
1290 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Transfer Learning From Speech Synthesis to Voice
Conversion With Non-Parallel Training Data

Mingyang Zhang , Member, IEEE, Yi Zhou, Student Member, IEEE, Li Zhao, and Haizhou Li , Fellow, IEEE

Abstract—We present a novel voice conversion (VC) framework
by learning from a text-to-speech (TTS) synthesis system, that is
called TTS-VC transfer learning or TTL-VC for short. We first
develop a multi-speaker speech synthesis system with sequence-to-
sequence encoder-decoder architecture, where the encoder extracts
the linguistic representations of input text, while the decoder, con-
ditioned on target speaker embedding, takes the context vectors
and the attention recurrent network cell output to generate target
acoustic features. We take advantage of the fact that TTS system
maps input text to speaker independent context vectors, thus re-
purpose such a mapping to supervise the training of the latent
representations of an encoder-decoder voice conversion system. In
the voice conversion system, the encoder takes speech instead of text
as the input, while the decoder is functionally similar to the TTS
decoder. As we condition the decoder on a speaker embedding,
the system can be trained on non-parallel data for any-to-any
voice conversion. During voice conversion training, we present both
text and speech to speech synthesis and voice conversion networks
respectively. At run-time, the voice conversion network uses its
own encoder-decoder architecture without the need of text input.
Experiments show that the proposed TTL-VC system outperforms
two competitive voice conversion baselines consistently, namely
phonetic posteriorgram and AutoVC methods, in terms of speech
quality, naturalness, and speaker similarity.

Index Terms—Autoencoder, context vector, non-parallel, text -
to-speech (TTS), transfer learning, voice conversion (VC).

I. INTRODUCTION

VOICE Conversion (VC) takes speech of the source speaker
as input and generates speech that sounds from a target

speaker while maintaining the linguistic content. It is an en-
abling technology for many innovative applications, such as

Manuscript received September 25, 2020; revised January 1, 2021 and
February 22, 2021; accepted March 7, 2021. Date of publication March 17,
2021; date of current version April 8, 2021. This work was supported by the
National Research Foundation, Singapore under its AI Singapore Programme
AISG Award AISG-GC-2019-002, and AISG Award AISG-100E-2018-006,
and its National Robotics Programme under Grant 192 25 00054 and in part
by RIE2020 Advanced Manufacturing, and Engineering Programmatic Grants
A1687b0033, and A18A2b0046, and in part by the National Key Research,
and Development Program of China 2018YFB1305203, 2020YFC2004003. The
work of Yi Zhou was also supported by NUS research scholarship. The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Heiga Zen. (Corresponding author: Li Zhao.)

Mingyang Zhang and Li Zhao are with the School of Information Sci-
ence, and Engineering, Southeast University, Nanjing, Jiangsu, China (e-mail:
zhangmy@seu.edu.cn; zhaoli@seu.edu.cn).

Yi Zhou is with the Department of Electrical, and Computer Engineering,
National University of Singapore, Singapore (e-mail: yi.zhou@u.nus.edu).

Haizhou Li is with the Department of Electrical, and Computer Engi-
neering, National University of Singapore, Singapore, and also with Ma-
chine Listening Lab, University of Bremen, Bremen 28359, Germany (e-mail:
haizhou.li@nus.edu.sg).

Digital Object Identifier 10.1109/TASLP.2021.3066047

personalized or expressive speech synthesis [1], [2], speech
enhancement [3], normalization of impaired speech [4], [5],
speech-to-singing conversion [6], [7] and dubbing of movies
and games. In general, voice conversion techniques are broadly
grouped into parallel and non-parallel methods according to
their use of training data [8]. Parallel voice conversion requires
source-target pair of speech samples of the same linguistic con-
tent, while non-parallel voice conversion is trained on unpaired
speech data.

Parallel voice conversion can be formulated as a regres-
sion problem where a mapping function is estimated between
the source and target spectral features. Successful techniques
include Gaussian mixture model (GMM) [9]–[11], frequency
warping [12]–[14], and deep neural networks (DNN) [15]–[19].
Other techniques, such as sparse representation [20]–[22], and
two-step adaptation [23]–[25], are studied to reduce the training
data size. Non-parallel voice conversion techniques are certainly
more attractive as parallel data is not easily available in practice.
There has been prior studies on finding the optimal segments
from unpaired source and target training data, such as frame
mapping [26]–[28], clustering [29]–[31] and generative adver-
sarial network methods [32]–[36].

Speech carries speaker-independent linguistic information as
well as speaker characteristics and speaking style. If we can
disentangle linguistic features from speaker representation, we
may synthesize the linguistic content from one voice to another.
Variational autoencoder (VAE) [37], [38] represents a tech-
nique in this direction. It is built of an encoder-decoder neural
network, where the encoder learns a latent space to represent the
speaker-independent linguistic information, while the decoder
reconstructs the target speech features by conditioning on a
target speaker representation. AutoVC is another successful
attempt, that is trained with a carefully designed bottleneck
layer forcing the encoder to disentangle the speaker-independent
features only with the self-reconstruction loss [39], [40]. It
outperforms the VAE-based techniques without the need of lin-
guistic supervision. The success of the autoencoder framework
is based on two assumptions: 1) the latent space only captures
speaker-independent linguistic representation without a trace of
the speaker information; 2) by conditioning on target speaker
representation, a decoder is capable of generating the desired
acoustic features for a target speaker. Unfortunately, the latent
codes in autoencoder techniques are not trained to associate
with linguistically motivated sound units. While autoencoder
methods are effective in disentanglement, the lack of linguistic
grounding could be a limitation for its performance.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7945-0535
https://orcid.org/0000-0001-9158-9401
mailto:zhangmy@seu.edu.cn
mailto:zhaoli@seu.edu.cn
mailto:yi.zhou@u.nus.edu
mailto:haizhou.li@nus.edu.sg

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1291

The recent advances in deep learning approaches open up
new possibilities beyond the traditional parallel and non-parallel
voice conversion paradigms. One is able to transfer knowledge
from external resources, such as automatic speech recognition
(ASR) and text-to-speech (TTS) synthesis, to voice conversion
systems.

Phonetic PosterioGram (PPG) framework draws much atten-
tion in non-parallel voice conversion. PPG is an intermediate
result from a speaker-independent ASR system, representing the
posterior probability of phonetic classes of a speech frame [41].
The PPG-based voice conversion techniques [25], [42], [43] is
an effective way to leverage ASR knowledge, that is learnt from
a large speech corpus. Despite their success, PPG techniques
still suffer from some inherent limitations. For example, the
quality of PPG highly depends on the ASR system that is neither
optimized for speech synthesis nor voice conversion.

Text-to-speech and voice conversion share a common goal
to generate natural speech. However, TTS systems are usually
trained with large speech corpora, while voice conversion sys-
tems face limited training data constraint. Therefore, transfer
learning from TTS to voice conversion is naturally motivated in
practice. Generally speaking, a neural TTS is trained to address
two research problems, one is the ability to generate effective
intermediate representations from the input text, another is the
ability to align the attention to the intermediate representations
to bridge between encoder and decoder. In short, the former is
referred to as feature mapping, the latter is referred to as align-
ment. There is a general belief that voice conversion can benefit
from TTS in one way or another. For feature mapping, voice con-
version can learn from TTS to produce phonetically motivated
intermediate representations, which are speaker-independent;
For alignment, voice conversion can benefit from the learned
TTS for natural speech rendering and text-to-speech alignment.

Park et al. [44] proposed a transcription-guided speech en-
coder as part of a sequence-to-sequence TTS model for any-
to-many voice conversion, which requires both text and speech
as input during run-time inference. On the other hand, Luong
et al. [45] proposed to bootstrap a voice conversion system from
a pre-trained speaker-adaptive TTS model, where both voice
conversion and TTS share a common decoder. This method
only handles feature mapping yet leaves the alignment task to
an external system. Zhang et al. [46] proposed an architecture
for joint training of voice conversion and text-to-speech. By
taking text as an additional input, the voice conversion system
improves voice quality during run-time inference. However, it
relies on large parallel training data. Huang et al. [47] proposed
a transformer architecture with TTS pre-training. The idea is
to transfer knowledge from a pre-trained TTS model to a voice
conversion model benefiting from large-scale, easily accessible
TTS corpora. Though it attempts to handle alignment issues such
as the conversion of articulation and prosody, this technique only
works for parallel training data.

Building on the success of the prior studies on speech
disentanglement and TTS-VC transfer learning, in this paper,
we study a novel transfer learning technique from TTS to voice
conversion. We adopt Tacotron-2 as the TTS framework [48].
In a two-step training strategy, we first train a standard
multi-speaker Tactron-2 on a large database. We then transfer

Fig. 1. Block diagram of the Tacotron-2 system. A text-speech alignment can
be obtained by feedings input text to encoder, and target spectral frames to the
decoder in a teacher-forcing mode. This process produces a sequence of speaker-
independent context vectors, that are frame-aligned with target mel-spectrogram,
to serve as the supervision target in TTS-VC transfer learning.

the TTS knowledge to an encoder-decoder architecture for voice
conversion. We hypothesize that, 1) the context vector generated
by the text encoder in a TTS system is speaker-independent
representing the linguistic information; 2) the decoder in a TTS
system, that constructs target acoustic features by conditioning
on target speaker embedding, also works for voice conversion.

The main contributions of this paper include: 1) a novel
transfer learning framework from TTS to voice conversion; 2)
an integrated solution that benefits from transfer learning and
speaker disentanglement; 3) an effective solution that deals with
both feature mapping and alignment for voice conversion with
non-parallel training data.

This paper is organized as follows. We introduce the related
work that motivates our research in Section II. We formulate the
proposed TTS-VC transfer learning framework in Section III.
We present the experiments and discuss the results in Section IV.
Section V concludes the study.

II. RELATED WORK

A. Tacotron-2

Tacotron is an end-to-end text-to-speech (TTS) system [49]
that has a sequence-to-sequence encoder-decoder architecture
with attention mechanism [50]. Tacotron-2 is an updated version
of Tacotron [48], as illustrated in Fig. 1. It includes an encoder
that maps an input text sequence to a fixed-dimensional state
vector, an attention-based decoder [51] that predicts a mel-
spectrogram, and a neural vocoder [52] that reconstructs speech
waveform from the predicted mel-spectrogram. For rapid turn-
around, we use WaveRNN neural vocoder to generate speech
waveform from mel-spectrogram in this paper [53].

The input to the encoder is a sequence of characters, which
are first encoded into character embeddings. These embedded
vectors are then processed by a stack of convolutional layers with
batch normalization [54]. The outputs of convolutional layers

1292 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 2. Illustration of an utterance ‘sweet pea’ in (a), (b), and (c) for Speaker 1,
and in (d), (e), and (f) for Speaker 2. (a) temporal alignment weight between text
and mel-spectrogram, (b) a stack of context vectors for the utterance (reduced
to 40-dimension for ease of comparison), and (c) its mel-spectrogram with 80-
dimensional spectral features. The horizontal axis all plots represents time, while
vertical axis of (b), (c), (e) and (f) displays the dimension of vectors.

are taken by a bi-directional Long Short-Term Memory (LSTM)
layer to produce text encoding.

The decoder is an auto-regressive recurrent neural network
(RNN) that predicts a mel-spectrogram from the text encoding.
A location-sensitive attention mechanism is used to summarize
the text encoding into a sequence of fixed-length context vectors.
At each prediction time step, the previous predicted spectral
frame and the current context vector are both used as the input
to the decoder to predict the target spectral frame. All spectral
frames form an output mel-spectrogram.

B. Linguistic Representation

In Tacotron-2 training, the text encoder converts an input
sentence to a stack of fixed-dimension text encodings. Then
the location-sensitive attention in Fig. 1 learns to align the
text encodings with a sequence of target spectral frames and
generates the context vectors as a result. The context vectors
are obtained by multiplying the alignment weights with text
encodings. Fig. 2(a) and (d) show an example of the alignment
between input text characters and mel-spectrogram learned by
the attention mechanism.

During training, the text-speech alignment can be obtained
from the trained model in the teacher-forcing mode. In practice,
we present the input text and the ground truth target mel-
spectrogram to the encoder and decoder, respectively. As the
decoder generates output spectral features in an autoregressive
manner, we use the ground truth target mel-spectrogram in place
of the predicted frames from previous time steps to guide the
feature generation. Fig. 2(b) and (e) illustrate a stack of generated
context vectors, and Fig. 2(c) and (f) show their corresponding
80-dimensional mel-spectrogram. We note that the length of the

context vector sequence is the same as that of the corresponding
mel-spectrogram.

As text encodings are derived to represent input text, that
seeks to represent linguistic information. Context vectors are
weighted sums over encoder time steps of the text encodings,
that could be influenced by the mel-spectrogram, or acoustic
features, via the decoder. However, such influence from acoustic
features is minimum. It is generally considered [44] that context
vectors represent speaker-independent linguistic features. This
is especially true when we train a multi-speaker TTS using an
encoder-decoder architecture, where the decoder is conditioned
on speaker embedding [55], [56]. In this case, the encoder-
decoder architecture seeks to disentangle speaker from linguistic
content.

It is important that the context vectors are associated with
input characters and optimized for speech synthesis task during
the decoder training. In other words, they are linguistically
motivated and serve as an ideal candidate of intermediate repre-
sentation for encoder-decoder style voice conversion. Park et al.
[44] make use of context vectors from a TTS system as the
linguistic features, that improve non-parallel voice conversion.
In Fig. 2, we use an utterance to compare the plot of a context
vector sequence with its corresponding spectrogram for two
speakers. We have three observations: a) the patterns of context
vectors within the same phoneme (e.g. ‘s’, ‘w’, and ‘iy’) are
rather stationary; b) the patterns for the phonemes are discrete
and distinct from one another; c) the context vectors for the
same phonemes are very close within the same speaker (see ‘iy‘
in the red boxes in Fig. 2(b) or Fig. 2(e)) and across speakers
(see ‘iy‘ in the red boxes between Fig. 2(b) and Fig. 2(e)). All
the observations point to the fact that the context vectors are the
unique identifier of the phonemes, that are linguistically moti-
vated. The context vectors don’t reflect the spectral details of the
actual acoustic rendering of the speech by individual speakers
as illustrated in Fig. 2(c) and (f). Our analysis corroborates the
observations in [44].

In voice conversion, there have been previous studies on the
use of PPG from automatic speech recognition (ASR) for lin-
guistic representation of speech content [25], [42], [43]. Context
vector is a linguistic representation similar to PPG, but derived
from text-to-speech synthesis (TTS) instead of ASR.

C. Leveraging Knowledge From Speech Synthesis

Traditionally, voice conversion operates at the signal level,
while speech synthesis involves phonetic representation. Studies
show that the use of linguistically informed features improves
voice conversion. There have been studies to couple voice con-
version with TTS training, that seeks to improve the training and
run-time inference of voice conversion by adhering to linguis-
tic content. However, such techniques usually require a large
training corpus.

Zhang et al. [57] proposed to improve the sequence-to-
sequence model [58] by using text supervision during training.
A multi-task learning structure is designed which adds auxiliary
classifiers to the middle layers of the sequence-to-sequence
model to predict linguistic labels as a secondary task. The
linguistic labels can be obtained with external alignment tools.

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1293

With the linguistic label objective, the encoder and decoder are
expected to generate meaningful intermediate representations
which are linguistically informed. The text transcripts are only
required during training. Zhang et al. [46], and Luong et al. [45]
proposed joint training of TTS and VC by sharing a common
decoder. Park et al. [44] proposed to use the context vectors in
Tacotron system as speaker-independent linguistic representa-
tion to guide the voice conversion.

Transfer learning is a technique to utilize knowledge from
previously learned tasks and apply them to newer, related ones.
A typical transfer learning involves pre-training of a base model,
reusing the pre-trained model as the starting point for a model
on the second task of interest, and refining the second model
on input-output pair data for the second task. In a TTS-VC
transfer learning scenario, usually we have significantly more
data for TTS, and we would like to generalize the learned
knowledge from TTS training for VC, which has significantly
less training data. Huang et al. [47] proposed a technique to use
a trained TTS decoder as the starting point of a VC decoder to
train an encoder-decoder VC system. The study was focused on
conversion of a specific source-target pair with parallel train-
ing data. It doesn’t aim to disentangle speaker and linguistic
information. Nonetheless, it represents a successful attempt in
TTS-VC transfer learning.

All the studies suggest that voice conversion benefits from
linguistically informed intermediate representations, and point
to a direction for more studies on how voice conversion can
benefit from TTS systems without involving large training data.
TTS-VC transfer learning becomes a natural choice that will be
the focus of this paper.

D. Speaker Disentanglement and Voice Cloning

Speaker disentanglement and voice cloning with autoen-
coder [37], [38] represents one of the successful techniques
in voice conversion with non-parallel training data, where
the encoder learns to disentangle speaker representation from
speaker-independent linguistic representation, and the decoder
reconstructs target speech with linguistic features, conditioning
on target speaker representation. A speaker encoder is usually
used to generate such speaker representation, e.g. speaker em-
beddings. Successful examples include i-vector [59], x-vector,
and d-vector [60].

With speaker disentanglement, the decoder is able to recon-
struct speech for any target speakers unseen during training,
that we call voice cloning. Voice cloning has also been a suc-
cessful technique in speech synthesis that takes text as input and
generates voice of unseen speakers, when given a few speech
samples [61], [62]. As the idea of voice cloning with speaker
embeddings are proven effective in both TTS and VC, a common
network architecture certainly facilitates the TTS-VC transfer
learning.

III. TTS-VC TRANSFER LEARNING

Voice conversion is typically a research problem with scarce
training data, however, deep learning techniques are typically
data driven, that rely on big data. This is actually the strength of
deep learning in voice conversion. Deep learning opens up many

possibilities to benefit from abundantly available training data,
so that the voice conversion task can be devoted to learning the
mapping of speaker characteristics. For example, we wouldn’t
like the voice conversion task to infer low level detail during
speech reconstruction, a neural vocoder can learn from a large
database to do so [63]. We wouldn’t like the voice conversion
task to learn how to represent an entire phonetic system of a
spoken language either, a general purpose acoustic model from
a speech recognition or synthesis system can learn from a large
database to do a better job.

The formulation of transfer learning aims to achieve just that.
By leveraging the large database, we free up the conversion
network from using its capacity to represent low level detail
and general information, but instead, to focus on the high level
semantics necessary for speaker identity conversion.

In this section, we will describe the proposed TTS-VC transfer
learning architecture and a two-step training scheme. Fig. 3
illustrates the architecture of our proposed model and the loss
function adopted during model training.

A. Pre-Training of the Multi-Speaker TTS Model

An encoder-decoder TTS model offers two useful properties:
1) The TTS encoder is trained to produce linguistic features from
the text that is assumed speaker independent; 2) A multi-speaker
TTS decoder provides a way to combine speaker-independent
linguistic features and speaker embedding to produce speech in
target voice. From voice conversion point of view, we would
like to disentangle speaker-independent linguistic features from
source speech and re-compose them with target speaker embed-
ding to generate speech in target voice. The linguistic features
and the decoder mechanism are the knowledge that voice con-
version would like to learn from.

Tacotron-2 model was firstly studied for single speaker
TTS [48]. To train a multi-speaker Tacotron model, we consider
the use of the speaker embedding and where to apply the speaker
embedding. We adopt the same speaker verification network [64]
as in [55] to generate a fixed-dimensional speaker embedding
vector. In [55], speaker embedding is applied on encoder output
before the attention mechanism, hence, the resulting context
vectors are speaker dependent. In this paper, we would like to
generate context vectors that are sufficiently speaker indepen-
dent. Therefore, we propose to incorporate speaker embeddings
only after the attention mechanism as the controlling input to the
TTS decoder. In this way, the encoder-decoder TTS architecture
serves as a disentangling mechanism, which uses context vectors
to represent speaker-independent linguistic features, and speaker
embedding to represent the speaker’s voice identity.

As shown in Fig. 3, the text encoder transform a sequence of
text characters XT = {x1

T ,x
2
T , . . .x

M
T } to a sequence of fixed-

dimension embedding vectors:

OT = EncoderT (XT)

= {o1
T ,o

2
T , . . .,o

M
T } (1)

where M denotes the length of the text sequence.
With the attention mechanism, we can obtain an alignment

between the text embeddings and the mel-spectrogram features,
that is described by a weight matrix W. The context vectors

1294 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 3. Diagram of the proposed TTS-VC transfer learning architecture. The upper panel is a Tacotron TTS pipeline, and the lower panel is a voice conversion
pipeline. XT denotes the input text, YS and ŶS are target mel-spectrogram and the mel-spectrogram generated by the pipelines; OT denotes the text encoding,
HT denotes the context vectors from TTS pipeline, HS denotes the context vectors equivalents from the VC pipeline; z denotes the speaker embedding.

HT can be obtained by applying the weight matrix on the text
embeddings:

HT = W ×OT

= {h1
T ,h

2
T , . . .,h

N
T } (2)

where N denotes the length of the mel-spectrum frames. During
training, we feed all mel-spectrum frames to the pre-net in a
teacher-forcing mode, where N is the length of the training
utterance. At run-time inference, N is predicted by the decoder.

The decoder takes the concatenation of context vectors HT

and speaker embedding z to generate the mel-spectrum features,
ŶS :

ŶS = Decoder(concat(HT , z))

= {ŷ1
S , ŷ

2
S , . . ., ŷ

N
S } (3)

The loss function is defined as the mean square error (MSE)
between the ground truth mel-spectrogramYS and the predicted
one ŶS :

LossMel = MSE(YS , ŶS)

=
1

N

N∑
n=1

||yn
S − ŷn

S ||2 (4)

With a trained Tacotron-2 model, to get the context vector of
the training data, we feed input text to the encoder and ground
truth mel-spectrum to the decoder in a teacher-forcing mode. By
doing this, we obtain a sequence of context vectors that has the
same length as the sequence of mel-spectrum intended for voice
conversion training.

B. Transfer Learning From TTS to VC

We propose an encoder-decoder voice conversion framework
similar to those in [37], [47], [65] in terms of the system

architecture. The VC encoder seeks to generate speaker-
independent linguistic features from input spectral features,
while the VC decoder reconstructs the mel-spectrum features
from the linguistic features, conditioning on a speaker code.
Studies show that voice conversion benefits from explicit pho-
netic modeling that ensure adherence to linguistic content during
conversion [44], [45].

The question is how to establish the correspondence be-
tween input mel-spectrum features and the speaker-independent
linguistic features. The PPG-based voice conversion tech-
niques [25], [42], [43] require an external ASR system to work
along side during training and inference. The autoencoder-style
voice conversion frameworks learn the latent codes in an unsu-
pervised manner, therefore, they are either speaker independent
or phonetically motivated. Others rely on an explicit temporal
alignment process [66].

Unlike the prior work, we propose to use the linguistic fea-
tures, i.e. context vectors, from a trained TTS model, that are
phonetically motivated, to serve as the supervision target of
the VC latent code during training. By doing this, VC benefits
from TTS model in many ways, as shown in Fig. 3. First,
the trained TTS provides a temporal alignment between input
text XT and context vectors HT , the latter is frame-aligned
with mel-spectrum features YS ; Second, the context vectors
HT represent speaker-independent linguistic features of input
text, that are suitable to serve as the supervision targets of HS

for the voice conversion encoder; Third, the TTS decoder can
be used as the initialization of VC decoder; Fourth, the same
TTS training dataset can be used for VC training without the
need of additional dataset. The voice conversion encoder can be
described as follows,

HS = EncoderS(YS)

= {h1
S ,h

2
S , . . .,h

N
S } (5)

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1295

A loss function is introduced to minimize the distance between
a VC latent code HS and context vector HT :

LossCont = MSE(HS ,HT)

=
1

N

N∑
n=1

||hn
S − hn

T ||2 (6)

In this work, the VC decoder is similar to the TTS decoder
functionally, that takes the concatenation of the linguistic fea-
tures HS and the speaker embedding z to generate the mel-
spectrum features ŶS :

ŶS = Decoder(concat(HS , z))

= {ŷ1
S , ŷ

2
S , . . ., ŷ

N
S } (7)

The TTS decoder is trained with the TTS pipeline, that takes
HT as input. We propose to use the TTS decoder as the VC
decoder and the VC encoder is trained to produced TTS latent
codes. However, there could be a potential mismatch between
the TTS decoder and HS . To minimize such mismatch, we use
the TTS decoder as initialization, and refine the VC decoder
through an adaptation process, with the same loss function as
(4).

To summarize, the speech encoder and decoder are trained
with the joint loss function as formulated in (4) and (6).

LossJoint = LossCont + LossMel

=
1

N

N∑
n=1

(||hn
S − hn

T ||2 + ||yn
S − ŷn

S ||2) (8)

The training procedure seeks to learn to disentangle linguistic
information from speaker information and to optimize the rep-
resentations for speech generation.

During the transfer learning, we use the same data as those
for TTS pre-training. The difference is that the text transcript is
no longer required in VC training. No additional speech data is
required either.

C. Zero-Shot Run-Time Inference

Once the TTS-VC transfer learning is completed, the voice
conversion pipeline is able to perform voice conversion inde-
pendently without involving the attention mechanism of TTS.
During run-time inference, both the source and the target speaker
might be unseen speakers, therefore, the inference is referred to
as any-to-any voice conversion. The proposed framework is able
to perform such any-to-any voice conversion without further
system training, that is also called zero-shot run-time inference.

To convert an utterance from source to target, we only need a
speech sample, e.g. one utterance, from the target speaker. We
use the speech sample to obtain a speaker embedding zt from a
speaker verification network. The run-time inference stage can
be formulated as:

Ŷ = Decoder(concat(Encoders(Y), zt)) (9)

where Y denotes the source mel-spectrogram and Ŷ denotes
the converted target mel-spectrogram.

D. Spectral and Prosodic Mapping

Traditionally voice conversion is performed by an analysis-
mapping-reconstruction pipeline, where source speech is first
decomposed into vocoding parameters such as spectral features,
F0 and aperiodicity indicators. Individual vocoding parameters
are then mapped from source to target by respective conversion
models. Statistical model, regression model, and deep learning
model are commonly used. Recently, end-to-end TTS shows that
it is possible to predict both spectral and prosodic features from a
latent representation by a decoder [67]. This suggests that voice
conversion can also be done in the same way if we are able to
characterize the input speech with similar latent representation.
In this paper, with TTS-VC transfer learning, we adopt the
strategy in end-to-end TTS to model spectrum and prosody
simultaneously. We consider HT speaker-independent and F0

agnostic. Hence, HS , which is learnt under the supervision of
HT , is also expected to be F0 agnostic. In this way, the decoder
is capable to model F0 without being influenced by F0 from the
source speaker. The decoder is followed by WaveRNN vocoder
to reconstruct a speech signal.

E. Comparison With Other VC Systems

The proposed TTS-VC transfer learning framework, denoted
as TTL-VC for short, represents a new way to leverage TTS
knowledge. It employs a simple architecture to couple with TTS
for knowledge transfer and an independent voice conversion
pipeline for inference. To draw a clear distinction between
TTL-VC and other prior work, we provide a comprehensive
comparison in terms of data requirement, system configuration,
and application scenarios in Table I. The four systems in Table I
are discussed in Section II as the prior work. They represent the
recent progress in TTS-assisted voice conversion. From Table I,
we note that TTL-VC is unique in many ways. With transfer
learning, TTL-VC doesn’t rely on TTS encoder during run-time
inference, it is trained solely on the TTS training data without the
need of additional training data; With disentangled latent codes,
TTL-VC is able to perform any-to-any voice conversion without
involving model re-training or adaptation for unseen speakers.

The four systems in Table I do not employ transfer learning,
furthermore, they have different requirements about training
data. Therefore, a direct comparison of their performance is not
meaningful. Instead, we benchmark the proposed TTL-VC with
three competing systems, as summarized in Table II, that share
the same decoding strategy, as formulated in (9), and are trained
on the same dataset for a fair comparison.

IV. EXPERIMENTS

A. Experimental Setup and Model Architecture

The three competing baselines in Table II include a multi-
speaker TTS model, a PPG-VC model and an AutoVC model.
They represent the state-of-the-art voice conversion perfor-
mance. They also share the same idea, that is to use speaker-
independent linguistic features as the latent codes, in order to
support any-to-any voice conversion.

1296 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE I
THE PROPERTIES OF VOICE CONVERSION SYSTEMS THAT LEVERAGE TTS KNOWLEDGE. TTL-VC TRANSFER LEARNING SUPPORTS FLEXIBLE VOICE

CONVERSION TASK (FROM ONE UNSEEN SPEAKER TO ANOTHER) AT RUN-TIME, WHILE KEEPING MINIMUM DATA REQUIREMENT (NON-PARALLEL TRAINING

DATA, NO ADAPTATION FOR UNSEEN SPEAKERS, ONLY SPEECH IS REQUIRED DURING INFERENCE)

TABLE II
PERFORMANCE BENCHMARKING BETWEEN TTL-VC AND THREE COMPETITIVE BASELINES. ALL SYSTEMS ARE TRAINED ON THE SAME MULTI-SPEAKER

NON-PARALLEL DATASET, AND SHARE A SIMILAR DECODING ARCHITECTURE THAT TAKES LATENT LINGUISTIC FEATURES, CONDITIONING ON SPEAKER

EMBEDDING, TO GENERATE TARGET SPEECH. NOTES: MS-TTS AND TTL-VC USE TEXT TRANSCRIPTS OF SPEECH DATA DURING TRAINING; MS-TTS TAKES

TEXT AS INPUT, WHILE OTHERS TAKE SPEECH AS INPUT

The speaker verification network used to generate speaker
embedding [64] is a 3-layer LSTM network with 768 hidden
units followed by a linear projection layer with a size of 256.
The resulting d-vector serves as speaker embedding zt for all
systems in Table II. Next, we briefly describe the experimental
setup in this comparative study.

1) TTS-VC Transfer Learning (TTL-VC): We employ a two-
step training scheme for TTL-VC system.

First, a multi-speaker TTS (MS-TTS) is trained as a teacher
model, that follows Tacotron-2 architecture [48] as illustrated
in the upper panel of Fig. 3. The encoder converts input text
to a sequence of 512-dimensional character embeddings. These
embeddings pass through 3 1-dimensional convolutional layers,
each containing 512 filters with 5 kernel size, followed by batch
normalization [54] and GELUs activation [68]. The convolu-
tional layer output is taken by a single bi-directional LSTM
layer with 512 hidden units. The pre-net of the decoder is a stack
of 2 fully-connected layers with 256 hidden units followed by
GELUs activation. The LSTM layers in the decoder contain 2
uni-directional LSTM layers with 1024 hidden units. The linear
projection layer outputs the 80-dimensional mel-spectrogram.
The post-net contains 5 1-dimensional convolutional layers each
containing 512 filters with 5 kernel size, followed by batch
normalization and tanh activation.

Second, the voice conversion pipeline in TTL-VC takes
speech as input and generates speech as output, that is illustrated
in the lower panel of Fig. 3, where input and output speech
is represented as 80-dimensional mel-spectrum features. We
conduct the transfer learning as discussed in Section III.B. The
VC encoder is trained to generate context vectors that are similar
to those in TTS pipeline; the VC decoder is trained to take
the context vectors and speaker embedding zt to recompose
the target speech. Both encoder and decoder adopt the same
architecture of the MS-TTS model. No attention mechanism
is involved in voice conversion pipeline as it only performs a
framewise mapping, thus no temporal alignment is required.

2) Multi-Speaker TTS Model (MS-TTS): The MS-TTS
model is the teacher model in TTL-VC. We note that MS-TTS

is not a voice conversion system, it takes the text and speaker
embedding as input, and generates mel-spectrum features as
output. We adopt it as a baseline for two reasons.

First, while the MS-TTS system shares the same decoder
architecture as TTL-VC, its context vectors HT are produced
only from the text without influence from any source speaker.
We expect that the synthesized speech to be highly similar to
that of target speaker; Second, by comparing the prosodic pat-
terns between MS-TTS and TTL-VC, we would like to observe
whether the attention mechanism in MS-TTS has an advantage
over the framewise mapping in TTL-VC.

3) PPG-VC Model: An ASR system is trained with the Kaldi
toolkit [69]. We first process the input speech into a sequence
of 40-dimensional MFCC features with 12.5 ms frame shift.
The ASR system then converts the speech feature sequence into
a phonetic posteriogram (PPG) sequence, where a PPG frame
represents the probability distribution over 132 phonetic classes.
In PPG-VC, a pre-trained ASR serves as the encoder. Only the
VC decoder is involved in the training. The VC decoder is similar
to the TTS decoder in Tacotron-2 [48]. The decoder LSTM layer
takes PPG frames as input, and generate 80-dimensional mel-
spectrum as output.

We adopt the PPG-VC model as one of the baseline mod-
els because it shares a similar encoder-decoder architecture as
TTL-VC. Furthermore, PPG-based VC systems represent state-
of-the-art performance in recent voice conversion challenges
(VCC) [70].

4) AutoVC Model: If we consider TTL-VC as an extension
to the autoencoder (AE) based techniques, AutoVC serves as a
competitive reference model. AutoVC, a successful AE-based
implementation, is known for its impressive performance in
speaker disentanglement [39]. With the same training data, the
difference between TTL-VC and AutoVC mainly lies in the
adoption of transfer learning. TTL-VC employs linguistically
motivated context vectors while AutoVC obtains latent codes
in an unsupervised manner. Simply speaking, the lower panel
of Fig. 3 resembles the AutoVC workflow except that TTL-
VC introduces LossCont during the encoder-decoder pipeline

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1297

training process. We implement AutoVC as a baseline to observe
the benefit of TTS knowledge transfer.

For a fair comparison between TTL-VC and AutoVC [39],
our AutoVC configuration follows that of the TTL-VC network.
The dimension of the latent code and the up/down sampling
factor are set to 32, the AutoVC decoder performs frame-wise
mapping without auto-regression. In this way, the decoder only
contains LSTM layers, linear projection and post-net. Both TTL-
VC and AutoVC take 80-dimensional mel-spectrum as input and
generate mel-spectrum features as output.

B. Database and Feature Extraction

All systems in Table II and WaveRNN vocoder are trained
on the same dataset from LibriTTS database [71]. We use the
train-clean-360 subset of the database that contains 191.29 hours
of speech data from a total of 904 speakers, that consist of 430
female and 474 male speakers. The audio files are recorded
at 24 kHz sampling rate. We didn’t apply any pre-processing
techniques on the audio data.

For system evaluation, we use speech data from the
VCC2018 [70]. We use the evaluation subset of the dataset that
contains 8 source speakers (4 female speakers and 4 male speak-
ers) and 4 target speakers (2 female speakers and 2 male speak-
ers). Each speaker provides 35 utterances. Each source-target
group, namely Female-Female, Female-Male, Male-Male, and
Male-Female, has 4 speakers as the sources and 2 speakers as
the targets, consisting of a total of 280 conversion pairs. The
audio files are recorded at 22.05 kHz sampling rate.

We train a speaker verification network as speaker encoder
on AISHELL2 [72] corpus. AISHELL2 contains 1000 hours of
speech data from 1991 speakers, including 845 male speakers
and 1146 female speakers. We obtain an equal error rate (EER)
of 2.31% for speech samples, each having 3 seconds on average,
on a test set of 63.8 hours that consists of 200 unseen speakers.
Using the speaker encoder, we derive a speaker embedding zt
from 5 seconds of speech sample for all 12 speakers in VCC
2018 database, and visualize them in Fig. 4 using t-distributed
stochastic neighbor embedding (t-SNE) algorithm [73]. We
observe a clear clustering of speech samples by speakers.

All speech data is resampled to 16 kHz for PPG extraction.
The acoustic features are extracted with 12.5 ms frame shift and
50 ms frame length. The ASR model contains 4 bidirectional
gated recurrent unit (GRU) layers with 512 hidden units in
each layer. Followed by a softmax layer, the 256-dimensional
probability output is taken as PPG features.

C. Results and Discussion

1) Objective Evaluation: We evaluate the systems in terms
of mel-cepstrum distortion (MCD) and root mean square errors
of logF0 (RMSE) between converted and reference speech
utterances [74]. MCD is defined as

MCD[dB] = 10/ln10

√√√√2

D∑
d=1

(Ŷd − Yd)2, (10)

where D is the mel-cepstral coefficients (MCCs) feature dimen-
sion, Ŷd and Yd are the dth coefficients of the converted and

Fig. 4. Visualization of the speaker embedding clusters using t-SNE for
12 speakers (SF1-4, SM1-4, TF1, TF2, TM1, and TM2) in VCC 2018 dataset.

original MCCs, respectively. A lower MCD value accounts for
a lower distortion [75].

The logF0 RMSE is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(log F̂0i − logF0i)
2, (11)

where N is the total number of frames, F̂0i and F0i represent
the F0 values at the ith frame of the converted and reference
speech, respectively.

As mel-spectrogram features are adopted as acoustic features,
F0 and MCCs are not readily available in the converted acous-
tic features. We extract F0 and 25-dimensional MCCs using
WORLD vocoder [76] from the reconstructed waveform for
evaluation purpose. To account for the temporal difference,
dynamic time warping is performed between the converted
utterance and the target reference to compute MCD and logF0

RMSE, where logF0 RMSE is calculated only on the voiced
frames in the reference utterances.

TABLE III summarizes the MCD and RMSE evaluation as
an average over the 280 conversion pairs (4 source speakers ×
2 target speakers × 35 utterances) for each source-target gender
group, and 70 utterances (2 target speakers × 35 utterances)
for MS-TTS speech synthesis. It is observed that TTL-VC
outperforms all other voice conversion models consistently for
both MCD and logF0 RMSE. We note that female speakers have
a higher logF0 variance than male speakers, that is reflected in
the logF0 RMSE of MS-TTS samples, and generated speech for
female target speakers. For both male and female target speakers,
TTL-VC shows a clear advantage in prosodic mapping. We
are glad to see that TTL-VC significantly outperforms TTS
systems, which suggests that TTL-VC not only delivers the
exact linguistic content but also with improved prosody over
TTS output.

By comparing TTL-VC and MS-TTS, we note that the differ-
ence lies in the encoder. The former takes speech as input, while
the latter takes text as input. The results suggest that source

1298 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE III
AVERAGE MCD AND logF0 RMSE OF BETWEEN THE CONVERTED SAMPLE

AND THE TARGET REFERENCE FOR AUTOVC, PPG-VC AND TTL-VC MODELS.
SOURCE DENOTES THE DISTORTION DIRECTLY BETWEEN SOURCE AND TARGET

REFERENCE, WHICH COULD BE THE WORST SITUATION AS NO CONVERSION

HAS TAKEN PLACE

speech is more informative than text input in providing speaker-
independent prosodic patterns for target speech generation. This
could be explained by the fact that the prosodic pattern of a
sentence is a modulation between speaker-independent compo-
nents, e.g. prosodic phrasing, intonation, and speaker-dependent
components, e.g. accent, pitch level. Source speech provides es-
sential speaker-independent components for the reconstruction
of pitch contour, while text input doesn’t.

To visualize the effect, Fig. 5 takes a male-female example to
compare the spectrogram andF0 of natural speech and generated
speech from various models. We have three observations, 1)
The duration of the TTS synthesized speech is predicted by an
attention mechanism, it differs from that of either source or target
natural speech. PPG-VC, AutoVC and TTL-VC generate speech
that has the same duration as the source because they perform
the framewise mapping. 2) The F0 prosodic patterns of both
PPG-VC and AutoVC are closer to the source, with a logF0

RMSE of 0.21 and 0.25, than to the target, with a logF0 RMSE
of 0.23 and 0.26 respectively. This suggests that both PPG and
autoencoder latent codes are influenced by the source speaker. 3)
TheF0 prosodic pattern of TTL-VC is closer to the target (logF0

RMSE = 0.08) than to the source (logF0 RMSE = 0.87). This
suggests that the context vectors are rather speaker independent,
that allow the decoder to recompose speech well for target
speaker using target speaker embedding. The observations in
Fig. 5 are consistent with the performance statistics in Table III.

2) Subjective Evaluation: Subjective evaluations are per-
formed through listening tests by human subjects. Both AB
and XAB preference tests were conducted to assess speech
quality and speaker similarity, respectively. In addition, to study
listeners’ preferences across all experimental systems, we fur-
ther conducted best-worst scaling (BWS) and mean opinion
score (MOS) tests [77] on speaker similarity and speech quality,
respectively. 20 samples were randomly selected from the con-
verted samples of each experimental system and provided to 15

participants for all the tests.1 All listeners are university students
and staff members, where English is their official language of
instruction.
� AB preference tests: A and B were speech samples ran-

domly selected from different systems. The listeners were
asked to choose the sample having higher quality and nat-
uralness. We have three comparison sets, where 7 samples
were evaluated by each listener. The results are illustrated
in Fig. 6. All experiment results are reported with p-value
< 0.01, while the “TTL-VC vs. AutoVC” pair in female-
female conversion is with p-value = 0.017. Therefore,
the performance gains by TTL-VC over other methods
are statistically significant. First, by comparing TTL-VC
with PPG-VC, we observe that TTL-VC receives most
of the preference votes for all source-target pairs. This
suggests that context vectors outperform PPG as linguistic
features; Second, between TTL-VC and AutoVC, we ob-
serve that TTL-VC also consistently outperforms AutoVC
across all source-target pairs. This confirms the advantage
of context vectors over AE latent codes. Last, when we
focus on the comparison between TTL-VC and MS-TTS,
it is found that TTL-VC outperforms baseline MS-TTS
in Female-Female, Female-Male and Male-Female con-
versions, while it performs slightly worse than MS-TTS
in Male-Male conversions. Overall, TTL-VC outperforms
other competing VC models and performs comparably with
MS-TTS on average.

� XAB preference tests: X was the reference target speech
sample; A and B were speech samples randomly selected
from different systems. The listeners were asked to listen
both samples, and choose the one more similar to the
target speaker. For each comparison pair, 7 sets of samples
were evaluated by each listener on average. The results
are illustrated in Fig. 7. All experiments are reported with
p-values < 0.01, while the “TTL-VC vs. MS-TTS” pair in
text-female conversion has p-value = 0.033. This suggests
that the performance gains are statistically significant. By
comparing TTL-VC with the competing models, we ob-
serve that TTL-VC obviously outperforms PPG-VC and
AutoVC for all speaker pairs in terms of speaker similarity;
furthermore, TTL-VC and MS-TTS are on a par with each
other.

� BWS tests: We presented 4 samples of the same content
from all four experimental systems to the listeners. The
listeners were asked to pick the best and worst sample from
the four. 20 scaling sets were evaluated by each listener. The
detailed results are illustrated in Table IV. Overall, TTL-
VC receives the highest best votes (43.05%) and the lowest
worst votes (4.44%) respectively. The results indicate that
the performance of all four experimental systems is ranked
in the descending order as: TTL-VC, MS-TTS, AutoVC
and PPG-VC.

� MOS tests: The listeners were asked to rate the speech
quality and naturalness of the converted speech on a 5-point

1The generated speech samples for all the source-target group pairs of each
system are available at https://arkhamimp.github.io/TTL-VC/

https://arkhamimp.github.io/TTL-VC/

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1299

Fig. 5. The comparison of spectrogram andF0 for a male-female voice conversion example ‘I volunteered for one of the boats, where I had, of course, no business’
using four models. Horizontal axis (x-axis) displays time in second, and vertical axis (y-axis) represents spectral frequency and F0 frequency respectively.

Fig. 6. AB test between TTL-VC and other models for four source-target groups.

Fig. 7. XAB test between TTL-VC and other models for four source-target groups.

scale. A higher score indicates better quality. For each ex-
perimental system, 20 samples were rated by each listener.
The average results are illustrated in Fig. 8. We find that
TTL-VC receives the highest MOS score (3.75) among all
systems after the natural target speech (4.64), that slightly

outperforms MS-TTS (3.65). With slight variations in dif-
ferent speaker pairs, we could rank the systems from high
to low performance in the following order, TTL-VC, MS-
TTS, AutoVC, and PPG-VC. The observation is consistent
with that in other listening tests.

1300 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 8. MOS results of four models for four source-target groups and the average result.

TABLE IV
BEST-WORST SCALING TEST RESULTS FOR THE CONVERTED SAMPLES BY

SOURCE-TARGET PAIR AND THEIR AGGREGATE. THE BEST% OR WORST%
OVER FOUR MODELS SUM TO 100%

We observe that the proposed TTL-VC system clearly outper-
forms AutoVC and PPG-VC baselines in terms of speech quality,
naturalness, and speaker similarity. In both MOS and BWS tests,
it is encouraging to see that TTL-VC could succesully learn from
TTS to achieve TTS quality without the need of text input at
run-time inference.

V. CONCLUSION

This paper presents a novel strategy for TTS-VC transfer
learning, which has a simpler run-time inference system ar-
chitecture, yet achieves consistently higher performance than
other systems of similar architecture. We have demonstrated the
effectiveness of the transfer learning algorithm and the system
architecture. It is particularly encouraging that we observe that
the proposed system not only provides high quality spectral
mapping, but also prosodic rendering.

REFERENCES

[1] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-speech
synthesis,” in Proc. Int. Conf. Acoust. Speech, Signal Process., vol. 1 1998,
pp. 285–288.

[2] Chung-Hsien Wu, Chi-Chun Hsia, Te-Hsien Liu, and Jhing-Fa Wang,
“Voice conversion using duration-embedded bi-HMMs for expressive
speech synthesis,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14,
no. 4, pp. 1109–1116, Jul. 2006.

[3] T. Toda, M. Nakagiri, and K. Shikano, “Statistical voice conversion tech-
niques for body-conducted unvoiced speech enhancement,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 20, no. 9, pp. 2505–2517, Nov. 2012.

[4] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Speaking-aid
systems using GMM-based voice conversion for electrolaryngeal speech,”
Speech Commun., vol. 54, no. 1, pp. 134–146, 2012.

[5] L.-W. Chen, H.-Y. Lee, and Y. Tsao, “Generative adversarial networks
for unpaired voice transformation on impaired speech,” in Proc. INTER-
SPEECH, 2019, pp. 719–723.

[6] T. L. Nwe, M. Dong, P. Chan, X. Wang, B. Ma, and H. Li, “Voice
conversion: From spoken vowels to singing vowels,” in Proc. IEEE Int.
Conf. Multimedia Expo, 2010, pp. 1421–1426.

[7] T. Saitou, M. Goto, M. Unoki, and M. Akagi, “Speech-to-singing synthe-
sis: Converting speaking voices to singing voices by controlling acoustic
features unique to singing voices,” in Proc. IEEE Workshop Appl. Signal
Process. Audio Acoust., 2007, pp. 215–218.

[8] A. Mouchtaris, Y. Agiomyrgiannakis, and Y. Stylianou, “Conditional
vector quantization for voice conversion,” in Proc. IEEE Int. Conf. Acoust.
Speech, Signal Process., 2007, pp. IV–505.

[9] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory,” IEEE
Trans. Audio, Speech, Language Process., vol. 15, no. 8, pp. 2222–2235,
Nov. 2007.

[10] S. Takamichi, T. Toda, A. W. Black, and S. Nakamura, “Modulation
spectrum-constrained trajectory training algorithm for gmm-based voice
conversion,” in Proc. Int. Conf. Acoust. Speech, Signal Process., 2015,
pp. 4859–4863.

[11] K. Tanaka, S. Hara, M. Abe, M. Sato, and S. Minagi, “Speaker dependent
approach for enhancing a glossectomy patient’s speech via gmm-based
voice conversion,” in Proc. INTERSPEECH, 2017, pp. 3384–3388.

[12] X. Tian, Z. Wu, S. W. Lee, and E. S. Chng, “Correlation-based frequency
warping for voice conversion,” in Proc. IEEE Int. Sympo. Chin. Spoken
Lang. Process., 2014, pp. 211–215.

[13] X. Tian, Z. Wu, S. W. Lee, N. Q. Hy, M. Dong, and E. S. Chng, “System
fusion for high-performance voice conversion,” in Proc. INTERSPEECH,
2015, pp. 2759–2763

[14] X. Tian, S. W. Lee, Z. Wu, E. S. Chng, and H. Li, “An exemplar-
based approach to frequency warping for voice conversion,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 25, no. 10, pp. 1863–1876,
Oct. 2017.

[15] L.-H. Chen, Z.-H. Ling, L.-J. Liu, and L.-R. Dai, “Voice conversion using
deep neural networks with layer-wise generative training,” IEEE Trans.
Audio, Speech Lang. Process., vol. 22, no. 12, pp. 1859–1872, Dec. 2014.

[16] T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice conversion
in high-order eigen space using deep belief nets,” in Proc. INTERSPEECH,
2013, pp. 369–372.

[17] S. H. Mohammadi and A. Kain, “Voice conversion using deep neural
networks with speaker-independent pre-training,” in IEEE Spoken Lang.
Technol. Workshop, 2014, pp. 19–23.

[18] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep bidirec-
tional long short-term memory based recurrent neural networks,” in Proc.
IEEE Int. Conf. Acoust. Speech, Signal Process., 2015, pp. 4869–4873.

[19] M. Zhang, B. Sisman, L. Zhao, and H. Li, “Deepconversion: Voice con-
version with limited parallel training data,” Speech Commun., vol. 122,
pp. 31–43, 2020.

[20] Z. Wu, T. Virtanen, E. S. Chng, and H. Li, “Exemplar-based sparse rep-
resentation with residual compensation for voice conversion,” IEEE/ACM
Trans. Audio, Speech Lang. Process., vol. 22, no. 10, pp. 1506–1521, Oct.
2014.

[21] B. Sisman, M. Zhang, and H. Li, “A voice conversion framework with tan-
dem feature sparse representation and speaker-adapted wavenet vocoder,”
in Proc. INTERSPEECH, 2018, pp. 1978–1982.

ZHANG et al.: TRANSFER LEARNING FROM SPEECH SYNTHESIS TO VOICE CONVERSION WITH NON-PARALLEL TRAINING DATA 1301

[22] B. Sisman, M. Zhang, and H. Li, “Group sparse representation with
wavenet vocoder adaptation for spectrum and prosody conversion,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 27, no. 6,
pp. 1085–1097, Jun. 2019.

[23] T. Toda, Y. Ohtani, and K. Shikano, “Eigenvoice conversion based on
gaussian mixture model,” in Proc. IEEE Int. Conf. Spoken Lang. Process.,
2006, pp. 2446–2449,.

[24] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker
adaptation in eigenvoice space,” IEEE Speech Audio Process., vol. 8, no. 6,
pp. 695–707, Nov. 2000.

[25] X. Tian, J. Wang, H. Xu, E.-S. Chng, and H. Li, “Average modeling
approach to voice conversion with non-parallel data,” in Proc. Odyssey:
The Speaker Lang. Recognit. Workshop, 2018, pp. 227–232.

[26] D. Erro, A. Moreno, and A. Bonafonte, “Inca algorithm for training voice
conversion systems from nonparallel corpora,” IEEE Trans. on Audio,
Speech, and Lang. Process., vol. 18, no. 5, pp. 944–953, Jul. 2010.

[27] D. Erro and A. Moreno, “Frame alignment method for cross-lingual voice
conversion,” in Proc. INTERSPEECH, 2007, pp. 1969–1972.

[28] Y. Qian, J. Xu, and F. K. Soong, “A frame mapping based HMM approach
to cross-lingual voice transformation,” in Proc. IEEE Int. Conf. Acoust.
Speech, Signal Process., 2011, pp. 5120–5123.

[29] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
through vector quantization,” J. Acoustical Soc. Jpn., vol. 11, no. 2,
pp. 71–76, 1990.

[30] K. Shikano, S. Nakamura, and M. Abe, “Speaker adaptation and voice
conversion by codebook mapping,” in Proc. IEEE Int. Symp. Circuits Syst.,
1991, pp. 594–597.

[31] O. Turk and L. M. Arslan, “Robust processing techniques for voice
conversion,” Comput. Speech Lang., vol. 20, no. 4, pp. 441–467, 2006.

[32] F. Fang, J. Yamagishi, I. Echizen, and J. Lorenzo-Trueba, “High-quality
nonparallel voice conversion based on cycle-consistent adversarial net-
work,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., 2018,
pp. 5279–5283.

[33] T. Kaneko and H. Kameoka, “Cyclegan-vc: Non-parallel voice conversion
using cycle-consistent adversarial networks,”in Proc. Eur. Signal Process.
Conf., 2018, pp. 2100–2104.

[34] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “Cyclegan-vc2: Im-
proved cyclegan-based non-parallel voice conversion,” in Proc. IEEE Int.
Conf. Acoust. Speech, Signal Process., 2019, pp. 6820–6824.

[35] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “CycleGAN-VC3:
Examining and improving CycleGAN-VCs for mel-spectrogram conver-
sion,” in Proc. INTERSPEECH, 2020, pp. 2017–2021.

[36] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Stargan-vc: Non-
parallel many-to-many voice conversion using star generative adversar-
ial networks,” in Proc. IEEE Spoken Lang. Technol. Workshop, 2018,
pp. 266–273.

[37] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,” in
Proc. IEEE Asia-Pacific Signal Inf. Process. Assoc., 2016, pp. 1–6.

[38] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, “Voice conversion
from unaligned corpora using variational autoencoding wasserstein
generative adversarial networks,” in Proc. INTERSPEECH, 2017,
pp. 3364–3368.

[39] K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-Johnson,
“AutoVC: Zero-Shot voice style transfer with only autoencoder loss,” in
Proc. 36th Int. Conf. Mach. Learn., ser. Proc. Mach. Learn. Research, K.
Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach, California,
USA: PMLR, 09-15 Jun 2019, pp. 5210–5219.

[40] K. Qian, Z. Jin, M. Hasegawa-Johnson, and G. J. Mysore, “F0-consistent
many-to-many non-parallel voice conversion via conditional autoencoder,”
in ICASSP 2020-2020 IEEE Int. Conf. Acoust. Speech Signal Process.,
2020, pp. 6284–6288.

[41] T. J. Hazen, W. Shen, and C. White, “Query-By-Example spoken term
detection using phonetic posteriorgram templates,” in Proc. IEEE Autom.
Speech Recognit. Understanding Workshop, 2009, pp. 421–426.

[42] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng, “Phonetic posteriorgrams
for many-to-one voice conversion without parallel data training,” in Proc.
IEEE Int. Conf. Multimedia Expo, 2016, pp. 1–6.

[43] Y. Saito, Y. Ijima, K. Nishida, and S. Takamichi, “Non-parallel voice
conversion using variational autoencoders conditioned by phonetic pos-
teriorgrams and d-vectors,” in Proc. Int. Conf. Acoust. Speech, Signal
Process., 2018, pp. 5274–5278.

[44] S.-w. Park, D.-y. Kim, and M.-c. Joe, “Cotatron: Transcription-guided
speech encoder for any-to-many voice conversion without parallel data,”
2020, arXiv:2005.03295.

[45] H. Luong and J. Yamagishi, “Bootstrapping non-parallel voice conver-
sion from speaker-adaptive text-to-speech,” in Proc. IEEE Autom. Speech
Recognit. Understanding Workshop, 2019, pp. 200–207.

[46] M. Zhang, X. Wang, F. Fang, H. Li, and J. Yamagishi, “Joint training
framework for text-to-speech and voice conversion using multi-source
tacotron and WaveNet,” in Proc. INTERSPEECH, 2019, pp. 1298–1302.

[47] W.-C. Huang, et al., “Voice transformer network: Sequence-to-sequence
voice conversion using transformer with text-to-speech pretraining,” in
Proc. Interspeech, 2020, pp. 4676–4680, doi: 10.21437/Interspeech.2020-
1066.

[48] J. Shen et al., “Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal
Process., 2018, pp. 4779–4783.

[49] Y. Wang et al., “Tacotron: Towards end-to-end speech synthesis,” in Proc.
INTERSPEECH, 2017, pp. 4006–4010, doi: 10.21437/Interspeech.2017-
1452.

[50] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[51] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-Based Models for Speech Recognition,” in Adv. Neural Inf.
Process. Syst. 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 577–585.

[52] A. Van Den Oord et al., “WaveNet: A. generative model for raw audio,”
in Proc. 9th ISCA Speech Synthesis Workshop, 2016, p. 125.

[53] N. Kalchbrenner et al., “Efficient neural audio synthesis,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 2415–2424.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn., ser. Proc. Mach. Learn. Res., F. Bach and D. Blei, Eds.,
vol. 37. Lille, France: PMLR, 07-09 Jul 2015, pp. 448–456.

[55] Y. Jia, Y. Zhang et al., “Transfer Learning From Speaker Verification
to Multispeaker Text-to-Speech Synthesis,” in Adv. Neural Inf. Process.
Syst. 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 4480–
4490.

[56] E. Cooper et al., “Zero-shot multi-speaker text-to-speech with state-of-the-
art neural speaker embeddings,” in Proc. IEEE Int. Conf. Acoust. Speech,
Signal Process., 2020, pp. 6184–6188.

[57] J.-X. Zhang, Z.-H. Ling, Y. Jiang, L.-J. Liu, C. Liang, and L.-R.
Dai, “Improving sequence-to-sequence voice conversion by adding text-
supervision,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process.,
2019, pp. 6785–6789.

[58] J.-X. Zhang, Z.-H. Ling, L.-J. Liu, Y. Jiang, and L.-R. Dai, “Sequence-
to-sequence acoustic modeling for voice conversion,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 27, no. 3, pp. 631–644, Mar. 2019.

[59] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 4, pp. 788–798, May 2011.

[60] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-dependent
speaker verification,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal
Process., 2014, pp. 4052–4056.

[61] S. J. Arik, K. Chen Peng, W. Ping, and Y. Zhou, “Neural Voice Cloning
With a Few Samples,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, K. H. Larochelle, K. Grauman N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 10019–
10029.

[62] H.-T. Luong and J. Yamagishi, “Nautilus: A versatile voice cloning sys-
tem,” in Proc. IEEE/ACM Trans. Audio, Speech, Lang. Process., 2017,
pp. 2967–2981, doi: 10.1109/TASLP.2020.3034994.

[63] J. Chorowski, R. Weiss, S. Bengio, and A. Oord, “Unsupervised speech
representation learning using wavenet autoencoders,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 27, no. 12, pp. 2041–2053, Dec. 2019.

[64] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-to-end
loss for speaker verification,” in Proc. IEEE Int. Conf. Acoust. Speech,
Signal Process., 2018, pp. 4879–4883.

[65] J.-c.Chou, C.-c. Yeh, H.-y. Lee, and L.-s. Lee, “Multi-target voice con-
version without parallel data by adversarially learning disentangled audio
representations,” in Proc. INTERSPEECH, 2018, pp. 501–505.

[66] J. Zhang, Z. Ling, and L. Dai, “Non-parallel sequence-to-sequence voice
conversion with disentangled linguistic and speaker representations,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 540–552,
2020.

[67] R. Skerry-Ryan et al., “Towards End-to-End prosody transfer for expres-
sive speech synthesis with tacotron,” in Proc. Mach. Learn.Res., J. Dy and

1302 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

A. Krause, Eds., vol. 80. Stockholmsmassan, Stockholm Sweden: PMLR,
10-15 Jul 2018, pp. 4693–4702.

[68] D. Hendrycks and K. Gimpel, “Bridging Nonlinearities and Stochas-
tic Regularizers With Gaussian Error Linear Units,” 2016, CoRR,
vol. abs/1606.08415.

[69] D. Povey et al., “The kaldi speech recognition toolkit,” in Proc. IEEE
Workshop Auto. Speech Recognit. Understanding, 2011.

[70] J. Lorenzo-Trueba et al., “The voice conversion challenge 2018: Promoting
development of parallel and nonparallel methods,” in Proc. Odyssey: The
Speaker Lang. Recognit. Workshop, 2018, pp. 195–202.

[71] H. Zen et al., “LibriTTS: A corpus derived from LibriSpeech for text-to-
speech,” in Proc. INTERSPEECH, 2019, pp. 1526–1530.

[72] J. Du, X. Na, X. Liu, and H. Bu, “AISHELL-2: Transforming mandarin
ASR research into industrial scale,” 2018, arXiv:1808.10583.

[73] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[74] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech synthesis
using deep neural networks,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2013, pp. 7962–7966.

[75] R. Kubichek, “Mel-cepstral distance measure for objective speech quality
assessment,” in Proc. IEEE Pacific Rim Conf. Communications Comput.
Signal Process., 1993, pp. 125–128.

[76] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based high-
quality speech synthesis system for real-time applications,” IEICE Trans.
Inf. Syst., vol. E 99.D, no. 7, pp. 1877–1884, 2016.

[77] B. Sisman, H. Li, and K. C. Tan, “Sparse representation of phonetic features
for voice conversion with and without parallel data,” in Proc. IEEE Autom.
Speech Recognit. Understanding Workshop, 2017, pp. 677–684.

Mingyang Zhang received the B.Eng. degree in elec-
trical information engineering from the Nanjing Uni-
versity of Posts and Telecommunications, Nanjing,
China, in 2014. He is currently working toward the
Ph.D. degree with Key Laboratory of Underwater
Acoustic Signal Processing of Ministry of Education,
Southeast University, Nanjing, China. He is also with
the Department of Electrical andComputer Engineer-
ing, the National University of Singapore, Singapore
for a research attachment. In 2018, he was a Research
Intern with the National Institute of Informatics,

Tokyo, Japan. His current research interests include speech synthesis and voice
conversion.

Yi Zhou received the B.Eng. degree in electrical and
electronic engineering from Nanyang Technological
University, Singapore, in 2015. She is currently a
Research Scholar working toward the Ph.D. degree
with Human Language Technology Lab, Department
of Electrical and Computer Engineering, the National
University of Singapore. Her research focuses on
cross-lingual speech generation.

Li Zhao received the B.E. degree from the Nanjing
University of Aeronautics and Astronautics, Nan-
jing, China, in 1982, the M.S. degree from Suzhou
University, Suzhou, China, in 1988, and the Ph.D.
degree from the Kyoto Institute of Technology, Ky-
oto, Japan, in 1998. He is currently a Professor with
Southeast University, Nanjing, China. His research
interests include speech signal processing and pattern
recognition.

Haizhou Li (Fellow, IEEE) received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical and electronic engi-
neering from the South China University of Technol-
ogy, Guangzhou, China, in 1984, 1987, and 1990,
respectively. He is currently a Professor with the
Department of Electrical and Computer Engineering,
National University of Singapore (NUS), Singapore.
Prior to joining NUS, he taught in The University
of Hong Kong, Hong Kong, from 1988 to 1990 and
South China University of Technology, Guangzhou,
China, from 1990to 1994. He was a Visiting Professor

with CRIN in France from 1994 to 1995, the Research Manager with the Apple-
ISS Research Centre from 1996 to 1998, the Research Director with Lernout
& Hauspie Asia Pacific from 1999 to 2001, the Vice President of InfoTalk
Corp. Ltd. from 2001 to 2003, and the Principal Scientist and Department
Head of the Human Language Technology, Institute for Infocomm Research,
Singapore from 2003 to 2016. His research interests include automatic speech
recognition, speaker and language recognition, and natural language processing.
He was the Editor-in-Chief of IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH

AND LANGUAGE PROCESSING from 2015 to 2018, a Member of the Editorial
Board of Computer Speech and Language from 2012 to 2018. He was an elected
Member of the IEEE Speech and Language Processing Technical Committee
from 2013 to 2015, the President of the International Speech Communication
Association from 2015 to 2017, the President of Asia Pacific Signal and In-
formation Processing Association from 2015 to 2016, and the President of the
Asian Federation of Natural Language Processing from 2017 to 2018. He was the
General Chair of ACL 2012, INTERSPEECH 2014 and IEEE ASRU 2019. He
is a Fellow of the ISCA. He was the recipient of the National Infocomm Award
2002 and the President’s Technology Award 2013 in Singapore. He was named
one of the two Nokia Visiting Professors in 2009 by the Nokia Foundation, and
the Bremen Excellence Chair Professor in 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

