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Abstract—Sound event localization and detection is a novel area
of research that emerged from the combined interest of analyzing
the acoustic scene in terms of the spatial and temporal activity
of sounds of interest. This paper presents an overview of the first
international evaluation on sound event localization and detection,
organized as a task of the DCASE 2019 Challenge. A large-scale
realistic dataset of spatialized sound events was generated for the
challenge, to be used for training of learning-based approaches,
and for evaluation of the submissions in an unlabeled subset. The
overview presents in detail how the systems were evaluated and
ranked and the characteristics of the best-performing systems.
Common strategies in terms of input features, model architectures,
training approaches, exploitation of prior knowledge, and data
augmentation are discussed. Since ranking in the challenge was
based on individually evaluating localization and event classifi-
cation performance, part of the overview focuses on presenting
metrics for the joint measurement of the two, together with a
reevaluation of submissions using these new metrics. The new anal-
ysis reveals submissions that performed better on the joint task of
detecting the correct type of event close to its original location than
some of the submissions that were ranked higher in the challenge.
Consequently, ranking of submissions which performed strongly
when evaluated separately on detection or localization, but not
jointly on both, was affected negatively.

Index Terms—Acoustic scene analysis, microphone arrays,
sound event localization and detection, sound source localization.

I. INTRODUCTION

R ECOGNITION of classes of sound events in an audio
recording and identification of their occurrences in time is

a currently active topic of research, popularized as sound event
detection (SED), with a wide range of applications [1]. While
SED can reveal a lot about the recording environment, the spatial
locations of events can bring valuable information for many
applications. On the other hand, sound source localization is
a classic multichannel signal processing task, based on sound
propagation properties and signal relationships between chan-
nels, without considering the type of sound characterizing the
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sound source. A sound event localization and detection (SELD)
system aims to a more complete spatiotemporal characterization
of the acoustic scene by bringing SED and source localization
together. The spatial dimension makes SELD suitable for a
wide range of machine listening tasks, such as inference on the
type of environment [2], robotic simultaneous localization and
mapping [3], navigation without visual input or with occluded
targets, tracking of sound sources of interest [4], and audio
surveillance [5]. Additionally, it can aid human-machine in-
teraction, scene-information visualization systems, scene-based
deployment of services, and assisted-hearing devices, among
others.

The SELD task was included for the first time in the Detection
and Classification of Acoustic Scenes and Events (DCASE)
Challenge of 2019.1 In addition to the related studies that aim at
detecting and localizing multiple speakers (see e.g. [6]), only
a handful of approaches could be found in the literature up
to that point [5], [7]–[12]. Earlier studies were treating the
two problems of detection and localization separately, without
trying to associate source positions and events. In those works,
Gaussian mixture models (GMMs) [5], hidden Markov models
(HMMs) [7], or support vector machines [9] were used for de-
tection, while localization relied on classic array processing ap-
proaches such as time difference of arrival (TDOA) [5], steered
response power [7], or acoustic intensity vector analysis [9]. An
early attempt in joining estimates from the two problems was
presented in [8], where beamforming outputs from distributed
arrays along with an HMM-GMM classifier are used to build a
maximum-a-posteriori criterion on the most probable position
in a room of a certain class.

During the last decade, deep neural networks (DNNs) have
become the most established method on SED, offering ample
modeling flexibility and surpassing traditional machine learning
methods when trained with adequate data [13]. Recently, DNNs
have also been explored for machine learning-based source
localization [14]–[16] with promising results. Hence, DNNs
seem like a good candidate for joint modeling of localization
and detection in the SELD task. The first works we are aware of
that use this approach are [11] and [12]. Hirvonen [11] proposed
to set joint modeling as a multilabel-multiclass classification
problem, mapping two event classes to eight discrete angles in
azimuth. A convolutional neural network (CNN) was trained to
infer probabilities of each sound class at each position, after

1https://dcase.community/challenge2019/
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which a predefined threshold was used to decide the final class
presence and location. Adavanne et al. [12] proposed as an
alternative a regression-based localization approach. Modeling
was performed by a convolutional and recurrent neural network
(CRNN) with two output branches, one performing SED and the
other localization. In the localization branch, one regressor per
class returned continuous azimuth and elevation angles. Binary
thresholding was used in the detection branch to indicate the
temporal activity of each class and that output was used to
gate the respective direction-of-arrival (DoA) output, joining
them together during inference. The proposed system, named
SELDnet, was extensively compared against other architectures,
for a variety of simulated and real data and for different array
configurations. Note that both DNN-based proposals were using
simple generic input features, such as multichannel power spec-
trograms in [11] or magnitude and phase spectrograms in [12].

Due to its relevance in the aforementioned applications, the
SELD task was introduced for the first time in the DCASE
2019 Challenge and received a remarkable number of submis-
sions for a novel topic. A new dataset of spatialized sound
events was generated for the task [17] and a SELDnet imple-
mentation was provided by the authors as a baseline for the
challenge participants.2 Beyond the works associated with the
challenge [18]–[39], multiple works have followed aiming to
address the SELD task in a new way or improve on the limitations
of the challenge submissions [40]–[43].

This paper serves three major aims. Firstly, it presents an
overview of the first SELD-related challenge. Secondly, it
presents common considerations of SELD systems and discusses
how these were addressed by the participants, highlighting novel
solutions and common elements of the challenge submissions.
Thirdly, the performance of the systems is analyzed by address-
ing the issue of evaluating joint detection and localization. Fol-
lowing the ranking of the systems in the challenge, we calculate
confidence intervals for the challenge evaluation metrics and
analyze submissions with respect to their performance in de-
tection and localization separately. Additionally, we reevaluate
the systems using novel metrics proposed for joint evaluation
of localization and detection [44] and investigate correlations
between the different metrics and the ranking of the systems.

The paper is organized as follows: Section II presents the
task description, dataset, baseline system, and evaluation, as
defined in the challenge. Section III introduces and formulates
the joint metrics for evaluation of localization and detection.
Section IV presents the analysis of submitted systems, including
the challenge results and detailed systems characteristics. In Sec-
tion V we reevaluate the submissions with the new joint metrics,
and analyze the results with a rank correlation analysis of the
different metrics. Finally, Section VI presents the concluding
remarks on the challenge task organization.

II. SOUND EVENT DETECTION AND LOCALIZATION IN

DCASE 2019 CHALLENGE

The goal of the SELD task, given a multichannel recording,
can be summarized as identifying individual sound events from

2https://github.com/sharathadavanne/seld-dcase2019

Fig. 1. General SELD system approaches common in the challenge.

a set of given classes, their temporal onset and offset times
in the recording, and their spatial trajectories while they are
active. In the 2019 challenge, the spatial parameter was the
DoA in azimuth and elevation, and only static scenes were
considered, meaning that each individual sound event instance
in the provided recordings was spatially stationary with a fixed
location during its entire duration. Some common approaches
to SELD systems found in the challenge are depicted in Fig. 1,
including a single DNN modeling jointly the class and location
of events, separate DNNs for classification and localization, or
systems combining DNN-based classification with parametric
localization.

A. Dataset

Creating a dataset for a SELD task presents some challenges,
reflecting the high complexity of the problem. Ideally, a large
range of sound events representative of each sound class should
be reproduced at different times and temporal overlaps, at an
enormous range of different positions in azimuth, elevation,
and possibly distance from the microphones, covering the lo-
calization domain of interest. Furthermore, if the system is to
be robust to varying acoustic conditions and different spaces,
all the previous dimensions should be varied across different
rooms. Staging real recordings with this degree of variability
is not practical. Acoustic simulations of spatial room impulse
responses (RIRs) for various room shapes and positions, and
then subsequent convolution of the sound event samples with
them is a viable alternative, explored for example in [12]. How-
ever, such simulators, with simplifications on room geometry
and acoustic scattering behavior, can deviate significantly from

https://github.com/sharathadavanne/seld-dcase2019


686 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

real spatial RIRs. Additionally, the non-directional ambient
noise characteristic of the function of each space is present in
reality, adding another component the SELD system should be
robust to.

For DCASE2019, we opted for a hybrid recording-simulation
strategy that allowed us to control the detection, localization, and
acoustical variability we needed. Real-life impulse responses
were recorded at 5 indoor locations in the Hervanta campus of
Tampere University, at 504 unique combinations of azimuth-
elevation-distance around the recording position. The measure-
ments were covering a domain of 360◦ in azimuth,−40◦ ∼40◦ in
elevation, and 1∼2 m in distance. Additionally, realistic ambient
noise was recorded on-site with the recording setup unchanged.

Each spatial sound recording was synthesized as a one-minute
multichannel mixture of spatialized sound events convolved with
RIRs from the same space, with randomized onsets and source
positions, and with up to two simultaneous events allowed. The
RIRs were convolved with the isolated sound events dataset,3

provided with DCASE 2016 Task 2 Sound event detection in
synthetic audio,4 containing 20 event samples for each of the
11 event classes. Finally, the recorded natural ambient noise
from the same space was added to the synthesized mixture, at a
30 dB signal to noise ratio relative to the average power of the
sound-event mixture at the array channels. Each mixture was
provided in two different 4-channel recording formats, extracted
from the same 32-channel recording equipment. The first was
a tetrahedral microphone array of capsules mounted on a hard
spherical body, while the second was the first-order Ambisonics
(FOA) spatial audio format. The two recording formats offer
different possibilities in exploiting the spatial information cap-
tured between the channels. A development set was available
during the challenge,5 and for the evaluation set only the audio
without labels was released.6 The development and evaluation
sets consist of 400 and 100 one-minute recordings, respectively.
Half of the material has no overlapping events, while the other
half has two overlapping events active for most of its duration.
Note that two simultaneous events of the same class can occur
in the overlapping case. A detailed description of the generation
of the dataset is given in [17].

B. Baseline System

The SELDnet architecture of [12] was provided as the baseline
architecture of the challenge. The rationale behind this choice
was its conceptual and implementation simplicity, and its gen-
erality with respect to input features. Furthermore, even though
SELDnet was very recent and had the best results between the
tested methods in its publication, it still left a significant margin
for improvements with realistic data, both at localization and
detection accuracy. The architecture of the system is depicted
in Fig. 2. It consists of three convolutional layers modeling spa-
tial interchannel and sound event intrachannel time-frequency

3https://archive.org/details/dcase2016_task2_train_dev
4https://dcase.community/challenge2016/task-sound-event-detection-in-

synthetic-audio
5https://zenodo.org/record/2580091
6https://zenodo.org/record/3066124

Fig. 2. Detailed SELDnet network architecture of the baseline.

representations, followed by two bi-directional recurrent layers
with gated recurrent units (GRU) capturing longer temporal
dependencies in the data. The following two output branches
of fully connected layers correspond to the individual tasks of
SED and DoA estimation. The SED output is optimized with a
cross-entropy loss, while the DoA output is optimized using the
mean squared error of angular distances between reference and
predicted DoAs. Contrary to the original SELDnet in [12] which
was outputting Cartesian vector DoAs, the implementation for
the challenge is returning directly azimuth and elevation angles.
The network takes as input multichannel magnitude and phase
spectrograms, stacked along the channel dimension. Reference
SED outputs are expressed with one-hot encoding and refer-
ence DoAs with azimuth and elevation angles in radians. The
network is trained using the Adam optimizer with a weighted
combination of the two output losses, with more weight given
to the localization loss. More details on the SELDnet challenge
implementation can be found in [17].

C. Evaluation and Ranking

In this first implementation of the challenge the submitted
systems were evaluated with respect to their detection and
localization performance individually. For SED, the detection
metrics were the F1-score and error rate (ER) computed in
non-overlapping one-second segments [45]. For DoA estima-
tion, two additional frame-wise metrics were used. The first is

https://archive.org/details/dcase2016_task2_train_dev
https://dcase.community/challenge2016/task-sound-event-detection-in-synthetic-audio
https://zenodo.org/record/2580091
https://zenodo.org/record/3066124
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Fig. 3. Example reference and predicted sound events and locations. Circles
denote reference sounds, rectangles system output. Two systems evaluated
separately for detection and localization performance. Based on the measured
performance, they both have perfect score.

a conventional directional error (DE) expressing the angular
distance between reference and predicted DoAs. Since multiple
simultaneous estimates are possible, references and predictions
need to be associated before errors can be computed. The Hun-
garian algorithm [46] was used for that purpose, and the finalDE
was computed as the minimum cost association, divided with
the number of associated DoAs. Since DE does not reflect on
how successfully a system detects localizable events, a second
recall-type metric was introduced, termed frame recall (FR).
Due to a more general introduction and reformulation of the
metrics, DE is renamed in this work as localization error (LE),
while FR is renamed as event count recall (ECR).

For a detailed picture of the overall performance, the
submissions were ranked individually for each of the four
(F1, ER,LE,ECR) metrics. Hence, the jth submission had
ranks IF1(j), IECR(j) based on its position after sorting the
F1, ECR results in descending order, and ranks IER(j), ILE(j)
after sorting the ER,LE results in ascending order. A total
ranking Itot(j) aiming to indicate systems achieving good per-
formance in all metrics or exceptional performance in most of
them, was obtained by summing the individual ranks IF1(j) +
IECR(j) + IER(j) + ILE(j) and sorting the results in increas-
ing order.

III. JOINT MEASUREMENT OF LOCALIZATION AND

DETECTION PERFORMANCE

Sound localization and sound event detection are traditionally
two different areas of research, but the recent research addresses
joint modeling and prediction of the two, motivating a joint
evaluation. An example case to illustrate the main drawback
of employing separate evaluations for detection and localiza-
tion (similar to Subsection II-C) is visualized in Fig. 3. Both

the participating systems have detected the two sound events
correctly, however, their spatial positions are swapped. Using
a standalone detection metric will evaluate if the system has
correctly predicted the presence of the sound events (without
regard to their position), and similarly, a standalone localization
metric will evaluate the spatial errors between the closest sound
pairs (ignoring the underlying sound classes). Hence, those
metrics individually give the exact same score for both systems
A and B, even though it is obvious that system B is inferior
to A.

A. Metrics Formulation

Since a spatial event is not distinguished only by its class, but
also by its location, measurement ideally happens at the event
level. Let us consider a SELD system that at a given temporal
step predicts a set ofM eventsP = {p1, . . ., pi, . . ., pM}, where
each event prediction is associated with a class label index b̃i
and a positional vector x̃i, such that pi = {b̃i, x̃i}. At the same
time,N reference events exist asR = {r1, . . ., rj , . . ., rN}, with
each reference event being of class index bj at position xj ,
denoted as rj = {bj ,xj}. We assume a total of C possible class
labels that are ordered, such that b ∈ [1, .., C]. Note that contrary
to traditional SED, where predictions and references are class
based, it is possible that more than one of the events in P or R
are of the same class.

We begin by considering localization-only metrics, neglecting
classification. Every combination of prediction x̃i and reference
xj is associated spatially with an appropriate distance metric
d(x̃i,xj). Two most common examples are

d(x̃i,xj) = arccos

(
x̃i · xj

||x̃i||||xj ||
)

angular distance (1)

d(x̃i,xj) = ||x̃i − xj || Cartesian distance (2)

In this work evaluation is based on angular distances since only
directions of events are measured, instead of absolute positions.
All such distances can be expressed with an M ×N distance
matrix D, where each element is given by [D]ij = d(x̃i,xj).
Before measuring a mean LE across events, references and
predictions should be associated using, for example, a minimum
cost assignment algorithm such as the Hungarian algorithm,
A = H(D). The association should ensure that if predictions
are more than the references M > N , only N predictions are
associated with N references, while if predictions are less than
the references M < N , only M references are associated with
M predictions. The non-associated M −N predictions in the
first case or the non-associated N −M references in the second
case, would constitute an equal number of false alarms (false
positives FP ) or misses (false negatives FN ) respectively, in a
detection-like localization metric. Consequently, if there are no
predictions, all references are counted asN misses, and similarly
if there are no references, all predictions are counted as M
false alarms, while in such cases the LE is undefined. Based
on the above, the M ×N binary association matrix A can have
maximum one unity entry at each column and row, meaning that
only K = min(M,N) = ||A||1 predictions and references are
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associated and contribute to the LE

LE =
1

K

∑
i,j

aijdij =
||A�D||1

||A||1 , (3)

where dij = [D]ij , aij = [A]ij , || · ||1 is the L1,1 entrywise
matrix norm, and � the entrywise matrix product.

The above localization precision gives a partial performance
picture because it does not take into account misses or false
alarms of localized sounds. To that purpose, we introduce a
simple metric termed localization recall (LR), expressed as

LR =

∑
l min(M (l), N (l))∑

l N
(l)

=

∑
l ||A(l)||1∑

l N
(l)

, (4)

where the summation
∑

l happens across l = 1, . . ., L temporal
frame outputs or some other preferred averaged segmental rep-
resentation, and M (l), N (l) are the number of predictions and
references at the lth frame or segment. Finally, a related but
more concentrated metric of interest may be the ratio of frames
or segments for which the system detects the correct number
of references M = N . We name this metric event count recall
(ECR). ECR corresponds to

ECR =

∑
l 1

(
M (l) = N (l)

)
L

, (5)

and 1(·) is the indicator function, returning 1 if its argument is
true, and 0 otherwise. Note that ECR was termed frame recall
in the challenge evaluation, and in [12], [14], but we opted here
for a more descriptive name of its counting objective.

Often, a localization method needs to be evaluated only under
a certain level of spatial precision, usually expressed through
an application-dependent threshold Θ. Such a threshold on the
above metrics can be applied by constructing an M ×N binary
matrix T with unity entries only on the reference-prediction
pairs that are closer than the threshold, [T]ij = 1([D]ij ≤ Θ).
The number of associated predictions that pass the threshold are
then given by K≤Θ = ||T�A||1. The thresholded metrics are

LE≤Θ =
1

K≤Θ

∑
i,j

tijaijdij =
||T�A�D||1

||T�A||1 (6)

LR≤Θ =

∑
l K

(l)
≤Θ∑

l N
(l)

=

∑
l ||T(l) �A(l)||1∑

l N
(l)

(7)

ECR≤Θ =

∑
l 1

(
K

(l)
≤Θ = N (l)

)
L

, (8)

with tij = [T]ij . Note that the thresholded LE≤Θ in Eq. (6) is
undefined when there are no associations passing the threshold
K≤Θ = 0.

Considering the fact that events have a class label in SELD,
it is more informative to measure localization performance only
between events that are correctly classified (class-aware local-
ization). Similarly, we may want to impose a spatial constraint
on correct classifications, such that events classified correctly,
but very far from their spatial reference are considered invalid
(location-aware detection). For both modes, we:

Fig. 4. Example reference and predicted sound events and locations. Circles
denote reference sounds, rectangles system output. The dashed rectangles
indicate associated predictions with references, and d1, d2 are the respective
angular distances expressing localization error. The TP,FP,FN indicate how
the respective predictions and references contribute to the true positive, false
positive, and false negative count.

1) Find subsets Pc = {pi|b̃i = c} of predictions and Rc =
{rj |bj = c} of reference events classified on class c ∈
[1, . . ., C]. The resulting class-specific number of predic-
tions is Mc and of references Nc.

2) Compute a class-dependent Mc ×Nc distance matrix Dc

between predictions Pc and references Rc, and compute
the respective association matrix Ac = H(Dc).

3) Determine a suitable application-specific spatial threshold
Θ, for location-aware detection. Construct the threshold-
ing binary matrix Tc from Dc, and determine the number
of associated predictions Kc = ||Ac||1 = min(Mc, Nc),
and the number of associated predictions which pass the
threshold Kc,≤Θ = ||Tc �Ac||1.

4) After association, count true positives TP , false negatives
FN , and false positives FP as follows:

TPc,≤Θ = Kc,≤Θ (9)

FPc,≤Θ = max(0,Mc −Nc) + min(Mc, Nc)−Kc,≤Θ

(10)

FNc = max(0, Nc −Mc). (11)

A simple example is illustrated in Fig. 4, where the reference
annotation contains four sound events: dog, dog, car horn, and
child, while the system output contains three: dog, car horn,
and cat, at their respective positions. The joint evaluation will
compare for correctness of both the labels and the locations,
therefore it will characterize the localization error in the dog-dog
pair and the car horn-car horn pair, and consider the other events
as errors (false positives and false negatives). Note that with
the above setup false negatives do not depend on the threshold,
while false positives include both the extraneous predictions
and associated predictions that did not pass the threshold (the
car horn example in Fig. 4). Based on the above, we are able
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to measure location-aware detection metrics such as precision,
recall, F1-score, or error rates.

Regarding class-aware localization, we compute the localiza-
tion error (LEc) and localization recall (LRc) of Eq. (3)–(4)
only between predictions and references of class c

LEc =
||Ac �Dc||1

||Ac||1 (12)

LRc =

∑
l ||A(l)

c ||1∑
l N

(l)
c

. (13)

The overall class-dependent LECD, LRCD, are computed as
the class means of Eq. (12)–(13)

LECD =
1

C · L
∑
c

∑
l

LE(l)
c (14)

LRCD =
1

C

∑
c

LRc. (15)

In some applications it may be of interest to have both class-
dependent, and thresholded localization metrics, similar to
Eq. (6)–(8). In the joint measurement results of this study we
use the non-thresholded versions of Eq. (12)–(13). It is also
worth noting that different thresholds per class Θc may be
accommodated in the above framework, to reflect different spa-
tial tolerances for certain classes depending on the application.
In our evaluation we opted for non-thresholded localization
metrics since we deemed it more beneficial to have a localization
measurement of all detected estimates in a class, providing com-
plementary information to the spatially-thresholded detection
metrics.

It is worth noting here the relation between the proposed
metrics and dedicated tracking metrics such as the OSPA [47] or
the CLEAR MOT [48] metrics, which evaluate the performance
of systems in identifying distinct contiguous spatial trajectories
from instantaneous spatial estimates. A form of tracking occurs
in SELD systems through location-aware classification; the posi-
tional estimates of a source emitting a signal of a certain type are
joined to a consistent spatiotemporal trajectory when that class
is detected active. However, tracking metrics evaluate trajectory
consistency without having to resort to classes and they penalize
identity switches, something that the proposed metrics do not do
e.g. in the case of two simultaneous events of the same class.

B. Segment-Based Measurement

Segment-based detection metrics generalize the frame-based
binary activity of sound events to its corresponding activity at
segment-level and are common in SED. In [45], this generaliza-
tion is done by considering an event to be active at segment-level
if it is active in at least one frame within the segment. A similar
generalization of the localization metrics to a different time-
scale can be formulated through a spherical mean DoA vector
or Cartesian mean positional vector x̂ of all predictions x̃(l) of
the corresponding event within the segment, before localization
errors are measured. Alternatively, the average localization error
within a segment can be computed based on the frame-based

pairs of reference and predicted events. Both approaches are in-
troduced and compared in [44] with comparable results. Herein,
we present results evaluated in one-second segments, apart
from the reevaluation in Sec. V where additional frame-level
localization results are included in the analysis.

IV. CHALLENGE RESULTS

Even though the SELD task was introduced in DCASE2019
for the first time, it attracted a lot of interest and received the sec-
ond highest number of submissions among other tasks. In total
58 systems were submitted, from a total of 22 teams consisting
of in total 65 members. The participants were affiliated with 16
universities and 8 companies.

A. Overall Challenge Results

The overall results of the challenge are presented in Table I.
Only the best system of each team is presented and the systems
are ordered by their official challenge rank as described in
Section II-C. In addition to the results displayed on the challenge
webpage, this table includes the 95% confidence intervals for
each separate metric, estimated using the jackknife procedure
presented in [1]. The method is a resampling technique that
estimates a parameter from a random sample of data for a
population using partial estimates [49]. Confidence intervals
by jackknifing are coarse approximations, but applicable in
cases where the underlying distribution of the parameter to be
estimated is unknown. In our case the parameters are metrics
that depend on individual combinations of active sounds at each
time and the jackknife method allows estimating the confidence
intervals without making any assumption on their distribution.
The partial estimates for all metrics were calculated in a leave-
one-out manner, excluding, in turns, one audio file from the
evaluation set.

Considering the best-performing system of each team, 17 out
of the 22 submitted systems ranked higher than the baseline
system using the official ranking method. In terms of the indi-
vidual metrics, 17 systems had betterER andF1-scores than the
baseline, with the best ER and F1-scores of 0.06 [20], [21] and
96.7% [21] respectively. Similarly, 18 systems had better LE
and 14 systems had higher ECR, with the best LE of 2.7◦ [25]
and ECR of 96.8% [18].

The top-10 systems of Table I are illustrated with respect
to detection metrics in Fig. 5(a) and localization metrics in
Fig. 5(b). The best system in both these plots is in their cor-
responding top left corner. We observe that the ranking order of
the submitted systems is different for detection and localization
metrics. For instance, the best system according to detection
metrics - He THU [21] (Fig. 5(a) top-left corner), has a high
LE compared to the other top-10 systems and hence achieves
an overall rank of four. Similarly, although Chang HYU [25]
achieved the best LE among the top-10 systems, its detection
performance was among the poorest of top-10 systems and hence
achieved a rank of eight. In general, ER and F1-scores of event
detection are correlated and hence all the submitted systems
are observed along the diagonal. This diagonal behavior is not
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TABLE I
CHALLENGE RESULTS OF SUBMITTED SYSTEMS. THE RANK IS BASED ON THE CUMULATIVE RANK BASED ON THE FOUR CALCULATED METRICS. BEST SYSTEM

PER TEAM ACCORDING TO THE OFFICIAL CHALLENGE RANKING. BEST SCORE INDICATED FOR THE SEPARATE METRICS

Fig. 5. Separately calculated detection and localization performance of top 10 systems (best system per team). The official rank of the systems is indicated in the
center of the marker for each scatter plot.

observed with the localization metrics as LE and ECR are only
weakly correlated.

The system characteristics of all the submissions are sum-
marized in Table II. All systems had at least one deep learn-
ing component in their approach. Specifically, apart from [36]
and [38] that employed a CNN architecture with no recurrent
layers the remaining 20 systems employed different versions of

the baseline CRNN architecture as one of their components. Four
of the submitted systems employed model-based parametric
DoA estimation [20], [23], [32], [35] along with CRNN-based
classification. The best purely parametric DoA approach [23]
achieved the 6th position. Among the DNN-based SELD meth-
ods, nine of them employed multi-task learning [50] for joint
SED and DoA estimation. The remaining systems, including the
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TABLE II
SUMMARY OF SUBMITTED SYSTEMS. THE RANK IS BASED ON THE CUMULATIVE RANK BASED ON THE FOUR CALCULATED METRICS. BEST SYSTEM PER TEAM

ACCORDING TO THE OFFICIAL CHALLENGE RANKING

top ranked system [18], employed separate networks for SED
and DoA estimation and performed engineered data-association
of their respective outputs. Finally, there was no significant
improvement in SELD performance with the choice of either of
the two audio formats in the dataset. Among the top 10 ranked
systems, four of them used the microphone array format, three
used the Ambisonic format, and the rest used both formats as
input.

B. Analysis of Individual Systems

A detailed analysis of some of the systems follows, along with
a summary of the most prominent architectural, input feature,
or training characteristics.

Kapka & Lewandowski (Kapka SRPOL) [18] was the top
performing system of the challenge, with very high performance
in both localization and detection. There was minimal feature
engineering and the pure magnitude and phase spectrograms of
the FOA format were used as input. However, the approach was
highly coupled to the task, by splitting it into four well defined
subtasks and then dedicating one CRNN model to infer each
one of them. The subtasks were: a) estimation of the number of
sources, b) estimation of DoA for an active source, c) estimation
of a second DoA in the case that two simultaneous events are
detected, d) classification of events whose number equals the
number of detected sources. Well-engineered post-processing
of outputs, from source count to localization to event durations
to classification, coupled the method to prior knowledge of the
dataset and ensured consistent association and information flow
between modules. It is worth noting that their architecture seems
able to resolve two simultaneous instances of the same class
at different directions. Since the architecture relied on prior
knowledge, such as a maximum of two simultaneous sources
and discrete DoAs at 10◦ intervals, it was not as general as most
of the other approaches.

Cao et al. (Cao Surrey) [19], had the second best performing
system, following the first one closely. However, the authors kept
the general SELDnet architecture and advanced it with a number
of informed domain-specific choices. The most important ones
seem to be improved input features and disassociation of the
detection and localization losses. In particular, the losses were
separated by duplicating the SELDnet and training each clone
for SED and localization separately. Here, the ground truth
SED activations were used as masks on the localization loss.
Additionally, they used both FOA and MIC input and ensemble
averaging. According to ablation studies in [19], the better input
features and the two-stage training architecture have a drastic
effect in performance.

The system of Xue et al. (Xue JDAI) [20] outperformed
the first two in detection results, but had lower localization
performance resulting in the third best average rank. Its success
seems to be a combination of multiple spectral and spatial
features and elaborate post-processing. DoA estimation from the
CRNN model was also abandoned in favour of a traditional SRP
estimation, refined by the former only in the case of simultaneous
events. Additionally, separate CNN branches were used for SED
and localization features, before being merged at the recursive
layers.

The fourth best system of Zhang et al. (He THU) [21] follows
the same architecture as [19]. It had the best SED performance
overall, but its localization accuracy was only marginally better
than the baseline. The large difference compared to the second
system may be due to the basic spectrogram feature for local-
ization, instead of the more effective directional features used
in [19]. On the other hand, the higher detection performance may
be attributed to the SpecAugment [51] data augmentation strat-
egy used. The same architecture was also employed by the fifth
best system of Jee et al. [22], aiming to improve its performance.
They introduced a number of incremental modifications to the
SED features, CRNN layers, pooling, and activation functions,
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along with a mixup [52] data augmentation strategy, without,
however, achieving better results at the challenge evaluation.

Nguyen et al. (Nguyen NTU) [23] took the concept of indepen-
dent localization and detection to its extreme, performing them
separately and then associating DoAs to overlapping detected
events randomly. Good overall performance brought them to the
sixth place. Note that their approach exploits the fact that detec-
tion and estimation performance are evaluated independently
and correct associations between the two are not measured, as
discussed in the next sections.

The next best system of Mazzon et al. (MazzonYasuda
NTT) [24] was also based on the architecture of the second best
system [19], trying to improve on it with a Resnet network re-
placing CNNs, an elaborate ensemble strategy, and, most impor-
tantly, an original spatial data augmentation approach exploiting
the rotation and reflection properties of the spherical harmonic
bases encoding the sound field in Ambisonics [53]. The authors
limited the input features to only GCC-PHAT for both FOA and
microphone array signals, potentially limiting their effectiveness
for the FOA set which encodes DoA information by amplitude
differences.

Noh et al. (Chang HYU) [25] added an overall sound activity
detection model on top of the SED one. Two additional inde-
pendent CRNN models were trained to detect presence of one
or two events respectively, using cochleagram features as input.
Their binary outputs were used to select whether none, one, or
two event classes with the highest probabilities of the dedicated
CRNN SED model were outputted. The authors employed just a
CNN network for DoA estimation, performed as a classification
task on 324 classes, inferred from the grid of potential DoAs
in the dataset. Interestingly, their model achieved the lowest
localization error in the challenge. That may be attributed to
their DoA classification matching the DoA discretized grid in
the dataset, along with their spatial data augmentation technique,
mixing recordings from non-overlapping events to generate
additional overlapping segments for training. No information
was provided on how or if DoAs were associated with events
and from further analysis on the following sections we assume
that such association was done randomly, as in [23]. The same
approach of independent SED and localization networks, a
classification-based DoA estimation, and random association
between the two was followed by the next best performing
system of Ranjan et al. (Ranjan NTU) [26]. Additionally, the
authors replaced CNN layers with Resnets in the typical CRNN
networks followed by most participants.

The tenth-best performing system of Park et al. (Park
ETRI) [27] attempted to combine the success of the two-stage
training approach [19] with the assumed consistency of joint-
modeling. They performed two stages of weight transfer from
separately trained SED and DoA estimation networks, into a new
network with a SED and DoA branch trained with a combined
detection and localization loss, as in the baseline SELDnet.
Additionally they experimented with TrellisNet layers instead
of RNNs and alternative activation functions.

We note some interesting investigations in the rest of the
submitted systems. Grondin et al. (Grondin MIT) [29] used one
CRNN for each microphone pair in the array format, performing

joint event detection and localization. The network was trained to
output intermediate TDOA values, mapped afterwards to DoAs.
Tan et al. (Tan NTU) [32] was one of the four systems that
did not use machine learning for DoA estimation, computing
time-domain cross-correlations between microphone pairs and
their respective TDOA and converting it to a DoA by a least-
squares geometric fit. Krause and Kowalczyk (Krause AGH) [34]
explored various combinations of layers processing localization
and SED features before fusion, as well as early branching for
the two tasks. Grondin MIT [29] showed similar considerations
on the fusion of input features, since the approach of the baseline
stacking phase and magnitude spectrograms into a single tensor
could be suboptimal. Chytas and Potamianos (Chytas UTH) [36]
proposed to perform SELD directly from downsampled audio
waveforms, with some additional help for SED using power
spectrograms. Even though their CNN-only approach under-
performed on SED, it showed that competitive localization can
be achieved using DNNs directly on time-domain multichannel
audio.

Finally, a special mention should go to the system by Perez
et al. (PerezLopez UPF) [35] since, along with the best per-
forming system of [18], it was the only other system following a
localize-before-detect paradigm. Their approach was based on
model-based DoA estimation on the FOA format, determination
of the number of sources based on the DoA estimates, determi-
nation of the event onset/offset, and beamforming towards the
prominent DoAs. The beamformed signals, being essentially
estimates of separated event signals, were fed to a CRNN
classifier for SED. Contrary to the majority of submissions
in the challenge, such an architecture is capable of detecting
simultaneous instances of the same class localized at different
directions.

C. Discussion on Submitted Systems

One obvious observation on the results is that the SELDnet
baseline, as implemented for the challenge, had a suboptimal
performance compared to the majority of the submissions. An
initial weakness seems to be the input features. A number of
submissions indicated that by switching to features with more
concentrated information on each of the two tasks, detection
(log-mel spectra) or localization (GCC-PHAT arrays, active
intensity vectors), improved performance significantly. These
three sets of features were the most popular overall in the top
submissions, with only the third best system relying on multiple
other types of multichannel spectra. It has to be noted though,
that the top system [18] used the raw multichannel phase and
magnitude spectrograms, indicating that it is possible to perform
SELD succesfully with such lower level features, but with model
architectures exploiting prior knowledge and coupled tightly to
the task.

The most popular network architecture and training choices
seem to be the ones introduced by Cao et al. [19]. Essentially,
their work disassociates the joint cost function combining SED
losses and localization losses as realized in the baseline and
trains individual models for each task. The SED and DoA
estimates are then associated through a training strategy or
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assigned randomly between them [23], [25], [26]. It has to be
noted that such random association takes advantage of the fact
that detection and localization were evaluated independently in
the challenge and would not be a good strategy in practice.
Ranjan et al. [26] compared the two-stage architecture versus
joint-modeling, with clearly improved results with the former.
However, it is worth noting that two systems in the top ten places
had a single network performing joint-modeling [20], [27], one
of them being third best [20].

The SELD paradigm proposed by the SELDnet baseline,
where one DoA output is tied to each class, was followed by
most submissions including multi-stage approaches [19], [25].
This paradigm is forcing a convenient detect-before-localize
approach. However, it limits the output of the system to only
one localized event per class, even in the presence of two
same-class instances. Systems that were training an independent
localization network as a DoA classification task, were not
addressing that problem since association of DoAs to detected
classes was ambiguous. The only two submissions that followed
a localize-before-detect paradigm used localization information
to determine the number and DoAs of events independently of
their class [18], [35]. They were then passing that information to
classifiers, turning the class-based outputs into event-based out-
puts and circumventing the same-class multi-instance problem
of the detect-before-localize approach.

Certain architectural or training choices were specific to
the localization task. Some of the submissions treated DoA
estimation as a classification task [25], [26], e.g. similar to
other DNN-based localization works [14]–[16], instead of the
regression format of the baseline. Xue et al. [20] trained both
DoA output formats simultaneously. However, it has to be
noted that the systems that relied only on DoA classification
were taking advantage of the the small set of 324 fixed DoAs
embedded in the dataset. A dataset with a much more dense
spatial resolution of possible DoAs, a continuous range of DoAs,
or moving sources, may have needed a much larger number
of classes to be modeled effectively (e.g. 2522 discrete angles
for a resolution of 5◦ in azimuth and elevation covering the
sphere). Moreover, classification-based DoA estimation was
found successful in two-stage systems, training independently
a DoA network. Joint-modeling of SELD based completely on
classification, as pioneered by Hirvonen [11], seems feasible
for a small number of classes and directions. Otherwise, such a
classifier would require no. of DoA classes× no. of event classes
outputs. With only a small number of them being positive at each
frame, its training would face the issue of an imbalanced dataset.
Additionally, training such a large number of classes requires an
impractically huge dataset with enough examples for each class.
On the other hand, the format of one DoA-regression-output per
sound event class does not suffer from those limitations, but it
is unable to detect multiple instances of the same class being
active at different directions.

Finally, some of the submissions aimed for a parametric
DoA estimation instead of a trainable DNN model [20], [23],
[32], [35], including the third best system of Xue et al. [20].
Parametric DoA estimation has the advantage that it does not
require training and that it is possible to generalize to completely

unseen environments, since it requires only knowledge of the
directional array response. Moreover, Nguyen et al. [23] had
one of the smallest DoA errors in the challenge. However, it can
be more susceptible to reverberation than DNN approaches if
not accompanied with additional processing, such as detection
of single-source dominated time-frequency blocks [23]. Inter-
estingly, Xue et al. [20] did not utilize the provided theoretical
steering vectors of the spatial format, but estimated them directly
from the data.

V. REEVALUATION OF CHALLENGE ENTRIES

USING JOINT METRICS

We evaluate all the systems submitted to DCASE 2019 Chal-
lenge Task 2 using the proposed joint measures in order to deter-
mine the most suitable single metric that encompasses all aspects
when representing system performance in a single number. We
compute all metrics in one-second segments and evaluate the
location-aware detection metrics with an angular error threshold
of 10 and 30 degrees. The results are presented in Table III, in
order of the official challenge rank. Confidence intervals for all
metrics were calculated according to the jackknife procedure
by leaving out one file at a time for the partial evaluation.
New cumulative ranks are estimated similar to the official ranks
based on the proposed joint measures for the purpose of system
comparison. The top 10 systems from Table III are also presented
in Fig. 6.

A. Analysis of Systems

The independent localization and evaluation metrics
(ECR,LE,F1, ER) are more permissive than the joint ones
(LRCD, LECD, F10◦ , ER10◦ ). We chose a threshold of 10◦ for
a relatively strict localization criteria with respect to the average
localization error of the systems presented in Table II. A ranking
based on the new metrics is expected to be different at least for
some of the submissions. Table III presents new ranks com-
puted between class-dependent localization (LRCD, LECD)
and location-dependent classification (F10◦ , ER10◦ ). Systems
with equal ranks indicate that the sum of the individual ranks for
each pair of metrics was the same. The greatest changes on the
top ten systems seem to be induced by the location-dependent
classification (F10◦ , ER10◦ ), which is to be expected since it pe-
nalizes inadequately localized detections with a strict threshold
of 10◦.

In general, it can be observed that submissions which em-
ployed separate localization and detection systems and did not
handle association of the two properly were likely to slip in their
ranks. This is especially evident on the systems that assigned
randomly DoAs to detections, such as Nguyen NTU [23] and
Ranjan NTU [26], including the best localization method of
Chang HYU [25]. Their association problems are revealed both
by their large drop in detection scores (F10◦ , ER10◦ ) and by
the large error increase between their original LE and the
class-dependent one LECD.

Methods that performed significantly better detection than
localization, such as Xue JDAI [20], He THU [21], and Leung
DBS [28] also slipped in their ranks. This is mostly due to
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TABLE III
EVALUATION OF DCASE 2019 SUBMISSIONS USING THE JOINT METRICS CALCULATED IN ONE SECOND SEGMENTS. BEST SYSTEM PER TEAM, IN ORDER OF THE

OFFICIAL CHALLENGE RANKING

Fig. 6. Joint detection and localization performance of top 10 systems (best system per team). The official rank of the systems is indicated in the center of the
marker for each scatter plot.

three of the original metrics (F1, ER,ECR) being directly
associated to detection performance, boosting their overall rank.
This imbalance is diminished with the new metrics, resulting in
the drop of the aforementioned systems.

Among the methods that performed proper data association,
the ones who had better localization scores [24], [27], [29], [30],
[35], [36] and not the best detection scores improved in their

ranks, due to the detection bias of official rankings mentioned
above. Two examples worth mentioning are [27], [35]. The
multi-task training strategy of Park ETRI [27] showed its benefits
when evaluated jointly, taking them to 4th place. PerezLopez
UPF [35] leaped from 19th place below the baseline to 7th place.
Both systems achieved such rank advances when evaluated with
the strict location-dependent detection (F10◦ , ER10◦ ).
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Fig. 7. Correlation between ranking order of submissions according to the different metrics and the official ranking in the challenge.

Even though the rank for the more permissive 30◦ location-
dependent detection metrics (F30◦ , ER30◦ ) is not displayed in
Table III, it is closer to the original challenge ranking. This is
explained a) by the more relaxed threshold, which as it increases
it causes the metrics to approach their independent detection
counterparts. B) by the fact that the threshold is larger than the
average LECD of about 20◦ between systems.

B. Metrics Analysis

The analysis of the metrics was performed using Spearman’s
rank correlation coefficient [54] to calculate how they correlate
to each other. The correlation was calculated between all pairs
of considered metrics, using the evaluated performance of all
submissions to the task. Our purpose is to determine which
single metric is capable of representing the desired properties
of the system in terms of localization and detection, instead
of using the compound of four separate metrics as done in the
challenge ranking. We rank all submissions using each metric
separately and evaluate how correlated the different rankings
are. Correlation values are presented in Fig. 7. The metrics
marked with (f ) are calculated frame-wise (in this case 20 ms).
Among the four individual metrics (LE, ECR, F1, and ER),
the detection scores (F1 and ER) are highly correlated with
the ranking, indicating that good detection performance was
important for obtaining a top rank. The localization error is less
correlated with the overall rank.

Among the joint metrics, the class-dependent LRCD score
is highly correlated with the official ranking, more so for the
segment-based than the frame-based measurement. This behav-
ior is noticed in all metrics, with the more permissive metric be-
ing more correlated to the overall rank: a) segment-basedLRCD

is more correlated to the rank than frame-basedLRCD(f) and b)
metrics with 30◦ threshold are more correlated to the rank than
metrics with 10◦ threshold. This can be explained by the fact that
joint metrics first perform the data association between detected
and localized sound sources. The more permissive metrics allow
a higher proportion of matches, which in turn is closer to
the matching done by the detection-only and separation-only
metrics.

We observe similar behavior between metric pairs with and
without data association: a) correlation between localization-
only metrics LE and ECR is moderate and similar to the
one between LECD and LRCD. b) High correlation is ob-
served between detection-only ER and F1; similarly for the
corresponding data associated versions. On the other hand, the
correlation between detection-only ER and its counterparts
ER10◦ or ER30◦ is moderate. Similar behaviour is observed
between F1 and its counterparts F110◦ or F130◦ . Basically,
the data association makes the metrics less permissive (in a
similar manner as the higher correlation for the more permissive
threshold of 30◦ than for 10◦).

Among the proposed joint-metrics, LRCD has the best cor-
relation (0.93) with the official DCASE2019 rankings, that is
presumed to be a good approximation of the overall system
performance. However, LECD is only moderately correlated
(0.50) with LRCD, hence, selecting an SELD model based on
just LRCD might not always guarantee the best LECD. On
the other hand, the location-aware detection metrics are highly
correlated with each other (ER10◦ vs. F110◦ or ER30◦ vs.
F130◦ ) and have moderately high (0.71-0.81) correlation with
the official rank. Furthermore, for a given distance threshold, the
error rate metrics are more correlated to the official rank than
the F1-scores and they are also highly correlated with LECD. If
choosing a SELD model has to be limited to a single metric only,
it seems that the error rate (ER10◦ /ER30◦) is a suitable choice,
since it combines high correlation with the original ranking, with
the ranking based on (F110◦ /F130◦), as well as the localization
ranking of LECD. Hence, it is expected to guarantee an overall
good SELD performance, a good counterpart F1-score and a low
localization error.

C. Discussion

The very high performance of the top ranked systems, of a
few degrees of mean localization error and more than 83% F1
score in the stricter setting, reveals additionally that the state
of the art can potentially handle more challenging conditions
than those reflected on the current dataset. The simulated spatial
recordings, even though acoustically realistic, contained only
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static events well separated between them by at least 10◦. Fur-
thermore, the room IRs were captured in large open spaces and
at fairly close distances from the microphone resulting in high
direct-to-reverberant ratios, while the ambient noise was added
at a very high SNR. As a consequence, the spatial and spectral
characteristics of the events were not significantly corrupted
by them and the methods had to learn mostly a model of the
directional array response to infer location. Such conditions of
up to two simultaneous foreground sound events of interest at
differing directions and at 1–2 m away from the listener, in the
presence of reverberation and low background noise can still
occur frequently in real-life, but they are, of course, only a subset
of real spatial sound scenes and of the associated challenges for
SELD systems. Most of these considerations were addressed
in the recent dataset for the new DCASE2020 challenge [55].
A significant advance is the introduction of reverberant moving
sources, still based on captured RIRs from real spaces [55], [56].
Moreover, ambient noise occurs at varying levels, reverberant
conditions are stronger and more varied, and event locations do
not occur in a sparse regular grid but can vary more or less con-
tinuously. Hence, after DCASE2019 confirmed that informed
engineering can solve the SELD task successfully under the
restricted conditions of its dataset, the DCASE2020 challenge
focuses on presenting more challenging evaluation conditions
closer to reality.

It should be pointed out that a rigorous analysis of the metrics
and of their accuracy, consistency, and behaviour in general is
still open and remains a topic for future work. It should be also
emphasized that until such work has been done, the proposed
results should be seen as empirical; they are based on observation
and on correlating the proposed performance measurements
with the expected behaviour of the measured systems. Similar
empirical results were obtained in a second setting in [44],
where a learning-based SELD system was measured while it
was trained, with all scores increasing in accordance with its
optimization objective.

VI. CONCLUSIONS AND FUTURE WORK

This work presented and analyzed the submissions of the
DCASE2019 SELD challenge, with a discussion on general and
individual characteristics of the systems, how those reflected on
their performance, and a comprehensive evaluation. This first
challenge revealed a strong community focused on the joint
localization and detection, coming both from the audio machine
learning and the array signal processing fields. Compared to
the few related studies before the challenge, the participants
demonstrated strong advances in terms of SELD modeling,
engineering, and in terms of raw performance. The majority
of submissions surpassed the baseline with a large margin and
the best ones reached almost perfect localization and detection
scores.

Taking into account the advances in the recent DCASE2020
SELD challenge, we can envision some of the challenges in a
SELD task that have not been addressed yet. In terms of the
spatial properties of the scene, two points not addressed yet

are moving receivers (together with moving sources) and di-
rectional interferences which represent clearly localized sounds
of unknown types. Both of these properties are expected to
be introduced in the upcoming challenges, after DCASE2020.
Beyond spatial characteristics, an evolution of the challenge and
its datasets would consider the overall spatiotemporal scene con-
sistency. At the moment events are randomly chosen and spatial-
ized. A realistic scene generator should spatialize events that fit
a given space at their most probable locations, while respecting
real-life co-occurence probabilities. Such consistency between
space, sound source locations, respective sound emitting actions,
and the sound events associated with all the above remains a
topic for future research.
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