRECTIONAL RNN WITH 16
CONTEXTUAL FRAMES (BIRNN16). NUMBERS OF CONTEXTUAL FRAMES OF

DIFFERENT HYBRID MODELS ARE CHOSEN BASED ON THEIR LOWEST ABX
ERROR RATES AND LOWEST BIT RATES ON THE ZEROSPEECH DATASET

Compared with the DPGMM-RNN hybrid model, the VQ-
VAE based system got a much higher ABX error rate with KL
divergence because its frame representation was not normalized
to be a distribution. The VQ-VAE model got a higher ABX
error rate with edit distance because that the DPGMM-RNN
hybrid model uses a one-hot vector representation where the
maximum edit distance between two frames is 2; the VQ-VAE
based system uses discrete representation whose maximum edit
distance between two frames might be very large.

Another difference between the two models is that the
DPGMM-RNN hybrid model is constrained from accepting
Gaussian distributed acoustic features as inputs, and some neural
network embeddings containing rich speech information with
complex distribution may not work for DPGMM clustering. But
VQ-VAE ideally works for any kind of feature.

The second best system first used the FHVAE extracted
features to get DPGMM clusters. Those clusters and speaker
ids are trained with adversarial multi-task learning to get a
final representation. The system has its primary representation
(FHVAE(b)) and an alternative (FHVAE(a)) [58].

The system FHVAE(a) gets a very low ABX error rate using
continuous representation and high sampling rate to get more
acoustic details, which also increases the error rate with edit
distance and a very high bit rate. To decrease the bit rate and get
discrete representation, the softmax outputs is converted to one-
hot representations (FHVAE (b)). The system of our proposed
DPGMM-RNN hybrid model got a lower ABX error rate across
three provided distances and a lower bit rate than the FHVAE
(b) system.

The official baseline [13] of Zerospeech 2019 uses compact
representation (low bit rate) but sacrifices the discriminability
of phonemes (relatively high ABX error rate).

We further enhanced the contextual modeling of the
DPGMM-RNN hybrid model using a bidirectional RNN
(BiRNN16) as well as the unidirectional RNN (RNN48). Similar
to a hybrid model using a unidirectional RNN, the hybrid model
using a bidirectional RNN achieved lower ABX error rates (with
cosine, KL and edit distances) and a lower bit rate than the
DPGMM clustering algorithm. The performance worsened with
too many contextual frames because of the limitation of the

RNN’s contextual modeling ability on the English dataset of
Zerospeech 2019 with many short utterances.

The DPGMM-RNN hybrid model using the bidirectional
RNN achieved the best performance in the Zerospeech dataset
using 16 contextual frames (BiRNN16 with a current frame
along with 8 past frames and 8 future frames), which had
relatively lower ABX error rates and a lower bit rate than the
hybrid system using a unidirectional RNN (RNN48) (Table I).

F. Compression by Functional Load

Based on the nature of DPGMM clustering, the number of
clusters keeps increasing as it sees more data. Although it is
possible to limit the maximum number of DPGMM clusters
by K by truncating the weights, picking a proper K requires
additional knowledge of true data distribution, without which
a non-convergence problem of Gibbs sampling might occur.
Because of the acoustic complexity of speech, the DPGMM
algorithm also tends to generate more clusters than phonemes
in conventional human language [17].

We decreased the number of clusters of the DPGMM-RNN
hybrid model by merging the units that can be easily disam-
biguated by their surroundings (the units with the low functional
load; see Appendix for the algorithm). Fig. 13(a) shows that the
ABX error rate changes very little after greedily merging 20
pairs of clusters with the lowest functional load.

However, the functional load always exceeds zero, and the
ABX error rate never decreases when we compressed the clus-
ters with minial functional load. The TIMIT corpus, designed
to be phonetically balanced and contextually complete, which
makes contextual overlap for discovered segments and makes
functional load never be zero. So we use the Xitsonga corpus
with the same greedy strategy of merging pairs with the minimal
functional load on DPGMM clusters [17]. The inner figure of
Fig. 13(b) shows that the first 17 pairs of clusters bear the zero
functional load, and we can compress the units and decrease the
ABX error rate. Fig. 13(b) also shows that we can decrease the
clusters from 188 to 58 without an obvious increase in the ABX
error rate.

Fig. 13(c) shows the behavior of the language entropy and the
functional load of the merged pairs when we used the minimal
functional load principle for compression. As we merge more
and more pairs with a larger functional load, more and more
damage will be caused to the language’s entropy.

VI. DISCUSSION

We first question whether the fragmentation problem comes
from the clustering difficulty of complex acoustical events be-
cause people use highly variated gestures to pronounce sounds
with various manners, abstracted as distinctive features.

By exploring the fragmental level of different distinctive
features by conditional perplexity (Fig. 7), we found that the
DPGMM algorithm is worse at categorizing vowels than con-
sonants because it generates more fragmental frames inside
the phonemes. A similar situation happens in perception ex-
periments where stably observing the construction of vowel
categorization is more difficult than consonant categorization.
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Fig. 13. Subfigure (a): ABX error rate (across and within speakers with
cosine, KL, and edit distances) after greedily applying minimum functional load
merge on clusters from DPGMM-RNN hybrid model with 16 contextual frames
on TIMIT corpus (RNN16). Subfigure (b): ABX error rate when we merge
DPGMM cluster pairs with minimum functional load greedily on Zerospeech
2015 Xitsonga corpus. Red dashed line divides inner figure into the first 17
merged cluster pairs with zero functional load (left part) and the later pairs with
non-zero functional load (right part). Subfigure (c): entropy of language and
functional load of merged pairs when applying functional load compression on
Xitsonga corpus.

For example, our perception jumps from one category to another
when listening to the stimuli from /p/ to /t/ with equal acoustic
changes of the consonants. However, our perception seems more
continuous (hearing intra-phonemic variations) than categorical
when listening to the stimuli from /i/, /I/ to /E/ with equal acoustic
changes of the vowels [22].

The sensitivity of complex acoustic events causes the
DPGMM algorithm to suffer from the fragmentation problem.
Fig. 7 also shows that the fragments of the vowels are associated

with the shapes and dynamics of formants. The fragments of the
fricatives are associated with the energy concentrated at high
frequencies, similar to noise.

Humans can perceive these noisy phonemes with the knowl-
edge of language structure, even when we replace them with
actual white noise [24]. This idea inspired us to propose such
top-down contextual enhanced methods as RNN and functional
load to capture the statistical structure of the acoustical segments
for unsupervised phoneme discovery.

Our first proposal, the DPGMM-RNN hybrid model, explores
how we can use high-level contextual information to relieve
the problem of fragmentation. The hybrid model decreases the
fragmental level (completeness increase) more than just using
DPGMM clustering (Fig. 5, Fig. 8). Since we experimented
on a longer context by taking more frames as RNN input,
the fragmental level decreased more. With the same length of
contextual frames, considering both the past and future context
performances better than just considering one direction (Fig. 10).

Enhancing the contextual modeling by RNN helps remove
the short-time fragmental segments without generating super-
segments that cover several phonemes (Fig. 8), as shown by the
decrease of the homogeneity and v-measure of our DPGMM-
RNN model (Fig. 4, Fig. 8). The DPGMM-RNN hybrid model
also compressed the segment systems by decreasing the number
of clusters (Fig. 9).

The DPGMM-RNN hybrid model not only relieves the frag-
mentation problem but it also finds clusters that more accurately
discriminate between phoneme categories. The hybrid model
makes less ABX discrimination error (higher discriminability
score) and performs more stable (tighter error bar) (Fig. 11).
The DPGMM-RNN model also got a competitive performance
in Zerospeech 2019 in discriminating English triphone segments
(Table I).

Our second proposal, compression with functional load, ex-
plores how we can avoid excessive concentration on acoustic
details while preserving the key information critical for commu-
nication. Our idea is to merge clusters that can be disambiguated
by their surroundings. Merging such segments in complemen-
tary distribution with zero functional load typically causes no
damage to conveying language’s information. We found that we
could discriminate phonemes better while compressing the seg-
ments with zero functional load, we also merged more segments
with small functional load at the expense of a tiny decrease of
ABX discriminability (Fig. 13).

The unsupervised phoneme discovery aims to find a phoneme
sequence from each utterance. Perhaps the most related task is
unsupervised phoneme segmentation [59], [60]. The two tasks
differ in that unsupervised phoneme discovery only needs the
correct phoneme order; segmentation emphasizes such detailed
temporal information as the start and end times of each phoneme.
Another related task is unsupervised speaker diarization [61]. In
problem abstraction, both tasks map the acoustic signal to dis-
crete categories, but unsupervised phoneme discovery ignores
the speaker information and unsupervised speaker diarization
ignores the segment information. Except for this difference, we
believe both tasks can still learn from each other in their methods
and evaluation metrics.
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VII. CONCLUSION

To mimic the human perception bias of phonemes over acous-
tic signals, we proposed the DPGMM-RNN hybrid model to
improve phoneme categorization, and proposed to merge un-
ambiguous segments with low functional load. Results show
that with the DPGMM-RNN hybrid model, we can relieve
the fragmental problem and improve phoneme discriminability;
with minimal merging of the functional load, we compressed
the segment system, preserved the information, and retained the
phoneme discriminability.

APPENDIX A

COMPUTATION OF FUNCTIONAL LOAD

Assume a toy language is presented as a discrete label se-
quence ‘A B C 12 13 14 D 12 13 14 E 12.’ We want to include
some context when computing the language’s entropy, so instead
of counting each single label, we count the string of labels with
length 3, as we did in our experiment (‘A B C’ once, ‘B C 12’
once, ..., ‘12 13 14’ twice, ..., ‘14 E 12’ once). With the counts
(1 1 1 2 1 1 1 1 1), we can compute the entropy (3.12) of the
language by relative frequency (1/10, 1/10, 1/10, 2/10, 1/10,
1/10, 1/10, 1/10, 1/10).

1) Functional Load and Complementary Distribution: If we
want to compute the functional load of units ‘B’ and ‘13,’ which
can be disambiguated by their environment (A, C) and (12, 14)
because ‘B’ and ‘13’ are in complementary distribution, we
merge labels ‘B’ and ‘13’ so the new language becomes ‘A 13
C 12 13 14 D 12 13 14 E 12.’ Since they have a complementary
distribution, the counts of token string (1 1 1 2 1 1 1 1 1) and
the entropy (3.12) of the new language do not change. Thus the
functional load, as the loss the entropy, is ZERO. ((3.12 - 3.12)
/ 3.12 = 0).

2) Functional Load and Minimal Pair: If we want to com-
pute the functional load of units ‘E’ and ‘D,’ which are in the
same environment (14, 12), where ‘E’ and ‘D’ is a minimal pair.
If we merge labels ‘E’ and ‘D,’ then the new language becomes
‘A B C 12 13 14 D 12 13 14 D 12.’ Because they are minimal
pairs, the counts of token string (1 1 1 2 2 2 1) and the entropy
(2.72) of the new language changes. Thus the functional load,
as the loss of the entropy, is 0.13. ((3.12 - 2.72) / 3.12 = 0.13).

In our proposal, we merge these labels with minimal func-
tional load to compress the clusters of a language. It is equivalent
to merging the labels that are disambiguated by their surrounding
environment [45]. Intuitively, merging labels in complementary
distribution changes the tokens themselves without changing the
distribution to compute the entropy of the language. Labels can
be easily disambiguated from the surrounding labels bearing
zero or very small functional load.
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