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Fast Generation of Sound Zones Using Variable
Span Trade-Off Filters in the DFT-Domain

Taewoong Lee, Student Member, IEEE, Liming Shi, Student Member, IEEE, Jesper Kjær Nielsen, Member, IEEE ,
and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—The creation of sound zones with frequency-domain
variable span trade-off filters (VAST) is investigated herein.
Both narrowband and broadband discrete Fourier transform
(DFT)-domain VAST approaches are proposed, and we discuss
their relationship to the existing time-domain VAST approach.
The core idea in VAST is to apply a generalized eigenvalue
decomposition to the spatial statistics to control the trade-off
between acoustic contrast and signal distortion. Moreover, a
method for determining the optimal Lagrange multiplier that
controls this trade-off is also considered in terms of physical,
meaningful parameters. Through analysis and experiments, a
performance comparison using measured room impulse responses
is conducted not only between the two proposed methods but also
between the two proposed methods and the existing time-domain
approach. The results confirm that the broadband approach is
able to transfer the acoustic contrast from one frequency bin to
another, which is not the case for the narrowband approach.
Furthermore, the results also show that the proposed DFT-
domain VAST approach can be considered to be a special case
of the time-domain VAST approach.

Index Terms—Optimization, personal sound, sound zones,
variable span trade-off filters.

I. INTRODUCTION

IN an acoustically shared space, the purpose of a personal
sound system is to provide acoustically and spatially sepa-

rated regions, also known as sound zones, for different audio
contents, without the use of headphones [1]–[3]. Alternatively,
as originally suggested more than two decades ago [1], sound
zones can be created by controlling a set of loudspeakers.
Various applications of sound zones have been investigated,
e.g, in aircraft [4] and/or car cabins [4]–[7], at outdoor concerts
[8], and for mobile phones [9], [10].

The idea behind the creation of sound zones is to control
multiple loudspeakers according to different strategies. Typ-
ically, a bright zone (or a listening zone) where the desired
audio content is being reproduced and a dark zone (or a quiet
zone), the acoustic potential energy of which is minimized
as much as possible, are considered at the same time. The
zones can then be created by maximizing the acoustic potential
energy ratio between the bright and dark zones, which is
referred to as acoustic contrast, using the acoustic contrast
control (ACC) method in [11] that is based on the generalized
eigenvalue problem. Alternatively, the zones can be created by
minimizing the difference between the desired and reproduced
sound fields of the bright and dark zones, which is referred to
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as the reproduction error, using the pressure matching (PM)
method in [12], [13] that is based on the least squares problem.
Finally, the zones can also be created by minimizing the
reproduction error represented by spatial harmonic expansion,
based on the mode matching method in [14]–[16].

ACC is one of the most-popular and best-known methods;
however, this approach has multiple drawbacks. First, because
ACC does not take the phase information into account, the
spatial distribution over the bright zone is difficult to control,
which results in significant signal distortion in the bright zone.
This issue was later resolved using planarity control [17].
Second, the solution of ACC is the eigenvector corresponding
to the largest eigenvalue, such that an additional procedure to
find the magnitude of the solution is required, as proposed
in [18]–[21]. Third, ACC computes a matrix inversion that
is required to solve the generalized eigenvalue problem; this
computation can often be highly ill-conditioned, depending
on the geometry of the loudspeaker array, the locations of
the sound zones, and the frequency of interest. Either to
improve the robustness or, in particular, to avoid the ill-
conditioned inverse problem, a method that maximizes the
energy difference between the bright and dark zones [22],
an extensive study on regularization [23], and a geometry
optimization problem [24] were investigated. Moreover, ACC
was initially proposed in the frequency domain, which solves
the problem one frequency at a time, although recently, the
time-domain version, the so-called broadband ACC (BACC),
was also proposed [25]. However, BACC results in significant
signal distortion because only the few frequencies for which
a large contrast can be obtained are reproduced. To mitigate
this issue, additional constraints were introduced to obtain
a uniform frequency response, for example, in terms of the
acoustic contrast in [26]–[28]. Furthermore, the time-domain
approach typically suffers from a high degree of computational
complexity. Note that methods from other domains have also
been considered as possible solutions to this challenge, e.g.,
[5], [29], [30].

In contrast, PM controls both the magnitude and phase in-
formation because the desired sound field is defined. Unfortu-
nately, however, this degree of control results in a degradation
of the acoustic contrast. To improve the acoustic contrast while
preserving the availability to control the phase, the following
two methods were proposed. In [31], a hybrid method was
proposed that combined PM [13] and the method in [22].
This method provides a trade-off between the acoustic contrast
and the degree of phase control. In [18], [32], a method that
tunes the importance between the amount of acoustic potential
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energy in the dark zone and that of the signal distortion in the
bright zone was proposed.

Recently, a general and exact framework in the time-
domain, which is a subspace-based approach inspired by
[33]–[38] in speech enhancement, was proposed [39]. This
framework, which is referred to as the variable span trade-
off (VAST) filter, allows one to control the trade-off be-
tween the acoustic contrast and the signal distortion by easily
tuning two user parameters. Because the reproduction error
can be moved from one frequency to another frequency in
the time-domain approach, perceptually optimized approaches
also were studied using the VAST framework in [40], [41].
Here, however, there are several drawbacks. First, because
VAST exploits the generalized eigenvalue decomposition in
the time-domain, the method suffers from a high degree of
computational complexity. This drawback was improved by
using the conjugate gradient method in [42]; however, it still
requires a fairly large number of computations. Second, the
two user parameters were assumed to be chosen by the user;
as a result, the performance might not be optimal to the
constraint, i.e., the residual energy in the dark zone.

In this paper, two methods based on the VAST framework,
although residing in the DFT-domain, are proposed to reduce
the computational complexity from which the time-domain
approach suffers while preserving the trade-off property of
the VAST framework. A thorough comparison between the
methods in the DFT-domain and in the time-domain is carried
out. This type of comparison was also previously undertaken
in [43], [44], although those authors reached different con-
clusions. The methods from both domains yielded exactly the
same results in [44], whereas [43] observed different results. In
this paper, we investigate this inconsistency and determine the
underlying conditions that explain such results. Lastly, because
the constraint on the residual energy in the dark zone is neither
intuitive nor physically meaningful, different constraints will
be considered, as in [45].

This paper is organized as follows: The sound field mod-
elling, mean squared error (MSE) criterion, and performance
evaluation metrics are described in Sec. II. The proposed
methods are derived in Sec. III by considering a narrowband
approach first, followed by a broadband approach. In Sec. IV,
the proposed methods are thoroughly analyzed and discussed.
The proposed methods are evaluated and compared to the time-
domain approach in Sec. V. The paper concludes in Sec. VI.

II. PROBLEM STATEMENT

A. Notation

Throughout this paper, the following notation is used. Scalar
variables, integer constants, vectors, and matrices are denoted
by lower case symbols a, upper case symbols A, lower
case bold a, and upper case bold A, respectively. Subscripts
(·)B and (·)D are used to denote the bright and dark zones,
respectively. A subscript (·)C is a variable that can be either B
or D. When the bright and dark zones are combined, subscript
(·)F is used. In addition, (·) represents a vector or a matrix
being concatenated, and (̂·) denotes the time-domain quantity.
Indices n and k denote the discrete time sample index and

Fig. 1. An illustration of a system geometry of sound zones. The input signal
x[k] is fed into L loudspeakers after filtering by the corresponding control
filter ql[k]. The transfer function from loudspeaker l to control point m is
represented as hml[k]. A bright zone and a dark zone are spatially sampled
by MB and MD control points, respectively. Virtual source z, depicted in
a blurry manner, is introduced, and the corresponding impulse response is
represented as hmz [k].

the discrete frequency bin index, respectively. The symbol ⊗
denotes the Kronecker product operator. (·)T and (·)H denote
the transpose and conjugate transpose (or Hermitian) opera-
tors, respectively. diag(·) and blkdiag(·) denote a diagonal
matrix and a block diagonal matrix, respectively. The real
and complex coordinate spaces with M × N dimensions are
denoted by RM×N and CM×N , respectively.

B. Sound field modelling

In this paper, we tackle the problem of creating both a
bright zone and a dark zone in an enclosed space, as shown in
Fig. 1. Note that a solution for this problem that accounts for
each audio content can be exploited to have multiple bright
zones via the superposition principle. First, each of the zones
is discretized and spatially sampled by M control points, and
an input signal x̂[n] of length N that we want to generate
at the bright zone is fed into L loudspeakers after being
filtered by finite impulse response (FIR) filters for each of
L loudspeakers. The filtered signals are emitted through the
space, eventually being captured at each of M control points.

In the frequency-domain1, which is a common approach in
sound zone control, e.g., [6], [11], [13], [17], [18], [22], [31],
the reproduced sound pressure pm[k] at control point m can be
represented by the transfer function hml[k] from loudspeaker l
to control point m, the input signal x[k], and the control filter
ql[k] such that

pm[k] = x[k]
L∑
l=1

hml[k]ql[k] (1)

= x[k]hTm[k]q[k] , (2)

where

hm[k] =
[
hm1[k], · · · , hmL[k]

]T ∈ CL×1 , (3)

q[k] =
[
q1[k], · · · , qL[k]

]T ∈ CL×1 , (4)

1It should be noted that the time-domain approach and the frequency-
domain approach are only equivalent when a) the input signal is periodic
in N , i.e., x̂[n] = x̂[n+ cN ] where c is an integer, or is infinitely long and
b) the length of the control filter is the same as the DFT size, which is N ,
and it is equal to or longer than the length of the room impulse response. We
show a case in which both approaches are equivalent in Sec. V-F1.
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Note that the transfer function hml[k] can either be modelled
or measured in advance.

Let us define the total sound field using the subscript F,
which is

pF[k] =
[
pTB [k] pTD [k]

]T ∈ C(MB+MD)×1 (5)
= x[k]HF[k]q[k] , (6)

where

HF[k] =
[
HT

B [k] HT
D [k]

]T ∈ C(MB+MD)×L , (7)

pC[k] =
[
p1[k], · · · , pMC [k]

]T
(8)

= x[k]HC[k]q[k] ∈ CMC×1 , (9)

HC[k] =
[
hm[k], · · · , hMC [k]

]T ∈ CMC×L . (10)

where HC[k] is the transfer function matrix. The acoustic
potential energy in the total field can then be modified from
(6) as

eF[k] = pHF [k]pF[k] (11)

= |x[k]|2qH [k]
(
HH

B [k]HB[k] +HH
D [k]HD[k]

)
q[k]

(12)

= |x[k]|2qH [k]
(
RB[k] +RD[k]

)
q[k] , (13)

where

RC[k] = HH
C [k]HC[k] for C ∈ {B, D} , (14)

where RB[k] and RD[k] are the spatial correlation matrices
for the bright and dark zones, respectively. Later, we return
to these matrices to jointly diagonalize them by using their
properties.

Let us define the desired sound field for the bright and dark
zones as

dB[k] =
[
d1[k], · · · , dMB [k]

]T
= x[k]hz[k] ∈ CMB×1, (15)

dm[k] = x[k]hmz[k], (16)

hz[k] =
[
h1z[k], · · · , hMBz[k]

]T ∈ CMB×1, (17)

dD = 0MD ∈ CMD×1, (18)

dF[k] =
[
dTB [k] dTD

]T ∈ C(MB+MD)×1, (19)

where 0MD is an all-zeros vector of length MD, dB[k] is the
desired sound field for the bright zone, and hmz[k] is the
transfer function from the virtual source z to control point
m. It should be noted that the position of the virtual source is
a design choice affecting the desired sound field in the bright
and dark zones. Typically, hz[k] is defined (or designed) as
a plane or a spherical wave field in an anechoic environment
emitted by the virtual source [14], [18], [31], which implicitly
makes the sound zone control method perform dereverberation
to minimize the difference between the desired and reproduced
sound fields if a reverberant environment is given [46]–[48]2.
Our task is to design the control filter q[k] to match pF[k] to
dF[k] as well as possible in a mathematically tractable way.

2The inverse filtering technique was considered to equalize the room
influence, for example, [46]–[48].

C. Mean squared error (MSE) criteria

Now let us introduce two MSE criteria that measure the
distance between the desired and reproduced sound fields for
the bright and dark zones, respectively, i.e.,

SB(q[k]) = ||dB[k]− pB[k]||22 (20)

= |x[k]|2
(
qH [k]RB[k]q[k]− 2qH [k]rB[k] + σ2

d[k]
)
,

(21)

SD(q[k]) = ||0MD − pD[k]||22 (22)

= |x[k]|2qH [k]RD[k]q[k], (23)

where || · ||2 is the `2-norm,

rB[k] = HH
B [k]hz[k] ∈ CL×1 , (24)

σ2
d[k] = hHz [k]hz[k] , (25)

where rB[k] is the spatial correlation vector. We refer to
SB(q[k]) and SD(q[k]) as the signal distortion energy (SDE)
in the bright zone and the residual energy (RE) in the dark
zone, respectively.

Typically, minimizing SDE SB(q[k]) and/or RE SD(q[k]) is
investigated in both the aspects of signal enhancement and
sound zone control. This process can be implemented by
posing a combined cost function of SB(q[k]) and SD(q[k]),
i.e.,

argmin
q[k]

(
SB(q[k]) + µSD(q[k])

)
, (26)

where µ is a user parameter that is used to weigh the
importance between minimizing SDE and suppressing RE.
It should be noted that the solution of (26) is identical to
the solution obtained in [18] and in [32] if it is solved in
a least squares manner in the frequency-domain and in the
time-domain, respectively. Depending on the constraint that
we consider, the physical meaning of µ changes, and the
control filter gives a different performance. We return to this
in Sec. IV.

D. Performance evaluation metrics

Inspired by the literature, e.g., in [11], [18], [49], we define
the following metrics.

1) Prior acoustic contrast (iAC): We first measure the
acoustic contrast before applying any filter, i.e.,

γiAC[k] =
1HLRB[k]1L

1HLRD[k]1L
, (27)

where 1L is an all-ones vector of length L. This is similar to
the input SNR (iSNR) in signal enhancement.

2) Posterior acoustic contrast (oAC): The energy ratio
between the bright and dark zones after being controlled can
be defined as

γoAC(q[k]) =
qH [k]RB[k]q[k]

qH [k]RD[k]q[k]
, (28)

which is typically called the acoustic contrast, as defined in
[11]. Hence, the posterior acoustic contrast is denoted here
simply as the acoustic contrast, unless otherwise specified. We
can easily expect that oAC should be larger than iAC, i.e.,
γoAC(q[k]) > γiAC[k].
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3) Normalized signal distortion energy in the bright zone
(nSDE): We can measure the difference between the desired
and reproduced sound fields using the signal distortion nor-
malized by the energy of the desired sound field in the bright
zone, i.e.,

ηB(q[k]) =
SB(q[k])

dHB [k]dB[k]

=
σ2
d[k] + qH [k]RB[k]q[k]− 2qH [k]rB[k]

σ2
d[k]

. (29)

Note that if the reproduced sound field is close to the desired
sound field, then this value becomes small, and ideally 0.

4) Normalized residual energy in the dark zone (nRE):
This value is defined as a ratio between the energy in the dark
zone before and after being controlled. We can write nRE as

ηD(q[k]) =
qH [k]RD[k]q[k]

1HLRD[k]1L
, (30)

and apparently ηD(q[k]) < 1, which is similar to the noise
reduction factor in signal enhancement.

5) A relationship between MSE criteria and the perfor-
mance evaluation metrics: We can measure an MSE for the
total field SF(q[k]), i.e.,

SF(q[k]) = ||dF[k]− pF[k]||22
= SB(q[k]) + SD(q[k]) , (31)

and if we plug (28) and (29) into (31), then we finally obtain

SF(q[k]) = |x[k]|2qH [k]RD[k]q[k]×(
1 + oAC(q[k])× ηB(q[k])×

σ2
d[k]

qH [k]RB[k]q[k]

)
.

(32)

Now, we can see that the MSEs are highly related to oAC and
nSDE. Note that the third term can be seen as the energy ratio
between the desired and reproduced sound fields in the bright
zone.

As alluded to earlier, we now introduce two subspace
approaches in the DFT-domain to deal with (26).

III. VAST IN THE DFT-DOMAIN

In this section, subspace approaches for sound zone control
are formulated in the DFT-domain.

A. Narrowband approach

It is well-known that we can jointly diagonalize two
Hermitian matrices RB[k] and RD[k] such that

UH
L [k]RB[k]UL[k] = ΛL[k] , (33)

UH
L [k]RD[k]UL[k] = IL , (34)

where UL[k] is an L×L nonsingular matrix, ΛL[k] is an L×L
diagonal matrix whose diagonal elements are nonnegative, and
IL is the L × L identity matrix [50]. Furthermore, UL[k]
and ΛL[k] are the eigenvector and eigenvalue matrices of
the generalized eigenvalue problem R−1D [k]RB[k] and more
specifically

R−1D [k]RB[k]UL[k] = UL[k]ΛL[k] , (35)

where

ΛL[k] = diag(λ1[k], · · · , λL[k]) ∈ RL×L , (36)

UL[k] =
[
u1[k], · · · , uL[k]

]
∈ CL×L , (37)

where λv[k] and uv[k] are the vth eigenvalue and eigenvector,
respectively, and 1 ≤ v ≤ L. Typically, the eigenvalues are
sorted in descending order, which is λ1[k] ≥ · · · ≥ λL[k] ≥ 0,
and the corresponding eigenvectors follow the same order.
Note that the rank of RD[k] is rank(RD[k]) ≤ min(MD, L).
If the number of the control points is larger than that of
the loudspeakers, i.e., MD ≥ L, then rank(RD[k]) ≤ L.
The spatial correlation matrix RD[k] is a full rank matrix
if rank(HD[k]) = L. Alternatively, depending on the target
frequency and/or the system geometry, a regularization such
as the Tikhonov regularization can be included to guarantee
that RD[k] has full rank so that its inverse can be computed
[25], [51]. In contrast, RB[k] does not have to be a positive
definite matrix. Rather, RB[k] can have any rank from 1 to L,
which is less strict than RD[k]. If rank(RD[k]) = Q, then the
last L−Q eigenvalues in ΛL[k] are equal to 0.

Because any vector can be represented as a linear combina-
tion of the columns of a nonsingular matrix, we can express
the control filter q[k] using UL[k] as

q[k] = UL[k]aL[k] , (38)

where aL[k] is a coefficient vector of length L. If we insert
(38) into (21) and (23), then we obtain

SB(UL[k]aL[k]) = |x[k]|2
(
aHL [k]ΛL[k]aL[k]

− 2aHL [k]UH
L [k]rB[k] + σ2

d[k]
)
, (39)

SD(UL[k]aL[k]) = |x[k]|2|aL[k]|2 . (40)

Interestingly, RE SD(UL[k]aL[k]) depends only on the input
signal x[k] and on the coefficient vector aL[k]. Making the last
L− V coefficients in aL[k] be 0 reduces the RE directly. We
can obtain such a benefit using the so-called subspace-based
approach. In other words, we can approximate the control filter
q[k] using a V -rank approximation of q[k], i.e.,

q[k] ≈ UV [k]aV [k] , (41)

where 1 ≤ V ≤ L. If we re-write (39) and (40) using (41),
then we obtain

SB(UV [k]aV [k]) = |x[k]|2
(
aHV [k]ΛV [k]aV [k]

− 2aHV [k]UH
V [k]rB[k] + σ2

d[k]
)
, (42)

SD(UV [k]aV [k]) = |x[k]|2aHV [k]aV [k] . (43)

Here, we design the control filter q[k] for frequency bin k,
which is a traditional approach in the frequency-domain, e.g.,
[11], [13], [18]. If we directly pose the optimization problem
that seeks the control filters to minimize SF(q[k]), which is
the case of µ = 1 and V = L in (26), then this approach
yields the PM solution [13].
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Fig. 2. A (V, µnf) plane that illustrates the relationship between VAST-NF
and existing methods, i.e., ACC [11], PM [13], and ACC-PM [18].

If we plug (41), (42), and (43) into (26), then we obtain the
following cost function Lnf(UV [k]aV [k]) such that

Lnf(UV [k]aV [k]) = SB(UV [k]aV [k]) + µnfSD(UV [k]aV [k])

= |x[k]|2
(
aHV [k]ΛV [k]aV [k]

− 2aHV [k]UH
V [k]rB[k] + σ2

d[k]
)

+ µnf[k]|x[k]|2aHV [k]aV [k] , (44)

where µnf[k] is the frequency-dependent Lagrange multiplier
for the narrowband approach. Setting to 0 the derivative of
(44) with respect to aV [k] allows us to obtain the optimal
coefficient vector, which is given by

aV [k] = (ΛV [k] + µnf[k]IV )
−1

UH
V [k]rB[k] , (45)

then the control filter, referred to as the narrowband variable
span trade-off (VAST-NF) filter, yields

qVAST-NF[k] = UV [k]aV [k]

= UV [k] (ΛV [k] + µnf[k]IV )
−1

UH
V [k]rB[k]

=
V∑
v=1

uHv [k]rB[k]

µnf[k] + λv[k]
uv[k] , (46)

for 1 ≤ V ≤ L and µnf[k] ≥ 0.
Interestingly, VAST-NF reduces to existing sound zone con-

trol methods in special cases by varying the user parameters.
For V = 1 and V = L, VAST-NF reduces to ACC in [11]
and ACC-PM in [18], respectively; furthermore, it reduces to
the minimum variance distortionless response (MVDR) filter
for V = L and µ = 0 [39]. For 1 < V < L with µ = 0
and µ = 1, it reduces to the variable span (VS) Wiener and
VS minimum distortion (MD), respectively3. The details are
summarized in Fig. 2 and analyzed in Sec. IV.

B. Broadband approach

For K frequency bins, one typical way to extend a nar-
rowband approach to the case of broadband is to solve each
frequency bin separately. However, we tackle one general
problem that considers K frequency bins at the same time,
which we refer to as the broadband approach, instead of K
independent problems.

3The terminologies – VS MD, VS Wiener, MVDR – are inspired by the
usage in [37], [49] and speech enhancement in general.

As a broadband sound zone control problem, we model the
reproduced and desired sound fields using (9) and (15) as

p
C
=
[
pTC [0], · · · , pTC [K − 1]

]T ∈ CMCK×1 , (47)

= HCq for C ∈ {B, D} , (48)

dB =
[
dTB [0], · · · , dTB [K − 1]

]T ∈ CMBK×1 , (49)

where

HC = blkdiag(x[0]HC[0], · · · , x[K − 1]HC[K − 1]) ,
(50)

q =
[
qT [0], · · · , qT [K − 1]

]T ∈ CLK×1 . (51)

Because all K frequency bins are taken into account in p
C

and dB, the frequency index k is no longer used. Note that
the number of frequency bins K is K = J/2+1 if J is even,
otherwise K = (J + 1)/2. Now, we can consider the two
MSEs for the broadband scenario as

SB(q) = ||dB − p
B
||22 (52)

= σ̂2
d − 2qHrB + qHRBq (53)

= σ̂2
d − 2qHXr′B + qHXR′Bq , (54)

SD(q) = ||0MDK − p
D
||22 (55)

= qHRDq (56)

= qHXR′Dq , (57)

where

RC = XR′C for C ∈ {B, D} , (58)
R′C = blkdiag (RC[0], · · · ,RC[K − 1]) , (59)

RC[k] = HH
C [k]HC[k] , (60)

X = X ⊗ IL , (61)

X = diag
(
|x[0]|2, · · · , |x[K − 1]|2

)
, (62)

rB = Xr′B , (63)

r′B =
[
rTB [0], · · · , rTB [K − 1]

]T
, (64)

σ̂2 = dHB dB , (65)

where rB is the cross-correlation vector in the broadband
approach.

Here, we consider the joint diagonalization of two LK×LK
Hermitian matrices RB and RD, i.e.,

UH
LKRBULK = ΛLK , UH

LKRDULK = ILK , (66)

where ΛLK and ULK are the eigenvalues and eigenvectors
of the generalized eigenvalue problem of

R−1D RBULK = ULKΛLK , (67)

and ΛLK can be sorted in descending order globally, and ULK

is sorted in the same order.
Next, we assume that ΛLK and ULK are globally sorted in

descending order. Interestingly, each eigenvector only contains
one frequency bin information in this approach as R−1D RB is
also block diagonal and can be computed block-wise, which
means that each eigenvector includes at least (L− 1)K zeros.
This is due to the fact that the eigenvectors of R−1D RB can be
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obtained by padding zeros to the eigenvectors obtained from
each block matrix in it.

Here, we apply the V -rank approximation to the control
filter q, as in the previous section, i.e.,

q ≈ UV aV , (68)

where 1 ≤ V ≤ LK. Then, we can obtain

SB(UV aV ) = σ̂2
d − 2aHV UH

V rB + aHV ΛV aV , (69)

SD(UV aV ) = aHV aV . (70)

If we pose an optimization as in (26), then the broadband
VAST (VAST-BF) control filter q

VAST-BF
is given by

q
VAST-BF

= argmin
aV

(SB(UV aV ) + µbfSD(UV aV ))

=
V∑
v=1

uHv rB

µbf + λv
uv , (71)

where 1 ≤ V ≤ LK, µbf is the Lagrange multiplier for the
broadband approach, and λv and uv are the vth generalized
eigenvalue and eigenvector, respectively.

It should also be noted that we can obtain the time-domain
VAST control filter (VAST-T) if we follow the same procedure
as that explained in this section. To this end, the control filter
q̂

VAST-T
is given by

q̂
VAST-T

=
V∑
v=1

ûTv r̂B

µ̂t + λ̂v
ûv , (72)

where 1 ≤ V ≤ LJ , J is the length of the control filter, µ̂t is
the Lagrange multiplier for the time-domain approach, ûv and
λ̂v are the vth eigenvector and eigenvalue, respectively, and r̂B
is the spatial cross-correlation vector in the time-domain. See
[39] for more detail on the derivations.

It is worth noting the following: 1) in the broadband
approaches, i.e., VAST-BF and VAST-T, we have a single
constraint, and not K independent constraints as in the narrow-
band approach, VAST-NF. 2) The VAST framework gives a
high degree of flexibility in the control filter design. In other
words, we can obtain VAST-NF as described in Sec. III-A,
VAST-BF as described in Sec. III-B, and VAST-T as explained
in [39], respectively, depending on the domain in which the
reproduced and desired sound fields are formulated. 3) The
performance evaluation metrics of the narrowband approach,
which is described in Sec. II-D can also be used for VAST-
BF and VAST-T without needing to significantly modify these
methods.

IV. ANALYSIS AND DISCUSSION

In the previous section, two methods in the DFT-domain
for sound zone control were proposed. In this section, we
analyze the proposed methods. First, we investigate the lower-
and upper-bounds of the MSEs as well as the performance
metrics that were previously proposed in the time-domain [42],
[45]. This approach allows us to confirm the core property
of the proposed methods, i.e., the trade-off between oAC and
SDE. Second, we examine different types of constraints to find
the optimal µ for the proposed methods. Third, we consider

the computational complexity of the time-domain approach
and the frequency-domain approaches including the proposed
methods. Finally, we discuss the similarity and difference
between the two proposed methods. To this end, we can fully
understand the proposed methods. It should be noted that this
section is based on the narrowband approach, but this method
can also be applied to not only the broadband approach but
also the time-domain approach without the loss of generality.

A. Performance boundaries for the MSE criteria

In this subsection, we consider the bounds for the MSEs.
These bounds are determined by the two user parameters, i.e.,
V and µnf. We consider the bounds as a function of V first.
Plugging (45) into (42), (43), and (44), respectively, leads us
to

SB(UV [k]aV [k])

= |x[k]|2
(
σ2
d[k]−

V∑
v=1

2µnf[k] + λv[k]

(µnf[k] + λv[k])2
|uHv [k]rB[k]|2

)
,

(73)

SD(UV [k]aV [k]) = |x[k]|2
V∑
v=1

|uHv [k]rB[k]|2

(µnf[k] + λv[k])2
, (74)

and

Lnf(UV [k]aV [k])

= SB(UV [k]aV [k]) + µnf[k]SD(UV [k]aV [k])

= |x[k]|2
(
σ2
d[k]−

V∑
v=1

|uHv [k]rB[k]|2

µnf[k] + λv[k]

)
. (75)

As V increases with a fixed µnf, SDE monotonically decreases,
whereas RE monotonically increases. However, fortunately,
the cost function Lnf finally decreases.

Now, we consider the bounds of SDE, RE, and the cost
function Lnf as a function of µnf. Specifically, we determine
the upper and lower bounds for the two extreme cases, µnf = 0
and µnf →∞, respectively, i.e.,

SB(UV [k]aV [k])

=

{
|x[k]|2

(
σ2
d[k]−

∑V
v=1 ξv[k]

)
, for µnf[k] = 0

|x[k]|2σ2
d[k], for µnf[k]→∞ ,

(76)
SD(UV [k]aV [k])

=

{
|x[k]|2

∑V
v=1 λ

−1
v [k]ξv[k], for µnf[k] = 0

0, for µnf[k]→∞ ,

(77)

where ξv[k] = λ−1v [k]|uHv [k]rB[k]|2, and the cost function
Lnf has the same bounds as SDE. Note that the largest SDE
is made when µnf → ∞, whereas the largest RE is obtained
when V = L and µnf = 0, and vice versa. Therefore, we
state the following conclusions. SDE and the cost function
Lnf decrease with increasing V and decreasing µnf, whereas
RE behaves in the opposite manner.
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B. Performance boundaries for the performance metrics

Now, we analyze the bounds for the performance metrics
with respect to the two user parameters. Using (46), oAC can
be re-written as

γoAC(UV [k]aV [k]) =
aHV [k]ΛV [k]aV [k]

aHV [k]aV [k]
(78)

=

∑V
v=1

λv [k]|uH
v [k]rB[k]|2

(µnf[k]+λv [k])2∑V
v=1

|uH
v [k]rB[k]|2

(µnf[k]+λv [k])2

, (79)

and oAC decreases with increasing V , as shown in [39], [41],
and oAC is always maximized when V = 1 regardless of
µnf, i.e., γoAC(U1[k]a1[k]) = λ1[k]. In contrast, the bounds
of oAC with respect to µnf are expressed as

γoAC(UV [k]aV [k]) =


∑V

v=1 ξv [k]∑V
v=1 λ

−1
v [k]ξv [k]

, for µnf[k] = 0∑V
v=1 λ

2
v [k]ξv [k]∑V

v=1 λv [k]ξv [k]
, for µnf[k]→∞ ,

(80)

and oAC decreases with decreasing µnf. Because both oAC
and SDE increase with decreasing V and/or increasing µnf,
we obtain a high oAC at the cost of a large SDE; therefore,
we can observe a trade-off between oAC and SDE.

In the same manner, the bounds of nSDE can be established
as follows. These are easily obtained from (73) with respect
to V and (76) with respect to µnf, respectively, i.e.,

ηB(UV [k]aV [k]) =
SB(UV [k]aV [k])

|dB[k]|2
(81)

=

{
1− σ−2d [k]

∑V
v=1 ξv[k], for µnf[k] = 0

1, for µnf[k]→∞ .
(82)

Because nSDE is a signal-independent performance metric that
is normalized by the energy of the desired sound field in the
bright zone |dB[k]|2, regardless of V and µnf, nSDE is bounded
by 0 ≤ ηB(UV [k]aV [k]) ≤ 1.

Finally, the bounds of nRE can be computed by plugging
(46) into (30) such that

ηD(q[k]) =

∑V
v=1

|uH
v [k]rB[k]|2

(µnf[k]+λv [k])2

1HLRD[k]1L
(83)

=

{∑V
v=1 λ

−1
v [k]ξv [k]

1H
L RD[k]1L

, for µnf[k] = 0

0, for µnf[k]→∞ .
(84)

For the case of µnf → ∞, nRE converges to 0, which means
that no energy remains in the dark zone. However, this is only
valid when the magnitude of the control filter |q[k]| is almost
equal to 0, which might only be meaningful in a heuristic
purpose.

C. Optimization criteria

In the previous subsection, we investigated the performance
boundaries of the proposed methods. Any value for the two
user parameters 1 ≤ V ≤ L and 0 ≤ µnf can be used to
obtain a certain performance from the proposed methods by
manual tuning as in [39]–[41]; however, it is difficult to find
a proper value of the desired RE on the constraint. Recently,

various strategies for finding an optimal value using physically
meaningful constraints in the context of sound zones were
proposed in [45]. These strategies can also be applied to the
methods proposed here.

In this subsection, we review the typical convex optimiza-
tion problem in the context of sound zones, and then we
investigate two types of constraints. Note that the convex
optimization form in (26) does not change, while the solu-
tion space for µnf varies depending on which constraint is
considered.

1) Constraint on RE: A constraint on RE is typical in the
context of sound zones, e.g., [11], [18], [32], [39]; therefore,
we can pose the optimization problem as follows:

minimize
q[k]

SB(q[k]) subject to SD(q[k]) ≤ ε[k] , (85)

where ε[k] is the desired amount of energy in the dark zone.
Note that (44) is the Lagrangian associated with (85), and
the optimal solution to (85) is the VAST-NF control filter in
(46). The tuning parameter µnf in (46) is directly related to
ε[k], because finding the optimal µopt

nf is required to fulfil the
constraint. This optimal µopt

nf can be found by using one of the
root finding methods, e.g., Newton’s method, as in [16], [42].
However, as alluded to earlier in this subsection, it is often
difficult to assign a proper value of ε[k] because this parameter
varies depending on several factors, such as frequency and the
geometry of the loudspeaker array.

2) Constraint on nRE: The challenge of selecting a proper
ε[k] can be rather easily and intuitively resolved by posing the
optimization problem with a constraint on nRE, i.e.,

minimize
q[k]

SB(q[k]) subject to ηD(q[k]) ≤ ε[k] . (86)

For example, ε[k] = −10 dB is not a reasonable choice if RE
is already SD(q[k]) < −10 dB, whereas ηD(q[k]) < −10 dB
can be possible in most cases because the desired residual
energy is 10 dB less than the initial energy in the dark zone,
i.e., 1HLRD[k]1L.

From (86), a cost function similar to (44) can be obtained.
Following the same procedure described in Sec. III-A, we
can obtain the same control filter as (46), except for µnf,
which yields µnf/1

H
LRD[k]1L. However, µopt

nf can be optimally
computed according to the constraint by using any root finding
method, as mentioned in the subsection above. The derivations
are omitted due to their similarity.

3) Constraint on nSDE: Controlling nRE with an optimal
value that corresponds to the constraint might be insufficient
to guarantee that the reproduced sound field in the bright zone
is as close to the desired sound field as possible. Hence, to
tackle this issue, nSDE might be one of the constraints that
we can consider. For the same reason as nRE, we use nSDE
over SDE.

Next, we minimize RE with a constraint on nSDE; therefore,
the optimization problem yields

minimize
q[k]

SD(q[k]) subject to ηB(q[k]) ≤ ε[k] . (87)

Again, a cost function similar to (44) from (87) can be estab-
lished. This optimization problem can be solved by following
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TABLE I
THE COMPUTATIONAL COMPLEXITY FOR THE CALCULATION OF SPATIAL

STATISTICS AND CONTROL FILTERS

Method Domain Spatial statistics Control filter

BACC-PM [32] Time O(MNL2J2) O(L3J3)VAST-T [39]

ACC [11]

Frequency O(L2K) O(L3K)
PM [13]

VAST-NF
VAST-BF

Fig. 3. An illustration of block-wise joint diagonalization for ULK with
L = 5 and K = 2. The upper row shows the eigenvectors after the joint
diagonalization is computed block-wise (in the upper left corner denoted as
jdiag bw), and the upper right corner panel (in the upper right corner
denoted as jdiag bws) shows the eigenvectors after joint diagonalization
and global sorting according to the eigenvalues in the lower panel. Note that
the larger and smaller values are white and black, respectively, while the
values between are appropriately shaded. The panel in the lower row shows
the sorted eigenvalues for the upper left panel (red cross) and for the upper
right panel (blue circle), respectively.

Sec. III-A. Finally, µopt
nf can also be calculated by using any

root finding method.

D. Computational complexity

In this section, we investigate the computational complexity
of the proposed methods and several existing methods: ACC
in [11], PM in [13], BACC-PM in [32], and VAST-T in [39].
As summarized in Table I, VAST-T and BACC-PM are the
most computationally complex because they are time-domain
approaches. Here, we can clearly observe that the time-domain
approaches have a high degree of computational complexity
to compute both the spatial statistics and the control filters
compared to that of the frequency-domain approaches. As the
length of the control filter J becomes longer, this difference
becomes bigger. In practice, the number of frequency bins K
is smaller than J , as alluded to earlier, the frequency-domain
approaches demand even less computational complexity than
that of the time-domain approaches. Note that VAST-BF can
compute the joint digonalization block-wise, it has the same
computational complexity as VAST-NF.

E. Discussion on VAST-NF and VAST-BF

In the previous subsections, the performance boundaries
for the MSEs and the performance metrics were investigated.

It is worth noting that the MSEs and the cost function are
signal-dependent. However, each of the performance metrics
is signal-independent. This result is due to the fact that the
metrics are defined as a ratio between two quantities, and both
quantities contain the contribution of the input signal, which
cancels out. In (46), we can see that λv[k], uv[k], and rB[k]
are signal-independent. Therefore, the narrowband approach
VAST-NF can be considered as signal-independent if V and
µnf are tuned manually.

Now, if we consider the broadband approach, we can write
the generalized eigenvalue problem of the kth block in RC in
(58) as RC is block diagonal, i.e.,

|x[k]|2RB[k]UL[k] = |x[k]|2RD[k]UL[k]ΛL[k] . (88)

If we compute the joint diagonalization from (88), then we
obtain

1

|x[k]|2
UH
L [k]

(
|x[k]|2RB[k]

)
UL[k] = ΛL[k] , (89)

1

|x[k]|2
UH
L [k]

(
|x[k]|2RD[k]

)
UL[k] = IL . (90)

In other words, the eigenvalue matrix ΛL[k] does not change
with respect to the input signal x[k], even though the eigen-
vector matrix UL[k] is scaled by 1/|x[k]|. We can rewrite uv
and rB in (71) as

uv =
[
0TL · · · u′g[k] · · · 0TL

]T
, (91)

rB =
[
r′TB [0] · · · r′TB [K − 1]

]T
, (92)

where

u′g[k] =
ug[k]

|x[k]|
, (93)

r′B[k] = |x[k]|2rB[k] , (94)

where u′g[k] is the gth eigenvector at the kth block, then we
obtain

uHv rBuv = u′Hg [k]r′B[k]u
′
g[k]

= uHg [k]rB[k]ug[k] , (95)

and λv is independent of the input signal. If V and µbf are
selected by the user, then the broadband approach VAST-BF
is also signal-independent as in VAST-NF. This result can be
seen as one of the differences between the DFT-domain VAST
and the time-domain VAST because the DFT-domain approach
cannot directly consider the input signal.

Superficially, VAST-BF seems to be the same approach as
VAST-NF, with the only obvious difference appearing to be
whether it is one big problem or K small problems that must
be solved. However, VAST-BF is clearly different from VAST-
NF. To explain this more clearly, one example is depicted
in Fig. 3. If we compute the joint diagonalization for the
kth and k′th frequency bins, respectively, then we obtain 2L
eigenvalues and 2L eigenvectors, which are locally sorted in
descending order, such that the order of the eigenvalues is
(λ1[k], · · · , λL[k], λ1[k′], · · · , λL[k′]). If VAST-NF, 1 ≤ V ≤
L eigenvalues for the kth and k′th frequency bins are respec-
tively selected, i.e., (λ1[k], · · · , λV [k], λ1[k′], · · · , λV [k′]). In
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Fig. 4. The system geometry. The number of loudspeakers (black triangle)
L = 16, the number of control points (orange and blue circles) M = 37 for
each zone, and the virtual source (green triangle) are shown.

contrast, these 2L eigenvalues are sorted in a globally de-
scending order for VAST-BF, such that the first 2 ≤ 2V ≤ 2L
eigenvalues are chosen; therefore, this is not always the same
order as that of VAST-NF. If all L eigenvalues in the kth
frequency bin are smaller than those in the k′th frequency
bin, then nothing is selected from the kth frequency bin, which
means that no control effort is assigned in the k′th frequency
bin. For example, if V ≤ 3 in Fig. 3, then only the eigenvalues
from the second block are selected, and so are the eigenvectors.
It should be noted that the control filter of VAST-BF with
V = 1 only passes the one frequency that results in the
maximum acoustic contrast and filters the rest out, which is
the same behavior as BACC. The same behavior is observed
if only one frequency bin is considered for VAST-NF.

V. EXPERIMENTAL VALIDATION AND DISCUSSION

In this section, the proposed methods are validated by three
scientific questions as follows:
• How does the trade-off between oAC and SDE behave

for the proposed methods?
• How does the performance change with respect to the

two user parameters V and µ?
• How does the performance vary between the different

methods and different domains?
The validation process is based on the narrowband approach
VAST-NF, although this process can also be applied for the
broadband approach VAST-BF as well as the time-domain
approach VAST-T without the loss of generality. Throughout
this section, frequency bin index k is omitted unless otherwise
specified. Note that while we here study a particular setup
with two sound zones, this is done to provide a fundamental
understanding of the proposed methods. Finally, all of the
performance metrics are represented in dB scale4.

4The MATLAB code is available at https://github.com/actlee/vast dft
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Fig. 5. (a) The acoustic contrast γoAC in dB and (b) the signal distortion
energy SB in dB as a function of V for three different µ: µ = 0 (blue),
µ = 1 (green), and µ =∞ (red).

A. System setup

As illustrated in Fig. 4, a uniform line array with L = 16
and a spacing between the adjacent loudspeakers of d =
0.09 m was considered. The zones were located in front of
the loudspeaker array, and each of the zones was spatially
sampled by M = 37 control points. The same distance as that
between the loudspeakers was used for the control points. The
speed of sound was taken as 343 m/s, the sampling frequency
was set to fs = 16 kHz, and the length of the control filters
was set to J = 240 samples which corresponds to 15 ms at fs
and to a frequency grid of 66.67 Hz. The number of frequency
bins was K = 121, including the DC and Nyquist frequency
bins. Spatial aliasing occurs approximately at 1.9 kHz. A room
with the dimensions 4.5×4.5×2.2 m and a reverberation time
T60 = 300 ms was considered. The measured room impulse
responses (RIRs) ĥml[n] and the system geometry used in
[30], [52] were used in all of the experiments throughout
this section except for Sec. V-C. The impulse response of the
desired sound field ĥmz[n] was chosen from the RIR of the
8th loudspeaker after being truncated to contain only the direct
path component. The location of the virtual source was chosen
for convenience. The RIRs were resampled from 48 kHz to
16 kHz, and each of them was of length 2, 967. Zones α and β
were considered to be the bright and dark zones, respectively.
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Fig. 6. The residual energy SD in dB as a function of V for three different
µ: µ = 0 (blue), µ = 1 (green), and µ =∞ (red).

TABLE II
THE SUBSPACE RANK V AND THE OPTIMAL µ ACCORDING TO THE

CONSTRAINT AND THE PERFORMANCE OF γOAC , ηB , AND ηD .

Subspace Rank V 8 16 8 16

Constraint ηB ≤ −7 dB ηB ≤ −8 dB
Existence of µopt YES YES NO YES

µopt 3.2 4.2 0.0 1.1

oAC γoAC (dB) 14.7 12.0 14.8 12.7
nSDE ηB (dB) −7.0 −7.0 −7.7 −8.0

nRE ηD (dB) −35.4 −31.7 −35.7 −32.9

B. Trade-off between oAC and SDE

In this section, oAC γoAC, SDE SB, and RE SD for VAST-NF
are investigated. Note that the magnitude of the input signal
is assumed to be unity, and the target frequency of 1 kHz is
considered. First, oAC and SDE are shown in Fig. 5. When
there is no control, the prior acoustic contrast (iAC) is γiAC =
−0.5 dB. For V = 1, the largest oAC γoAC = 16.6 dB is
always obtained, i.e., λ1. On the other hand, the least oAC
γoAC = 4.5 dB is obtained when V = 16 and µ = 0, but still
about a 5 dB improvement on the acoustic contrast from iAC is
observed. A similar trend as oAC occurs for SDE, as shown in
Fig. 5 (b). When µ→∞, the largest SDE is returned despite
V . Therefore, we can clearly observe a trade-off between oAC
and SDE by adjusting V and µ, which leads us to conclude
that the largest oAC and the smallest SDE cannot be obtained
at the same time. The cases of µ = 0 and µ→∞, respectively,
provide the lower and the upper bounds as functions of V for
oAC and SDE, as explained in (80) and (76), also respectively.

This trade-off influences RE SD. The upper and lower
bounds, respectively, are obtained for µ = 0 and µ → ∞,
which have the opposite trend of oAC and SDE. Approxi-
mately −275 dB (≈ 0) of RE can be achieved for µ → ∞;
however, this is only possible for cases in which the magnitude
of the control filter is almost equal to 0, as alluded to in
Sec. IV-B. In other words, if µ→∞, then minimizing RE is
the only cost that the optimization problem tries to achieve;
as a result, the performance of oAC and SDE is maximized,
whereas RE is minimized, as seen in Figs. 5 and 6.
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Fig. 7. (a) The acoustic contrast γoAC and (b) the signal distortion SB in
dB as a function of the reverberation time T60 in ms for a fixed µ = 1 and
five different V : V = 1 (red), V = 2 (blue), V = 4 (green), V = 8 (cyan),
and V = 16 (black).

C. Performance with respect to acoustic environment

In this section, we investigate the performance of oAC
and SDE with respect to different acoustic environments.
To simulate such environments, the RIRs corresponding to
different T60 were calculated using the RIR generator toolbox
[53], which is a MATLAB implementation of the image
source method [54]. The same system setup, as described
in the previous section, was used except for the RIRs. For
the two user parameters, a fixed µ = 1 and five different V
were chosen; therefore, the oAC and SDE scores of ACC [11]
and PM [13] can also be observed for V = 1 and V = 16,
respectively. As can be seen in Fig. 7, oAC at each V decreases
for an increasing T60, whereas SDE increases for an increasing
T60. In Fig. 7 (a), the highest and lowest oAC at each T60
are always obtained for V = 1 and V = 16, respectively. A
similar trend is observed for SDE, as shown in Fig. 7 (b).
In other words, the largest and smallest SDE at each T60
are also observed for V = 1 and V = 16, respectively.
If the given acoustic environment is more reverberant, then
the performance of oAC and SDE degrades compared to the
anechoic environment, which means that the control is more
challenging due to the reverberations.

D. Performance with respect to the two user parameters

In Sec. V-B, the upper and lower bounds as functions of V
for oAC, SDE, and RE were observed. In this section, nSDE
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Fig. 8. (a) The acoustic contrast γoAC in dB, (b) the normalized signal
distortion energy ηB in dB, and (c) the normalized residual energy ηD in
dB as a function of µ for five different V : V = 1 (red), V = 2 (blue),
V = 4 (green), V = 8 (cyan), and V = 16 (black).

and nRE are used instead of SDE and RE to investigate the
signal-independent performance. In other words, the perfor-
mance is only determined by the system geometry and the
user parameters. The system setup with the RIRs described in
Sec. V-A was used, and we will use this in the remainder of
this section.

We observe the performance of oAC, nSDE, and nRE with
respect to the two user parameters, as depicted in Fig. 8.
Because all of the performance boundaries for different metrics
are frequency dependent for VAST-NF, a frequency-dependent
strategy for the constraint is necessary if one expects to
achieve the optimal performance for the given system and the

frequency of interest. However, this is not the case for VAST-
BF and VAST-T because one global constraint is considered.

First, as V increases with a fixed µ, we can observe the
trends in oAC, nSDE, and nRE. The upper and lower bounds
as functions of µ for these metrics can be seen in Fig. 8. It
should be noted that oAC and nSDE converge to the upper
bound, while nRE converges to the lower bound regardless of
V if µ is sufficiently large, e.g., µ > 103. As alluded to in [39],
µ is a user parameter that can be adjusted by the user; however,
in this case the constraint might often be difficult to satisfy.
If so, sub-optimal performance might result. One of the root
finding methods, e.g., Newton’s method, could be exploited as
in [42] to find the optimal µopt, which would require the target
ε as well as an initial value of µ0 to be assigned; otherwise,
finding the root cannot be done properly. Fortunately, these
steps also can be carried out by using the graphs shown in
Fig. 8, which guides the selection of µ visually, because there
is a single constraint on the energy either in the bright or
dark zone. For instance, if we consider (87) and place two
different constraints respectively on nSDE, i.e., ηB ≤ −7 dB
and ηB ≤ −8 dB, then µ is determined with dependence on
V . Note that µ0 = 0 is a reasonable initial value because
this guarantees the minimum nSDE. The optimal values µopt

for V = 8 and V = 16 and corresponding performance are
summarized in Table II. If V ≤ 8 for ηB ≤ −8 dB, then none
of µ can fulfill this constraint; hence, µ0 should be considered
as the optimal value µopt that gives the minimum nSDE for a
given V .

E. Performance comparison between VAST-NF and VAST-BF
In this section, VAST-NF and VAST-BF are compared using

the optimization criteria explained in Sec. IV-C. The subspace
rank V = L/4 for K frequency bins is used for VAST-NF,
whereas the subspace rank V = LK/4 is used for VAST-BF.
Note that in total, both of the methods use the same number of
eigenvectors and eigenvalues, i.e., LK/4. The values of oAC
γoAC, nSDE ηB, and nRE ηD with respect to the frequency for
different optimization problems are shown in the left, middle,
and right columns in Fig. 9, respectively.

First, the optimization problem (85) in Sec. IV-C1 with
the constraint SD ≤ 13 dB is considered for VAST-NF for
all K = 121 frequency bins and VAST-BF for one global
value. As shown in Figs. 9 (a) and (b), it is observed that,
in general, VAST-BF has a higher oAC as well as a higher
nSDE than that of VAST-NF in the frequency range less than
2 kHz. On the other hand, a lower nRE is observed in VAST-
BF compared to VAST-NF in the same frequency range, as
depicted in Fig. 9 (c).

Second, more precise control over nSDE can be obtained if
the optimization problem (86) in Sec. IV-C2 is considered.
The constraint ηD ≤ −37 dB is chosen for VAST-NF for
all K = 121 frequency bins and VAST-BF for one global
value. The same trend as in the previous experiment for both
of the methods is observed from the values of oAC and nSDE,
as shown in Figs. 9 (d) and (e), respectively. However, nRE
performed by VAST-NF was kept ηD ≤ −37 dB for all K
frequency bins as shown in Fig. 9 (f), whereas this constraint
is applied on average across all K frequency bins in VAST-BF.

Authorized licensed use limited to: KU Leuven Libraries. Downloaded on December 06,2020 at 07:48:42 UTC from IEEE Xplore.  Restrictions apply. 



2329-9290 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2020.3042701, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0.1 0.5 1 2 4 8
5

15

25

Frequency (kHz)

γ
o
A
C

(d
B

)

(a)

0.1 0.5 1 2 4 8
−10

−5

0

Frequency (kHz)

η B
(d

B
)

(b)

0.1 0.5 1 2 4 8

−50

−40

−30

−20

Frequency (kHz)

η D
(d

B
)

(c)

0.1 0.5 1 2 4 8
5

15

25

Frequency (kHz)

γ
o
A
C

(d
B

)

(d)

0.1 0.5 1 2 4 8
−10

−5

0

Frequency (kHz)

η B
(d

B
)

(e)

0.1 0.5 1 2 4 8

−50

−40

−30

−20

Frequency (kHz)

η D
(d

B
)

VAST-NF
VAST-BF

(f)

0.1 0.5 1 2 4 8
5

15

25

Frequency (kHz)

γ
o
A
C

(d
B

)

(g)

0.1 0.5 1 2 4 8
−10

−5

0

Frequency (kHz)

η B
(d

B
)

(h)

0.1 0.5 1 2 4 8

−50

−40

−30

−20

Frequency (kHz)

η D
(d

B
)

(i)

Fig. 9. The results of the optimization problems in Sec. IV-C. The left column shows the acoustic contrast γoAC in dB, the middle column shows the
normalized signal distortion energy ηB in dB, and the right column shows the normalized residual energy ηD in dB as a function of the frequency bin for
the proposed methods: VAST-NF (blue) with (V, µ) = (4, 1) for 121 frequency bins and VAST-BF (red) with (V, µ) = (484, 1), (a) to (c) the optimization
problem (85) in Sec. IV-C1 and the constraint SD ≤ 13 dB, (d) to (f) the optimization problem (86) in Sec. IV-C2 and the constraint ηD ≤ −37 dB, and (g)
to (i) the optimization problem (87) in Sec. IV-C3 and the constraint ηB ≤ −7 dB.

Lastly, the optimization problem (87) in Sec. IV-C3 with
the constraint SB ≤ −7 dB is considered for VAST-NF for all
K = 121 frequency bins and VAST-BF for one global value.
Relatively similar performance of AC is observed from both
of the methods in Figs. 9 (g), whereas the values of nSDE are
precisely controlled in VAST-NF, as shown in Fig. 9 (h). A
lower nRE is observed in VAST-BF compared to VAST-NF
in Fig. 9 (h) in which a higher nSDE is observed, e.g., in the
frequency range approximately more than 4 kHz.

As can be seen in these experiments, precise control
across frequencies is possible using VAST-NF with a certain
constraint at each frequency bin. If one has specific target
constraints for different frequency bins, then VAST-NF would
be preferable. It should be noted that exactly the same solution

is obtained from these two methods when V = LK and
µnf = µbf. If 1 ≤ V ≤ K for VAST-BF, then some frequency
bins cannot be controlled, depending on the magnitude of their
eigenvalues. However, VAST-NF always assigns at least one
eigenvector corresponding to the largest eigenvalue at each
frequency bin; hence, all K frequency bins can be controlled.
For VAST-BF, the subspace rank V at each frequency bin
will be determined based on the magnitude of the eigenvalues
across frequencies. At certain frequency bins in which a
smaller V (positive integer) is determined, as seen in Fig. 10,
a higher oAC by VAST-BF than that by VAST-NF would be
generally obtained when the same constraint is considered for
both of the methods. Specifically, in these experiments, it is
observed in the frequency range less than 2 kHz, as shown in
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proposed methods: VAST-NF (blue) and VAST-BF (red).

the left column in Fig. 9. This observation leads us to conclude
that VAST-BF can implicitly move oAC from one frequency
to another frequency, which VAST-NF, on the other hand,
cannot do. We remark that it was shown that the perceptual
effect of this property can be represented as a weighting
corresponding to a time-varying filter and incorporated into
the VAST-T framework, leading to perceptually weighted
reproduction errors and acoustic contrast, which allows us to
reshape the reproduction errors accordingly [41]. Sorting the
eigenvalues either globally or locally leads us to this significant
difference. Note that this property depends on the spatial
statistics determined by the geometry of the loudspeaker array
and the locations of the sound zones.

Finally, the cost functions of VAST-NF and VAST-BF are
compared. The same optimization problem with the same
constraint used in Figs. 9 (d) to (f) is considered. Note that the
comparison is only valid when at least V = K for VAST-BF
and V = 1 for K frequency bins for VAST-NF are used. For
a fixed subspace rank, the cost functions for all K frequency
bins are calculated, and their sum is plotted in Fig. 11. Because
VAST-BF minimizes the cost function globally, it always gives
the lower value of the cost function in comparison to that of
VAST-NF. Even in the case of a fixed µ = 1, the value of the
cost function for VAST-BF is always lower than or equal to
that of VAST-NF.
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Fig. 12. The control filter of length J = 240 at the 8th loudspeaker using
three different methods: VAST-NF (blue), VAST-BF (red dash), and VAST-T
[39] (green dot).

TABLE III
THE MSE FOR DIFFERENT PAIRS OF THE CONTROL METHODS

Pair
VAST-NF VAST-NF VAST-BF
VAST-BF VAST-T VAST-T

MSE 6.97e−30 6.16e−28 6.17e−28

F. Comparison between VAST-NF, VAST-BF, and VAST-T

Until now, we have investigated the two proposed methods
in the frequency-domain. We extend this comparison by in-
cluding the time-domain method, VAST-T. In some literature,
e.g., [26], [43], the frequency- and time-domain approaches
behave differently, whereas in other works, e.g., [44], they
behave identically. In this section, we investigate this conflict.
It should be noted that the solutions for VAST-NF and VAST-
BF are calculated in the frequency-domain. The time-domain
control filter of each method is then obtained with an inverse
Fourier transform.

1) A special case: Fig. 12 shows the filter coefficients for
the 8th loudspeaker for three different methods: VAST-NF,
VAST-BF, and VAST-T [39]. The subspace rank V is chosen
as the full rank for each of the methods, and µ is chosen
as µ = 1. The length of RIRs I is set to the same length
as the control filter J and the input signal N , i.e., I = J =
N = 240. Readily, we can conclude that VAST-NF and VAST-
BF provide the same performance as described in Sec. V-E.
The solutions from these three methods coincide with each
other, which can be confirmed by the MSE for different pairs
between the three methods summarized in Table III, under the
following conditions: 1) N = J ≥ I , and 2) the input signal
x[n] is periodic in N , as claimed in [39]. Note that in this case,
the number of frequency bins K is equal to N/2+1. As long as
these conditions hold true, the results from these methods are
the same, although typically the frequency-domain approach is
considered to be a faster version of the time-domain approach,
e.g., [44]. VAST-NF is the most efficient method in terms of
computational complexity in only this specific scenario that J
is at least equal to or longer than I , because all three methods
give exactly the same performance.

2) The general case: In the previous section, we compared
the frequency- and time-domain approaches to show when
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Fig. 13. (a) and (b) The acoustic contrast γoAC from the frequency-domain
and the time-domain approaches: the frequency-domain approach only at the
DFT grid (red), a higher resolution DFT grid (blue), and the time-domain
approach, VAST-T [39] (green). Note that panel (b) is a magnified version of
panel (a) for the frequency range from 1 kHz to 2 kHz.

those methods give the same performance. VAST-NF (and/or
VAST-BF) is efficient and fast compared to VAST-T if all three
methods give the same performance; however, this is only true
under the two conditions described in the previous section.
Therefore, the frequency-domain approach is an approximate
and fast version of the time-domain approach because making
the input signal N -periodic is not typically the case and is
not typically possible. Because the input signal is N -periodic,
the performance from the frequency-domain approaches is
guaranteed at the DFT grid.

To validate this claim, we designed the following experi-
ment with the same V and µ, as used in the previous section.
The frequency-domain approach VAST-NF is considered in
Fig. 13 because VAST-NF and VAST-BF behave identical in
this case. VAST-T is shown as the time-domain approach in
green in Fig. 13. Note that the Kronecker delta function is used
as the input signal to calculate the control filter by VAST-T.
A set of sinusoidal signals from 16.67 Hz to 8 kHz with a
frequency grid of 16.67 Hz is considered to calculate oAC. In
total, 480 sinusoidal signals are considered, and the length of
each signal is set to 1 second.

The frequency-domain approach gives a fairly high oAC
on the DFT grid, shown in red in Fig. 13. However, as soon
as it is not on the DFT grid, the oAC decreases rapidly, as
depicted in blue in Fig. 13. This phenomenon can also be
observed in the literature, e.g., [20], [26], [27], [43]. This
means that the frequency-domain approach can only control
the performance of oAC on the DFT grid. In contrast, although
the performance of the time-domain approach is lower than
that of the frequency-domain approach on the DFT grid, the
time-domain approach has a more stable performance across
frequencies.

VI. CONCLUSION

In this paper, we proposed two methods for the creation
of a bright zone and a dark zone: a narrowband approach
(VAST-NF) and a broadband approach (VAST-BF). This pro-
cess can be implemented in the frequency-domain by using
variable span trade-off filters. To create sound zones, a set
of loudspeakers is used, and each of the zones is spatially
discretized into a set of control points. Spatial correlation
matrices of the bright and dark zones are computed and then
are jointly diagonalized by using a generalized eigenvalue
decomposition. Exploiting the joint diagonalization to make
the spatial correlation matrices low-rank, a flexible framework
that can have a trade-off between acoustic contrast and signal
distortion is obtained. This solution is obtained by solving a
convex optimization with a constraint.

The two proposed methods are thoroughly investigated both
theoretically and experimentally. VAST-BF shows that the
acoustic contrast can be transferred from one frequency bin to
another frequency bin depending on the subspace rank, which
is not the case for VAST-NF. Furthermore, the two proposed
methods are also compared to the time-domain approach
(VAST-T) with respect to the computational complexity and
the acoustic contrast. We show that VAST-T can be exactly
the same as VAST-NF and VAST-BF only if the input signal
is periodic and the control filter is equal to or longer than
the room impulse response. In general, VAST-NF and VAST-
BF are faster than VAST-T and not computationally complex
and guarantee a fairly good performance on the DFT grid,
whereas VAST-T provides a more stable acoustic contrast
across frequencies but has the most expensive computational
complexity.
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