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Generating Images from Spoken Descriptions
Xinsheng Wang, Tingting Qiao, Jihua Zhu∗, Member, IEEE Alan Hanjalic, Fellow, IEEE, Odette Scharenborg,

Senior Member, IEEE

Abstract—Text-based technologies, such as text translation
from one language to another, and image captioning, are gaining
popularity. However, approximately half of the world’s languages
are estimated to be lacking a commonly used written form.
Consequently, these languages cannot benefit from text-based
technologies. This paper presents 1) a new speech technology
task, i.e., a speech-to-image generation (S2IG) framework which
translates speech descriptions to photo-realistic images 2) without
using any text information, thus allowing unwritten languages to
potentially benefit from this technology. The proposed speech-
to-image framework, referred to as S2IGAN, consists of a
speech embedding network and a relation-supervised densely-
stacked generative model. The speech embedding network learns
speech embeddings with the supervision of corresponding vi-
sual information from images. The relation-supervised densely-
stacked generative model synthesizes images, conditioned on the
speech embeddings produced by the speech embedding network,
that are semantically consistent with the corresponding spoken
descriptions. Extensive experiments are conducted on four public
benchmark databases: two databases that are commonly used
in text-to-image generation tasks, i.e., CUB-200 and Oxford-102
for which we created synthesized speech descriptions, and two
databases with natural speech descriptions which are often used
in the field of cross-modal learning of speech and images, i.e.,
Flickr8k and Places. Results on these databases demonstrate
the effectiveness of the proposed S2IGAN on synthesizing high-
quality and semantically-consistent images from the speech sig-
nal, yielding a good performance and a solid baseline for the
S2IG task.

Index Terms—Speech-to-image generation, multimodal mod-
elling, speech embedding, adversarial learning.

I. INTRODUCTION

THE task of conditional image generation is to synthesize
images on the basis of given information, e.g., labels or

descriptions. The development of deep learning and Generative
Adversarial Networks (GANs) [1], [2] brought a revolution
to various computer vision tasks based on conditional image
generation methods, such as image-to-image translation [3],
[4] and facial editing [5], [6]. Recently, many efforts have been
carried out on the task of image generation conditioned on
natural language [7], [8], [9], which allows users to synthesize
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S2IG

“A bird with a bright yellow belly

and gray head with brownish wings”

Fig. 1: Illustration of image generation conditioned on the speech
description. The image is generated by the proposed S2IGAN. Text
is shown only for the convenience of showing the speech content.

images by describing what they want to generate. This task
has potential applications in image retrieval, automated image
editing, and forensics. Typically, natural language-to-image
generation systems use text descriptions as their input. This
is referred to as Text-to-Image Generation (T2IG). We present
a novel natural language-to-image generation task that is not
only based on a spoken description of what needs to be
generated but also bypasses the need for text: Speech-to-Image
Generation (S2IG). Fig. 1 illustrates this new task. This task
is similar to the independently and simultaneously proposed
task of speech-to-image translation task [10].

Our motivation for bypassing text is the fact that an esti-
mated half of the 7,000 world’s languages lack a commonly
used written form [11] (these are so-called unwritten lan-
guages), which makes it impossible for these languages to
benefit from any existing text-based technologies, including
text-to-image generation. The Linguistic Rights as included in
the Universal Declaration of Human Rights state that it is a
human right to communicate in one’s native language. This
right is obviously not achieved for unwritten languages. In the
case of natural language-to-image generation, in order to by-
pass text, this means that a system needs to be developed that
maps spoken descriptions to images without the need for an
intermediate textual representation. Moreover, even though ex-
isting knowledge and methodology make “speech2text2image”
transfer possible, directly mapping speech to images might be
more efficient and straightforward.

Synthesizing plausible images based on spoken descriptions
is a challenging task as the speech signal is a long, continuous
audio signal without spaces between words, i.e., unlike written
text in alphabetical languages such as English. The lack of
word boundaries makes it harder to learn speech embeddings
that capture the details of the semantic information in a stretch
of speech describing an image, e.g., the word-level attention
mechanism in the DAMSM module of AttnGAN [9], a useful
strategy that implicitly connects words to the object regions
in the images for the text-to-image task, cannot be used in a
speech-to-image system. Moreover, the long sequence of the
speech signal requires a speech encoder that is different from a
text encoder. To tackle this challenge, we decompose the task
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of S2IG into two stages, i.e., a speech semantic embedding
stage and an image generation stage. Specifically, we propose a
speech-to-image generation system based on adversarial learn-
ing. This system consists of a Speech Embedding Network
(SEN) trained to obtain speech embeddings by co-embedding
speech and images into a common embedding space, and a
novel Relation-supervised Densely-stacked Generative Model
(RDG), which takes random noise and the speech embedding
as input to synthesize photo-realistic images in multiple steps.
We refer to this model as S2IGAN (Speech-to-Image Gener-
ative Adversarial Network).

In order to generate images directly from the speech signal
bypassing the need for text, specific training material which
consists of speech and image pairs is required. Unfortunately,
no such database, with the right amount of data, exists for any
unwritten language, as unwritten languages are not only low-
resourced but also under-researched. We therefore had to revert
to testing our proof-of-concept S2IGAN model on a well-
resourced, well-researched language for which appropriate
databases do exist, i.e., we used four English benchmark
databases: two databases that are commonly adopted in the
T2IG task, i.e., CUB-200 [12] and Oxford-102 [13], for which
we use synthesized spoken descriptions, and two databases
with real speech descriptions that are often used in cross-
modal speech-to-image retrieval tasks, i.e., Places [14] with
speech descriptions collected by [15] and Flickr8k [16] with
speech descriptions collected by [17]. The benefit of using
English as our working language is that we can compare our
S2IG results to T2IG results, which are primarily based on the
English language, in the literature.

Preliminary work was presented in [18] in which we tested
our model on the synthesized speech databases. Here, we
present a complete description of the model and extensive test-
ing of our model including on real, natural speech. Moreover,
we present a detailed ablation study. The contributions of this
work are as follows:

• We propose S2IGAN which consists of two effective
modules to tackle Speech-to-image generation, i.e., a
Speech Embedding Network which learns discriminative
speech embeddings and a Relation-supervised Densely-
stacked Generative Model generating high-quality images
that are semantically consistent with the input spoken
descriptions.

• Thorough experiments on four benchmark databases
demonstrate that our SI2GAN is a solid baseline for the
S2IG task.

• An extensive ablation study shows that the proposed
speech embedding model, the novel densely-stacked gen-
erator structure, and the proposed relation supervisor in
the generative model are effective, indicating the S2IGAN
is well-designed.

The rest of this paper is organized as follows: Section II
reviews related work. Section III introduces the databases
adopted in this work and describes the proposed approach
in detail. Section IV presents extensive experimental results
and evaluation. The ablation study is also presented here.
Section V discusses the performance and limitations of the

proposed method. Finally, the paper concludes in Section VI.
Examples of the synthesized images and their corresponding
spoken descriptions as well as the synthesized speech caption
databases and the source code of S2IGAN can be found on
the project page1.

II. RELATED WORKS

The development of GANs [1], [19] led to the promotion of
various conditional image generation tasks, of which the text-
to-image generation [7], [8], [9] is most related to our S2IG
task. This section reviews related work on natural language-
to-image generation. Additionally, we review related research
on visually-grounded speech embedding learning, which is an
important part of our S2IGAN. Please note that although our
work is related to existing sound-to-image/video generation
tasks, e.g., voice-to-face inference [20], [21], [22], [23], audio-
driven talking face generation [22], [24], [25], and body
movement generation based on music [26], we will not review
these here because these sound-to-image tasks do not take into
account the semantics in the audio as does our task. We refer
the interested reader to a review of these related studies which
can be found in [27].

A. Natural language-to-image generation

The GAN-based text-to-image model was first introduced
by [28], in which the text descriptions were encoded as vector
representations which were used as input of a conditional GAN
[2]. Since then, many strategies have been proposed to improve
the performance of GAN-based models on the T2IG task [7],
[8], [9], [29].

The stacked structure proposed in [7], [30] showed good
performance in synthesizing high-resolution images and has
been one of the most popular strategies in most recent T2IG
frameworks [8], [29], [31]. In the stacked structure, images are
generated using multiple steps from low-resolution to high-
resolution. T2IG performance using the stacked structure [7]
as the basic structure is further improved [8], [31] by adding a
word-level attention mechanism [9]. Recently, more complex
and effective structures for T2IG were proposed [8], [29], [32],
[33]. For instance, Qiao et al. [8] proposed a model structure
similar to the encoder-decoder, called MirrorGAN that tried to
recover the text descriptions based on the synthesized images
to guarantee semantic consistency between the text description
and generated image. In [29], a Siamese structure was intro-
duced into the T2IG, and it showed that the Siamese structure
trained with contrastive loss can bring clear improvements for
T2IG. To generate more photo-realistic complex images, the
Obj-GANs [33] decomposed the T2IG into two stages: the first
stage generates a semantic layout with bounding boxes, object
shapes, and class labels, and the second stage synthesizes
photo-realistic images.

However, all the natural language-to-image generation re-
search mentioned above is based on written language, i.e., text
descriptions. The task most related to our work is presented in
[10], in which the authors adopted the teacher-student structure

1https://xinshengwang.github.io/projects/S2IGAN/
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to learn speech embeddings and used StackGAN-v2 [7] as the
generator to generate images from the content of the speech
signal. In our work, we will compare our method with this
recently proposed method.

Encouraged by the good performance of the stacked struc-
ture [7], in our S2IGAN, we use a similar stacked generator
structure to synthesize images from coarse to fine. Compared
with the original structure [7], our model is densely-stacked.
Moreover, a relation supervisor to ensure that the generated
images are semantically aligned with the spoken descriptions
is proposed (see Section III for details).

B. Visually-grounded speech embedding learning

Learning an effective speech embedding that carries de-
tailed semantic information is crucial for speech-conditioned
image generation. However, in the speech community, learn-
ing speech embeddings typically uses text transcriptions as
supervisory information [34], [35]. However, as explained, the
S2IG framework does not use textual information. Instead, the
supervisory information consists of the corresponding images
of the speech descriptions. Inspired by human infants’ ability
to learn spoken language by listening and paying attention
to the concurrent speech and visual scenes, several recent
methods [15], [36], [37], [38], [39], [40] have been proposed
to learn speech models grounded by visual information.

Harwath et al. [36] demonstrated that semantic information
can be learned from speech-image pairs without the need for
text. They embedded the global features of speech and images
in a common embedding space. The semantic correspondences
between the images and the spoken descriptions learned by
the model were then evaluated in a cross-modal speech-based
image retrieval task. Adding a self-attention mechanism in
the speech encoder to get speech embeddings was found
to improve performance in a similar cross-modal retrieval
task [37]. Recently, Ilharco et al. [38] trained both an image
encoder and a speech encoder from scratch based on a large-
scale database and showed the best performance on the speech-
image cross modal retrieval task to date.

In this work, we also adopt the visually-grounded method
[36], [37], [38] to learn speech embeddings. Specifically, a
dual encoder framework, which consists of a speech encoder
and an image encoder, is proposed which allows for the
speech encoder and image encoder to be trained in a self-
supervised way with speech caption-image pairs as training
data. With speech as input, the trained speech encoder is
used to extract the speech embeddings. Different from most of
the previously described visually-grounded speech embedding
learning methods in which the traditional triplet loss function
was adopted to train the model [15], [36], [37], [39], [40],
in this work we propose a more effective matching loss
which is similar to the masked margin softmax loss [38]
that can make full use of negative samples within a mini-
batch. Furthermore, previous studies only focused on databases
with scene images, primarily Flickr8k [16], while no fine-
grained image databases, e.g., CUB-200 [12], in which images
from different categories share similar semantics, have been
considered. In this study, in order to learn speech embeddings

TABLE I: Statistics of CUB-200 [12] and Oxford-102 [13]

Database Statistics Training set Test set Total

CUB-200 (Bird) [12] class 150 50 200
image 8855 2933 11788

Oxford-102 (Flower) [13] class 82 20 102
image 7034 1155 8189

of fine-grained image captions, an additional distinctive loss
is designed.

III. SPEECH-TO-IMAGE GENERATION WITH S2IGAN

Given a spoken description of an image, our goal is to
generate an image that is semantically aligned with the content
of the input spoken utterance. To this end, S2IGAN consists
of two modules, i.e., an SEN (see Section III-B) to create
the speech embeddings and an RDG (see Section III-C) to
synthesize the images using these speech embeddings. To train
this model, databases with image-speech pairs are required
(see Section III-A).

A. Databases

1) Synthesised speech caption-image pairs: CUB-200 [12]
and Oxford-102 [13] are two commonly-used databases in
T2IG tasks. Both databases are fine-grained image databases
with corresponding text captions for each image. As shown in
Table I, CUB-200 is a bird database that contains 11,788 bird
images from 200 classes (bird species), while Oxford-102 is
a flower database that contains 8,189 flower images from 102
classes (flower species). Each image in both the CUB-200 and
the Oxford-102 databases has 10 text descriptions. Following
[28], [41], we split the databases into class-disjoint training
and test sets. Specifically, the CUB-200 training set consists of
150 classes, and the test set of 50 classes non-overlapping with
the training classes. Similarly, the Oxford-102 database has
82 training classes and 20 test classes. This class-disjoint split
method requires the model to have the ability to infer unseen
classes based on the knowledge learned from seen classes.
This can be seen as a kind of zero-shot learning, and both
databases with their disjoint classes for training and testing
are commonly used in zero-shot learning of image recognition
[42], [43], [44].

CUB-200 and Oxford-102 do not contain spoken captions.
Spoken captions for the images are obtained using text-to-
speech (TTS) technology. Specifically, we synthesize the spo-
ken captions from the text captions using Tacotron 2 [45] with
WaveGlow [46] which transforms mel-spectrograms to high
quality speech. This TTS system is pre-trained on LJSpeech
[47] which consists of 13,100 short audio clips of a single
speaker reading passages from 7 non-fiction books. The pre-
trained model can be found on Github2, and the synthesized
speech caption databases can be directly downloaded from the
project page1.

2https://github.com/NVIDIA/tacotron2
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Fig. 2: Image examples from Flickr8k.

2) Real speech caption-image pairs: Two databases con-
taining real speech are used: the Places Audio Caption
database [15], [36] and the Flickr8k database [16]. The Places
Audio Caption database is a spoken caption database collected
via Amazon Mechanical Turk. It is a real speech database
that contains spoken captions of images from the Places [14]
image database. The Places Audio Caption database consists
of 403,385 image-caption pairs belonging to 205 scene cate-
gories. In this database, each image has one corresponding
spoken caption. The work by [10], which is most closely
related to our work, uses the Places database. In order to make
a direct comparison with [10] on the task of S2IG, we use the
same subset of the Places database as used in [10]. Specifically,
this subset (referred to as the Places-subset hereafter) consists
of 7 scene categories: bedroom, dinette, dining room, home
office, hotel room, kitchenette, and living room, with a total
of 13,803 image-spoken caption pairs for training and 2,870
image-spoken caption pairs for testing.

Flickr8k [16] is another scene image database. It consists
of 8,000 images that depict a variety of scenes and situa-
tions. Each image is paired with five different text captions
describing the image. The spoken captions were collected by
[17] from Amazon Mechanical Turk workers who were asked
to pronounce the original written captions. The data is split
according to [48], with a training set of 6,000 images and
1,000 images both for the development and test set.

Compared to the Places-subset, Flickr8k is a more chal-
lenging database for the S2IG task. In the Places-subset, each
scene has around 2,000 image-captions pairs, while Flickr8k
does not have defined scene categories, and some images may
contain unique scenes in the database. Fig. 2 shows several
image samples from Flickr8k showing the wide range of
scenes with limited relations between the images. This great
diversity in scenes makes it hard to generate an image given
a new scene description. However, we would like to test our
method on this challenging database, in order to investigate
what can be learned from such a diverse scene image database.

B. The Speech Embedding Network (SEN)

Given an image-speech pair, the SEN tries to find a common
space for the speech and image modalities, so that we can min-
imize the modality gap and obtain visually-grounded speech
embeddings. As shown in Fig. 3, the SEN is a dual encoder

P
re

-t
ra

in
d

In
ce

p
ti

o
n

-V
3

Im
ag

e

F
C

1
-D

 C
N

N

S
el

f-
at

te
n
ti

o
n

h
2

h
t

h
1

…

h
2

h
t

h
1

..
.

Lm Ld

S
p
ec

tr
o
g
ra

m
 o

f 

sp
ee

ch
 d

es
cr

ip
ti

o
n

Embedding space Label spaceBi-directional GRU

…
… …

…

F
C

Image Encoder (IED)

Speech Encoder (SED)

Fig. 3: Framework of the speech embedding network (SEN).

framework, consisting of an image encoder and a speech en-
coder. These two encoders embed the input images and speech
into an embedding space, such that image representations in
this space can be used as supervision information to train the
speech encoder, and vice versa.

The image encoder (IED) adopts the Inception-v3 [49] pre-
trained on ImageNet [50] to extract visual features. On top of
it, a linear layer is employed to convert the visual feature to
a common space of visual and speech embeddings. The input
size of this linear layer is 2048 and the output size in the
common embedding space is 1024. As a result, we obtain an
image embedding x8 which is a 1024-d vector from the image
encoder.

The speech encoder (SED) employs a structure similar
to that of [37]. Specifically, it consists of a two-layer 1-
D convolution block, two bi-directional gated recurrent units
(GRU) [51] and a self-attention layer. The 1-D convolutional
block consists of two 1-D convolutional layers with 40 input,
64 hidden and 128 output channels. The size of the hidden
layer of the bi-directional GRU was 512 and the size of the
output was 1024 by concatenating the bidirectional represen-
tations. Finally, a stretch of speech is represented by a speech
embedding y8 in the common space.

The input of the speech encoder of the SEN are log
Mel filter bank spectrograms, which are obtained from the
speech using 40 Mel-spaced filter banks with 25 ms Hamming
window and 10 ms shift. The final speech embedding y8 is
computed by the self-attention module via a weighted sum
over all the hidden states of the GRU. First, the attention vector
wC of each hidden state hC is calculated by

wC = softmax (W2 tanh (W1hC + b1) + b2) , (1)

where W8 and b8 are weights and biases in linear transformers.
The unit numbers of W1 and W2 are 128 and 1024 respec-
tively. The speech embedding yi is then obtained via the sum
over the Hadamard product between all hidden nodes and their
corresponding attention vectors:

yi =
∑
C

wC ◦ hC . (2)

1) Objective Function: To minimize the distance between
a matched image and speech feature pair, a matching loss is
defined. Moreover, for the fine-grained databases, maintaining
the discrimination between embeddings of different classes
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(e.g., bird species) is important. To this end, a distinctive loss
is proposed for the fine-grained databases. Thus, the total loss
for the fine-grained databases consists of the matching loss
and the distinctive loss, while the total loss for the other two
databases consists only of the matching loss.

Matching loss is designed to minimize the distance of a
matched image-speech pair. Specifically, in a batch of image-
speech embedding pairs {(x8 , y8)}=8 , where = is the batch size,
the probability for the speech embedding y8 matching with the
image embedding x8 is

% (x8 |y8) =
exp (V( (y8 ,x8))∑=

9=1 M8, 9 exp
(
V(

(
y8 ,x 9

) ) , (3)

where V is a smoothing factor, and set to 10 following [9].
( (y8 ,x8) is a cosine similarity score of y8 and x8 . As in a
mini-batch, we only treat (x8 , y8) as a positive matched pair,
therefore we use a mask M8, 9 ∈ R=×= to deactivate the effect
of pairs from the same class. Specifically,

M8 9 =

{
0, if y8 matches x 9 & 8 ≠ 9 ,

1, otherwise , (4)

where y8 matches x 9 means they come from the same class
(for the fine-grained databases), or the caption is one of the
image’s captions (for Place-subset and Flickr8k). The loss
function is then defined as the negative log probability of
% (x8 |y8):

Ly−x = −
=∑
8=1

log% (x8 |y8) . (5)

Reversely, we can also calculate Lx−y for x8 matching y8 .
Then the matching loss is calculated as

L< = Ly−x + Lx−y . (6)

Distinctive loss is designed to ensure that the space is
optimally discriminative regarding the instance classes, i.e.,
ensuring that the learned embeddings can distinguish between
different classes (e.g., bird species). Here, we take the classi-
fication objective function as the distinctive loss. Specifically,
with 5 (.) representing a linear transformer that transfers both

speech and image embeddings in the common embedding
space to a label space, in which the representation of an image
or a stretch of speech represents the probability distribution
for each class label, i.e., x̂8 = 5 (x8) and ŷ8 = 5 (y8), where
x̂8 , ŷ8 ∈ R# and # is the number of classes. The loss function
is given by

L3 = −
=∑
8=1

(
log %̂ (28 |ŷ8) + log %̂ (28 |x̂8)

)
, (7)

where %̂(28 |ŷ8) and %̂(28 |x̂8) represent softmax probabilities
for ŷ8 and x̂8 belonging to their corresponding class 28 .

Total loss for training SEN for fine-grained databases is
finally given by

L(�# = L< + L3 . (8)

Since Flickr8k does not contain class information, the dis-
tinctive loss cannot be applied. Places-subset does contain
different scene classes, however, each image is unique and
cannot be described by captions of other images even if they
are from the same scene class (e.g., for CUB-200, two bird
images that belong to the same bird species can be described
by the same caption, because birds from the same class have
the same appearance). Thus for Flickr8K and Places-subset,
the total loss only contains the matching loss:

L(�# = L<. (9)

C. The Relation-supervised Densely-stacked Generative
Model (RDG)

After training the SEN, speech embeddings can be extracted
on the basis of the input speech. Then, we employ the RDG
to generate images conditioned on these speech embeddings.
The RDG consists of two sub-modules: a Densely-stacked
Generator (DG) and a Relation Supervisor (RS). As shown
in Fig. 4, the DG consists of three pairs of generators (see
�0, �1, and �2) and discriminators (see �0, �1, and �2)
for different image scales, and the RS consists of a relation
classifier. The SED and IED are the speech encoder and image
encoder pre-trained in the SEN, respectively. Compared to
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the generative model of StackGAN-v2, the proposed densely-
stacked structure and relation supervisor are the two main
differences. The motivation and details for these proposed
modules are explained in the next two subsections.

1) Densely-stacked Generator (DG): The RDG uses the
multi-step generation structure [7], [8], [29] (see also Section
II-A). In order to create 256× 256 pixel images, this structure
generates images from small scale (low-resolution) to large
scale (high-resolution) in three steps: i.e., following [7], [8],
[29], 64 × 64, 128 × 128, and 256 × 256 pixel images were
generated. In contrast to existing T2IG systems [7], [8], [29],
in which the stacked-generators are stacked in parallel, we
propose a densely-stacked generator structure which allows
the information of the hidden feature (ℎ8) in each step to be
conveyed forward more effectively. With the speech embed-
ding y as input (to avoid confusion with the stage subscript
8, a speech embedding y no longer has the subscript in the
following part), the generated image in each stacked generator
can be expressed as follows:

ℎ0 = �0 (z, �20 (y)) ,
ℎ8 = �8 (ℎ0, . . . , ℎ8−1, �

20 (y)) , 8 ∈ {1, 2} ,
G8 = �8 (ℎ8) , 8 ∈ {0, 1, 2},

(10)

where z is a noise vector sampled from a normal distribution.
ℎ8 is the hidden feature from the non-linear transformation �8 .
ℎ8 is fed to generator �8 to obtain image G8 . Note that ℎ8−1
is not only conveyed to �8 , but also conveyed to �8+1 via the
residual connection that fuses ℎ8−1 with ℎ8 (see also the arrow
going from ℎ0 to ℎ2 in Fig. 4). �20 represents Conditioning
Augmentation [30], [7] that augments the speech embeddings.
This embedding augmentation method is a popular and useful
strategy that is used in the most recent text-to-image genera-
tion tasks [9], [31], [8]. Specifically, with the mean ` and the
standard deviation f which are functions of speech embedding
y, the new sampled speech embedding is formulated as

�20 (y)=` + f · N (0, �) . (11)

2) Relation Supervisor (RS): In the MirrorGAN [8], the
synthesized images are recovered back to text descriptions to
guarantee semantic consistency between the text description
and the synthesized image. However, recovering the spoken
caption from an image is not an easy feat. A second possible
method to guarantee semantic consistency would be to use a
matching loss between the descriptions and the corresponding
generated images such as DAMSM in AttnGAN [9]. However,
DAMSM uses word-level attention which requires word-level
segments while no easily identified word-level segments in
the speech signal exist. Consequently, the word-level attention
mechanism in DAMSM cannot be implemented in our speech-
to-image task. When only the matching loss of DAMSM
without the attention mechanism is used, only the matching
of global features of images and speech is considered for the
speech-to-image generation task. Although evaluation metrics,
e.g., Inception score (IS) (see the details of evaluation metrics
in Section IV-A1), based on the global features of the images
could benefit from this loss, it is expected that this global
feature constraint would make the generated image unnatural.
This hypothesis was tested in our experiments. The details of
the DAMSM-based method can be found in Section IV-D2.

Therefore, for our S2IG task, we propose a module, named
relation supervisor, to provide a strong relation constraint to
the generation process in order to generate high-quality images
that are semantically aligned with the spoken descriptions.

For the fine-grained databases CUB-200 and Oxford-102,
we form an image set for each generated image G8 , i.e.,
{G8 , Ĝ�)8 , Ĝ'�

8
, Ĝ"�
8
} indicating the generated fake image, the

ground-truth image, a real image from the same class as G8 ,
and a real image from a different randomly-sampled class,
respectively. We then define three types of relation classes: 1)
a positive relation !1, between Ĝ�)

8
and Ĝ'�

8
; 2) a negative

relation !2, between Ĝ�)
8

and Ĝ"�
8

; 3) an undesired relation
!3, between Ĝ�)

8
and itself, i.e., Ĝ�)

8
. The relation classifier is

trained to classify these three relations. We expect the relation
between G8 and Ĝ�)

8
to be close to the positive relation !1,

because G8 should semantically align with its corresponding
Ĝ�)
8

, however, it should not be identical to Ĝ�)
8

to ensure the
diversity of the generation. Therefore, the loss function for
training the RS is defined as:

!'( = −
3∑
9=1

log %̂
(
! 9

��' 9 ) − log %̂ (!1 |'�) −�� ) , (12)

where ' 9 is a relation vector produced by RS with the input
of a pair of images with relation ! 9 , 4.6., '1 = '(

(
�̂�) , �̂'�

)
.

'�) −�� is the vector of relation between Ĝ�)
8

and G8 .
For the other two databases, i.e., Places-subset and Flickr8k,

each speech description only matches with one image, and
no Ĝ'�

8
exists in these databases. The positive relation !1 is

defined as the relation between Ĝ�)
8

and itself, i.e., Ĝ�)
8

, while
no undesired relation is defined. The loss function for these
two databases is defined as:

!'( = −
2∑
9=1

log %̂
(
! 9

��' 9 ) − log %̂ (!1 |'�) −�� ) . (13)

Note that we apply the RS only to the last generated pixel
image, i.e., 8 = 2, for computational efficiency.

3) Objective Function: The final objective function of the
RDG is defined as:

L� =

2∑
8=0
L�8 + L'( , (14)

where the loss function for the 8-Cℎ generator �8 is defined
as:

L�8 = − EG8∼?�8 [log�8 (G8)] +
− EG8∼?�8

[
log

(
�8

(
G8 , �

20 (y) ) ) ]
,

(15)

where EG8∼?�8 is the expected value over all generated data
instances. The first item is the unconditional loss and the
second one is the conditional loss. The loss function for the
corresponding discriminator � of RDG is given by:

L� =

2∑
8=0
L�8 , (16)

where the loss function for the 8-Cℎ discriminator �8 is given
by:

L�8 = − EĜ8∼?30C08
[
log�8

(
Ĝ8

) ]
+

− EG8∼?�8
[
log

(
1 − �8

(
G8

) ) ]
+

− EĜ8∼?30C08
[
log�8

(
Ĝ8 , �

20 (y) ) ]
+

− EG8∼?�8
[
log

(
1 − �8

(
G8 , �

20 (y) ) ) ]
.

(17)
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Here, the first two items are unconditional loss that discrim-
inate the fake and real images, and the last two items are
conditional loss discriminating whether the image and the
speech description match or not. The G8 is from the model
distribution �8 at the 8Cℎ scale, and Ĝ8 is from the real
image distribution ?30C0 at the same scale. The generators
and discriminators were trained alternately.

IV. EXPERIMENTS

A. Experimental Setup

1) Evaluation Metrics: We adopted several evaluation met-
rics to verify the performance of the proposed method for
different aspects.

Diversity and quality of the generated images: Inception
score (IS) [19] and fréchet inception distance (FID) [52] are
two popular evaluation metrics for quantitative evaluation of
generative models. Following [7], we used these two eval-
uation metrics to evaluate the diversity and quality of the
generated images.

The IS is a metric for both image quality and diversity, and
is defined as

�( = exp (EG� ! (?(; |G)‖?(;))) , (18)

where G is a generated image, and ; is the label predicted by the
inception model [19]. Higher IS means the model can generate
more diverse and meaningful images. In the experiments, IS
for databases of Place-subset and Flickr8k was calculated with
the Inception-v3 pre-trained on ImageNet [50]. For CUB-
200 and Oxford-102, to make a fair comparison with other
methods, we used the fine-tuned Inception-v3 provided by
[30]. To measure FID, we used the pre-trained inception model
to extract image features. Then, the generated data distribution
was modeled by a multidimensional Gaussian distribution with
mean `G and covariance ΣG . Correspondingly, the real data
distribution was modeled by a multidimensional Gaussian dis-
tribution with mean ` Ĝ and covariance ΣĜ . The FID between
the generated data and real data is computed as

FID(G, Ĝ) = ‖`G − ` Ĝ ‖22 + Tr
(
ΣG + ΣĜ − 2 (ΣGΣĜ)

1
2
)
. (19)

The FID measures the difference between the generated and
real Gaussians, and a lower FID means a smaller distance
between the generated and real image distributions, which
indicates better generated images.

Semantic consistency between the generated images and
their spoken descriptions: To evaluate the visual-semantic
similarity between the generated images and their spoken
descriptions, we conducted a content-based image retrieval
experiment between the real images and the generated images.
Specifically, for the Places-subset database and the Flick8k
database, all ground-truth images in the test set were used
as queries to retrieve the corresponding synthesized images.
The retrieval performance was evaluated with R(e-call)@50
which indicates the percentage of the queries for which at least
one matching synthesized image is found among the top-50
retrieval results. For the fine-grained databases, i.e., CUB-200
and Oxford-102, two queries from the real images of each class
were randomly chosen because each class has many images.

Since in the fine-grained databases each class has numerous
images, a ground-truth real image should retrieve all matching
images. The retrieval performance was then evaluated with the
mean Average Precision (mAP), which is defined as

mAP =

∑&
@=1 AP(q)
&

, (20)

where & is the number of queries, �% is Average Precision
which is defined as

AP =
∑=
:=1 (%(:) × rel(:))

number of relevant images
, (21)

where : is the rank in the sequence of retrieved images, =
is the number of retrieved images, %(:) is the percentage of
matched images in the top-: retrieved images, and A4; (:) is
an indicator function equaling 1 if the retrieved image at rank
: is a correct image matching the ground-truth image.

In the image retrieval task, the images were represented
by the features extracted from the Inception-v3 pre-trained
on ImageNet [50]. Higher R@50 and mAP indicate a closer
feature distance between the fake and their ground truth
images, which indirectly shows a higher semantic consistency
between the generated images and their corresponding spoken
descriptions.

Quality of the speech embedding: In the ablation study,
to evaluate the effectiveness of the distinctive loss on training
the speech embedding network, and also to investigate the
relation between the image generation performance and speech
embedding performance, the speech embedding network was
evaluated using a cross-modal image retrieval task. Specifi-
cally, we used the spoken captions as queries to retrieve images
from the same class as described in the spoken caption. Since
the distinctive loss is only used for fine-grained databases (see
Section III-B1), in which each class has numerous images,
a spoken caption should retrieve all matching images. The
retrieval performance is then evaluated with mAP. Higher mAP
means a better retrieval result, indicating better performance
on embedding the speech information.

B. Results on the synthesized speech databases

The fine-grained databases CUB-200 and Oxford-102 give
us the chance to perform a direct comparison with existing
text-to-image generation methods because these databases are
commonly used in T2IG tasks. In this section, we present
the performance of our method on the fine-grained databases
but using synthesized spoken descriptions rather than textual
captions as input to our system. The performance is evaluated
both objectively (see Section IV-B1) by comparing our system
with several state-of-the-art T2IG methods and subjectively by
visually inspecting the generated images and comparing these
to the ground truth (see Section IV-B2).

1) Objective Results: We compare our results on the
S2IG task with several state-of-the-art T2IG methods, i.e.,
StackGAN-v2 [7], AttnGAN [9], MirrorGAN [8] and SEGAN
[31] on the T2IG task. StackGAN-v2 is a strong baseline for
the T2IG task and provides the effective stacked structure for
AttnGAN, MirrorGAN, and SEGAN. AttnGAN uses a word-
level attention mechanism for the T2IG task. MirrorGAN uses
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(a)

Ground Truth

(d)

S2IGAN

(S2IG)

(c)

StackGAN-v2

(S2IG)

(b)

StackGAN-v2†

(T2IG)

A small blue bird with

long tail feathers and short

beak

This bird has wings that are

black and has an orange

belly

This bird is brown and

white in color, with a short

black beak

This flower has petals

that are pink with yellow

and black lines

This flower has petals

that are purple and very

stringy

The flower has yellow

stamen and soft round

layers of yellow petals

The flower has thin purple

petals surround the red

stamen in the middle

A bird with a bright

yellow belly and gray

head with brownish wings

Fig. 5: Examples of images generated by different methods. † indicates the reproduced results of StackGAN-v2. The input is a spoken
description. The textual descriptions are not available during training nor testing and shown here just for convenience for the reader.

TABLE II: Performance of S2IGAN compared to StackGAN-v2 [7]
and [10] on the S2IG and T2IG tasks, and compared to AttnGAN [9],
MirrorGAN [8], and SEGAN [31] on the T2IG task. The Classifier-
based method is the baseline taken from [10]. † means our reproduced
results of StackGAN-v2. The best performance is shown in bold.

Database Method Input mAP FID IS

CUB-200
(Birds)

StackGAN-v2 [7] text — 15.30 4.04±0.05
StackGAN-v2 [7]† text 7.01 20.94 4.02±0.03
AttnGAN [9] text — — 4.36±0.03
MirrorGAN [8] text — — 4.56±0.05
SEGAN [31] text — — 4.67±0.04

Classifier-based speech — 43.76 3.68±0.04
Li et al. [10] speech — 18.37 4.09±0.04
StackGAN-v2 [7] speech 8.09 18.94 4.14±0.04
S2IGAN speech 9.04 14.50 4.29±0.04

Oxford-102
(Flowers)

StackGAN-v2 [7] text — 48.68 3.26±0.01
StackGAN-v2 [7]† text 9.88 50.38 3.35±0.07

Classifier-based speech — 64.75 3.30±0.06
Li et al. [10] speech — 54.76 3.23±0.05
StackGAN-v2 [7] speech 12.18 54.33 3.69±0.08
S2IGAN speech 13.40 48.64 3.55±0.04

this word-level attention mechanism and additionally uses a
“text-to-image-to-text” structure for T2IG. SEGAN also uses
the word-level attention mechanism but with an extra proposed
attention regularization and a Siamese structure. Additionally,
we directly compare StackGAN-v2 to our S2IGAN on the
S2IG task. In order to do so, we reimplemented StackGAN-v2
and replaced the text embedding with our speech embedding.
Finally, we compare our results to the recently released speech-
based model by [10] and the baseline used in that study,
referred to as Classifier-based, in which the speech encoder
was trained with the cross-entropy loss without using visual
information. Specifically, in the Classifier-based method, a

classifier layer is added after the speech encoder. The speech
encoder is then trained to classify the categories of the speech
captions. The generator in the Classifier-based method is
StackGAN-v2 [7]. This last comparison allows us to show
the importance of using the relationship between the images
and speech to learn the speech embeddings.

Table II shows the results of our S2IGAN compared to
those of other methods for both the S2IG (with input of
speech) and the T2IG (with input of text) tasks on the two
fine-grained databases CUB-200 and Oxford-102. The perfor-
mance is evaluated in terms of mAP, FID, and IS. Focusing
specifically on the speech-based image generation task, we
see that our S2IGAN method outperformed the other speech-
based method of [10] and the Classifier-based method on
all evaluation metrics and databases. Specifically, our method
obtains 21.1% and 11.2% FID relative improvements on CUB-
200 and Oxford-102, respectively, compared to [10] and 4.8%
and 9.9% higher IS scores than [10] on CUB-200 and Oxford-
102, respectively.

Compared to the StackGAN-v2 [7] that took our speech
embedding as input, our S2IGAN achieved better mAP and
FID on both databases, and also a higher IS for CUB-200.
These results indicate that the proposed generative model,
with the proposed densely stacked structure and the proposed
relation supervisor, is effective in generating high-quality
and semantically consistent images on the basis of spoken
descriptions.

Speech input is generally considered to be more difficult
to deal with than text because of its inherent high vari-
ability, its long duration, and the lack of pauses between
words, which also means that certain standard techniques
used for T2IG cannot be used for S2IG. Therefore, S2IG is
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more challenging than T2IG. However, the comparison of the
performances of StackGAN-v2 [7] on the S2IG and T2IG
tasks shows that StackGAN-v2 [7] generated better images
using speech embeddings learned by our SEN compared to
their text embeddings. Moreover, the StackGAN-v2 [7] based
on our learned speech embeddings outperforms [10], which
also uses StackGAN-v2 as the generator but uses a different
speech embedding method, on almost all evaluation metrics
and databases, except for the slightly higher FID on the CUB
database. These results confirm that our learned speech embed-
dings are competitive compared to the text embeddings in [7]
and the speech embeddings in [10], showing the effectiveness
of our SEN module. The better performance of the speech
embeddings compared to the text embeddings of StackGAN-
V2 [7] does not necessarily mean that speech as input is
superior to text input for the speech-to-image task. Instead
these results show that when the word-level segments in the
text are underutilized and only global embeddings are learned
from text as is the case in StackGAN-v2, it is possible to learn
speech embeddings that are comparable to text embeddings by
designing a good speech embedding network, e.g., our SEN.

When we compare the performance of the AttnGAN-based
methods (i.e., AttnGAN [9], MirrorGAN [8], and SEGAN
[31]) on the T2IG task with the performance of the proposed
S2IGAN on the S2IG task, we see that the S2IGAN on the
S2IG task still has a large gap to bridge to perform as well as
the AttnGAN-based methods on the T2IG task. This difference
in performance can and should be attributed to the lack of
pauses between words in speech which forestalls the use of
word-level attention in S2IGAN, which has proven useful for
T2IG.

In short, the comparison of our S2IGAN with two speech-
based models show that the S2IGAN method is competitive,
and thus establishes a solid new baseline for the S2IG task.
Nevertheless, compared to word-level attention mechanism-
based T2IG methods on the T2IG task, the S2IGAN still has
a performance gap to bridge.

2) Subjective Results: Fig. 5 shows examples of images
generated by (b) StackGAN-v2 with the original text embed-
dings as input, (c) StackGAN-v2 with our speech embeddings
as input, and (d) our S2IGAN with speech as input for the
spoken descriptions for different birds and flowers shown in
the first row. Row (a) shows the corresponding real images. As
can be seen, the images synthesized by our S2IGAN (d) are
photo-realistic and convincing. By comparing the images gen-
erated by (d) S2IGAN and (c) StackGAN-v2 conditioned on
the speech embeddings, we can see that the images generated
by S2IGAN are clearer and sharper.

Note that (c) StackGAN-v2 and (d) S2IGAN are both based
on the speech embeddings learned by our speech embedding
network. The difference is the proposed generative model
with the newly proposed densely stacked structure and re-
lation supervisor compared to the original stacked-structure
in StackGAN-v2. These results show the effectiveness of the
proposed RDG on synthesizing visually high-quality images.
The comparison of StackGAN-v2 conditioned on (b) text and
(c) speech features embedded by the proposed SEN shows that
our learned speech embeddings are competitive compared with

the text features in [7], again showing the effectiveness of the
SEN module.

In order to quantitatively investigate the subjective quality
of the images generated by the StackGAN-v2 and our S2IGAN
on the speech-to-image task, we performed a human perceptual
rating experiment on the Oxford test dataset, similar to that
by [8]. Moreover, to compare the performance of the proposed
Relation Supervisor with a speech-image matching loss on the
S2IG task (see Section III-C2 and in Section IV-D2 for the
objective results), a variation of S2IGAN, named DAMSM-
based, was also included in the human perceptual study.

Sixty-four subjects (age range: 18-40; ratio male-female:
11:8; ratio graduate student-employees: 8:1) from three uni-
versities3 with different professional backgrounds participated
in an online rating study. They participated voluntarily and
were not paid for participation.

The task for the participants in the rating experiment con-
sisted of two parts: 1) a quality test which compares the
quality of the images generated by the different methods;
2) a semantic consistency test which compares the semantic
consistency of the images generated by the different methods
with their ground-truth images. For the tests, we randomly
selected 3 spoken captions from each of the 20 classes in
the Oxford test dataset and generated their corresponding
images with StackGAN-v2, S2IGAN, and DAMSM-based.
This resulted in 60 images generated by each model. These (3
models × 60 images =) 180 images were used for the rating
of both the quality and the semantic consistency.

In the quality test part, the participants were shown the
three images generated by the three models on the basis of the
same caption next to each other on a screen and were asked
to choose the best quality image from these three generated
images. In total, the participants were asked to rate 60 sets
of three generated images (i.e., 3 captions from 20 classes).
After the quality test part, participants were shown the same
60 sets of generated images again in the semantic consistency
test part. However, in the semantic consistency test, in addition
to the three generated images, a fourth image, the ground-truth
image, was added. Here, the participants were asked to choose
the generated image that was most consistent with the ground-
truth image.

Fig. 6 shows the percentage of the total votes the generated
images of each model obtained for the quality test (on the
left) and the semantic consistency test (on the right). The
images generated by our S2IGAN were most often chosen as
the best image compared to the images of both StackGAN-v2
and the DAMSM-based method, both in terms of quality of
the generated images and the semantic consistency between
the ground-truth image and the generated image. A one-
way ANOVA confirmed these results: there was a significant
difference in the number of votes the images of a particular
model obtained in the quality test (F(2,177) = 43.58, p
< .001) and for the semantic consistency test (F(2,177) =
21.22, p < .001), meaning that the quality and the semantic
consistency of the three models differed significantly. Post-

3Delft University of Technology, the Netherlands, Eindhoven University of
Technology, the Netherlands, and Xi’an Jiaotong University, China.
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Fig. 6: The results (in terms of percentage of the total votes) for the
generated images of the three models for the quality test on the left
and the semantic consistency test on the right from the human rating
test.

hoc comparisons using the Tukey HSD test showed that all
models differed significantly from one another in the quality
test and the semantic consistency test (all p < .001; except
for the difference between StackGAN-v2 and DAMSM in the
semantic consistency test: p = .038).

To illustrate S2IGAN’s ability to catch subtle semantic
differences in the spoken descriptions, we generated images
conditioned on spoken descriptions in which we changed
color keywords. Fig. 7 shows synthesized bird images of
S2IGAN on the basis of the spoken input “A small bird with
a (color on y axis) belly and (color on x axis) wings”. As
can be seen in Fig. 7, the visual semantics of the generated
birds, specifically the colors of the belly and the wings, are
consistent with the corresponding semantic information in the
spoken descriptions. These visualization results indicate that
SEN successfully learned fine-grained semantic information in
the speech signal, and that our RDG is capable of capturing
these semantics and generating discriminative images that are
semantically aligned with the spoken description.

C. Results on the real speech databases

Real speech is more variable in terms of the pronunciation
of sounds due to differences in speakers, speaking rate, pitch,
etc., compared to synthesized speech. Moreover, real speech
databases contain more background noise than the synthesized
speech databases. The Places-subset and Flikcrk8k with real
speech captions make it possible to test S2IGAN’s perfor-
mance on the S2IG task with real spoken descriptions as input.
Moreover, compared to the fine-grained databases, the images
in these two databases are more complex, which give us the
chance to investigate S2IGAN’s ability to synthesize complex
scene images. The performance of our method on the complex
scene image databases using natural spoken descriptions is
evaluated both objectively (see Section IV-C1, in which we
also compare our method with other methods) and subjectively
(see Section IV-C2).

1) Objective Results: We compare our S2IGAN to
StackGAN-v2 for the S2IG task on the two scene image
databases with natural spoken descriptions, i.e., Places-subset
and Flickr8k, and to [10] on the Places-subset. Moreover, con-
sidering the good performance of the AttnGAN-based methods

Red

Grey

Brown BlueBlack

Yellow

A small bird with a color-1 belly and color-2 wings.

color-2

co
lo

r-
1

Fig. 7: Generated examples by S2IGAN. The generated images are
based on speech descriptions with different color keywords. The input
is a spoken description. The textual descriptions are not available
during training nor testing and shown here just for convenience.

TABLE III: Performance of S2IGAN compared to AttnGAN [9] and
StackGAN-v2 [7] on the Places-subset and Flickr8k databases, and
compared to [10] on the Places-subset database. The best performance
is shown in bold. † means the text is transcribed from speech using
an automatic speech recognition system.

Database Method Input R@50 FID IS

Places-subset

AttnGAN [9] text† 33.85 35.59 4.59±0.51

Li et al. [10] speech — 83.06 —
StackGAN-v2 [7] speech 8.87 47.94 3.78±0.35
S2IGAN speech 12.95 42.09 4.04±0.25

Flickr8k

AttnGAN [9] text† 50.40 84.08 12.37±0.41

StackGAN-v2 [7] speech 16.40 101.74 8.36±0.39
S2IGAN speech 16.40 93.29 8.72±0.34

[9], [8], [31] on the T2IG task, we take the AttnGAN [9] to
create an upper bound performance on the two real speech
databases. As the AttnGAN [9] is designed for the T2IG
task, we first transcribed the spoken captions to text using an
automatic speech recognition (ASR) system4 built with Kaldi
[53]. This ASR system consists of a hybrid factorized time-
delay neural network (TDNN-F) [54] acoustic model (AM)
and a four-gram language model (LM), both trained using the
960-hour Librispeech English database [55]. The automatically
transcribed text is then used as input to the AttnGAN.

Table III shows the results on the Places-subset and Flickr8k
databases. The performance is measured in terms of R@50,
FID, and IS. The results of StackGAN-v2 are obtained with
our speech embeddings. Please note, [10] only reports FID
performance on the Places-subset database.

On the Places-subset, huge improvements in the image
quality (shown by a decrease on FID) are observed for the
speech embedding-based StackGAN-v2 [7] compared to [10].
This improvement over [10] is solely driven by our speech

4https://kaldi-asr.org/models/m13
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encoder, which shows the good performance of our method
on obtaining speech embeddings. Additionally, the proposed
S2IGAN outperforms StackGAN-v2 [7] with a substantial
margin on all evaluation metrics. Specifically, our method
achieves 46.0%, 12.3%, and 6.9% relative improvements on
R@50, FID, and IS respectively over StackGAN-v2. These
results show the good performance of our proposed generative
model (RGD) with the densely-stacked structure and relation
supervisor, compared to the original stacked structure of
StackGAN-v2.

On Flickr8k, S2IGAN again obtains similar or better results
than StackGAN-v2 on all metrics. The results on both real
speech databases confirm that the proposed S2IGAN achieves
state-of-the-art S2IG performance not only on synthesized
speech but also on real speech.

Comparing the transcription-based AttnGAN with the
speech-based methods shows a large superiority for the
transcription-based model, especially on the measure of
R@50. However, in terms of efficiency, our S2IGAN out-
performs the transcription-based AttnGAN: the average time
required by our S2IGAN and the transcription-based AttnGAN
to generate an image of the Flickr8k testing set was 23.3 ms
and 54.1 ms, respectively. The superiority of the transcription-
based AttnGAN on the used measures can be explained as
follows: 1) the well-trained ASR system alleviates the effect
of noisy and content-irrelevant information in the speech
signal during the transcription process while in the speech-
based methods this information is at least partially embedded
in the speech embeddings, and 2) unlike the speech-based
methods, the transcription-based method allows for the use
of the word-level attention mechanism, which can connect a
word within a sentence to a specific object in an image. Note
that a well-trained ASR system depends on a huge number
of transcriptions, which means that the transcription-based
method cannot be used for unwritten languages, as was the
objective of our research. The performance of AttnGAN given
in Table III is only to show an upper bound rather than give
a fair comparison. The analysis of the efficiency showed the
good efficiency of the proposed S2IGAN.

2) Subjective Results: To show what images can be gen-
erated by S2IGAN after training on complex scene image
databases with natural speech as input, Fig. 8 presents several
examples of synthesized images on the Places-subset (top
half of figure) and Flickr8k (bottom half of figure) and
their respective ground truth images. The spoken captions are
shown above the images. The colored words in the written
descriptions indicate those corresponding objects that are
well synthesized (blue), objects that are reflected semantically
but not photo-realistically (green), and objects that are not
synthesized (red), respectively.

As seen in the images in the top half of Fig. 8, scenes in the
images of the Places-subset are much more complicated than
those in the fine-grained databases. Many different objects can
appear within one image. For instance, an image of a dining
room may consist of paintings, tables, chairs, and lamps. De-
spite the complicated scenes, S2IGAN is still able to generate
images that are semantically consistent with the corresponding
spoken descriptions. As Fig. 8 shows, the synthesized images

on the Places-subset can reflect scenes described by the speech
signal relatively well. The generated images can easily be
labelled as, e.g., a hotel room, a bedroom, a living room, and
a kitchen, showing that S2IGAN is able to synthesize photo-
realistic images in the S2IG task with real speech as input.

Nevertheless, details in the scenes are generated less well.
Although each scene category has around 2,000 images in the
Places-subset, each image is unique and images belonging to
the same scene category consist of different specific objects,
resulting in a diversity that makes it hard to capture every
object described in the spoken captions. For instance, in the
second spoken caption of the Places-subset in Fig. 8, there
are three objects: bedroom, ceiling fan, and lamp, while only
two appear in the generated image. This is especially the case
for small objects, e.g., a ceiling fan, a chandelier, and the
monitor. In these synthesized images, some of those small
objects (in red color in the captions) failed to be synthesized.
Additionally, some small objects (in green color in captions)
can be reflected to some extent but are not presented well.

The lower part of Fig. 8 are synthesized examples for
Flickr8k. As stated in Section III-A2, Flickr8k is a highly
diverse database with various scenes but limited examples per
scene, making S2IG quite a challenging task on this database.
However, from the synthesized images we can see that the
basic scenes described in the spoken description, e.g., waves,
water, snow, forest, and grass (indicated with the blue color),
can be successfully synthesized by S2IGAN. Furthermore,
despite that foregrounds in these generated images are not so
photo-realistic, they still show (some) semantic consistency
with the corresponding spoken descriptions (see the green
words in the spoken captions). These results indicate that
SEN is capable of learning semantic information from such
a diverse database with real speech descriptions.

D. Ablation Study
The effectiveness of the key components of S2IGAN, i.e.,

the densely-stacked structure of the image generator, the
relation supervisor, the speech embedding network, and the
distinctive loss in SEN are investigated separately. Because the
synthesized images on the two fine-grained databases are more
photo-realistic than those on the scene image databases, and
consequently their results are more stable, these two databases
are primarily used for the ablation study.

The results are shown in Table IV, which shows the S2IG
performance on CUB-200 and Oxford-102 of variants of
S2IGAN in which different parts are removed (indicated with
“w/o” in Table IV). As an end-to-end training method is gener-
ally considered to be more friendly to users, the performance
of S2IGAN trained in an end-to-end way is also evaluated.
The relation supervisor is slightly different for the fine-grained
databases compared to the complex scene databases because
there is no second image that can be described by a given
speech caption in the Places-subset and Flickr8k (see Eq.
12 and Eq. 13). So, the performance of the RS is also
investigated on the Places-subset and Flickr8k (see Table V).
Moreover, to compare the performance of the proposed RS and
a speech-image matching loss, the performance of DAMSM-
based method is also shown in Table IV (see Section III-C2).
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Fig. 8: Examples of images generated by S2IGAN and their ground truth images on the basis of the Places-subset (top half of figure) and
Flickr8k (bottom half of figure). The input is a spoken description (shown above the images). The textual descriptions are not available during
training nor testing and are shown here for convenience only. The colored words in the textual descriptions indicate that the corresponding
objects are well synthesized (blue), the objects are reflected semantically but not photo-realistically (green), and the objects are not synthesized
(red), respectively.

TABLE IV: Ablation study results of S2IGAN; w/o means without.
The best results are shown in bold.

Database CUB-200 (Bird) Oxford-102 (Flower)

Evaluation Metric mAP FID IS mAP FID IS

S2IGAN w/o Dense 8.66 17.58 4.19±0.04 13.13 64.37 3.68±0.05
S2IGAN w/o RS 8.54 15.59 4.14±0.05 12.86 53.24 3.70±0.08
S2IGAN w/o SEN 2.91 19.56 3.49±0.05 7.38 67.60 2.77±0.04
S2IGAN end-to-end 7.38 21.54 4.29±0.06 12.47 51.88 3.55±0.08
S2IGAN 9.04 14.50 4.29±0.04 13.40 48.64 3.55±0.04

DAMSM-based 9.60 15.06 4.26±0.05 12.46 55.70 3.70±0.04

1) Effect of the densely-stacked structure of the image
generator: We evaluated the effect of the densely-stacked
structure of the DG by changing it with the traditional stacked
structures as in StackGAN-v2 (see S2IGAN w/o Dense in
Table IV) while keeping the proposed relation supervisor
and speech embedding method. Comparing the results to
S2IGAN, S2IGAN w/o Dense shows a performance drop
for most evaluation metrics on both databases. Specifically,
there is a decrease in mAP and a clear increase in FID
when the densely stacked structure is removed, confirming
the effectiveness of the proposed densely-stacked structure for
image generation. Note that the dense connection method or
the residual connection method is a common strategy in the

neural networks, and here, for the first time, the proposed
method shows the usefulness of this strategy for the stacked
structure in the image generation task.

2) Effect of the Relation Supervisor: The effect of the rela-
tion supervisor (see RS in Fig. 4 and loss function presented
in Eq. 12-13) on training the generators were investigated for
the synthetic speech and real speech databases separately. The
effect of the RS can be observed by comparing the perfor-
mances of S2IGAN and S2IGAN w/o RS in Tables IV and V
for the synthesized and real speech databases, respectively. The
results show that the RS module leads to improvements in FID
and IS (except for the Oxford-102 database) for all databases.
Moreover, the addition of the RS leads to a higher mAP
for the synthesized speech databases and an improved R@50
for the Places-subset database. No difference in R@50 for
Flickr8k was observed. These results indicate the effectiveness
of the RS in ensuring the semantic consistency between the
synthesized images and the corresponding spoken descriptions.

To further investigate the effectiveness of our RS, we
compared it with the commonly used, intuitive way, to perform
the semantic consistency constraint, i.e., the image-speech
matching loss in AttnGAN [9], introduced in Section III-C2,
to replace our RS module, which we refer to as the DAMSM-
based method. Due to the lack of word-level segments in
the speech signal, the word-level attention mechanism in the
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TABLE V: Effect of the Relation Supervisor on the Places-subset and
Flickr8k; w/o means without. The best results are shown in bold.

Database Places-subset Flickr8k

Evaluation Metric R@50 FID IS R@50 FID IS

S2IGAN w/o RS 11.98 45.34 4.01±0.28 16.40 93.84 8.72±0.34
S2IGAN 12.95 42.09 4.04±0.25 16.40 93.29 9.32±0.56

TABLE VI: Comparison of Relation Supervisor and DAMSM. The
best results are shown in bold.

Database CUB-200 (Bird) Oxford-102 (Flower)

Evaluation Metric mAP FID IS mAP FID IS

DAMSM-based 9.60 15.06 4.26±0.05 12.46 55.70 3.70±0.04
S2IGAN 9.04 14.50 4.29±0.04 13.40 48.64 3.55±0.04

original DAMSM [9] was dropped. Comparing the results
of S2IGAN with those of the DAMSM-based method in
Table IV shows that, in agreement with our hypothesis (see
Section III-C2), the DAMSM-based method achieves com-
parable results to our S2IGAN (RS-based method) on all
performance measures, indicating that the DAMSM image-
speech matching loss is helpful from the perspective of those
objective evaluation metrics. However, again as hypothesized,
the human perceptual rating study (see Section IV-B2) showed
that the quality of the images generated by the DAMSM-
based method were significantly lower than those generated
by our S2IGAN. The images generated by the DAMSM-based
method were found to be less clear and less sharp, indicating
that our proposed RS is better than the image-speech matching
loss method.

The lower quality of the generated images by the DAMSM-
based method is likely due to the following reason. In the orig-
inal DAMSM module in [9], the word-attention mechanism is
an important module to align the regional information from
an image with the corresponding words in the written caption.
However, when the DAMSM is implemented for the speech-
to-image task without the word-level attention mechanism,
DAMSM only considers the matching relation between images
and speech from the perspective of the global features. Be-
cause all the standard evaluation metrics are calculated on the
basis of the global image features, the constraint of DAMSM
on the global image features does not lead to a decrease in
those performance measures compared to our proposed RS.
However, this matching constraint between speech and images
in the embedding space ignores the local details of images
but only works on a semantic level, which could affect the
quality of the generated images. In contrast, our proposed
RS does not compare two different modalities, i.e., speech
and image, but rather aims to distinguish different images in
which the local details of images would also play an important
role, consequently leading to a better quality of the generated
images compared to the DAMSM-based method.

3) Effect of the speech encoder network: In order to in-
vestigate the effect of the SEN on our S2IGAN, we forewent
the pretraining of the speech encoder (SED in Fig. 4) (see
Fig. 3). In practice, two end-to-end training methods were
performed. One is the S2IGAN w/o SEN in Table IV. In

this method, the speech encoder is not pre-trained. Instead,
the speech encoder is trained along with the generative model
in an end-to-end way with a loss function for the generative
model (Eq. 14 and Eq. 16). In the other end-to-end training
method (S2IGAN end-to-end in Table IV), the loss function
for training SEN is adopted while training the speech encoder
and generative model simultaneously. As can be seen, S2IGAN
w/o SEN shows a substantial reduction in performance on all
three measures. The S2IGAN end-to-end method also shows a
slight decrease on all metrics on both databases. These results
indicate a well-trained speech encoder is quite important for
S2IG, and also shows the necessity to pre-train the speech
encoder with SEN in our S2IGAN system. Moreover, these
results as well as other results of the proposed S2IGAN, for
the first time, show that the visually-grounded method can be
used to learn speech embeddings for S2IG task.

4) Effect of the distinctive loss in the speech encoder
network: Lastly, we investigated the effect of the distinctive
loss L3 in Eq. 8 on training the SEN on the fine-grained
databases (the distinctive loss L3 was not used for training
the real speech databases) by removing L3 from Eq. 8 (i.e.,
the speech embeddings are no longer mapped into the label
space in Fig. 3). The effect of the distinctive loss on the SEN
is evaluated using a speech-based image retrieval task with
the learned image embeddings and speech embeddings, which
will inform us about the discriminating ability of the learned
embeddings. Moreover, we investigated the effect of the dis-
tinctive loss on the relationship between the performance of
the speech embedding network and the S2IG tasks, which will
be evaluated on image generation.

Table VII shows the speech-based image retrieval perfor-
mance, which is evaluated with mAP, and the image generation
performance, which is evaluated with mAP, FID, and IS. Train-
ing the SEN without using L3 results in a performance drop in
terms of mAP on both databases for both the SEN and the full
S2IGAN (although this drop is marginal for the Oxford-102
database for the SEN). Importantly, a better performance of
SEN always led to an increase in the performance of S2IGAN,
showing the importance of learning a good speech embedding
for the task of image generation.

To better understand the role of the loss function, we
visualized the speech feature distributions produced by the
SEN trained with and without L3 using t-SNE [56]. The
t-SNE visualizes the distribution of the embeddings in a
two-dimensional space via dimensionality reduction. Speech
embeddings extracted from the speech encoder in the SEN
trained with and without distinctive loss are visualized in Fig.
9. For ease of inspection, the presented data are from 10
randomly selected classes from the CUB-200 test database,
and only the first spoken caption for each image is selected.
In this figure, each point indicates a speech embedding, and
points with the same color are from the same class. The
class IDs are those from the CUB-200 database [12]. The
distance between different points (i.e., embeddings) indicates
the relative similarity of the embeddings. Smaller distances
indicate more similar embeddings. An ideal speech encoder
should cluster embeddings from the same class close together
while embeddings from different classes should be further
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Fig. 9: Visualization of the distribution of the speech embeddings
created by SEN without (a) and with (b) distinctive loss. For ease of
inspection, the presented data are from 10 randomly selected classes
(with IDs) from the CUB-200 test database.

apart. From this figure we can see that the use of L3 increases
the distance between different classes, which is important to
create semantic-discriminative speech embeddings for fine-
grained databases. For instance, after training SEN using L3 ,
class 112 was no longer mixed with other classes. So, both
the objective results and the visualizations show that L3 is
critical for learning more discriminative speech embeddings,
which further helps S2IGAN to generate better semantically-
consistent images on fine-grained databases.

TABLE VII: Effect of the distinctive loss L3 in SEN. mAP of SEN
is calculated on the real test images.

Database L3
SEN S2IGAN

mAP mAP FID IS

CUB-200 (Bird) w/o 23.68 6.80 16.66 4.19±0.05
w/ 24.24 9.04 14.50 4.29±0.04

Oxford-102 (Flower) w/o 41.85 10.03 69.47 3.35±0.08
w/ 41.86 13.40 48.64 3.55±0.08

V. DISCUSSION
The proposed S2IGAN was evaluated on four benchmark

databases for the task of speech-to-image generation: 1) two
fine-grained databases commonly used databases for the text-
to-image generation task, i.e., CUB-200 and Oxford-102.
These databases allow us to perform a direct comparison of our
S2IGAN with state-of-the-art T2IG methods. Because the fine-
grained databases do not have spoken captions, we synthesized
spoken captions based on the available text captions using a
TTS system. 2) Two complex scene databases, which contain
images and corresponding natural spoken captions. These
databases allow us to investigate the ability of S2IGAN to
synthesize images using natural speech as input, and provide
a different and more challenging type of images (compared to
the fine-grained databases).

Results on the fine-grained databases show that our pro-
posed S2IGAN not only performs well on the task of fine-
grained image generation but also achieves state-of-the-art
performance. Its success is due to the good performance of
both the speech embedding network and the generative model,
specifically the newly proposed densely stacked structure and
the newly proposed relation supervisor. The distinctive loss
used in training the speech embedding network for the S2IG

task (see Section IV-D4) was found to be highly important
for training a good speech encoder for the fine-grained image
databases, which subsequently was shown to be important in
generating better images.

The results obtained on the two complex scene image
databases with natural spoken captions, i.e., the Places-subset
and Flickr8k, show that our S2IGAN can capture the semantics
in natural speech and can use this to generate images that
are semantically consistent with the spoken descriptions at
the global level, although these images are of a lower quality
than those based on the fine-grained databases due to details
in the scenes being less well synthesized or missing entirely.
This lesser performance is, on the one hand, due to the much
higher variability of the speech signal in real speech compared
to the synthesized speech used for the fine-grained image
databases. On the other hand, it is due to the use of complex
scene images for training for which only a few (or only one
in the case of Flickr8k) images exist per class. Specifically,
for the Places-subset, although the generated images were
photo-realistic, S2IGAN was found to miss small objects when
synthesizing images. While for Flickr8k, which is an even
more diverse database, S2IGAN generated the basic scenes but
failed to synthesized photo-realistic objects in the images. This
weakness of S2IGAN on such complex scene images might
be (partly) alleviated by adding additional information, such
as bounding boxes as used in [33] for text-to-image generation
on complex scene image databases.

The superiority of the text-to-image AttnGAN [9] on the
two real-speech databases suggests that word-level attention
might be important for the image generation task. In the
future, we will therefore try to incorporate segment- or word-
level attention into our model to improve the image quality
and accuracy. An interesting approach for this would be to
automatically discover speech units based on corresponding
visual information from the speech signal [57] to segment
the speech signal, which would allow us to use segment- and
word-level attention mechanisms to improve the performance
of speech-to-image generation. An alternative, simpler way to
implement the word-level attention mechanism could be using
the downsampling strategy to get temporal speech representa-
tions instead of global feature vectors.

Finally, we should note that due to database limitations, all
databases adopted in this study are English. For future work,
it will be highly interesting to test the proposed methodology
on a truly unwritten language rather than the well-resourced
English language.

VI. CONCLUSION

This paper introduced a novel speech-to-image generation
(S2IG) task and we developed a novel generative model, called
S2IGAN, which tackles S2IG in two steps. First, semantically
discriminative speech embeddings are learned by the speech
embedding network. Second, high-quality images are gener-
ated on the basis of the speech embeddings extracted by the
speech encoder in the speech embedding network. The results
of extensive experiments on four commonly-used databases
show that our S2IGAN has state-of-the-art performance on
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the task of S2IG. When trained on databases with a finite
number of classes and multiple images per class (i.e., fine-
grained image databases), the S2IGAN can generate high-
quality photo-realistic images. When trained on databases that
contain a more diverse set of scenes, the S2IGAN is able to
generate global scenes but misses details.

ACKNOWLEDGMENT

This work has been partially supported by the National Key
R&D Program of China (No. 2018AAA0102504). The authors
also thank all participants for evaluating the generated images
in the human perceptual rating experiment.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014.

[2] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv:1411.1784, 2014.

[3] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017.

[4] C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks
for image-to-image transformation,” IEEE Transactions on Image Pro-
cessing, vol. 27, no. 8, pp. 4066–4079, 2018.

[5] R. Wu, G. Zhang, S. Lu, and T. Chen, “Cascade ef-gan: Progressive
facial expression editing with local focuses,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2020.

[6] G. Zhang, M. Kan, S. Shan, and X. Chen, “Generative adversarial
network with spatial attention for face attribute editing,” in European
conference on computer vision, 2018.

[7] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N.
Metaxas, “Stackgan++: Realistic image synthesis with stacked genera-
tive adversarial networks,” IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 8, pp. 1947–1962, 2018.

[8] T. Qiao, J. Zhang, D. Xu, and D. Tao, “Mirrorgan: Learning text-
to-image generation by redescription,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019.

[9] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and
X. He, “Attngan: Fine-grained text to image generation with attentional
generative adversarial networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018.

[10] J. Li, X. Zhang, C. Jia, J. Xu, L. Zhang, Y. Wang, S. Ma, and W. Gao,
“Direct speech-to-image translation,” arXiv:2004.03413, 2020.

[11] M. P. Lewis, G. F. Simons, and C. Fennig, “Ethnologue: Languages of
the world [eighteenth,” Dallas, Texas: SIL International, 2015.

[12] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” 2011.

[13] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE, 2008.

[14] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, 2014.

[15] D. Harwath, A. Recasens, D. Surís, G. Chuang, A. Torralba, and J. Glass,
“Jointly discovering visual objects and spoken words from raw sensory
input,” in European conference on computer vision, 2018.

[16] M. Hodosh, P. Young, and J. Hockenmaier, “Framing image description
as a ranking task: Data, models and evaluation metrics,” Journal of
Artificial Intelligence Research, vol. 47, pp. 853–899, 2013.

[17] D. Harwath and J. Glass, “Deep multimodal semantic embeddings for
speech and images,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU). IEEE, 2015.

[18] X. Wang, T. Qiao, J. Zhu, A. Hanjalic, and O. Scharenborg, “S2IGAN:
Speech-to-Image Generation via Adversarial Learning,” in Proc. Inter-
speech 2020, 2020, pp. 2292–2296.

[19] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in neural
information processing systems, 2016.

[20] Y. Wen, B. Raj, and R. Singh, “Face reconstruction from voice using
generative adversarial networks,” in Advances in neural information
processing systems, 2019.

[21] A. Duarte, F. Roldan, M. Tubau, J. Escur, S. Pascual, A. Salvador,
E. Mohedano, K. McGuinness, J. Torres, and X. Giro-i Nieto, “Wav2pix:
speech-conditioned face generation using generative adversarial net-
works,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019.

[22] T.-H. Oh, T. Dekel, C. Kim, I. Mosseri, W. T. Freeman, M. Rubinstein,
and W. Matusik, “Speech2face: Learning the face behind a voice,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2019.

[23] H.-S. Choi, C. Park, and K. Lee, “From inference to generation: End-
to-end fully self-supervised generation of human face from speech,”
arXiv:2004.05830, 2020.

[24] H. Huang, Z. Wu, S. Kang, D. Dai, J. Jia, T. Fu, D. Tuo, G. Lei, P. Liu,
D. Su et al., “Speaker independent and multilingual/mixlingual speech-
driven talking head generation using phonetic posteriorgrams,” arXiv
preprint arXiv:2006.11610, 2020.

[25] L. Song, W. Wu, C. Qian, R. He, and C. C. Loy, “Everybody’s talkin’:
Let me talk as you want,” arXiv preprint arXiv:2001.05201, 2020.

[26] H.-Y. Lee, X. Yang, M.-Y. Liu, T.-C. Wang, Y.-D. Lu, M.-H. Yang,
and J. Kautz, “Dancing to music,” in Advances in Neural Information
Processing Systems, 2019, pp. 3586–3596.

[27] H. Zhu, M. Luo, R. Wang, A. Zheng, and R. He, “Deep audio-visual
learning: A survey,” arXiv preprint arXiv:2001.04758, 2020.

[28] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” arXiv:1605.05396,
2016.

[29] G. Yin, B. Liu, L. Sheng, N. Yu, X. Wang, and J. Shao, “Semantics
disentangling for text-to-image generation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019.

[30] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N.
Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017.

[31] H. Tan, X. Liu, X. Li, Y. Zhang, and B. Yin, “Semantics-enhanced
adversarial nets for text-to-image synthesis,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019.

[32] Q. Lao, M. Havaei, A. Pesaranghader, F. Dutil, L. D. Jorio, and
T. Fevens, “Dual adversarial inference for text-to-image synthesis,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019.

[33] W. Li, P. Zhang, L. Zhang, Q. Huang, X. He, S. Lyu, and J. Gao, “Object-
driven text-to-image synthesis via adversarial training,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2019.

[34] S. Palaskar, V. Raunak, and F. Metze, “Learned in speech recognition:
Contextual acoustic word embeddings,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019.

[35] A. Haque, M. Guo, P. Verma, and L. Fei-Fei, “Audio-linguistic em-
beddings for spoken sentences,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

[36] D. Harwath, A. Torralba, and J. Glass, “Unsupervised learning of
spoken language with visual context,” in Advances in neural information
processing systems, 2016.

[37] D. Merkx, S. L. Frank, and M. Ernestus, “Language learning using
speech to image retrieval,” arXiv:1909.03795, 2019.

[38] G. Ilharco, Y. Zhang, and J. Baldridge, “Large-scale representation learn-
ing from visually grounded untranscribed speech,” arXiv:1909.08782,
2019.

[39] H. Kamper, G. Shakhnarovich, and K. Livescu, “Semantic speech
retrieval with a visually grounded model of untranscribed speech.”
IEEE/ACM Trans. Audio, Speech & Language Processing, vol. 27, no. 1,
2019.

[40] O. Scharenborg, L. Besacier, A. Black, M. Hasegawa-Johnson, F. Metze,
G. Neubig, S. Stüker, P. Godard, M. Müller, L. Ondel et al., “Speech
technology for unwritten languages,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 964–975, 2020.

[41] S. Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep represen-
tations of fine-grained visual descriptions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[42] X. Wang, S. Pang, and J. Zhu, “Domain segmentation and adjustment
for generalized zero-shot learning,” arXiv:2002.00226, 2020.

[43] Y. Xian, S. Sharma, B. Schiele, and Z. Akata, “f-vaegan-d2: A feature
generating framework for any-shot learning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[44] J. Li, M. Jing, K. Lu, Z. Ding, L. Zhu, and Z. Huang, “Leveraging the
invariant side of generative zero-shot learning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2019.

[45] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis
by conditioning wavenet on mel spectrogram predictions,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018.

[46] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based gen-
erative network for speech synthesis,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

[47] K. Ito, “The lj speech dataset,” https://keithito.com/LJ-Speech-Dataset/,
2017.

[48] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[51] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv:1406.1078,
2014.

[52] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in neural information processing systems,
2017.

[53] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The Kaldi
speech recognition toolkit,” in Proc. ASRU, 2011.

[54] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, and
S. Khudanpur, “Semi-orthogonal low-rank matrix factorization for deep
neural networks,” in Proc. INTERSPEECH 2018, 2018, pp. 3743–3747.

[55] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An ASR corpus based on public domain audio books,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[56] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, 2008.

[57] D. Harwath and J. Glass, “Towards visually grounded sub-word speech
unit discovery,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019.

https://keithito.com/LJ-Speech-Dataset/

	Introduction
	Related Works
	Natural language-to-image generation
	Visually-grounded speech embedding learning

	Speech-to-image Generation with S2IGAN
	Databases
	Synthesised speech caption-image pairs
	Real speech caption-image pairs

	The Speech Embedding Network (SEN)
	Objective Function

	The Relation-supervised Densely-stacked Generative Model (RDG)
	Densely-stacked Generator (DG)
	Relation Supervisor (RS)
	Objective Function


	Experiments
	Experimental Setup
	Evaluation Metrics

	Results on the synthesized speech databases
	Objective Results
	Subjective Results

	Results on the real speech databases
	Objective Results
	Subjective Results

	Ablation Study
	Effect of the densely-stacked structure of the image generator
	Effect of the Relation Supervisor
	Effect of the speech encoder network
	Effect of the distinctive loss in the speech encoder network


	DISCUSSION
	Conclusion
	References

