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Abstract—We propose a novel training strategy for Tacotron-
based text-to-speech (TTS) system that improves the speech styling
at utterance level. One of the key challenges in prosody modeling
is the lack of reference that makes explicit modeling difficult.
The proposed technique doesn’t require prosody annotations from
training data. It doesn’t attempt to model prosody explicitly ei-
ther, but rather encodes the association between input text and
its prosody styles using a Tacotron-based TTS framework. This
study marks a departure from the style token paradigm where
prosody is explicitly modeled by a bank of prosody embeddings.
It adopts a combination of two objective functions: 1) frame level
reconstruction loss, that is calculated between the synthesized and
target spectral features; 2) utterance level style reconstruction loss,
that is calculated between the deep style features of synthesized
and target speech. The style reconstruction loss is formulated as
a perceptual loss to ensure that utterance level speech style is
taken into consideration during training. Experiments show that
the proposed training strategy achieves remarkable performance
and outperforms the state-of-the-art baseline in both naturalness
and expressiveness. To our best knowledge, this is the first study
to incorporate utterance level perceptual quality as a loss function
into Tacotron training for improved expressiveness.

Index Terms—Expressive speech synthesis, tacotron, frame and
style reconstruction loss, emotion recognition.

I. INTRODUCTION

W ITH the advent of deep learning, neural TTS has
shown many advantages over the conventional TTS
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techniques [1]–[3]. For example, encoder-decoder architecture
with attention mechanism, such as Tacotron [4]–[7], has consis-
tently achieved high voice quality. The key idea is to integrate the
conventional TTS pipeline [8], [9] into an unified framework that
learns sequence-to-sequence mapping from text to a sequence
of acoustic features [7], [10]–[15]. Furthermore, together with
a neural vocoder [5], [16]–[21], neural TTS generates natural-
sounding and human-like speech which achieves state-of-the-art
performance. Despite the progress, the expressiveness of the
synthesized speech remains to be improved.

Speech conveys information not only through phonetic con-
tent, but also through its prosody. Speech prosody can affect
syntactic and semantic interpretation of an utterance [22], [23],
that is called linguistic prosody. Speech prosody is also used
to display one’s emotional state, that is referred to as affec-
tive prosody. Both linguistic prosody and affective prosody are
manifested over a segment of speech beyond short-time speech
frame. Linguistically, speech prosody in general refers to stress,
intonation, and rhythm in spoken words, phrases, and sentences.
As speech prosody is the result of the interplay of multiple
speech properties, it is not easy to define speech prosody by
a simple labeling scheme [24]–[28]. Even if a labeling scheme
is possible [29], [30], a set of discrete labels may not be sufficient
to describe the entire continuum of speech prosody.

Besides naturalness, one of the factors that differentiate hu-
man speech from today’s synthesized speech is their expressive-
ness. Prosody is one of the defining features of expressiveness
that makes speech lively. Several recent studies successfully
improve the expressiveness of Tacotron TTS framework [31]–
[35]. The idea is to learn latent prosody embedding, i.e. style
token, from training data [31], [36], [37]. At run-time, the style
token can be used to predict the speech style from text [32],
or to transfer the speech style from a reference utterance to
target [33]. It is observed that such speech styling is effective
and consistently improves speech quality. Sun et al. [34], [35]
further study a hierarchical, fine-grained and interpretable latent
variable model for prosody rendering. The studies show that
precise control of the prosody style leads to improvement of
prosody expressiveness in the Tacotron TTS framework. How-
ever, several issues have hindered the effectiveness of above
prosody modeling techniques.

First, the latent embedding space of prosody is learnt in an
unsupervised manner, where the style is defined as anything
but speaker identity and phonetic content in speech. We note
that many different styles co-exist in speech. Some are speaker
dependent, such as accent and idiolect, others are speaker
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independent such as prosodic phrasing, lexical stress and
prosodic stress. There is no guarantee that such latent embedding
space of style represents only the intended prosody. Second,
while the techniques don’t require the prosody annotations
on training data, they require a reference speech or a manual
selection of style token [31] in order to explicitly control the
style of output speech during run-time inference. While it is
possible to automate the style token selection [32], a correct
prediction of style token is subject to both the design of the
style token dictionary, and the run-time style token prediction
algorithm. Third, the style token dictionary in Tacotron is trained
from a collection of speech utterances to represent a large range
of acoustic expressiveness for a speaker or an audiobook [31]. It
is not intended to provide differential prosodic details at phrase
or utterance level. It is desirable for Tacotron system to learn
to automate the prosody styling in response to input text at
run-time, that will be the focus of this paper.

To address the above issues, we believe that Tacotron training
should minimize frame level reconstruction loss [4], [5] and
utterance level perceptual loss at the same time. Perceptual loss
is first proposed for image stylization and synthesis [37]–[40],
where feature activation patterns, or deep features, derived from
pre-trained auxiliary networks are used to optimize the percep-
tual quality of output image. Several computational models have
been proposed to approximate human perception of audio qual-
ity, such as Perceptual Evaluation of Audio Quality (PEAQ) [41],
Perceptual Evaluation of Speech Quality (PESQ) [42], and
Perceptual Evaluation of Audio methods for Source Separation
(PEASS) [43]. However, such models are not differentiable,
hence cannot be directly employed during TTS training. We
believe that utterance level perceptual loss based on deep fea-
tures that reflects global speech style would be useful to improve
overall speech quality.

We are motivated to study a novel training strategy for TTS
systems, that learns to associate prosody styles with input text
implicitly. We would like to avoid the use of prosody annotations.
We don’t attempt to model prosody explicitly either, but rather
learn the association between prosody styles and input text using
existing neural TTS system, such as Tacotron. As the training
strategy is only involved during training, it doesn’t change the
run-time inference process for neural TTS system. At run-time,
we don’t require any reference signal nor manual selection of
prosody style.

The main contributions of this paper include: 1) we propose a
novel training strategy for Tacotron TTS that improves utterance
level expressiveness of speech; 2) we propose to supervise
the training of Tacotron with a fully differentiable perceptual
loss, which is derived from a pre-trained auxiliary network, in
addition to frame reconstruction loss; and 3) we successfully
implement a system that doesn’t require any reference speech
nor manual selection of prosody style at run-time. To our best
knowledge, this is the first study to incorporate perceptual loss
into Tacotron training for improved expressiveness.

This paper is organized as follows: In Section II, we present
the research background and related work to motivate our study.
In Section III, we propose a novel training strategy for TTS
system with frame and style reconstruction loss. In Section IV,

Fig. 1. Block diagram of Tacotron2-based TTS reference baseline [5].

we report the subjective and objective evaluations. Section V
concludes the discussion.

II. BACKGROUND AND RELATED WORK

This work is built on several previous studies on neural TTS,
prosody modeling, perceptual loss, and speech emotion recog-
nition. Here we briefly summarize the related previous work to
set the stage for our study, and to place our novel contributions
in a proper context.

A. Tacotron2-Based TTS

In this paper, we adopt the Tacotron2-based [5] TTS model
as a reference baseline, which is also referred to as Tacotron
baseline for brevity.

The overall architecture of the reference baseline includes en-
coder, attention-based decoder and waveform generation mod-
ule [44]–[46] as illustrated in Fig. 1. The encoder consists of
two components, a convolutional neural network (CNN) mod-
ule [47], [48] that has 3 convolutional layers, and a bidirec-
tional LSTM (BLSTM) [49] layer. The decoder consists of four
components: a 2-layer pre-net, 2 LSTM layers, a linear projec-
tion layer and a 5-convolution-layer post-net. The decoder is a
standard autoregressive recurrent neural network that generates
mel-spectrum features and stop tokens frame by frame. There are
two common techniques to generate the audio waveform from
mel-spectrum features. One is the Griffin Lim [44] algorithm,
another is via a neural vocoder [5], [45], [46], [50].

Just like other TTS systems, Tacotron [4], [5] TTS system
predicts mel-spectrum features from input sequence of charac-
ters by minimizing a frame level reconstruction loss. Such frame
level objective function focuses on the distance between spectral
features. It does not seek to optimize the perceptual quality at
utterance level. To improve the suprasegmental expressiveness,
there have been studies [32], [35], [51] on latent prosody repre-
sentations, that make possible prosody styling in Tacotron TTS
framework. However, most of the studies rely on the style tokens
mechanism to explicitly model the prosody. Simply speaking,
they build a Tacotron TTS system that synthesizes speech, and
learns the global style tokens (GST) at the same time. At run-time
inference, they apply the style tokens to control the expressive ef-
fect [31], [33], that is referred to as the GST-Tacotron paradigm.



1808 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

In this paper, we advocate a new way of addressing the ex-
pressiveness issue by integrating a perceptual quality motivated
objective function into the training process, in addition to the
frame level reconstruction loss function. We no longer require
any dedicated prosody control mechanism during run-time in-
ference, such as style tokens in Tacotron system.

B. Prosody Modeling in TTS

Prosody conveys linguistic, para-linguistic and various types
of non-linguistic information, such as speaker identity, intention,
attitude and mood [52], [53]. It is inherently supra-segmental [1],
[54] due to the fact that prosody patterns cannot be derived
solely from short-time segments [55]. Prosody is hierarchical
in nature [55]–[58] and affected by long-term dependencies at
different levels such as word, phrase and utterance level [59].
Studies on hierarchical modeling of F0 in speech synthesis [1],
[60], [61] suggest that utterance-level prosody modeling is more
effective. Similar studies, such as continuous wavelet transform,
can be found in many speech synthesis related applications [59],
[62]–[65]. In this paper, we will study a novel technique to
observe utterance-level prosody quality during Tacotron training
to achieve expressive synthesis.

The early studies of modeling speaking styles are carried out
on Hidden Markov Models (HMM) [9], [66], where we can
synthesize speech with an intermediate speaking style between
two speakers through model interpolation [67]. To improve
the HMM-based TTS model, there have been studies to in-
corporate unsupervised expression cluster information during
training [68]. Deep learning opens up many possibilities for
expressive speech synthesis, where speaker, gender, and age
codes can be used as control vectors to change TTS output in
different ways [69]. The style tokens, or prosody embeddings,
represent one type of such control vectors, that is derived from
a representation learning network. The success of prosody em-
bedding motivates us to further develop the idea.

Tacotron TTS framework has achieved remarkable perfor-
mance in terms of spectral feature generation. With a large
training corpus, it may be able to generate natural prosody and
expression by remembering the training data using a large num-
ber of network parameters. However, its training process doesn’t
aim to optimize the system for expressive prosody rendering. As
a result, Tacotron TTS system tends to generate speech outputs
that represent model average, rather than the intended prosody.

The idea of global style tokens [31], [32] represents a success
in controlling prosody style of Tacotron output. Style tokens
learn to represent high level styles, such as speaker style, pitch
range, and speaking rate across a collection of utterances or a
speech database. We argue that they neither necessarily represent
the useful styles to describe the continuum of prosodic expres-
sions [70], nor provide the dynamic and differential prosodic
details with the right level of granularity at utterance level. Sun et
al. [34], [35] study a way to include a hierarchical, fine-grained
prosody representation, that represents the recent attempts to
address the problems in GST-Tacotron paradigm.

We would like to address three issues in the existing prosody
modeling in Tacotron framework, 1) lack of prosodic supervision

during training; 2) limitation of explicit prosody modeling, such
as style tokens, in describing the continuum of prosodic expres-
sions; 3) lack of dynamic and differential prosody at utterance
level.

C. Perceptual Loss for Style Reconstruction

It is noted that frame-level reconstruction loss, denoted as
frame reconstruction loss in short, is not always consistent
with human perception because it doesn’t take into account
human sensitivities to temporal and spectral information, such
as prosody and temporal structure of the utterance. For example,
if one repeatedly asks the same question two times, despite
the perceptual similarity of two utterances, they would be very
different as measured by frame-level losses.

Perceptual loss refers to the training loss derived from a
pre-trained auxiliary network [38]. The auxiliary network is usu-
ally trained on a different task that provides perceptual quality
evaluation of an input at a higher level than a speech frame. The
intermediate feature representations, generated by the auxiliary
network in form of hidden layer activations, are usually referred
to as deep features. They are used as the high level abstraction
to measure the training loss between reconstructed signals and
reference signals. Such training loss is also called deep feature
loss [71], [72].

In speech enhancement, perceptual loss has been used suc-
cessfully in end-to-end speech denoising pipeline, with an aux-
iliary network pre-trained on audio classification task [73].
Kataria et al. [71] propose to use perceptual loss which op-
timizes the enhancement network with an auxiliary network
pre-trained on speaker recognition task. In voice conversion,
Lo et al. [74] propose deep learning-based assessment models
to predict human ratings of converted speech. Lee [75] propose a
perceptually meaningful criterion where human auditory system
was taken into consideration in measuring the distances between
the converted speech and the reference.

In speech synthesis, Oord et al. propose to train a WaveNet-
like classifier with perceptual loss for phone recognition [76].
As the classifier extracts high-level features that are relevant
for phone recognition, this loss term supervises the training of
WaveNet to look after temporal dynamics, and penalize bad
pronunciations. Cai et al. [77] study to use a pre-trained speaker
embedding network to provide feedback constraint, that serves
as the perceptual loss for the training of a multi-speaker TTS
system.

In the context of prosody modeling, the perceptual loss in the
above studies can be generally described as style reconstruc-
tion loss [38]. Following the same principle, we would like
to propose a novel auxiliary network, that is pre-trained on a
speech emotion recognition (SER) task, to extract high level
prosody representations. By comparing prosody representations
in a continuous space, we measure perceptual loss between
two utterances. While perceptual loss is not new in speech
reconstruction, the idea of using a pre-trained emotion recog-
nition network for perceptual loss is a novel attempt in speech
synthesis.



LIU et al.: EXPRESSIVE TTS TRAINING WITH FRAME AND STYLE RECONSTRUCTION LOSS 1809

D. Deep Features for Perceptual Loss

Now the question is which deep features could be suitable
for measuring perceptual loss. We benefit from the prior work
in prosody modeling. Prosody embedding in Tacotron is a type
of feature learning, that learns the representation for prediction
or classification tasks. With deep learning algorithms, auto-
matic feature learning can be achieved in either supervised,
such as multilayer perceptron [78], or unsupervised manner,
such as variational autoencoder [79]. Deep features are usually
more generalizable, and easier to manage than hand-crafted or
manually designed features [80]. There have been studies on
representation learning for prosody patterns, such as speech
emotion [81], and speech styles [31].

Affective prosody refers to the expression of emotion in
speech [82], [83]. It is prominently exhibited in emotion speech
database. Therefore, the studies in speech emotion recognition
provide valuable insights into prosodic modeling. Emotion are
usually characterized by discrete categories, such as happy,
angry, and sad, and continuous attributes, such as activation,
valence and dominance [84], [85]. Recent studies show that
latent representations of deep neural networks also characterize
well emotion in a continuous space [78].

There have been studies to leverage emotion speech modeling
for expressive TTS [33], [68], [86]–[88]. Eyben et al. [68]
incorporate unsupervised expression cluster information into an
HMM-based TTS system. Skerry-Ryan et al. [33] study learning
prosody representation from animated and emotive storytelling
speech corpus. Wu et al. [86] propose a semi-supervised training
of Tacotron TTS framework for emotional speech synthesis,
where style tokens are defined to represent emotion categories.
Gao et al. [87] propose to use an emotion recognizer to extract
the style embedding for speech style transfer. Um et al. [88]
study a technique to apply style embedding to Tacotron system
to generate emotional speech, and to control the intensity of
emotional expressiveness.

All the studies point to the fact that emotion-related deep
features serve as the excellent descriptors of speech prosody
and speech styles. In this paper, instead of using the style tokens
to control the TTS outputs, we would like to study how to use
deep style features to measure perceptual loss for the training of
neural TTS system in general.

III. TACOTRON WITH FRAME AND STYLE RECONSTRUCTION

LOSS

We propose a novel training strategy for Tacotron with both
frame and style reconstruction loss. As the style reconstruction
loss is formulated as a perceptual loss (PL) [38], the proposed
frame and style training strategy is called Tacotron-PL in short.
It seeks to optimize both frame-level spectral loss, that is frame
reconstruction loss, as well as utterance-level style loss, that is
style reconstruction loss, at the same time.

The overall framework is illustrated in Fig. 2, that has three
stages: 1) training of style descriptor, 2) the proposed frame and
style training for Tacotron-PL model, and 3) run-time inference.
In Stage I, we train an auxiliary network to serve as the style
descriptor for input speech utterances. In Stage II, the proposed

Fig. 2. Overall framework of a Tacotron-PL system in three stages: Stage I
for training of style descriptor; Stage II for training of Tacotron-PL; Stage III
for run-time inference.

frame and style training strategy is implemented to associate
input text with acoustic features, as well as prosody style of
natural speech, that is assisted by the style descriptor obtained
from Stage I. In Stage III, the Tacotron-PL system takes input
text and generates expressive speech in the same way as a
standard Tacotron does. Unlike other Tacotron variants [31],
Tacotron-PL doesn’t require any add-on module or process for
run-time inference.

As discussed in Section II-A, traditional Tacotron archi-
tecture contains a text encoder and an attention-based de-
coder. We first encode input character embedding into hidden
state, from which the decoder generates mel-spectrum fea-
tures. During training, we adopt a frame-level mel-spectrum
loss as in [5], which is a L2 loss between the synthesized
mel-spectrum Ŷ = {ŷ1, . . .ŷt, . . .ŷT } and target mel-spectrum
Y = {y1, . . .yt, . . .yT }. We have Lossframe as follows,

Lossframe(Y, Ŷ) =
T∑

t=1

L2(yt, ŷt) (1)

which is designed to minimize frame level distortion. As it
doesn’t guarantee utterance level similarity concerning speech
expressions, such as speech prosody and speech styles. We will
study a new loss function Lossstyle next, that measures the
utterance-level style reconstruction loss.

A. Stage I: Training of Style Descriptor

One of the great difficulties of prosody modeling is the
lack of reference samples. In linguistics, we usually describe
prosody styles qualitatively. However, precise annotation of
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Fig. 3. Block diagram of the proposed training strategy, Tacotron-PL. A speech emotion recognition (SER) model is trained separately to serve as an auxiliary
model to extract deep style features. A style reconstruction loss, Lossstyle, is computed between the deep style features of the generated and reference speech at
utterance-level.

speech prosody is not straightforward. One of the ways to
describe a prosody style is to show by example. The idea of
style token [31] shows a way to compare two prosody styles
quantitatively using deep features.

Manual prosodic annotations of recorded speech [29] provide
quantifiable prosodic labels that allow us to associate speech
styles with actual acoustic features. Prosody labeling schemes
often attempt to describe prosodic phenomena, such as the supra-
segmental features of intonation, stress, rhythm and speech rate,
in discrete categories. Categorical labels of speech emotion [89]
also seek to achieve a similar goal. The prosody labeling schemes
serve as a type of style descriptor. With deep neural network, one
is able to learn the feature representation of the data at different
level of abstraction in a continuous space [90]. As speech styles
naturally spread over a continuum rather than forced-fitting into
a finite set of categorical labels, we believe that deep neural
network learned from animated and emotive speech serves as a
more suitable style descriptor.

We propose to use a speech emotion recognizer (SER) [82],
[83] as a style descriptorF (·), which extracts deep style features
Ψ from an utterance Y, or Ψ = F (Y). We use neuronal acti-
vations of hidden units in a deep neural network as the deep
style features to represent high level prosodic abstraction at
utterance level. In practice, we first train an SER network with
highly animated and emotive speech with supervised learning.
We then derive deep style features from a small intermediate
layer. As the intermediate layer is small relative to the size of the
other layers, it creates a constriction in the network that forces
the information pertinent to emotion classification into a low
dimensional prosody representation [91]. Such low dimensional
prosody representation is expected to describe the prosody style
of speech signals as the SER network relies on the prosody
representation for accurate emotion classification.

We follow the SER implementation in [36], [92] as illustrated
in Fig. 3, that forms part of Fig. 2. The SER network includes 1)
a three-dimensional (3-D) CNN layer; 2) a BLSTM layer [93];
3) an attention layer; and 4) a fully connected (FC) layer. The
3-D CNN [92] first extracts a latent representation from mel-
spectrum, its delta and delta-delta values from input utterance,
converting the input utterance of variable length into a fixed size
latent representation, denoted as deep features sequence Ψlow,
that reflects the semantics of emotion. The BLSTM summarizes

TABLE I
THE MCD, RMSE AND FD RESULTS OF DIFFERENT SYSTEMS

TABLE II
THE AB PREFERENCE TEST FOR EXPRESSIVENESS AND NATURALNESS

EVALUATION BY 15 LISTENERS, WITH 95% CONFIDENCE INTERVALS

COMPUTED FROM THE T-TEST

TABLE III
BEST WORST SCALING (BWS) LISTENING EXPERIMENTS THAT COMPARE

FOUR DEEP STYLE FEATURES IN FOUR TACOTRON-PL MODELS

the temporal information of Ψlow into another latent represen-
tation Ψmiddle. Finally, the attention layer assigns weights to
Ψmiddle and generates Ψhigh for emotion prediction.

The question is which of the latent representations, Ψlow,
Ψmiddle, and Ψhigh, is suitable to be the deep style features. To
validate the descriptiveness of deep style features, we perform
an analysis on LJ-Speech corpus [94]. Specifically, we randomly
select five utterances from each of the six style groups from the
database, each group having a distinctive speech style, namely,
1) Short question; 2) Long question; 3) Short answer; 4) Short
statement; 5) Long statement and 6) Digit string. The complete
list of utterances can be found at Table V in Appendix A.
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TABLE IV
THE AB PREFERENCE TEST FOR EXPRESSIVENESS AND NATURALNESS

EVALUATION BY 15 LISTENERS, WITH 95% CONFIDENCE INTERVALS

COMPUTED FROM THE T-TEST

Fig. 4. t-SNE plot of the distributions of deep style features Ψlow , Ψmiddle

and Ψhigh for six groups of utterances in LJ-Speech corpus. The list of
utterances can be found at Table V in Appendix A.

We visualize theΨlow,Ψmiddle andΨhigh of utterances using
the t-SNE algorithm in a two dimensional plane [95], as shown in
Fig. 4. Please note that the distributions of digits 1 to 6 represent
those of groups 1 to 6 in the two dimensional space. As illustrated
in Table V, the utterances within the same group form a cluster,
while the utterances between groups distance from one another.
To visualize, we color the clusters to highlight their distributions.
It is observed that Ψlow, Ψmiddle and Ψhigh of utterances
form clear style groups in terms of feature distributions, that
correspond to the six different utterance styles summarized in
Table V. Furthermore, it is clear that Fig. 4(a) shows a better
clustering than Fig. 4(b) and Fig. 4(c). We will further compare
the performance of different deep style features through TTS
experiments in Section IV.

B. Stage II: Tacotron-PL Training

During the training of Tacotron-PL, the SER-based style
descriptor F (·) is used to extract the deep style features Ψ. We
define a style reconstruction loss that compares the prosody style
between the reference speech Y and the generated speech Ŷ.

Lossstyle(Y, Ŷ) = L2(Ψ, Ψ̂) (2)

where Ψ = F (Y) and Ψ̂ = F (Ŷ). As illustrated in Fig. 3,
the proposed training strategy involves two loss functions: 1)
Lossframe that minimizes the loss between synthesized and
original mel-spectrum at frame level; and 2) Lossstyle that
minimizes the style differences between the synthesized and
reference speeches at utterance level.

Losstotal(Y, Ŷ) = Lossframe(Y, Ŷ) + Lossstyle(Y, Ŷ)
(3)

where Lossframe is also the loss function of a traditional
Tacotron [5] system.

Style reconstruction loss can be seen as perceptual quality
feedback at utterance level to supervise the training of prosody
style. All parameters in the TTS model are updated with the
gradients of the total loss through back-propagation. We expect
that mel-spectrum generation will learn from local and global
viewpoint through the frame and style reconstruction loss.

C. Stage III: Run-Time Inference

The inference stage follows exactly the same Tacotron work-
flow, that only involves the TTS Model in Fig. 3. The difference
between Tacotron-PL and other global style tokens variation of
Tacotron is that Tacotron-PL encodes prosody styling inside the
standard Tacotron architecture. It doesn’t require any add-on
module.

At run-time, the Tacotron architecture takes text as input
and generate expressive mel-spectrum features as output, that
is followed by Griffin-Lim algorithm [44] and WaveRNN
vocoder [45] in this paper to generates audio signals.

IV. EXPERIMENTS

We train a SER as the style descriptor on IEMOCAP
dataset [89], which consists of five sessions. The dataset contains
a total of 10039 utterances, with an average duration of 4.5
seconds at a sampling rate of 16 kHz. We only use a subset of the
improvised data with four emotional categories, namely, happy,
angry, sad, and neutral, which are recorded in the hypothetical
scenarios designed to elicit specific types of emotions.

With the style descriptor, we further train a Tacotron system
on LJ-Speech database [94], which consists of 13100 short clips
with a total of nearly 24 hours of speech from one single speaker
reading 7 non-fiction books. The speech samples are available
from the demo link.1

1Speech Samples: https://ttslr.github.io/Expressive-TTS-Training-with-
Frame-and-Style-Reconstruction-Loss/

https://ttslr.github.io/Expressive-TTS-Training-with-Frame-and-Style-Reconstruction-Loss/
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Fig. 5. Three level (low, middle and high) of deep style features extracted
from SER-based style descriptors for computing style construction loss.

A. Comparative Study

We develop five Tacotron-based TTS systems for a compara-
tive study, that includes the Tacotron baseline, and four variants
of Tacotron with the proposed training strategy, Tacotron-PL.

To study the effect of different style descriptors, we compare
the use of four deep style features, which includes three single
features and a combination of them, in Lossstyle, as illustrated
in Fig. 5, and summarized as follows:
� Tacotron: Tacotron [5] trained with Lossframe as in Eq.

(1), that doesn’t explicitly model speech style.
� Tacotron-PL(L): Tacotron-PL which uses Ψlow in
Lossstyle.

� Tacotron-PL(M): Tacotron-PL which uses Ψmiddle in
Lossstyle.

� Tacotron-PL(H): Tacotron-PL which uses Ψhigh in
Lossstyle.

� Tacotron-PL(LMH): Tacotron-PL which uses
{Ψlow,Ψmiddle,Ψhigh} in Lossstyle.

B. Experimental Setup

For SER training, we first split the speech signals into seg-
ments of 3 seconds as in [92]. We then extract 40-channel
mel-spectrum features with a frame size of 50 ms and 12.5 ms
frame shift. The first convolution layer has 128 feature maps,
while the remaining convolution layers have 256 feature maps.
The filter size for all convolution layers is 5×3, with 5 along the
time axis, and 3 along the frequency axis, and the pooling size
for the max pooling layer is 2×2. We add a linear layer with 200
output units after 3-D CNN for dimension reduction.

In this way, the 3-D CNN extracts a fixed size of latent
representation with 150× 200 dimension from the input ut-
terance, that we use as the deep style features Ψlow = Flow(·)
to represent a temporal sequence of 150 segment, each having
an embedding of 200 elements. As each direction of BLSTM
layer contains 128 cells, in two directions, we obtain 256 output
activations for each input segment, that are further mapped to 200
output units via a linear layer. BLSTM summarizes the temporal
information of Ψlow into another fixed size latent representation
Ψmiddle = Fmiddle(·) of 150× 200 dimension. The attention
layer assigns the weights to Ψmiddle and generate a new la-
tent representation Ψhigh = Fhigh(·). All latent representation
Ψlow, Ψmiddle, Ψhigh have the same dimension.

The fully connected layer contains 64 output units. Batch
normalization [96] is applied to the fully connected layer to
accelerate training and improve the generalization performance.
The parameters of the SER model were optimized by minimizing

the cross-entropy objective function, with a minibatch of 40
samples, using the Adam optimizer with Nestorov momentum.
The initial learning rate is set to 10−4 and the momentum is
set to 0.9. In this way, we obtain a SER style descriptor that is
reported with an average classification accuracy of 73.2% for all
emotions on the test set.

The SER-based style descriptor is used to extract deep style
features for the computing of Lossstyle. For TTS training, the
encoder takes a 256-dimensions character sequence as input
and the decoder generates the 40-channel mel-spectrum. The
training utterances from LJ-Speech database are of variable
length. Mel-spectrum features are also extracted with a frame
size of 50 ms and 12.5 ms frame shift. They are normalized to
zero-mean and unit-variance to serve as the reference target. The
decoder predicts only one non-overlapping output frame at each
decoding step. We use the Adam optimizer with β1 = 0.9, β2

= 0.999 and a learning rate of 10−3 exponentially decaying to
10−5 starting at 50 k iterations. We also apply L2 regularization
with weight 10−6. All models are trained with a batch size of 32
and 150 k steps.

C. Objective Evaluation

We conduct objective evaluation experiments to compare the
systems in a comparative study. The results are summarized in
Table I.

1) Performance Evaluation Metrics: Mel-cepstral distortion
(MCD) [97] is used to measure the spectral distance between the
synthesized and reference mel-spectrum features that is known
to correlate well with human perception [97]. MCD is calculated
as:

MCD =
10
√
2

ln 10

1

N

√√√√ N∑
k=1

(yt,k − ŷt,k)
2 (4)

where N represents the dimension of the mel-spectrum, yt,k
denotes the kth mel-spectrum component in tth frame for the
reference target mel-spectrum, and ŷt,k for the synthesized mel-
spectrum. Lower MCD value indicates smaller distortion.

We use Root Mean Squared Error (RMSE) as the evaluation
metrics for F0 modeling, that is calculated as:

RMSE =

√√√√ 1

T

T∑
t=1

(
F0t − F̂0t

)2

(5)

where F0t and F̂0t denote the reference and synthesized F0 at
tth frame. We note that lower RMSE value suggests that the two
F0 contours are more similar.

Moreover, we propose to use frame disturbance, denoted as
FD, to calculate the deviation in the dynamic time warping
(DTW) alignment path [98]–[100]. FD is calculated as:

FD =

√√√√ 1

T

T∑
t=1

(at,x − at,y)
2 (6)

where at,x and at,y denote the x-coordinate and the y-coordinate
of the tth frame in the DTW alignment path. As FD represents
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Fig. 6. Spectrogram (left) and F0 contour (right) of an utterance “The design
of the letters of this modern ‘old style’ leaves a good deal to be desired.” from
LJ-Speech database between the reference natural speech, labelled as Ground
Truth, and five Tacotron systems. It is observed that Tacotron-PL models produce
finer spectral details, prosodic phrasing and F0 contour that are closer to those
of the reference than Tacotron baseline.

the duration deviation of the synthesized speech from the target,
it is a proxy to show the duration distortion. A larger value
indicates poor duration modeling performance and a smaller
value indicates otherwise.

2) Spectral Modeling: We observe that all implementations
of Tacotron-PL model consistently provide lower MCD values
than Tacotron baseline, with Tacotron-PL(L) representing the
lowest MCD, as can be seen in Table I. We also visualize the
spectrograms of same speech content synthesized by five differ-
ent models, together with that of the reference natural speech
in Fig. 6. A visual inspection of the spectrograms suggests that
Tacotron-PL models consistently provide finer spectral details
than Tacotron baseline.

3) F0 Modeling: Fundamental frequency, or F0, is an es-
sential prosodic feature of speech [32], [35]. As there is no
guarantee that synthesized speech and reference speech have
the same length, we apply DTW [101] to align speech pairs and
calculate RMSE between the F0 contour of them. The results

are reported in Table I. It is observed that Tacotron-PL models
consistently generate F0 contours which are closer to reference
speech than Tacotron baseline.

We note that both F0 and prosody style contributes to RMSE
measurement. To show the effect of various deep style features
on the F0 contours, we also plot the F0 contours of the utterances
in Fig. 6. A visual inspection suggests that the Tacotron-PL
models benefit from the perceptual loss training, and produce
F0 contour with a better fit to that of the reference speech, with
Tacotron-PL(L) producing the best fit (see Fig. 6(c)).

4) Duration Modeling: Frame disturbance is a proxy to the
duration difference [100] between synthesized speech and ref-
erence natural speech. We report frame disturbance of five
systems in Table I. As shown in Table I, Tacotron-PL models
obtain significantly lower FD value than Tacotron baseline, with
Tacotron-PL(L) giving the lowest FD. From Fig. 6, we can
also observe that Tacotron-PL(L) example clearly provides a
better duration prediction than other models. We can conclude
that perceptual loss training with style reconstruction loss helps
Tacotron to achieve a more accurate rendering of prosodic
patterns.

5) Deep Style Features: We compare four different deep style
features by evaluating the performance of their use in Tacotron-
PL models, namely Tacotron-PL(L), Tacotron-PL(M), Tacotron-
PL(H) and Tacotron-PL(LMH).

In supervised feature learning, the features that are near the
input layer are related to the low level features, while those that
are near the output are related to the supervision target, that are
the categorical labels of the emotion. While we expect the style
descriptors to capture utterance level prosody style, we don’t
want the style reconstruction loss function to directly relate to
emotion categories. Hence, the lower level deep features, Ψlow,
as illustrated in Fig. 4, would be more appropriate than the higher
level deep features, such as Ψmiddle and Ψhigh.

We observe thatΨlow is more descriptive than other deep style
features for perceptual loss evaluation, as reported in spectral
modeling (MCD), F0 modeling (RMSE), duration modeling
(FD) for Tacotron-PL experiment in Table I. The observations
confirm our intuition and the analysis in Fig. 4.

D. Subjective Evaluation

We conduct listening experiments to evaluate several aspects
of the synthesized speech, and the choice of deep style features
for Lossstyle. Griffin-Lim algorithm [44] and neural vocoder
are employed to generate the speech waveform. We choose
WaveRNN vocoder which follows the same parameter settings
as [45] since it’s the first sequential neural model for real-time
audio synthesis [45].

1) Voice Quality: Each audio is listened by 15 subjects, each
of which listens to 150 synthesized speech samples. We first
evaluate the voice quality in terms of mean opinion score (MOS)
among Tacotron, Tacotron-PL(L), Tacotron-PL(M), Tacotron-
PL(H), and Tacotron-PL(LMH). As shown in Fig. 7, Tacotron-
PL models consistently outperforms Tacotron baseline with
either Griffin-Lim algorithm or WaveRNN vocoder, while
Tacotron-PL(L) achieves the best result. Note that WaveRNN
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Fig. 7. The mean opinion scores (MOS) of five systems evaluated by 15
listeners, with 95% confidence intervals computed from the t-test.

vocoder achieves better speech quality than Griffin-Lim algo-
rithm, we conduct the subsequent listening experiments only
with the speech samples generated by WaveRNN vocoder.

2) Expressiveness: In the objective evaluations and MOS
listening tests, Tacotron-PL(L) and Tacotron-PL(LHM) consis-
tently offer better results. We next focus on comparing Tacotron-
PL(L) and Tacotron-PL(LHM) with Tacotron baseline. We first
conduct the AB preference test to assess speech expressiveness
of the systems. Each audio is listened by 15 subjects, each
of which listens to 120 synthesized speech samples. Table II
reports the speech expressiveness evaluation results. We note
that Tacotron-PL(L) outperforms both Tacotron baseline and
Tacotron-PL(LMH) in the preference test. The results suggest
that Ψlow is more effective than other deep style features to
inform the speech style.

3) Naturalness: We further conduct the AB preference test
to assess the naturalness of the systems. Each audio is listened by
15 subjects, each of which listens to 120 synthesized speech sam-
ples. Table II reports the naturalness evaluation results. Just like
in the expressiveness evaluation, we note that Tacotron-PL(L)
outperforms both Tacotron baseline and Tacotron-PL(LMH)
in the preference test. The results confirm that Ψlow is more
effective to inform the speech style.

4) Deep Style Features: We finally conduct Best Worst Scal-
ing (BWS) listening experiments to compare the four different
Tacotron-PL systems with different deep style features. The
subjects are invited to evaluate multiple samples derived from
the different models, and choose the best and the worst sample.
We perform this experiment for 18 different utterances, and
each subject listens to 72 speech samples in total. Each audio is
listened by 15 subjects.

Table III summarizes the results. We can see that Tacotron-
PL(L) is selected for 80% of time as the best model and only 5%
of time as the worst model, that shows Ψlow is the most effective
deep style features.

E. Comparison With GST-Tacotron Paradigm

We further compare Tacotron-PL with the state-of-the-art ex-
pressive TTS framework, i.e., GST-Tacotron [31]. The original

Fig. 8. The convergence trajectories of three loss values on LJ-Speech
training data over the iteration steps, namely Lossframe for Tacotron base-
line, Tacotron-ST, and Lossframe component as part of the Losstotal for
Tacotron-PL.

GST-Tacotron model [31] is focused on style control and trans-
fer, which differs from Tacotron-PL. For a fair comparison, we
modify the GST-Tacotron framework and build a comparative
system, denoted as Tacotron-ST. Specifically, the reference en-
coder of the GST-Tacotron model is replaced with a pre-trained
SER-based style descriptor as described in Sec. III-A. The style
features Ψ extracted by the reference encoder informs Tacotron-
ST the style information as GST-Tacotron does [31]. We then
jointly train the whole Tacotron-ST framework including the
pre-trained SER-based reference encoder with Lossframe.

Tacotron-ST and Tacotron-PL share a similar architecture
with Tacotron baseline [31] except that Tacotron-ST is aug-
mented by a reference encoder derived from a pre-trained
SER model, while Tacotron-PL is augmented by the proposed
style reconstruction loss. In other words, both Tacotron-ST
and Tacotron-PL incorporate style representations into the TTS
training. We take Tacotron-ST under the parallel style transfer
scenario [31] as the contrastive model for Tacotron-PL. We also
use the Tacotron model [5] as another baseline.

We use the low-level style featureΨlow as the style embedding
for Tacotron-ST and the deep style feature for Tacotron-PL in
this section. We then conduct a set of experiments, following the
previous experiment setup in Sec. IV-B.

1) Convergence Trajectories of Lossframe: To examine the
effect of the proposed training strategy, and the influence of and
reference encoder and perceptual loss Lossstyle, we would like
to observe how Lossframe converges with different training
schemes on the same training data. We only compare the con-
vergence trajectories of Lossframe between Tacotron baseline,
Tacotron-ST and the Lossframe component of Losstotal for the
training of Tacotron-PL in Fig. 8.

A lower frame-level reconstruction loss, Lossframe, indi-
cates a better convergence, thus a better frame level spec-
tral prediction. We observe that the Lossframe component in
Losstotal achieves a lower convergence value than Lossframe

in traditional Tacotron and Tacotron-ST training. This suggests
that utterance-level style objective function of Tacotron-PL and
reference signal supervision of Tacotron-ST not only optimizes
style reconstruction loss, but also red uces frame-level recon-
struction loss over the Tacotron baseline.

Finally, Tacotron-PL obtains the best convergence trajec-
tories during training, that further validates the proposed
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Fig. 9. The mean opinion scores (MOS) of three systems evaluated by 15
listeners, with 95% confidence intervals computed from the t-test.

frame and style training strategy. We note that the trajecto-
ries of Tacotron-PL(M) vs. Tacotron-ST(M), Tacotron-PL(H)
vs. Tacotron-ST(H), Tacotron-PL(LMH) vs. Tacotron-ST(LMH)
follow a similar pattern as Tacotron-PL(L) vs. Tacotron-ST(L).

2) Objective and Subjective Evaluation: We also conduct
objective and subjective evaluation experiments to compare
the systems. In objective evaluation of Tacotron-ST, we obtain
6.58, 1.14 and 14.18 of MCD, RMSE and FD respectively.
The Tacotron-ST results are consistently lower than those of
Tacotron, but higher than those of Tacotron-PL(L) in Table I,
which further confirms the effectiveness of the frame and style
training strategy.

In subjective evaluation, we conduct the MOS and AB prefer-
ence tests to assess the overall performance of the systems. The
MOS scores are reported in Fig. 9. Each audio is listened by 15
subjects, each of which listens to 75 synthesized speech samples.
It is observed that Tacotron-PL outperforms the Tacotron and
Tacotron-ST baselines, that shows the clear advantage of frame
and style training strategy. Table IV reports the AB preference
test results. Each audio is listened by 15 subjects, each of which
listens to 120 synthesized speech samples. All results show that
Tacotron-PL outperforms both Tacotron baseline and Tacotron-
ST significantly in terms of expressiveness and naturalness.

All the above experiments confirm that the proposed frame
and style training strategy is more effective in informing the
speech style than GST-Tacotron paradigm, which is encourag-
ing.

V. CONCLUSION

We have studied a novel training strategy for Tacotron-based
TTS system that includes frame and style reconstruction loss.
We implement an SER model as the style descriptor to extract
deep style features to evaluate the style reconstruction loss.
We have conducted a series of experiments and demonstrated
that the proposed Tacotron-PL training strategy outperforms
the start-of-the-art Tacotron and GST-Tacotron-based baselines
without the need of any add-on mechanism at run-time. While
we conduct the experiments only on Tacotron, the proposed idea
is applicable to other end-to-end neural TTS systems, that will
be the future work in our plan.

APPENDIX

TABLE V
THE SCRIPTS OF UTTERANCES IN SIX DISTINCTIVE STYLE GROUPS FROM

LJ-SPEECH DATABASE, THE DEEP STYLE FEATURES OF WHICH ARE

VISUALIZED IN FIG. 4

REFERENCES

[1] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura,
“Speech synthesis based on hidden Markov models,” IEEE Proc. IRE,
vol. 101, no. 5, pp. 1234–1252, May 2013.

[2] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech syn-
thesis using deep neural networks,” in Proc. ICASSP IEEE Int. Conf.
Acoust., Speech Signal Process., 2013, pp. 7962–7966.

[3] R. Liu, F. Bao, G. Gao, and Y. Wang, “Mongolian text-to-speech system
based on deep neural network,” in Proc. Nat. Conf. Man-Mach. Speech
Commun., 2017, pp. 99–108.

[4] Y. Wang et al., “Tacotron: A fully end-to-end text-to-speech synthesis
model,” in Proc. INTERSPEECH, 2017, pp. 4006–4010.

[5] J. Shen et al., “Natural TTS synthesis by conditioning wavenet on
MEL spectrogram predictions,” in Proc. ICASSPIEEE Int. Conf. Acoust.,
Speech Signal Process., 2018, pp. 4779–4783.

[6] R. Liu, B. Sisman, F. Bao, G. Gao, and H. Li, “Wavetts: Tacotron-based
tts with joint time-frequency domain loss,” in Proc. Odyssey 2020 The
Speaker and Language Recognition Workshop, 2020, pp. 245–251.

[7] Y. Lee and T. Kim, “Robust and fine-grained prosody control of end-to-
end speech synthesis,” in Proc. ICASSP IEEE Int. Conf. Acoust., Speech
Signal Process., 2019, pp. 5911–5915.

[8] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech
synthesis system using a large speech database,” in ICASSP IEEE Int.
Conf. Acoust., Speech, Signal Process., 1996, pp. 373–376.

[9] K. Tokuda, H. Zen, and A. W. Black, “An HMM-based speech synthesis
system applied to english,” in Proc. IEEE Speech Synth. Workshop, 2002,
pp. 227–230.



1816 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

[10] R. Liu, B. Sisman, Y. Lin, and H. Li, “Fasttalker: A neural text-to-speech
architecture with shallow and group autoregression,” Neural Netw.,
vol. 141, pp. 306–314, 2021.

[11] Y.-A. Chung, Y. Wang, W.-N. Hsu, Y. Zhang, and R. Skerry-Ryan,
“Semi-supervised training for improving data efficiency in end-to-end
speech synthesis,” in Proc. ICASSP IEEE Int. Conf. Acoust., Speech
Signal Process., 2019, pp. 6940–6944.

[12] M. He, Y. Deng, and L. He, “Robust sequence-to-sequence acoustic
modeling with stepwise monotonic attention for neural TTS,” in Proc.
INTERSPEECH, 2019, pp. 1293–1297.

[13] H.-T. Luong, X. Wang, J. Yamagishi, and N. Nishizawa, “Training multi-
speaker neural text-to-speech systems using speaker-imbalanced speech
corpora,” in Proc. INTERSPEECH, 2019, pp. 1303–1307.

[14] R. Liu, B. Sisman, J. Li, F. Bao, G. Gao, and H. Li, “Teacher-student
training for robust tacotron-based tts,” in Proc. ICASSP IEEE Int. Conf.
Acoust., Speech Signal Process., 2020, pp. 6274–6278.

[15] R. Liu, B. Sisman, and H. Li, “Graphspeech: Syntax-aware graph atten-
tion network for neural speech synthesis,” 2020, arXiv:2010.12423.

[16] T. Hayashi, A. Tamamori, K. Kobayashi, K. Takeda, and T. Toda,
“An investigation of multi-speaker training for wavenet vocoder,” in
Proc. IEEE Autom. Speech Recognit. Understanding Workshop, 2017,
pp. 712–718.

[17] K. Chen, B. Chen, J. Lai, and K. Yu, “High-quality voice conversion
using spectrogram-based wavenet vocoder,” in Proc. INTERSPEECH,
2018, pp. 1993–1997.

[18] T. Okamoto, T. Toda, Y. Shiga, and H. Kawai, “Real-time neural text-
to-speech with sequence-to-sequence acoustic model and WaveGlow or
single Gaussian WaveRNN vocoders,” in Proc. INTERSPEECH, 2019,
pp. 1308–1312.

[19] B. Sisman, M. Zhang, and H. Li, “A voice conversion framework with
tandem feature sparse representation and speaker-adapted wavenet
vocoder,” in Proc. INTERSPEECH, 2018, pp. 1978–1982.

[20] B. Sisman, M. Zhang, and H. Li, “Group sparse representation with
WaveNet vocoder adaptation for spectrum and prosody conversion,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 27, no. 6,
pp. 1085–1097, Jun. 2019.

[21] B. Sisman, M. Zhang, S. Sakti, H. Li, and S. Nakamura, “Adap-
tive wavenet vocoder for residual compensation in GAN-based voice
conversion,” in Proc. IEEE Spoken Lang. Technol. Workshop, 2018,
pp. 282–289.

[22] J. Hirschberg, “Pragmatics and intonation,” The Handbook of Pragmat-
ics, pp. 515–537, 2004.

[23] R. Liu, B. Sisman, F. Bao, J. Yang, G. Gao, and H. Li, “Exploit-
ing morphological and phonological features to improve prosodic
phrasing for mongolian speech synthesis,” in Proc. IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 29, pp. 274–285, 2021, doi:
10.1109/TASLP.2020.3040523.

[24] H. Luong, S. Takaki, G. E. Henter, and J. Yamagishi, “Adapting and
controlling DNN-based speech synthesis using input codes,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2017, pp. 4905–4909.

[25] W.-C. Lin, Y. Tsao, F. Chen, and H.-M. Wang, “Investigation of neural
network approaches for unified spectral and prosodic feature enhance-
ment,” in Proc. Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit
Conf., 2019, pp. 1179–1184.

[26] Z. Hodari, O. Watts, and S. King, “Using generative modelling to produce
varied intonation for speech synthesis,” in Proc. 10th ISCA Speech Synth.
Workshop, 2019, pp. 239–244.

[27] Y. Zhao, H. Li, C.-I. Lai, J. Williams, E. Cooper, and J. Yamagishi, “Im-
proved prosody from learned F0 codebook representations for VQ-VAE
speech waveform reconstruction,” in Proc. Interspeech, 2020, pp. 4417–
4421.

[28] Z. Hodari, C. Lai, and S. King, “Perception of prosodic variation for
speech synthesis using an unsupervised discrete representation of F0,” in
Proc. 10th Int. Conf. Speech Prosody, 2020, pp. 965–969.

[29] K. Silverman et al., “ToBI: A standard for labeling english prosody,” in
Proc. 2nd Int. Conf. Spoken Lang. Process., 1992, pp. 867–870.

[30] P. Taylor and A. W. Black, “Assigning phrase breaks from part-of-speech
sequences,” Comput. Speech Lang., vol. 12, no. 2, pp. 99–117, 1998.

[31] Y. Wang et al., “Style tokens: Unsupervised style modeling, control and
transfer in end-to-end speech synthesis,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 5180–5189.

[32] D. Stanton, Y. Wang, and R. Skerry-Ryan, “Predicting expressive speak-
ing style from text in end-to-end speech synthesis,” in Proc. IEEE Spoken
Lang. Technol. Workshop, 2018, pp. 595–602.

[33] R. Skerry-Ryan et al., “Towards end-to-end prosody transfer for expres-
sive speech synthesis with tacotron,” in Proc. 35th Int. Conf. Mach. Learn.
PMLR, 2018, pp. 4693–4702.

[34] G. Sun, Y. Zhang, R. J. Weiss, Y. Cao, H. Zen, and Y. Wu, “Fully-
hierarchical fine-grained prosody modeling for interpretable speech syn-
thesis,” in Proc. ICASSP IEEE Int. Conf. Acoust., Speech Signal Process.,
2020, pp. 6264–6268.

[35] G. Sun et al., “Generating diverse and natural text-to-speech samples
using a quantized fine-grained vae and autoregressive prosody prior,” in
Proc. ICASSP IEEE Int. Conf. Acoust., Speech Signal Process., 2020,
pp. 6699–6703.

[36] K. Zhou, B. Sisman, R. Liu, and H. Li, “Seen and unseen emotional style
transfer for voice conversion with a new emotional speech dataset,” 2020,
864arXiv:2010.14794.

[37] A. Dosovitskiy and T. Brox, “Generating images with perceptual simi-
larity metrics based on deep networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 658–666.

[38] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 694–711.

[39] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 1511–1520.

[40] A. Wright and V. Válimäki, “Perceptual loss function for neural modeling
of audio systems,” in Proc. ICASSP IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 251–255.

[41] T. Thiede et al., “Peaq-the itu standard for objective measurement of
perceived audio quality,” J. Audio Eng. Soc., vol. 48, no. 1/2, pp. 3–29,
2000.

[42] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-A new method for speech quality
assessment of telephone networks and codecs,” in Proc. ICASSP IEEE
Int. Conf. Acoust., Speech Signal Process., 2001, pp. 749–752.

[43] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, “The peass toolkit-
perceptual evaluation methods for audio source separation,” in Proc. 9th
Int. Conf. on Latent Variable Analysis and Signal Separation,2010.

[44] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier
transform,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 2,
pp. 236–243, Apr. 1984.

[45] N. Kalchbrenner et al., “Efficient neural audio synthesis,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 2410–2419.

[46] A. v. d. Oord et al., “Wavenet: A generative model for raw audio,” in
Proc. 9th ISCA Speech Synthesis Workshop, 2016, p. 125.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[48] K. Emir Ak, A. Kassim, J. Hwee Lim, and J. Yew Tham, “Learn-
ing attribute representations with localization for flexible fashion
search,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 7708–7717.

[49] K. Emir Ak, J. Hwee Lim, J. Yew Tham, and A. Kassim, “Seman-
tically consistent hierarchical text to fashion image synthesis with an
enhanced-attentional generative adversarial network,” in Proc. IEEE Int.
Conf. Comput. Vis. Workshops, 2019, pp. 3121–3124.

[50] B. Sisman, J. Yamagishi, S. King, and H. Li, “An overview of voice con-
version and its challenges: From statistical modeling to deep learning,”
in Proc. IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 29, 2021,
pp. 132–157, doi: 10.1109/TASLP.2020.3038524.

[51] Y. Yasuda, X. Wang, S. Takaki, and J. Yamagishi, “Investigation of
enhanced tacotron text-to-speech synthesis systems with self-attention
for pitch accent language,” in Proc. ICASSP IEEE Int. Conf. Acoust.,
Speech Signal Process., 2019, pp. 6905–6909.

[52] M. S. Ribeiro and R. A. J. Clark, “A multi-level representation of F0 using
the continuous wavelet transform and the discrete cosine transform,” in
Proc. ICASSP IEEE Int. Conf. Acoust., Speech Signal Process., 2015,
pp. 4909–4913.

[53] A. Wennerstrom, The Music of Everyday Speech Prosody and Discourse
Analysis. London, U.K.: Oxford, 2001, pp. 153–158.

[54] D. R. Ladd, “Intonational Phonology,” Cambridge, U.K.: Cambridge,
2008, pp. 153–158.

[55] Y. XU, “Speech prosody: A methodological review,” J. Speech, vol. 1,
no. 1, pp. 85–115, 2011.
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