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Adaptive Convolution for Semantic Role Labeling
Kashif Munir, Hai Zhao, and Zuchao Li

Abstract—Semantic role labeling (SRL) aims at elaborating
the meaning of a sentence by forming a predicate-argument
structure. Recent researches depicted that the effective use of
syntax can improve SRL performance. However, syntax is a
complicated linguistic clue and is hard to be effectively applied in
a downstream task like SRL. This work effectively encodes syntax
using adaptive convolution which endows strong flexibility to
existing convolutional networks. The existing CNNs may help in
encoding a complicated structure like syntax for SRL, but it still
has shortcomings. Contrary to traditional convolutional networks
that use same filters for different inputs, adaptive convolution
uses adaptively generated filters conditioned on syntactically-
informed inputs. We achieve this with the integration of a filter
generation network which generates the input specific filters. This
helps the model to focus on important syntactic features present
inside the input, thus enlarging the gap between syntax-aware
and syntax-agnostic SRL systems. We further study a hashing
technique to compress the size of the filter generation network for
SRL in terms of trainable parameters. Experiments on CoNLL-
2009 dataset confirm that the proposed model substantially
outperforms most previous SRL systems for both English and
Chinese languages.

Index Terms—Semantic role labeling, argument identification,
argument classification, adaptive convolution, semantic parsing.

I. INTRODUCTION

SEMANTIC role labeling (SRL), also known as shallow
semantic parsing, conveys the meaning of a sentence by

forming a predicate-argument structure for each predicate in
a sentence, which is generally described as the answer to the
question ”Who did what to whom, where and when?”. The
relation between a specific predicate and its argument provides
an extra layer of abstraction beyond syntactic dependencies
(subject and object) [1], such that the labels are insensitive
to syntactic alternations and can also be applied to nominal
predicates. Given a sentence in Figure 1, SRL pipeline frame-
work consists of 4 subtasks, including predicate identification
(makes), predicate disambiguation (make.02), arguments iden-
tification (Someone) and arguments classification (Someone
is A0 for predicate makes). SRL is a core task of natural
language processing (NLP) having wide range of applications
such as neural machine translation [2], information extraction
[3], question answering [4], [5], emotion recognition from text
[6], document summarization [7] etc.
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Fig. 1. Semantic role labeling example.

Semantic role labeling can be categorized into two cate-
gories, span and dependency. Both types of SRL are useful for
formal semantic representations but dependency based SRL
is better for the convenience and effectiveness of semantic
machine learning. Johansson and Nugues [8] concluded that
the best dependency based SRL system outperforms the best
span based SRL system through gold syntactic structure trans-
formation. The same conclusion was also verified by Li et
al. [9] through a solid empirical verification. Furthermore,
since 2008, dependency based SRL has been more studied as
compared to span based SRL. With this motivation, we focus
on dependency based SRL, which is mainly popularized by
CoNLL-2008 and CoNLL-2009 shared tasks [10], [11].

The traditional approaches to SRL focus on feature engi-
neering which struggles in apprehending discriminative infor-
mation [12], [13] while neural networks are proficient enough
to extract features automatically [14], [15]. Specifically, since
large scale empirical verification of Punyakanok et al. [16],
syntactic information has been proven to be extremely ben-
eficial for SRL task. Later works [17], [18], [19] achieve
satisfactory performance for SRL with syntax-agnostic models
which creates conflict with the long-held belief that syntax is
essential for high-performance SRL [20]. The study of Li et al.
[21] shows that the empirical results from neural models on
the less importance of syntax indicate a potential challenge
and despite the satisfactory performance of syntax-agnostic
SRL systems, the reasons behind the absence of syntax in
these models are three-fold. First, the effective incorporation of
syntax in neural SRL models is quite challenging as compared
to traditional approaches. Second, neural SRL models may
cover partial syntactic clues more or less. Third, syntax has
always been a complicated formalism in linguistics and its
not easy to encode syntax for later usage. Recently, many
works have been published for the effective incorporation of
syntax in SRL systems. Qian et al. [22] propose syntax aware
long short term memory (LSTM) to directly model complex
syntax parsing information in an architecture engineering way
to enhance SRL performance. Similarly, Marcheggiani and
Titov [23] present a syntactic graph convolutional neural
network (GCNN) based model for SRL to further enhance
the performance. Given the experimental facts that syntax
can alleviate SRL performance if incorporated effectively in
the neural model, we seek to effectively model complex
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dependency parsing information in a neural model.
Furthermore, neural networks involving convolution neural

networks (CNNs) have shown remarkable achievements in
different fields of NLP [24], [25], [26], [27], [28]. The driving
force behind CNNs is the use of a convolution operation
to screen the local information present in the inputs (either
directly from the text or from intermediate hidden states of
neural networks) by using a set of filters. Convolutional filters
are like a pool of questions that ask for the intensity of
particular patterns in the inputs and the convolution operation
helps in retrieving the answers from the inputs to the questions.
However, if the pool of questions is limited to a particular con-
cept related to inputs, the convolution operation will be able
to provide more concentrated answers related to questions.
Contrarily, typical CNN architectures use the same set of filters
under all circumstances [24], [26], which may stymie CNNs
from leveraging the information from the intermediate hidden
states and focus the concentration on disentangling uncertainty.

Motivated by this, we present an adaptive convolution for
SRL which allows the network to utilize the syntax informa-
tion they have in the inputs. The adaptive convolution uses
the dynamically generated filters (questions) conditioned on
inputs. We first encode the sentence using BiLSTM and Tree-
Structured LSTM [21], [29] to model the syntactic information
for SRL and then encoder output is fed into a filter genera-
tion network, a carefully designed modular network, which
generates filters conditioned on syntactically-informed inputs
for convolution operation [30]. The generated filters reflect
the syntax information present in the inputs and allow the
model to focus on important informative features encoded
by BiLSTM and Tree-LSTM encoders. The filter generation
network can be easily applied to existing CNN architectures.
We further investigate a hashing technique that helps in the
compression of the filter generating network to allow the
adaptive convolution operation without a considerable increase
in the number of parameters. Our major contributions are:
• A neural framework for SRL which effectively integrates
the syntactic information of text.
• The integration of adaptive convolution in SRL model which
helps the model to focus on important informative features
encoded by LSTM and Tree-LSTM, and at the same time
gives stronger flexibility to existing CNNs.
• The detailed study of a hashing technique to apply adaptive
convolution without a considerable increase in the number of
trainable parameters.
• The proposed model outperforms most previous SRL ap-
proaches on CoNLL-2009 English and Chinese datasets.

II. RELATED WORK

Semantic role labeling was pioneered by Gildea and Juraf-
sky [1]. In early days of SRL research, a substantial attention
has been paid to featured engineering [12], [31], [32], [33],
[13], [34], [35], [36]. Pradhan et al. [12] deploy the SVM
classifier and combine features from different syntactic parses,
while Zhao et al. [13] use sets of language-specific features for
SRL task. Li et al. [34] integrate features driven from verbal
SRL architecture. Björkelund et al. [35] propose a beam search

in the first stage of their system to label arguments, reranker
in the second stage and then combine these scores in the third
stage to label arguments for each predicate.

Yang and Zong [37] learn generalized feature vectors for
arguments with a strong intuition that arguments occurring in
the same syntactic positions bear the same syntactic roles. Che
et al. [38] use a hybrid convolution tree kernel to learn link
feature between argument and predicate and syntactic structure
features to perform SRL task. Li and Zhou [39] present a
unified framework for SRL for verbal and nominal predicates.
Yang et al. [40] use Bi-directional Projection (BDP) method
to perform bilingual semantic role labeling.

With the recent success of neural networks [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50], a number of neural
network based SRL systems have been proposed [51], [52],
[53], [54], [55]. Foland and Martin [56] use a convolutional
and time-domain neural network to develop a semantic role
labeler. FitzGerald et al. [57] present a neural network to
jointly embed arguments and their semantic roles, akin to
the work [58] which presents a tensor based approach to
induce compact feature representation of the words and their
corresponding relations.

Recently, many researchers proposed syntax agnostic mod-
els for SRL [17], [18], [59], [60], [9] and achieve favorable
results without using syntax. Cai et al [60] use a biaffine atten-
tion model to propose a full end-to-end syntax agnostic model
for SRL. While researchers have been able to produce satis-
factory results without syntax, many efforts have been made to
effectively integrate syntax in SRL systems. Roth and Lapata
[61] modeled the syntactic information through dependency
path embeddings to achieve notable success. Marcheggiani and
Titov [23] deployed a graph convolutional neural network,
while Qian et al. [22] used SA-LSTM to encode syntactic
information in sentences. Li et al [21] presented various ways
of deploying syntactic information and concluded that the
effective integration of syntax can boost SRL performance.

In this work, we follow Li et al [21] to integrate syntax
information by using a modified version of Tree LSTM. Owing
to the recent success of CNNs in NLP [24], [62], [25], we
integrate adaptive convolution via a filter generation network
in our SRL model. The ability of the filter generation network
to produce filters conditioned on inputs allows the model to
extract important syntactic features encoded by BiLSTM and
Tree-LSTM encoder. We further study the effect of a hashing
technique on the compression of a filter generation network
in terms of trainable parameters.

III. METHODOLOGY

Figure 2 shows the complete architecture for SRL. Since
predicates are already identified in CoNLL-2009 shared task,
we focus on the identification and labeling of arguments which
can be defined as a sequence tagging problem. Our SRL
consists of two main modules: 1) Sentence encoder. 2) Filter
generation network. In section III-A, we explain the encoder,
in section III-B, how to generate filters with a filter generation
network and in section III-C, how to use generated filters for
adaptive convolution.
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Fig. 2. Proposed SRL framework.

A. Sentence Encoder

Word representation: Following the previous convention
[23], we consider predicate-specific word representations for a
given sentence and a known predicate. Each word representa-
tion xi is formed by a concatenation of several features: 1) a
randomly initialized embedding xri . 2) a randomly initialized
lemma embedding xli. 3) a pre-trained embedding xpi . 4) a
POS tag embedding xPOS

i . 5) a predicate related information
feature xfi which is typically a flag {1,0} indicating if a
particular word is a predicate or not. 6) Embedding from
language model ELMO [63]. The final word representation
will be: xi = [xri , x

l
i, x

p
i , x

POS
i , xfi , ELMoi].

BiLSTM encoder: Given an input sequence x =
(x1, x2, ..., xm) where m is the length of a sequence, we
apply bidirectional long short term memory (BiLSTM) [64] to
encode a sequential input. At each time step t, we concatenate
two hidden states from BiLSTM to get vt.

←−vt =
←−−−−
LSTM(xt,

←−−vt−1),
−→vt =

−−−−→
LSTM(xt,

−−→vt+1)

vt = [←−vt ;−→vt ] (1)

The resulting vt becomes an input to the next BiLSTM layer.
We stack four layers of BiLSTM.

Syntactic encoder: For effective integration of syntax in the
model, we follow Li et al. [21] and integrate Tree LSTM in our
model. Tree LSTM is an extended version of standard LSTM
and focuses on modeling tree-structured topologies. This Tree
LSTM is an adaption from original Child-Sum Tree LSTM,
in which a single forget gate is assigned to each child unit.
It takes arbitrarily many child units into account and utilizes
them to compose input vectors and hidden states at each time
step. For a given syntactic tree, if nk denotes a current node,
C(k) a set of its children and L(k, .) a set of dependency
relations between nk and those nodes having a connection
with nk, the Tree LSTM formulation is as follows:

rk,jg = σ(W (r)vk + U (r)hj + bL(k,j)),

h̃k =
∑

j∈C(k)

rk,jg � hj (2)

ig = σ(W (i)vk + U (i)h̃k + b(i)),

f (k,j)g = σ(W (f)vk + U (f)hj + b(f)),

og = σ(W (o)vk + U (o)h̃k + b(o)),

u = tanh(W (u)vk + U (u)h̃k + b(u)),
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ck = ig � u+
∑

j∈C(k)

f (k,j)g � cj ,

hk = og � tanh(ck) (3)

where hj represents the hidden state of the j-th child node,
ck represents a memory cell for the head node k and bL(k,j) is
a bias term related to relation label. The output of Tree LSTM
hk is fed into a filter generation network.

B. Filter generation network

The filter generation network takes the output of syntactic
encoder H = [h1, h2, ..., hm] as the input, where hk ∈ IRd

is a vector of dimension d at the kth position in the input.
The first convolution block takes syntactic encoder’s output
as input and produces an output with a dimension equal to
the number of filters used in that particular convolution block,
which becomes an input to the next convolution block and so
on. The output of the filter generation network is n number
of convolution filters F = [f1, f2, ..., fn] for each hk, where
fi ∈ IRs.d and s being the filter size.

The filter generation network produces filters in two steps:
context vector generation and filter generation. The context
vectors are generated with the help of a self-attention mecha-
nism and then the filters are generated adaptively from these
context vectors.

Context vectors generation: Before generating filters, each
hk is self-attended using a special case of self-attention [65].

C = aj .hj s.t j ∈ (1,m),

aj =
exp q>hj∑m

k=1 exp(q
>hk)

(4)

where q represents a query vector and is trainable. C contains
a context vector ck for each hk and now trainable filters can
be generated for each context vector.

Filter generation: Once we obtain context vectors by at-
tending the hidden states of syntactic encoder, the filters F

are generated by a function of C:

F = f(C) (5)

To train the existing CNNs after the addition of the filter gener-
ation network in an end to end fashion we need an architecture
whose gradients are differentiable and can be back-propagated.
For this purpose, we first use a fully connected layer and then
generate filters by using two approaches: full generation and
hashed generation. All the filters in F are generated in the
same manner, so here we will explain the procedure for one
filter fi for one context vector ck.

Full generation: A simple way is to use the output of a fully
connected layer as a filter. The layer takes ck as input and
generates a filter fi as follows:

fi =Wick (6)

where Wi ∈ IR(s.d)×g is a weight matrix for the generation of
the i-th filter. g is the dimension of a context vector ck.

Σ* =

*

*

ck pi,j H j

f i

W i,j

Fig. 3. Procedure for generating each filter fi. Hj outputs the component
filter by looking up the shared pool E according to the bucket index produced
by Dj .

Hashed generation: The main issue with the full generation is
that the number of parameters in Wi will increase quadratically
between the size of ck and the filter size and will cause
memory issue in training deep adaptive convolution with full
generation method. To address this issue, we use a hashing
trick [30] which requires a fraction of important parameters
for training. The idea of hash generation is similar to hash
embeddings [66], which computes the word embeddings with
a weighted sum of component embeddings from a shared
pool. Similarly to hash embeddings, we generate filter fi by
a weighted sum of component filters from a shared pool.
The shared pool E ∈ IR(l)×s.d comprises of l number of
component filters and is trainable. By using predefined hash
functions, we select z component filters from the shared pool
and then fi is generated by a weighted sum of z selected
component filters. We explain the generation of fi step by
step as follows:

1) By using z different functions (H1,H2, ..,Hz), we
select z component filters from a predefined shared pool
E.

2) The selected component filters in step 1 are com-
bined as a weighted sum: fi =

∑z
j=1 pi,jHj(f̂i).

(pi,1, .., pi,z)
> ∈ IRz are known as importance pa-

rameters for fi to determine the weight of a linear
combination. To ensure that importance parameters are
input-specific, we control pi,j as follows:

pi,j = wi,j
>ck (7)

where wi,j ∈ IRg is a vector to generate pi,j from a
context vector.

The overall generation of a filter fi can be denoted in vector
notation as follows:

pi,j = (pi,1, .., pi,z)
>, H = (H1, ..,Hz)

>, fi = p>i,jH (8)

H represents ID to component filter function for gener-
ating component filters from filter IDs f̂i and is defined as
Hj = EDj(f̂i)

, where f̂i represents the ID of the filter.
Dj : {1, .., z} → {1, .., l} is a hash function, which takes the
filter ID as an input and produces a bucket index in {1, 2, .., l}.
The row of bucket index in E will be the component filter.
The procedure is shown in Figure 3.

Based on the above description, we require the following
for each filter generation:

1) A trainable shared pool matrix E ∈ IR(l)×s.d, where
each row represents a component filter.
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2) A weight matrix Wi,j ∈ IRg×z to create importance
parameters conditioned on inputs.

3) z different functions (H1,H2, ..,Hz), each uniformly
assigning one of the l component filters to each fi.

The number of parameters required for the generation of
each filter will be z ∗ g because we use z number of pi,j .
We can achieve fairly good performance by choosing a small
value of z. In this particular setting, we use 5 importance
parameters. This helps in a drastic reduction in the number of
trainable parameters as compared to the full generation method
which requires s ∗ d ∗ g number of parameters for each filter
generation. The extra parameters in hash generation come from
a shared pool E but its portion is relatively small because the
component filters in E are shared across all the filters and its
size l can be set to a moderate value (we use l = 20).

Algorithm 1: Forward propagation of proposed SRL
model.

Input : Sentence, predicate, POS tags, dependency
tree T.

Output: SRL label
x← [xr, xl, xp, xPOS , xf , ELMo]
for each epoch do

v ← BiLSTM encoder(x)
H ← syntactic encoder(v)
for each hi in H do

for For each convolution block in CNNs do
ci ← context vector generation(hi)
F ← filter generation(ci)
O ← convolution(hi,F)

convolution to hi with F

O ← max pooling(O)
hi ← O

SRL labels ← MLP(softmax(H))

C. Adaptive convolution

The filter generation network takes an input from the
previous convolution block and produces an output except
for the first convolution block which takes the output of the
syntactic encoder as an input. The input-related generated
filters are used by the adaptive convolution to produce output.
Specifically, for the j-th position of the input window and filter
fi, the feature oi,j is computed as follows:

oi,j = φ(fi
>hj:j+s−1) (9)

where hj:j+s−1 is the concatenation of the inputs
[hj , hj+1, ..., hj+s−1] and φ is an activation function.
By concatenating features oi,j for all the filters in F for
the j-th position in the window, a position feature oj is
generated and the output for the adaptive convolution will be
O = [o1; o2; ...; om−s+1]. After applying max pooling, it will
become an input to the next convolution block. Algorithm 1
explains the whole procedure.

The output of the convolution operation after max pooling
will be IRn for each ck, where n is the number of filters.
The overall output of the adaptive convolution layer will

be IRm×n. The output of the adaptive convolution layer is
fed into Multi-Layer Perceptron with highway connections
followed by a softmax, resulting in an output distribution over
A argument labels for each token in a sentence (IRm×A).
The MLP consists of 10 layers with ReLU activations. To
maximize the likelihood of labels, we use categorical cross-
entropy as the loss function.

D. Predicate disambiguation:

Although predicates are already identified for each sentence
in CoNLL-2009 dataset, predicate disambiguation is an in-
dispensable task aiming at the identification of a predicate-
argument structure in a particular context. This task is com-
paratively easier to perform, so we use a small portion of
the proposed model for this. Given xi as explained in section
III-A, we remove Tree LSTM and convolution layer, and use
the remaining model for predicate disambiguation.

IV. EXPERIMENTS

Our model1 is experimented on CoNLL-2009 dataset for
both English and Chinese languages. For English pre-trained
embeddings, we use GloVe vectors of 200 dimension [69]. For
Chinese pre-trained embeddings, we train a word2vec model
(200 dimension) using Wikipedia documents [70]. All the
other real vectors are randomly initialized with the Guassian
distribution with a standard deviation of 0.1. The dimension
of lemma embedding is 200, for POS tag embedding is 32 and
for predicate identification flag embedding is 16. Additionally,
the dimension for ELMo2 embedding is 300. To incorporate
the dependency information, we use the officially given parses
in CoNLL-2009 dataset. For hash convolution, the pool size
is 20 and 5 number of importance parameters. We optimize
the model using Adam optimizer [71] with a learning rate of
1e−3 and a batch size of 128. For adaptive convolution, we
deploy three settings for CNNs as follows:
• CNN: We use 100 filters with a window size of 3, 100 filters
with a window size of 4 and 100 filters with a window size
of 5.
• DPCNN: We use 100 filters for each block of convolution,
each having a window size of 3 and depth is kept to 11 for
both English and Chinese datasets.
• DenseCNN: In this scenario, we deploy 75 filters for each
convolution block. The inputs to DenseCNN is padded to a
fixed length.

A. Results

We compare our proposed model with the previously pub-
lished papers on dependency SRL. Noteworthily, our model
performs arguments identification and classification in one
shot. Table I shows the results of our proposed model for
English in domain and out of domain datasets. Our model
outperforms most previous approaches of SRL, including
ensemble models

1The code will be released at https://github.com/kashifmunir92/
adaptiveCNN SRL

2For Chinese, we do not use ELMo embeddings as pre-trained ELMo is
available for English only.

https://github.com/kashifmunir92/adaptiveCNN_SRL
https://github.com/kashifmunir92/adaptiveCNN_SRL
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TABLE I
RESULTS ON THE CONLL-2009 ENGLISH IN DOMAIN (WSJ) DATASET AND ENGLISH OUT OF DOMAIN (BROWN) DATASETS.

System English WSJ English Brown
P R F1 P R F1

Local model
Zhao et al. [32] 86.2 74.6
FitzGerald et al. [57] 86.7 75.2
Roth and Lapata [61] 88.1 85.3 86.7 76.9 73.8 75.3
Marcheggiani et al. [19] 88.7 86.8 87.7 79.4 76.2 77.7
Marcheggiani and Titov [23] 89.1 86.8 88.0 78.5 75.9 77.2
He et al. [67] 89.7 89.3 89.5 81.9 76.9 79.3
Cai et al. [60] 89.9 89.2 89.6 79.8 78.3 79.0
Li et al. [21] 90.3 89.3 89.8 80.6 79.0 79.8
Li et al. [9] 89.6 91.2 90.4 81.7 81.4 81.5
(Ours) SRL-CNN full 90.5 90.7 90.6 82.1 81.6 81.8
(Ours) SRL-CNN hash 90.1 91.0 90.5 82.0 81.5 81.7
(Ours) SRL-DPCNN full 90.2 91.3 90.7 82.9 81.5 82.2
(Ours) SRL-DPCNN hash 91.1 90.2 90.6 82.5 81.3 81.9
(Ours) SRL-DenseCNN full 91.2 90.6 90.9 83.1 82.6 82.8
(Ours) SRL-DenseCNN hash 90.6 90.8 90.7 82.8 81.1 81.9
Global model
Björkelund et al. [68] 88.6 85.2 86.9 77.9 73.6 75.7
FitzGerald et al. [57] 87.3 75.2
Roth and Lapata [61] 90.0 85.5 87.7 78.6 73.8 76.1
Ensemble model
FitzGerald et al. [57] 87.7 75.5
Roth and Lapata [61] 90.3 85.7 87.9 79.7 73.6 76.5
Marcheggiani and Titov [23] 90.5 87.7 89.1 80.8 77.1 78.9

TABLE II
RESULTS ON THE CONLL-2009 CHINESE TEST DATASET.

System Chinese test dataset
P R F1

Local model
Marcheggiani et al. [19] 83.4 79.1 81.2
Marcheggiani and Titov [23] 84.6 80.4 82.5
He et al. [67] 84.2 81.5 82.8
Cai et al. [60] 84.7 84.0 84.3
Li et al. [21] 84.8 81.2 83.0
(Ours) SRL-CNN full 83.4 83.6 83.5
(Ours) SRL-CNN hash 83.3 83.1 83.2
(Ours) SRL-DPCNN full 84.0 83.6 83.8
(Ours) SRL-DPCNN hash 83.9 83.5 83.7
(Ours) SRL-DenseCNN full 84.7 85.1 84.9
(Ours) SRL-DenseCNN hash 84.5 84.7 84.6
Global model
Björkelund et al. [35] 84.2 75.1 78.6
Roth and Lapata [61] 83.2 75.9 79.4

For English, SRL-DenseCNN with full generation technique
of filter generation network gives the best results in terms of
F1 score and precision, while SRL-DPCNN full yields the best
recall. We outperform syntax-agnostic model of Li et al. [9]
and syntax aware model of Li et al. [21] by a margin of 0.5%
and ∼1.1% respectively. The same version of the proposed
model also performs best on English out of domain dataset,
outperforming Li et al. [21] and Li et al. [9] by a margin of
3% and 1.3% respectively, affirming the ability of the proposed
model to learn and generalize the latent semantic preferences
present in the data.

Table II shows the results of our model on CoNLL-2009
Chinese test dataset. Except for the use of ELMo, we use the
same parameters while training the model on Chinese dataset.
The results depict that the model overwhelmingly surpasses
the previous best performing models, visualizing the proposed

model as robust and not sensitive to parameters selection. For
Chinese, our model surpasses Li et al. [21] by a margin of
1.9%.

We further investigate the effects of hash generation setting
on the overall performance of SRL. Figure 4 and 5 show
how SRL score changes with the number of importance
parameters and hash pool size. Figures depict that increasing
the number of importance parameters and hash pool size
does not guarantee a performance boost, however increasing it
beyond a certain threshold can affect the model performance.
The optimal value of importance parameter is 5 and for hash
pool size is 20. These findings also confirm that there may
exist many redundant parameters in deep neural networks
and we can improve the model training speed by selecting
important parameters without hurting the model performance.
The difference between full and hash generation techniques
is less than 0.3%. The full generation method performs better
than the hash generation method as depicted in the results. But
the hash generation method is efficient than the full generation
in terms of the model size. Results of the proposed model
on both in domain and out of domain datasets show the
effectiveness and learning capability of the model.

B. CoNLL-2008 SRL setting

CoNLL-2009 includes gold predicates beforehand, but pred-
icate identification is an indispensable task for a real-world
SRL system. Thus, we use our model for predicates identifica-
tion and disambiguation as well and evaluate the performance
on CoNLL-2008 dataset. Specifically, we use our same model
as explained in Section III to identify and label predicates.
The training scheme remains the same except that we remove
the predicate identification flag from the input, while in
inference, we perform an additional procedure to identify all
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TABLE III
RESULTS ON THE CONLL-2008 ENGLISH IN DOMAIN (WSJ) DATASET AND ENGLISH OUT OF DOMAIN (BROWN) DATASET.

System English WSJ English Brown
P R F1 P R F1

Johansson and Nugues [8] 81.7 69.0
Zhao et al. [32] 82.1
Zhao et al. [36] 82.5
He et al. [67] 83.9 82.7 83.3
Li et al. [9] 84.5 86.1 85.3 74.6 73.8 74.2
(Ours) SRL-CNN full 85.6 84.4 85.0 74.2 73.8 74.0
(Ours) SRL-CNN hash 84.5 85.3 84.9 73.9 73.5 73.7
(Ours) SRL-DPCNN full 85.0 85.4 85.2 74.3 73.9 74.1
(Ours) SRL-DPCNN hash 84.4 84.2 84.3 73.5 74.3 73.9
(Ours) SRL-DenseCNN full 85.8 84.4 85.1 74.6 74.8 74.7
(Ours) SRL-DenseCNN hash 84.8 84.6 84.7 74.0 74.4 74.2

2 3 4 5 6 7 8 9
number of importance parameters

89.75

90.00

90.25

90.50

90.75

91.00

F 1
 sc
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e
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SRL-DenseCNN

Fig. 4. F1 on English test dataset for different number of importance
parameters.
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e
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Fig. 5. F1 on English test dataset for different hash pool sizes.

the predicates in a given sentence. The arguments labeling is
done in a similar way as in CoNLL-2009 setting.

The overall results on English in-domain (WSJ) and out-of-
domain (Brown) test sets are shown in Table III. On English
in-domain test set, our SRL-DPCNN full gives F1 score of
85.2% which is comparable with the best performing model
of Li et al. [9] (85.3% F1). On English out-of-domain test set,
our SRL-DenseCNN full gives the best performance (74.7%
F1).

C. Ablation study

We perform a series of ablation studies on CoNLL-2009
English test dataset to analyze the model.

TABLE IV
∆F1 REPRESENTS THE PERFORMANCE DIFFERENCE BETWEEN SYNTAX

AWARE AND SYNTAX AGNOSTIC MODELS.

System w/o syntax with syntax ∆F1

Marcheggiani and Titov [23] 87.7 88.0 0.3
He et al. [67] 88.7 89.5 0.8
Cai et al. [60] 89.6 89.6 0
Li et al. [21] 88.7 89.8 1.1
Li et al. [9] 90.4 90.4 0
Ours SRL-DenseCNN full 90.0 90.9 0.9

TABLE V
ABLATION STUDY TO COMPARE THE EFFECTS OF ADAPTIVE

CONVOLUTION IN SRL SYSTEM.

Our system P R F1

Ours (syntax-agnostic) 90.7 89.3 90.0
w/o adaptive convolution 90.0 87.8 88.9
Ours (with GCN) 90.2 88.6 89.9
Marcheggiani and Titov [23] 89.1 86.8 88.0
SRL-DenseCNN full 91.2 90.6 90.9

Word representation: To interpret the importance of word
embedding learned by our model, we carry out experiments
with different input settings. Table VI shows how our model
performs without POS tags information, ELMo embeddings,
lemma embeddings (xl), pre-trained embeddings (xp) and
randomly initialized embeddings (xr). The effect of POS tags
on the overall performance of our model is 0.8% in terms of F1

score, which is still better than most of the previous approaches
published. The absence of ELMo embedding degrades the
performance by 1.2%. However, the absence of one of the
randomly initialized lemma and word embeddings and pre-
trained word embeddings has comparatively less impact on
the overall performance of our model. These results depict
that the presence of these features can enhance the overall

TABLE VI
ABLATION STUDY ON CONLL-2009 ENGLISH TEST DATASET.

Our system P R F1

SRL-DenseCNN full 91.2 90.6 90.9
w/o POS tags 91.1 89.2 90.1
w/o ELMo embedding 90.5 88.9 89.7
w/o randomly initialized (xr) 91.2 90.2 90.7
w/o pre-trained (xp) 91.1 89.9 90.5
w/o lemma (xl) 90.0 91.4 90.7
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Fig. 6. F1 on English test dataset with different number of filters, x-axis is
in logarithmic scale.
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Fig. 7. F1 on English test dataset for different depths.

SRL performance but our model still provides comparatively
better results even in the absence of these features.

Adaptive vs non-adaptive convolution: To verify the effec-
tiveness of adaptive convolution, we compare its performance
with varying number of filters (Figure 6) and depths (Figure 7).
We further show how the performance varies if we replace
adaptive convolution with non-adaptive convolution where fil-
ters are not generated dynamically based on the inputs. As can
be observed in Figure 6, adaptive CNN provides a performance
stability for different number of filters as compared to non-
adaptive CNN. Furthermore, the performance of non-adaptive
CNN drastically decreases with less number of filters. The
performance of non-adaptive CNN with 2 filters is 8.3% less
as compared to that with 100 filters. However, the performance
of adaptive CNN with 2 number of filters decreases by 0.7%
only as compared to that with 100 filters.

We see a similar performance variation tendency on depths
as can be seen in Figure 7. The performance of adaptive
DPCNN with depth 3 is only 0.6% less as compared to
non-adaptive DPCNN with the best performing depths. This
confirms that by using dynamically generated filters, our
model can capture the necessary information related to SRL.
Adaptive convolution can extract SRL related features with
only few filters and shallow depths. This also helps in miti-
gating the required effort to tune hyperparameters for adaptive
convolution.

Table VIII shows that the filter generation by using the full
generation method results in a quadratic increase in the num-
ber parameters as compared to the hash generation method.

The number of parameters in the hash generation method
is still larger than that of non-adaptive convolution. But the
performance gain of adaptive convolution over non-adaptive
convolution is not owing to this increase in the number of
parameters. This can be verified by the fact that increasing
the number of filters and depth (for non-adaptive convolution)
beyond a certain value does not have any impact on model
performance. As shown in Figure 6, increasing the number of
filters beyond 100 for non-adaptive CNN does not increase
performance. Similarly, increasing depth beyond 9 for non-
adaptive DenseCNN has no effect on the overall performance
(Figure 7). The performance of non-adaptive DPCNN rather
decreases when depth is increased beyond 10. This validates
that the gain in overall SRL performance is owing to the
effectiveness of adaptive convolution, instead of the increased
number of parameters.

Deep encoding effect: Table IV shows the comparison of our
SRL-DenseCNN full with Marcheggiani and Titov [23], He et
al. [67], Cai et al. [60], Li et al. [21] and Li et al. [9]. The
reported results are on CoNLL-2009 English test dataset under
syntax-aware and syntax agnostic environments. The results
show that our model gives better performance improvement
with the integration of syntax information as compared to the
previous best models.

To further analyze if adaptive convolution helps in the
effective encoding of syntactic information, we compare our
model with three syntax-aware versions. In these experiments,
we use the same encoder as Marcheggiani and Titov [23].
• Our proposed model without adaptive convolution.
• Replace Tree-LSTM with graph convlotion layer (GCN)
as proposed by Marcheggiani and Titov [23] (i.e. essentially
adding adaptive convolution layer above GCN in Marcheggiani
and Titov [23]).
• Replace Tree-LSTM with graph convlotion layer (GCN)
and remove adaptive convolution (i.e. essentially the model
of Marcheggiani and Titov [23]).

The results of these experiments are shown in Table V. As
expected, the removal of the adaptive convolution layer results
in the performance decline by 2.0%. However, the inclusion
of adaptive convolution above GCN in Marcheggiani and
Titov [23] results in their model’s performance improvement
by 1.9%. This performance improvement demonstrates the
effectiveness of adaptive convolution which uses dynamically
generated filters for capturing information that needs to be
disambiguated given the current inputs.

Syntactic input: To investigate how the quality of syntactic
input affects the SRL performance, we use 4 types of syntactic
inputs in our model. 1) predicated parses officially given in
CoNLL-2009. 2) Biaffine parser. 3) BIST parser [72]. 4) gold
parses given in CoNLL-2009 dataset.

For comparison, we use semantic labeled F1 as an evalua-
tion metric for SRL performance, labeled attachment score
(LAS) to quantify parse quality and Sem-F1/LAS as an
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TABLE VII
RESULTS ON THE CONLL-2009 ENGLISH TEST DATASET FOR LABELED ATTACHMENT SCORE (LAS), PRECISION (P), RECALL (R), SEMANTIC LABELED

SCORE (F1) AND SEM-F1 / LAS RATIO. WE USE OUR SRL-DENSECNN full MODEL FOR COMPARISON.

System LAS P R Sem-F1 Sem-F1/ LAS
Zhao et al. [33] [SRL-only] 86.0 85.4 99.3
Zhaoet al. [13] [Joint] 89.2 86.2 96.6
Björkelund et al. [68] 89.8 87.1 84.5 85.8 95.6
Lei et al. [58] 90.4 86.6 95.8
Roth and Lapata [61] 89.8 88.1 85.3 86.7 96.5
Marcheggiani and Titov [23] 90.34 89.1 86.8 88.0 97.41
He et al. [67] [CoNLL-2009 predicted] 86.0 89.7 89.3 89.5 104.0
He et al. [67] [Gold syntax] 100 91.0 89.7 90.3 90.3
Li et al. [21] [CoNLL-2009 predicted] 86.0 90.5 88.5 89.5 104.7
Li et al. [21] [Gold syntax] 100 91.0 90.0 90.5 90.50
Ours [CoNLL-2009 predicted] 86.0 91.2 90.6 90.9 105.6
Ours [CoNLL-2009 Biaffine parser] 90.22 91.3 90.7 91.0 100.9
Ours [BIST parser] 90.05 91.1 90.8 90.9 101.0
Ours full [Gold Syntax] 100 91.4 91.0 91.2 91.2

TABLE VIII
NUMBER OF PARAMETERS IN EACH MODEL. THE INPUT EMBEDDINGS ARE

NOT INCLUDED IN THE PARAMETERS COUNT.

CNN DPCNN DenseCNN
Non-adaptive 0.6M 3.5M 2.7M
Hashed generation 12.9M 45M 77M
Full Generation 316.7M 320.4M 383.3M

TABLE IX
RESULT WITH DIFFERENT PRETRAINED LANGUAGE MODELS.

System P R F1

SRL-DenseCNN hash 90.6 90.8 90.7
BERTBASE 91.2 90.4 90.8
BERTLARGE 91.1 90.9 91.0
XLNETBASE 90.7 91.3 91.0
XLNETLARGE 91.5 90.9 91.2

additional metric for comparison as given by CoNLL-2008
shared task3 [10].

Table VII shows that the performance of our model is quite
stable with the varying quality of syntactic parses. Secondly,
the ratio F1/LAS decreases with the increasing quality of the
syntactic parse. Thirdly, when LAS reaches 100% for syntactic
parse, F1/LAS ratio of our model becomes 91.2%, advocating
the strength of our model. The last conclusion to be drawn
from the comparison is that the high quality syntax information
can boost SRL performance which lines up with the conclusion
drawn by Li et al. [21] and He et al. [18].

Replacing ELMo with other language models: Lastly, we
replace ELMo embeddings in the input with other pre-trained
language models like BERT [73] and XLNET [74] to see if
our model can achieve further performance improvement. We
use our SRL-DenseCNN hash model for this experiment on
CoNLL-2009 test dataset. The results are shown in Table IX.
Both BERT and XLNET help the model to improve the
performance over ELMo embeddings for the concerned task.
One possible reason behind this improvement is the ability
of BERT and XLNET to provide more accurate context

3CoNLL-2008 task is only for English, while CoNLL-2009 is a multilingual
task. The main difference is that predicates are pre-identified for the latter.

information from the text. Furthermore, XLNET embeddings
help the model to gain 0.5% improvement as compared to
0.3% improvement with BERT embeddings.

V. CONCLUSION

This paper presents a neural framework for semantic role
labeling, effectively incorporating a filter generation network
to extract important syntactic features encoded by BiLSTM
and Tree-LSTM by generating filters conditioned on inputs.
The adaptive convolution endows flexibility to existing con-
volution operations. With the extraction of important syntax
information, we are able to enlarge the gap between syntax
aware and syntax agnostic SRL systems. We further study
a hashing technique which drastically decreases the size of
the filter generation network. Lastly, we explore the effects
of syntax quality on SRL systems and conclude that the high
quality syntax can improve SRL performance. Experiments
on CoNLL-2009 dataset validate that our proposed model
outperforms most previous SRL systems for both English and
Chinese languages.
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