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Language-Independent Approach for Automatic
Computation of Vowel Articulation Features in

Dysarthric Speech Assessment
Yuanyuan Liu , Nelly Penttilä, Tiina Ihalainen, Juulia Lintula, Rachel Convey, and Okko Räsänen

Abstract—Imprecise vowel articulation can be observed in peo-
ple with Parkinsons disease (PD). Acoustic features measuring
vowel articulation have been demonstrated to be effective indica-
tors of PD in its assessment. Standard clinical vowel articulation
features of vowel working space area (VSA), vowel articulation
index (VAI) and formants centralization ratio (FCR), are derived
the first two formants of the three corner vowels /a/, /i/ and /u/.
Conventionally, manual annotation of the corner vowels from
speech data is required before measuring vowel articulation. This
process is time-consuming. The present work aims to reduce human
effort in clinical analysis of PD speech by proposing an automatic
pipeline for vowel articulation assessment. The method is based
on automatic corner vowel detection using a language universal
phoneme recognizer, followed by statistical analysis of the formant
data. The approach removes the restrictions of prior knowledge
of speaking content and the language in question. Experimental
results on a Finnish PD speech corpus demonstrate the efficacy and
reliability of the proposed automatic method in deriving VAI, VSA,
FCR and F2i/F2u (the second formant ratio for vowels /i/ and /u/).
The automatically computed parameters are shown to be highly
correlated with features computed with manual annotations of
corner vowels. In addition, automatically and manually computed
vowel articulation features have comparable correlations with ex-
perts ratings on speech intelligibility, voice impairment and overall
severity of communication disorder. Language-independence of the
proposed approach is further validated on a Spanish PD database,
PC-GITA, as well as on TORGO corpus of English dysarthric
speech.

Index Terms—Parkinson’s diseases, dysarthria, vowel
articulation, automatic corner vowels detection, phoneme
recognition.

I. INTRODUCTION

PARKINSON’S disease (PD), the second most common
neurodegenerative disease, has a wide range of symptoms,
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including characteristic movement disorders and non-motor
symptoms on sleep, mental and cognitive performance [1].
Among all mentioned symptoms, speech impairment has been
demonstrated to be an early indicator and a valuable marker
of disease progression and treatment efficacy of PD [2]. It is
said that up to 90% of people with PD develop hypokinetic
dysarthria [3], [4], which is a perceptually distinct motor speech
disorder [5]. The manifestations of hypokinetic dysarthria can
include impaired phonation, imprecise articulation, reduced
variability of pitch and loudness, and other prosodic distur-
bances related to speech rate, stress and pauses [2], [5]. Due to
these deficits, speech intelligibility of people with PD could be
degraded.

One of the frequent signs of PD is the presence of a
progressively imprecise articulation [4]. People with PD
are likely to fail to reach the articulatory targets or sustain
the articulation for a sufficient duration, which is known as
articulatory undershoot [5]. The articulatory undershoot together
with reduced range and rate of articulatory movement result
in inaccurate articulation of vowels and consonants. Previous
studies show that articulation disorders can be quantitatively
measured with acoustic analysis, which serves as a reliable,
objective and non-invasive tool for detection and progression
monitoring of PD [2], [6]. In this context, vowel articulation
in PD speech has attracted researchers’ attention [7], [8], since
vowel clarity has been shown to be a powerful indicator of
speech intelligibility [9], [10].

Speech and language pathologists are trained to identify and
differentiate communication disorders by using auditory per-
ceptual judgement and acoustic analysis [11]. Similarly, speech
intelligibility is commonly assessed perceptually, with the help
of articulation tests and manual phonetic transcriptions [12].
As said before, vowel articulation is a reliable indicator of
speech intelligibility, but it requires manual annotations. In fact,
according to our knowledge, all the works on studying vowel
articulation in dysarthric speech have used vowel segments that
have been manually extracted from the speech stimuli [7], [8],
[13]–[17]. The process of manual annotation could be precise,
but it is also time-consuming and requires the annotator(s) to
have basic understanding of speech analysis, annotation tools
(e.g., Praat [18]) and the language at hand. This is a burden
on clinical work, and also limits the scalability of automated
patient screening and follow-up using clinically interpretable
features. However, recent technical developments in automatic
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speech recognition (ASR) have been successfully involved in
feature extraction in automatic assessment of various types of
pathological speech [19]–[21]. This raises the question whether
analysis of vowel articulation could also be fully automated in
order to support clinical practice.

Given this background, the main purpose of the present study
is to develop an automatic and language-independent method
for vowel articulation measurement in terms of acoustic features.
Inspired by the recent successes of using ASR for feature extrac-
tion in automatic pathological speech assessment [19]–[21], a
universal phone/phoneme recognizer is adopted to detect speech
frames representative of corner vowel articulation, followed by
statistical analysis of the formant frequencies across the detected
frames.

We demonstrate the reliability and efficacy of the proposed
method in automatic detection of corner vowels related speech
frames using a Finnish corpus of read speech from people with
PD as well as healthy controls. In addition, we demonstrate that
the automatically computed vowel articulations are correlated
with expert assessment of speech intelligibility, voice impair-
ment and overall severity of communication disorder. We also
provide evidence for language-independence of our approach
by testing the same system on a Spanish PD corpus as well as
an English corpus of dysarthric speech. The results show that
the automatically computed vowel articulation parameters have
significant differences between speech from control speakers
and PD/dysarthric speakers. A number of the automatically
computed vowel articulation parameters are also moderately
correlated with UPDRS (Unified Parkinson’s Disease Rating
Scale) and UPDRS-speech scores in the Spanish PD corpus
as well as the overall dysarthric severity level for the English
dysarthria corpus.

This article is organized as follows: Section I-A describes
the background literature in more detail. Section II introduces
the system framework, algorithm for automatic corner-vowel-
related frames selection and vowel articulations computation.
Section III describes the speech corpora used in the present work.
Experimental results are presented and discussed in Section IV
and V. This article is concluded in Section VI.

A. Related Work

When using acoustic analysis, features such as fundamental
frequency, formants, intensity and spectrum are computed from
recordings of different speech tasks, such as sustained phonation
of vowels, sentence repetition, reading and monologue [2], [16].
With the acoustic parameters, pattern recognition techniques
can be applied to discriminate speech from control and PD
groups [22]. Correlations between the acoustic parameters and
severity scores on multiple dimensions like voice, speech and
motor disorder have been investigated as well [2].

In [22], 13 articulatory features were extracted from
PD-related dysarthric speech of diadochokinetic ‘/pa-ta-ka/’-
repetition based on an automatic algorithm to detect initial burst,
vowel onset and occlusion. These articulatory features describe
the voice quality, coordination of laryngeal and supralaryngeal
activity, precision of consonant articulation, tongue movement,

occlusive weakening and speech timing. The features on conso-
nant articulation were found to be the most sensitive indicators
of PD-related dysarthria.

Vowel articulation is also central to PD-related dysarthric
speech due to the inherent coupling between PD-associated
hypokinesia and the reach and accuracy of articulatory gestures.
In terms of acoustics, different vowels can be distinguished by
their formant frequencies, which are resonances formed by the
vocal tract [23]. Specifically, the first formant (F1) corresponds
to the height of tongue body in articulation, whilst the second
formant (F2) corresponds to the frontness/backness of tongue
body [24]. To qualitatively evaluate the clarity (or, conversely,
undershoot) of vowel articulation, formant related features are
widely used, such as vowel articulation space (VSA), vowel
articulation index (VAI), formant centralization ratio (FCR),
the second formant ratio for vowels /i/ and /u/ (F2i/F2u) and
so on [13], [25]. These features are computed from formants
of corner vowels /a/, /i/ and /u/, which are most commonly
used in human languages and represent the extreme positions
of the speaker’s articulatory vowel working space [7], [12].
These acoustic metrics have been used by speech and language
pathologists (SLP) to study speech development, vowel identity
and speaker characteristics in disordered speech [12], such as
after stroke [26], in cerebral palsy [7] or in PD [27].

In the latest studies, the vowel articulation features have been
used solely, like in [28] where researchers evaluated articulation
with VSA in patients with oral cancer, or together, like in [29]
where VAI and FCR were utilized to study age and sex effects
in European Portuguese vowels. As vowel articulation deficits
depend much on the complexity of the speech task [16], VAI
was studied in conversational spontaneous PD speech in [27].

In [16], vowel articulations were studied for healthy and PD
speakers in four different tasks, including sustained vowels,
sentence repetition, passage reading and monologue. Before-
hand, corner vowel segments were manually extracted from
speech utterances. The extracted features contained the first two
formants of the vowels, VSA, F2i/F2u and VAI for each speaker
in different tasks. As a result, the study demonstrated that the
vowel articulation indices can be used as early indicators of
PD, even when speech is mildly impaired with no observable
auditory degradation. Significant differences on F2u, VSA, VAI
and F2i/F2u were found between people with PD and healthy
groups in all speech tasks except sustained phonation. In [7],
[17], vowel articulation indices were investigated for healthy
speech and dysarthric speech related to cerebral palsy in children
and adults. Significant differences in vowel acoustic indices
were found between the control and cerebral palsy groups.
Specifically, VSA was found to be reduced in dysarthria and
significantly correlated with speech intelligibility [7].

Currently, in clinical speech and language pathology practice,
clinicians do not have automatic acoustic assessment meth-
ods for speech intelligibility. In addition, existing research on
dysarthric speech has largely relied on manual annotations [7],
[8], [13]–[17]. Different vowel space measurements (e.g. VAI
and VSA) are still conducted manually in the field of SLP [27],
[30]. Therefore, it is important to automate tools, such as VAI
and VSA, to improve validity and reliability in assessing and
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Fig. 1. System framework of automatic vowel articulation feature
computation.

identifying communication disorders. In addition, automatic
acoustic assessment is more efficient, user-friendly and accu-
rate compared to phonetic transcriptions or manual acoustic
assessments. At best, automatic assessment has the potential
in speeding up diagnostics, and the start of rehabilitation for
the patients. Automatic acoustic assessment can also be used
in different clinical settings, regardless of client’s age, etiology,
communication disorder or functioning level.

Earlier work using ASR for pathological speech assessment
has already been carried out in the context of other acoustic
features. In [19], [20], phoneme statistics, duration and confi-
dence measures derived from off-the-shelf Spanish ASR sys-
tems were applied to speech assessment of Spanish-speaking
patients with PD. In [21], a Cantonese ASR system was used
to generate utterance-level posterior related features for broad
phoneme classes in voice disorders assessment. In connection
with the practical limitation that a usable ASR system may not be
available for the target language, language-mismatched speech
recognizer was utilized to extract phonotactic and duration fea-
tures, as well as probability features in [31]. However, to the best
of our knowledge, there is no existing approach for automatic
computation of the widely utilized vowel articulation features
VSA, VAI, FCR or F2i/F2u. This work attempts to fill this
gap by describing an automatic pipeline for vowel articulation
assessment using a language-independent phoneme recognizer,
followed by statistical formant analysis to account for potential
errors in the recognition process.

II. METHODS

A. System Framework

The aim of our system1 is to automate the computation of
vowel articulation features in order to ease the human effort for
annotation and analysis in research and clinical practice.

The proposed method is briefly illustrated in Fig. 1. The sys-
tem aims to measure vowel articulatory undershoot in terms of
four commonly utilized features, VSA, VAI, FCR and F2i/F2u,
from read speech of a speaker. During pre-processing, the input
speech signal is downsampled to 16 kHz. Then the read utterance
is fed into a language universal phone/phoneme recognizer.

1Codes and scripts related to our experiments are publicly available at https:
//github.com/SPEECHCOG/autoVAI/

Based on the recognition result, candidate frames related to each
corner vowel are detected automatically. Meanwhile, formant
tracking is applied to the input speech, followed by statistical
analysis of the frame-level formant measurements in order to
derive corner-vowel specific formant estimates. Finally, vowel
articulation features are calculated from the estimates.

B. Automatic Corner Vowel Frame Detection

Conventionally, in order to compute vowel articulation fea-
tures, speech segments of corner vowels in chosen words are
manually annotated beforehand.

In this work, an open-source universal phone/phoneme recog-
nizer called Allosaurus [32] is used for corner vowel detection.
It is a multi-layer Long Short-Term Memory (LSTM) neural
network model trained on 12 different languages, including
English, Japanese, Mandarin, Tagalog, Turkish, Vietnamese,
German, Spanish, Amharic, Italian and Russian. It consists of a
universal allophone layer with an inventory of phone units that
are shared among all training languages, followed by language-
dependent mappings from the allophones to language-dependent
phonemes. In order to work with a compact and transparent
phone set, the present system uses Allosaurus to obtain the most
likely string of English phonemes and recognition scores (logits)
for all the English allophones for a given input utterance in
any language. In Allosaurus, the number of English allophones
equals to the number of English phonemes, and they are from
now on denoted with the ARPABET symbols [33].

Allosaurus input frame length and hop length are set as 45 ms
and 30 ms, respectively. For each speech frame, the phone pos-
terior distributions are represented by a vector of logits, which
can be converted to phone posterior probabilities by applying a
softmax function. The logits vector has dimensionality of 208,
and its first 40 elements that we use here correspond to English
phones in the original Allosaurus training data.

In the ARPABET notation, the corner vowels are represented
as ‘AA’ (/a/), ‘IY’ (/i/) and ‘UW’ (/u/). For each of the corner
vowels, there are a number of similar sounding and potentially
confusable phones. For example, ‘AA’ in ‘balm’ and ‘AH’ in
‘butt’ are similar in pronunciation. In addition, language mis-
match as well as the acoustic differences between recognizer
training and usage data can contribute to recognition confu-
sion. Notably, given the text-free nature of our system, it is
also likely that severely dysarthric speakers may fail to reach
the articulatory targets of corner vowels, resulting in a more
centralized phone production instead. In this case, the recognizer
may recognize the sound as a centralized phone according to its
acoustic properties instead of the original intended sound by the
speaker. However, for our corner vowel articulation analysis, it
is important to capture these productions as exemplars of corner
vowels as well. Considering the likely recognition confusion, we
extended each individual corner vowel to a set of potentially con-
fusable phones/phonemes. Table I shows the list of Allosaurus
English phone categories that we associate with each corner
vowel. The benefits of using extended phone/phoneme sets will
be discussed in Section V-B.

https://github.com/SPEECHCOG/autoVAI/
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Fig. 2. Example of automatic corner-vowel-related frames selection (utterance of Finnish words ‘Puhaltaa niin’). As a reference, manually annotated stable
phonation sections of pre-selected vowels are also shown (see section III-A for details).

TABLE I
PHONE/PHONEME SETS FOR CORNER VOWELS

To screen out the frames which are most likely to be recog-
nized as corner vowels, two selection criteria were designed.
One is based on recognition result of the most likely phoneme
sequence while the other is based on frame-level phone posterior
probabilities. The screening process is described as following.
First the input utterance X = {xt} is decoded by Allosaurus.
From the output of Allosaurus, recognition of the most likely
phoneme sequence {zt} together with logits vectors Y = {yt}
are obtained. To obtain the English phone posteriors P = {pt},
the first 40 dimensions in yt related to English model are kept
while the others are discarded, followed by softmax function.
The elements in pt indicate how likely a frame at time t corre-
sponds to each phone. Briefly speaking, the two selection criteria
are described as:

1) Frame t will be selected as a candidate of corner vowel if
zt belongs to one of the phoneme sets listed in Table I.

2) Frame t can also be selected according to its phone pos-
terior distribution, if among the top k phones with the
highest posterior probabilities in pt, any of them lies in
the corner vowel phoneme sets and has posterior larger
than a predefined threshold α.

The present system uses k = 4 and α = 0.2 based on qualita-
tive observations. Theoretically, one frame could be counted for
more than one corner vowels. After the automatic screening,
three frame sets Sa, Si and Su are generated for the given
utterance, corresponding to /a/, /i/ and /u/, respectively.

An example of automatic frames selection is illustrated in
Fig. 2. The plots show the waveform, spectrum, manual annota-
tion of stable center sections of corner vowels together with the

most likely recognition output and dominant phone posteriors
for approximately 20 frames. The linguistic content of this
segment is a Finnish utterance ‘Puhaltaa niin’ (pronunciation
in IPA, [p u h a l t a:] [n i: n]), where center stable segments /u/,
/a:/, and /i:/ were manually marked. Frame 507 was manually
annotated as /u/. And it was automatically selected for /u/, since
it got a posterior of 0.46 for ‘UW’ (lying inZu). Similarly, frame
512 was selected for /a/, which corresponds to the sound of ‘a’
in ‘Puhaltaa’. Unfortunately, frame 518, with overlap of sound
‘aa,’ was wrongly recognized as ‘UW’ related to /u/. Frames
525− 527 were manually annotated as ‘ii’ and automatically
detected as /i/ based on the recognized phonemes (‘IY’ and
‘IH’) and phone posterior (0.71 for ‘IY’). The efficacy of au-
tomatic corner-vowel-related frames selection will be discussed
in Section V-A.

C. Corner Vowel Representation

Based on the automatic corner-vowel-related frames selection
introduced above, three frame groups Sa, Si and Su related to
/a/, /i/ and /u/ are obtained for the input speech. Any selected
frame xt is then represented by its first two formants, which
were estimated with Burg’s algorithm [34].

The next step is to obtain a single estimate for the corner
vowel formant frequencies to be used in vowel articulation
feature equations. In order to do this, the frame-level estimates
of F1 and F2 of speech corresponding to each corner vowel are
averaged. This is to align with what the speech therapists (also
the annotators in this work) do to measure vowel articulation,
where they compute average formant frequencies across manu-
ally segmented vowels. The process is repeated for all frames in
Sa,Si andSu, resulting in vowel-specific representative formant
estimates (F1a, F2a), (F1i, F2i) and (F1u, F2u), respectively.
However, the automatic frames selection has a known tendency
for centralized estimates and may also suffer from outliers due
to recognition errors, which may bias the mean estimates in
an undesirable manner. In order to reduce the impact of the
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Fig. 3. Corner vowel frame/segment distributions automatically/manually selected from one Finnish speaker’s speech. On the left, each colored point corresponds
to an estimate for one signal frame. On the right, each colored point stands for an estimate for an annotated vowel segment. The solid black symbols are the
representative estimates of the corner vowels. In the automatic selection, corner vowels are represented by 70/30 percentiles of formants of selected frames
(introduced in Section II-C). In manual annotation, corner vowels are represented by the mean formants of the annotated segments.

centralized frames and to increase the corner vowel representa-
tiveness of the detected frames, we explored the use of 70/30
and 90/10 percentiles for high/low formants, respectively, and
median (50/50 percentile) in addition to the mean estimates. For
example, in the 70/30 percentiles case, the formant estimate of
/a/ is the 70th percentile of F1 and the 30th percentile of F2
among selected /a/ frames, whereas vowel /i/ is represented by
the 30th and 70th percentiles of F1 and F2, respectively. Vowel
/u/ is represented by the 30th percentile of both F1 and F2.

An example of automatic corner vowel representation with
automatic selection is shown in Fig. 3. Formant estimates based
on manual vowel center segment annotation are shown in the
right panel for comparison. For both methods, the relative posi-
tions of three corner vowels are similar, where /a/ tends to have
a high F1 while /i/ tends to have a high F2 and /u/ has low values
for F1 and F2. However, as expected due to the broad phoneme
grouping (Table I), there are also automatically detected frames
distributed towards the center of vowel triangle. In Fig. 3,
representative formant values (from now on ‘representatives’)
of selected frames of each corner vowel are shown by black
solid symbols (dots, squares and triangles). In the automatic
method, representatives were calculated with 70/30 percentiles
of formants while those in manual method were represented by
mean formants of annotated segments. As shown in this figure,
the representatives for each vowel are located almost in the same
position for the two methods.

D. Vowel Articulation

The most commonly used features to quantify the vowel
articulation undershoot in both clinical and acoustical research
include VSA, VAI, FCR and F2i/F2u, which are computed from
F1 and F2 of corner vowels. Here corner vowels /a/, /i/ and
/u/ are represented by the formant estimates described in the
previous subsection, i.e. (F1a, F2a), (F1i, F2i) and (F1u, F2u)
respectively.

� VSA is computed as the area of a triangle formed with
vertices of corner vowels in the F1-F2 plane ( 1). VSA is ex-
pected to be compressed with formant centralization [35].

VSA =
1

2
|F1i(F2a− F2u) + F1a(F2u− F2i)

+ F1u(F2i− F2a)| (1)

� VAI is expressed as a ratio of corner vowels’ formants (2).
VAI has been proven to be more robust to inter-speaker
variability than VSA [13]. With formant centralization, the
numerator of VAI is likely to decrease while the denomi-
nator is likely to increase.

VAI =
F1a + F2i

F2a + F1i + F1u + F2u
(2)

� FCR is the reciprocal value of VAI, which was designed to
increase with vowel centralization and decrease with vowel
expansion [25].

� F2i/F2u is the ratio of F2 of vowel /i/ and /u/, which
was also demonstrated to be less sensitive to inter-speaker
variability in [25].

Vowel articulations computed with the hi/lo percentiles of
formants are symbolized by VAI[hi], VSA[hi], FCR[hi] and
F2i/F2u[hi] respectively. For example,

VAI[hi] =
F1a[hi] + F2i[hi]

F2a[lo] + F1i[lo] + F1u[lo] + F2u[lo]
(3)

The logic is similar for computation of VSA[hi], FCR[hi] and
F2i/F2u[hi] using percentiles formants. Here hi + lo = 100
and hi ≥ lo. In our experiments, hi was set to 50, 70 and 90
for investigation. Accordingly, lo equaled to 50, 30 and 10.

III. SPEECH CORPORA

A. Finnish PD Speech Corpus

In order to validate our automated system for vowel articula-
tory undershoot quantification, a subset of Finnish read speech
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from the newly collected Parkinson’s Disease Speech corpus
of Tampere University (PDSTU) was used. The subset contains
reading speech from 67 native Finnish speakers, including 35
speakers diagnosed as PD as well as 32 control speakers. The
speech were recorded with a close-talking microphone as mono
channel with 32 bits and with a sampling rate of 44.1 kHz at
the Tampere University. The reading material was a passage
“Pohjantuuli ja aurinko” (“North Wind and the Sun”), containing
77 Finnish words as listed below. This reading sample has been
commonly used in clinical and research settings in Finland (e.g.
in [36]) and it is comparable to the Rainbow passage often used
in English studies.
� Read passage:

Pohjantuuli ja aurinko väittelivät, kummalla olisi en-
emmän voimaa, kun he samalla näkivät kulkijan, jolla
oli yllään lämmin takki. Silloin he sopivat, että se on
voimakkaampi, joka nopeammin saa kulkijan riisumaan
takkinsa. Pohjantuuli alkoi puhaltaa niin, että viuhui,
mutta mitä kovempaa se puhalsi, sitä tarkemmin kääri mies
takin ympärilleen, ja viimein tuuli luopui koko hommasta.
Silloin alkoi aurinko loistaa lämpimästi, eikä aikaakaan,
niin kulkija riisui manttelinsa. Niin oli tuulen pakko myön-
tää, että aurinko oli kuin olikin heistä vahvempi.

The data were manually annotated according to clinical prac-
tice by three speech researchers (authors N.P., T.I. and J.L.),
using both auditory perception and visual spectral analysis in
Praat. The phonemes marked in bold are the corner vowels that
were chosen for manual annotation, consisting of 5 aa and 5 a
for /a/, 5 ii and 5 i for /i/, 4 uu and 6 u for /u/. In Finnish, vowels
have two durations (quantities), short and long. The short vowel
is written with one letter while the long vowel is written with two
equal letters. For each speaker, a minimum of 30 ms segment
from a stable phonation at the temporal midpoint of each chosen
vowel was manually segmented and annotated for the first two
formants for vowel articulation measurement. The process is
different from the regular phonetic transcription which marks
the beginning and ending of a phoneme’s pronunciation. After
removing leading and trailing silences from speech of reading
the passage, the average length of reading speech per each PD
speaker was approximately 40.0 s while the minimum and maxi-
mum of speech duration were 25.7 s and 55.1 s, respectively. For
control speakers, the average, minimum and maximum reading
times were 34.8 s, 28.5 s and 40.9 s, respectively.

Besides the manual annotation, the read speech from the 35
PD speakers and a random sample of 15 control speakers was
rated by 3 external experts who had an average 23 years (and at
least 16 years) of working experience in speech therapy, and
who were recruited through public advertisement. The rated
dimensions include speech intelligibility, voice impairment and
overall severity of communication disorder according to their
standard definitions in SLP: Speech intelligibility refers to the
degree to which a spoken utterance is understood by a listener.
An impaired voice may be characterized by altered vocal quality,
pitch, loudness, or vocal effort. Vocal quality factors include
but are not limited to: roughness, breathiness, strained quality,
hoarseness, and tremulous voice. A communication disorder is

TABLE II
PARTICIPANT STATISTICS FOR THE FINNISH PDSTU CORPUS (MEAN, (MIN,

MAX)). †EXPERTS’ RATINGS FOR CONTROL GROUP WERE BASED ON

RECORDINGS FROM A SAMPLE OF 15 CONTROL SPEAKERS

a general impairment in the ability to effectively receive, send,
process, and comprehend spoken information [37].

For speech intelligibility, a standard sample was selected
from a healthy control speaker and its intelligibility was defined
as 100. Each rater was asked to compare the intelligibility of
the recording to be rated with that of the standard sample.
Scores larger (smaller) than 100 means more (less) intelligible
than the standard sample. When rating the intelligibility, three
short randomly selected phrases from the reading passage were
presented. The samples selected for each speaker were different
to reduce familiarization. The rater could only listen to the
presented sample once. The ratings of voice impairment and
overall severity of communication disorder were carried out
using a scale from 0 (normal) to 100 (most severe). To rate
voice impairment and overall severity, the raters were allowed to
listen to the presented samples as many times as they needed. The
recordings were presented in a randomized order and participant
information was hidden to the raters. The test was conducted in a
quiet room using high-quality headphones (Sennheiser HD598).

Severity of the PD was assessed using Hoehn and Yahr scale
(H&Y), obtained using a dedicated questionnaire administered
to the PD subjects. The scale has 8 values from 1 to 5 in 0.5 in-
crements and describes the severity of movement disorder [38].
The larger the value, the severer the movement disorder.

Statistics of the dataset are summarized in Table II, where the
numbers denote the mean and the minimum and maximum of
each value inside parentheses. The mean H&Y of 1.8 indicates,
on average, a mild stage of PD in our subject population. How-
ever, symptoms of PD on speech and voice can be already seen
from the expert ratings, where average PD patient intelligibility
is lower and impairment and disorder ratings higher than those
of controls.

Permission to conduct the present study on PDSTU was
obtained from the Ethics Committee of Tampere University. All
subjects provided a written informed consent according to the
Declaration of Helsinki.

B. Spanish PD Speech Corpus

In order to further validate the reliability and language-
independence of our proposed method for automatic vowel
articulation feature computation, two more speech corpora in
different languages were used in this work.
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TABLE III
STATISTICS OF PARTICIPANT INFORMATION IN THE SPANISH CORPUS,

PC-GITA (MEAN, (MIN, MAX))

First of them, PC-GITA, is a widely used Spanish PD speech
database [39], which contains speech recordings from 50 speak-
ers diagnosed with PD and 50 control speakers matched by age
and gender. All the speakers are native Spanish speakers. In
this work, only text reading speech were used for experiments.
For the PD speakers, the average length of reading sample was
approx. 18.6 s, with minimum and maximum durations of 28.5 s
and 40.9 s. For the control speakers, the average, minimum
and maximum sample lengths were 17.6 s, 11.2 s and 34.0 s,
respectively. Together with the audio recordings, participants’
information for both control and PD groups were provided,
shown as Table III. The larger the UPDRS (UPDRS-speech),
the severer the PD (speech impairment).

C. English Dysarthric Speech Corpus

TORGO [40], a widely used English corpus, contains speech
from both control group and dysarthric speakers with either
cerebral palsy or amyotrophic lateral sclerosis. The data are
free to download from the TORGO website,2 consisting of
7 control speakers (3 females and 4 males) and 8 dysarthric
(3 females and 5 males) speakers. The dysarthric speakers
were between the ages of 16 to 50 years old and the control
speakers were age-matched. Speech tasks in TORGO include
non-words, short-words and restricted/unrestricted sentences. In
order to make the data comparable to a passage reading task, we
concatenated multiple short sentences together. For each session
of a speaker, the 20 sentences with the longest prompts were
selected. Then the corresponding 20 speech recordings were
utilized to form two long waveforms, each of which contains
ten sentences. As a result, a total of 52 long waveforms from
the 15 speakers were obtained (not all sessions were available
from all talkers). Among the 52 signals, half were from the
control group and half from the dysarthric group. The mean,
maximum and minimum of durations of these audio files were
approx. 70 s, 137 s and 42 s. All selected signals were recorded
with a head-mounted microphone. The speaking content varied
across the concatenated audios. Following [41], the 8 dysarthric
speakers were divided into 3 severity levels according to overall
clinical intelligibility and articulatory function, with 2 mildly, 2
moderately and 4 severely disordered speakers. For correlation
analyses, we assigned a numerical severity score of ‘0, 1, 2, 3’
to the ‘control, mild, moderate, severe’ speakers, respectively.

2http://www.cs.toronto.edu/complingweb/data/TORGO/torgo.html

TABLE IV
PEARSON CORRELATIONS OF FORMANT RELATED FEATURES BETWEEN

AUTOMATIC AND MANUAL METHODS ON THE PDSTU CORPUS

(p < .00001 FOR ALL CORRELATIONS.)

IV. EXPERIMENTS

Based on the manually annotated corner vowel segments,
gold-standard VAI, VSA, FCR and F2i/F2u features were com-
puted for each speaker in the Finnish corpus PDSTU. In order to
validate our system, the automatic vowel articulation measure-
ment system was compared against the same measures based on
hand-annotated speech segments for the Finnish dataset.

A. Consistency of Automatic Vowel Articulation Features

Table IV lists the Pearson correlation coefficients between
the automatic and manual computations on various dimensions
on 67 speakers of the Finnish corpus. The vowel articulation
features include VAI, VSA, FCR and F2i/F2u computed with
the mean and different percentiles (hi/lo) of frame-level formants
as defined in Section II-D. Besides the vowel articulation fea-
tures, correlations on corner vowel formant estimates are also
reported. All the correlation coefficients are larger than 0.73
while the largest correlation values for each feature are in range
of 0.81−0.97, marked as bold in the table (p < .00001 for all
measurements). On average, the correlations in the control group
and in the PD group are similar. All coefficients in Table IV show
strong and significant correlation for features computed with
manual and automatic methods. Therefore, the result indicates
the reliability of the proposed automatic approach for vowel ar-
ticulation feature computation. In addition, the use of percentiles
can improve the correlation coefficients over the mean F2a, F1i,
F1u and F2u when computing the features.

Scatter plots in Fig. 4 illustrate the relationship between
the automatic and manual methods on each vowel articulation,
where the mean of frame-level formants are used to calculate
the representative formant frequencies. In the figure, each dot
(blue) represents one particular speaker. A linear regression
line (red) fit to the measurements and a reference dashed line
(grey) for y = x are displayed together. The plots show strong
correlations on features computed with automatic and manual
methods. Furthermore, the dots are distributed below the dashed
line (y = x), except those in plot of FCR. This means that the
automatically computed feature values (VAI, VSA and F2i/F2u)
are smaller than those from manually annotated frames. This

http://www.cs.toronto.edu/complingweb/data/TORGO/torgo.html
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Fig. 4. Correlations of vowel articulation features computed with the mean of formants under automatic selection and manual annotation for the 67 speakers in
the Finnish speech corpus PDSTU. In the legend, ‘r’ stands for Pearson correlation coefficient and three-stars (∗∗∗) indicates statistical significance at p < .001.

phenomenon is reasonable, since the automatic frames selection
may include phonemes which are located towards the center of
the vowel space. As demonstrated by Fig. 5, the centralization
tendency is substantially reduced when using the percentiles
(in this case 70/30) for the overall formant estimates of corner
vowels in automatic selection method.

B. Correlation Between Vowel Articulation Features and
Expert Assessment

As mentioned in Section III-A, experts’ ratings on speech
intelligibility, voice impairment and overall severity of com-
munication disorder were collected for the 35 PD participants
and 15 control speakers in the Finnish dataset PDSTU. Pearson
correlations between vowel articulations and the average expert
rating on each rated dimension were calculated and are listed
in Table V. Almost all the correlation pairs are shown to be
significant.

VAI, VSA and F2i/F2u increase with the ratings of speech
intelligibility but decrease with increasing voice impairment and
overall severity of communication disorder. This means that
articulatory undershoot increases as the speech/voice disorder
severity increases. In contrast, FCR decreases with the speech
intelligibility but increases with the voice impairment and over-
all severity of communication disorder.

These observations are compatible with previous work [25].
The largest correlation coefficients for each pair of vowel artic-
ulation and expert rating are marked as bold. Absolute values
of these marked coefficients range from 0.44 to 0.68, which
are interpreted as moderate correlations between the vowel
articulations and regarding expert rating dimension [42].

The correlations obtained by automatic analyses are not dif-
ferent from those from manual analyses (p > .05; William’s test
for comparing dependent correlations [43]). The only exceptions
to this rule are F2i/F2u[50] and VSA[90], where there is a
significant difference between manual and automated scores
(p < .05).

Comparing the different formant estimators in terms of the
resulting correlations between the articulation features and ex-
pert assessments (Table V), there are two main findings. First,
the means and medians of frame-level formants generally lead
to equally informative articulatory features, where only the
manually computed VSA and VSA[50] show a difference for
speech intelligibility (0.49 vs 0.55; p < .05 for William’s test)
and automatically computed VSA and VSA[50] have signifi-
cantly different correlations with the overall severity (−0.56 vs
−0.47; p < .05). Second, the means and medians typically lead
to higher correlations than 70/30 or 90/10 percentiles across
the rating dimensions. For instance, automatic VAI[50] and
FCR[50] are always more correlated with the ratings than their
70/30 or 90/10 counterparts across all the rating dimensions
(p < .05). The trend is similar for manually computed features,
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Fig. 5. Correlations of vowel articulation features computed with the mean of manually extracted formants and with 70/30 percentiles of the frame-level formants
in automatic method for the 67 Finnish speakers. In the legend, ‘r’ stands for Pearson correlation coefficient and three-stars (∗∗∗) indicates statistical significance
at p < .001.

Fig. 6. Correlations of VAI and FCR (computed with mean of frame-level formants in automatic and manual methods) with the average of experts’ ratings on
overall severity of communication disorder in the Finnish database PDSTU. Here each symbol represents one speaker. Red and blue are for the PD and control
groups, respectively, while dots and crosses are for automatic and manual computation methods, respectively. The solid (dotted) line shows the least-squares linear
fit to the automatic (manual) measurements.

where means and medians perform generally better than the
higher percentiles.

To better visualize the correlation between vowel articulation
features and expert ratings, an example of the relationship be-
tween the automatically/manually computed VAI and FCR with

average ratings of overall severity is plotted in Fig. 6. Negative
(positive) correlation between VAI (FCR) and overall severity
is clearly visible for both automatic and manual computations.

Finally, we tested whether the VAI or FCR can distinguish
early PD patients with less than 2 years from diagnosis from
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TABLE V
CORRELATION BETWEEN VOWEL ARTICULATION FEATURES AND THE EXPERTS’ RATINGS ON SPEECH INTELLIGIBILITY (INTELLIGIBILITY), VOICE IMPAIRMENT

(VOICE) AND OVERALL COMMUNICATION DISORDER (OVERALL) FROM THE 35 PD SPEAKERS AND 15 CONTROL SPEAKERS IN THE FINNISH DATASET PDSTU.
ONE-STAR (∗) DENOTES SIGNIFICANCE AT p < .05, TWO-STARS (∗∗) AT p < .01, AND THREE-STARS (∗∗∗) AT p < .001 (BONFERRONI-CORRECTED FOR 4

COMPARISONS AMONG THE ALTERNATIVE FORMANT ESTIMATION STRATEGIES)

TABLE VI
STATISTICS OF THE AUTOMATICALLY COMPUTED VOWEL ARTICULATION FEATURES FOR CONTROL AND PD SPEAKERS IN PC-GITA. IN T-TEST OF EACH FEATURE

BETWEEN CONTROL AND PD GROUP, AS WELL AS IN PEARSON CORRELATION BETWEEN EACH FEATURE AND UPDRS OR UPDRS-SPEECH (SPEECH), ONE-STAR

(∗) DENOTES SIGNIFICANCE AT p < .05, TWO-STARS (∗∗) AT p < .01, AND THREE-STARS (∗∗∗) AT p < .001 (BONFERRONI-CORRECTED FOR 4 COMPARISONS

AMONG THE ALTERNATIVE FORMANT ESTIMATION STRATEGIES)

the healthy controls. However, VAI was not significantly lower
or FCR higher for the early PDs than the controls (p ≥. 05;
one-tailed unpaired t-test). This shows that, in contrast to [16],
the sensitivity of individual articulatory space features may not
always be sufficient for early-stage PD diagnostics. This is due to
the natural speech articulation variability also among the healthy
population, as rated by experts agnostic to the speaker’s health
status (see, e.g., Table II and Fig. 6).

C. Analysis of the Spanish PD Speech

For the Spanish PC-GITA, VAI, VSA, FCR and F2i/F2u
estimates were computed similarly to PDSTU using the mean
and percentile estimators. For the control and PD groups, the
mean and standard deviation for each feature are listed in
Table VI. Unpaired t-test was used to determine if there is a
significant difference between control and PD group features,

and the corresponding test outcomes and t-statistics (df = 98 for
all) are reported in Table VI.

Besides comparing the feature distribution difference between
control and PD groups, we also calculated the Pearson correla-
tion coefficients for each pair of features and and ratings on
UPDRS and UPDRS-speech (Table VI, the last two columns).
Here we assumed the UPDRS and UPDRS-speech to be zero
for the control speakers. The analysis shows that VAI and FCR
estimates are moderately correlated with the ratings, whereas
VSA turns out to be less informative. The F2i/F2u feature is
correlated with the ratings, but to a less degree than VAI and
FCR. Out of the different formant estimators, the median seems
to be the most robust one for VAI, FCR and F2i/F2u. Fig. 7
shows the different distributions of VAI[50] and FCR[50] in PD
and control groups. The obtained correlations are in a similar
range to those reported in [44], where VSA and FCR computed
from sustained vowels /a/, /i/, and /u/ were used together with a
so-called vocal pentagon area feature. When predicting the same
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Fig. 7. VAI (left) and FCR (right) computed using 50/50 percentiles of frame-
level formants for PD and control speakers in PC-GITA.

TABLE VII
STATISTICS OF AUTOMATICALLY COMPUTED VOWEL ARTICULATION FEATURES

FOR CONTROL AND DYSARTHRIC SPEAKERS IN TORGO. IN T-TEST AND IN

PEARSON CORRELATION WITH OVERALL DYSARTHRIA SEVERITY LEVEL,
ONE-STAR (∗), TWO-STARS (∗∗) AND THREE-STARS (∗∗∗) INDICATE

SIGNIFICANCE AT p < .05, p < .01 AND p < .001, RESPECTIVELY

(BONFERRONI-CORRECTED FOR 4 COMPARISONS AMONG THE ALTERNATIVE

FORMANT ESTIMATION STRATEGIES)

PC-GITA UPDRS scores using a support vector regressor, they
achieved a Pearson correlation of 0.41 between the UPDRS and
the predictions based on the three features.

D. Analysis of the English Dysarthric Speech

Vowel articulation parameters (VAI, VSA, FCR and F2i/F2u)
were also automatically computed for each audio file in the
English TORGO data, and the results were compared between
the control and dysarthric groups. Fig. 8 illustrates the formant
estimates obtained for the two groups with the 70/30 percentile
estimator. In Table VII, the means and standard deviations
are listed for the two groups on each feature. Unpaired t-test
outcomes and t-statistics (df = 48 for all) are also reported for
comparison of the two groups. The last column lists the Pearson
correlation coefficients between each feature and the overall
dysarthria severity level. The analyses show that the differences
in VAI[70], VAI[90], FCR[70], FCR[90] and F2I/F2u[70] be-
tween the two groups are significant. The correlation coefficients
show that speakers with severer dysarthria tend to have smaller
VAI, VSA and F2i/F2u but larger FCR values. The distribution

TABLE VIII
COUNTS OF THE SELECTED CORNER-VOWEL-RELATED FRAMES AND

CORRESPONDING PHONEME OCCURRENCE COUNTS IN THE FINNISH READING

MATERIAL (THE MEAN ± ONE STANDARD DEVIATION). ‘AUTOMATIC†’
CORRESPONDS TO USE ONLY 3 CORNER VOWELS FOR AUTOMATIC CANDIDATE

FRAMES SELECTION, RATHER THAN EXTENDED PHONE CATEGORIES. ONE

FRAME CORRESPONDS TO APPROXIMATELY 30-MS OF SPEECH

for VAI (computed with 70/30 percentiles of formants) across
different overall severity levels can also be observed in Fig. 9.
The corresponding formant estimates illustrated in Fig. 8 show
that this effect is primarily driven by lower average F2 of /i/ (and
somewhat lower average F1 of /a/) in the dysarthric population.

V. ERROR ANALYSIS

The experimental results in Section IV confirm that the
proposed approach achieves comparable accuracy to manual
procedure on the Finnish dataset, and that the approach is also
applicable to Spanish PD speech as well as English dysarthric
speech analysis without adjusting the system parameters.

However, in order to better understand the behaviour of the
automatic pipeline, this section describes more detailed error
analyses at different stages of the processing pipeline for the
Finnish PD speech corpus.

A. Efficacy of Automatic Candidate Frames Selection

Computation of vowel articulation features relies on the se-
lection of speech frames related to corner vowels. In the manual
method, ten segments were extracted from fixed words for each
corner vowel, even though the actual occurrence counts of the
corner vowels are higher in the reading material. On the other
hand, the automatic method attempts to find all the speech
frames having similar acoustic characteristics with corner vow-
els. Obviously, if more corner-vowel-related phonemes occur
in the reading material, the automatic method tends to select
more speech frames. Moreover, variations in speaking rate and
speech/voice impairment severity among speakers can have an
impact on automatic frames selection.

Statistics of the automatically and manually selected frame
counts and vowel occurrences in the reading material for the
67 Finnish speakers are shown in Table VIII. As expected,
the automatic method selects more speech frames than manual
annotation. The automatically selected frame counts for /a/ and
/i/ are much larger than that for /u/. This can be mainly attributed
to the differences in phoneme occurrence counts (introduced in
Section III-A). However, /a/ has more frames selected than /i/,
even though it is less frequent in terms of number of tokens in the
passage. It should be noted that there are more ‘close’ phonemes
included in Za than Zi and Zu, as shown in Table I. In addition,
phoneme /AE/ (written as ‘ä’ in Finnish) is also assigned to Za,
and it occurs 19 times in the reading passage. These explain
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Fig. 8. Distributions of corner vowels for control and dysarthric groups in TORGO. The 70/30 percentiles of frame-level formants were used for corner vowel
representation. The black symbols represent the average of each vowel category.

Fig. 9. VAI computed using 70/30 percentiles of frame-level formants for
different overall severity levels in TORGO.

that vowel /a/ gets the highest number of automatically selected
frames.

We also compared the amount of detected corner vowel frames
with speaking rate and speech/voice disorder ratings using Pear-
son correlation. The analysis revealed that the selected frame
counts for /a/ and /i/ were moderately correlated with duration of
the samples (i.e., negatively correlated with the average speaking
rate) with r = 0.38 and p < .01. In contrast, the frame counts
were not correlated with the dimensions of expert assessment on
speech and voice (p > .05 for all comparisons), i.e., the frame
selection was not affected by the severity of dysarthria in our
patient group.

Besides the selected frame counts, we computed the percent-
age of manually annotated frames which are also automatically
selected for the same vowel. Approximately 33% of manually
annotated frames for /a/ and /u/ were covered by the automatic
selection. For /i/, the coverage increases to 54%. In terms of
the annotated segments (10 per vowel), more than 85% of the
annotated segments at least partially overlap with the automati-
cally selected frames. The number of overlapping segments was
9.4± 1, 9.1± 1 and 7.1± 2 for /a/, /i/ and /u/ among all the
67 Finnish participants. Analysis on Table VIII also shows that
the number of overlapping segments of /u/ varies widely across

Fig. 10. Pearson correlation coefficients between the manually and automati-
cally computed vowel articulation features with the extended phone recognition
categories (“extended”) and with only considering the three corner vowel output
categories in the formant estimation process (“corner vowels”).

different speakers. For example, less than half of the annotated
segments of /u/ have partial overlap with the automatic ones for
two speakers. This heightened variation is generally in line with
the small average and high variance in the detected /u/ frame
counts.

B. Benefits of Using the Extended Phone Categories

In our proposed method for automatic corner vowel frames
selection described in Section II-B, each corner vowel was
defined in terms of an extended set of phone recognition output
categories in order to account for automatic phone recognition
errors in normal and especially in dysarthric speech. In order to
investigate the benefits of the extended categories, we compared
extended categories to an automatic system where only the three
corner vowel recognition outputs /a/, /i/ and /u/ were used as a
basis for formant estimation.

As shown in Table VIII, much fewer frames were selected
for each corner vowel than using the extended phone categories.
The corresponding automatically computed vowel articulation
features were also found to be less correlated with the ones com-
puted with manual annotations than the features extracted using
extended phone sets (Fig. 10). As can be seen from the figure,
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Fig. 11. Distributions of corner vowels for the 67 Finnish participants in PDSTU.

the drop in correlation is substantial for some of the features,
such as VSA or F2i/F2u. This unanimously demonstrates the
benefit of using extended phone sets in the analysis of phone
recognition output.

C. Corner Vowel Formant Distributions

In addition to the reliability of frames selection, vowel articu-
lation feature computation can be affected by formant estimates.
Fig. 11 shows the average locations of corner vowels for all the
67 Finnish speakers in the F1-F2 space. In all plots, each symbol
(dot, square or triangle) represents a corner vowel formant
estimate of a single speaker. For manual method, a corner vowel
is represented by the mean of F1 and F2 estimates of annotated
segments, as shown in Fig. 11(a). For the automatic method,
corner vowels represented by the mean, the 50/50 and 70/30 per-
centiles of formants of selected frames are depicted in Fig. 11(b),
11(c) and 11(d). The figure shows that the three corner vowels
are well separated with both manual annotation and automatic
selection. For automatic selection, the distance between /a/ and
/u/ can be enlarged by representing the corner vowels with apices
of frame-level F1 and F2. Average positions of each corner vowel
among all participants under the four conditions in Fig. 11 are
illustrated as vertexes of triangles in Fig. 12. The figure shows
that vowel articulation space represented by 70/30 percentiles of
frame-level formants (red dashed lines) is the most similar to the
manual one (solid blue lines). Also, the centralization tendency

Fig. 12. Average vowel articulation space of all 67 Finnish participants in
PDSTU. For manual annotation, corner vowels of each speaker were represented
by mean formants. For automatic method, corner vowels of each speaker were
represented by mean or 50/50 or 70/30 percentiles of frame-level formants.

of the mean frame-level estimate in automatic selection is clearly
observable in the figure (red solid lines).

In this work, frame-level formants were computed from linear
predictive coefficients which were calculated with Burg’s algo-
rithm [34] from speech signal by Praat. When the formants are
at low frequencies or close to each other, for example in case of
low back vowel /a/, formant estimation is prone to errors [45].
In order to estimate the number of gross estimation errors, a
straightforward criterion was designed based on acoustically and
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Fig. 13. Selected frames with formant estimation errors for all 67 Finnish participants. Each purple dot represents one single frame. Extreme exemplars of corner
vowels /a/, /i/ and /u/, as determined based on [24], are shown as a reference.

articulatorily feasible formant values. More specifically, we first
determined the highest feasible F1 and F2 values for /a/ vowel
across a population of speakers in [24], i.e. extreme exemplar
of /a/ (1002 Hz, 1688 Hz). The F1 and F2 values of extreme
exemplar /a/ were set as boundaries and frames with concurrent
F1 and F2 beyond the predefined boundaries were counted as
frames with formant estimation errors.

In Fig. 13, the exemplars of three corner vowels are marked
together with the red lines indicating the error detection bound-
aries. In the error area, frames tend to have large absolute
frequencies and small mutual differences between F1 and F2.
Frames with formant estimation errors are depicted as purple
dots for automatic selection (left) and manual annotation (right).
Among all the Finnish participants, an 82-year old male speaker
got the highest ratio of formant estimation errors among his
selected frames, corresponding to 6% of erroneous frames for
automatic selection and 8% for manual annotation. It seems that
the ratio of formant estimation errors is low such that it makes
no significant difference on experimental results after removing
the error frames.

VI. CONCLUSION AND FUTURE WORK

The present study proposed a language-independent, reliable
and efficient method of automatic vowel articulatory undershoot
quantification from corner vowels with the help of a universal
phone/phoneme recognizer. Such an approach is highly useful
for clinical work with dysarthric patients, where quantitative
analysis of articulation capability typically involves laborious
hand-annotation of vowel segments of interest.

The efficacy and reliability of our proposed automatic compu-
tation of vowel articulation parameters was tested and verified on
three speech corpora in different languages. We demonstrated on
a Finnish PD corpus that vowel articulation features computed
with automatic speech frame selection have strong correlations
with the same features computed using manual annotations.
In terms of correlations with subjective expert assessments of
speech intelligibility, voice impairment and overall severity of
communication disorder, the automatically computed features

had comparable correlations as with those computed manually.
However, VAI and FCR alone were not able to discriminate
early-stage PD patients from controls in PDSTU. On the Spanish
PD corpus PC-GITA and English dysarthria corpus TORGO,
the distributions of automatically computed vowel articula-
tion features were significantly different between the control
and PD/dysarthric groups. In addition, automatically computed
vowel articulation features VAI and FCR were moderately cor-
related with ratings of UPDRS and UPDRS-speech in PC-GITA
and with overall dysarthria severity levels in TORGO. For two of
the corpora (PC-GITA and TORGO), the results also show a fair
advantage of using median or percentiles 70/30 of frame-level
formants over using mean formants. Finally, we performed error
analyses of our system and showed how the use of extended
phone sets to decode the automatic recognizer output improves
robustness of the acoustic feature estimates.

In the future, we plan to validate the proposed method on
spontaneous speech. In addition, our goal is to explore new
parametrizations of speech that would simultaneously be trans-
parent to clinicians while having maximal sensitivity to early
signs of neurodegenerative diseases in speech.
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