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Gamma Boltzmann Machine for Audio Modeling
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Abstract—This paper presents an energy-based probabilistic
model that handles nonnegative data in consideration of both linear
and logarithmic scales. In audio applications, magnitude of time-
frequency representation, including spectrogram, is regarded as
one of the most important features. Such magnitude-based features
have been extensively utilized in learning-based audio processing.
Since a logarithmic scale is important in terms of auditory percep-
tion, the features are usually computed with a logarithmic function.
That is, a logarithmic function is applied within the computation of
features so that a learning machine does not have to explicitly model
the logarithmic scale. We think in a different way and propose a
restricted Boltzmann machine (RBM) that simultaneously models
linear- and log-magnitude spectra. RBM is a stochastic neural net-
work that can discover data representations without supervision.
To manage both linear and logarithmic scales, we define an energy
function based on both scales. This energy function results in a
conditional distribution (of the observable data, given hidden units)
that is written as the gamma distribution, and hence the proposed
RBM is termed gamma-Bernoulli RBM. The proposed gamma-
Bernoulli RBM was compared to the ordinary Gaussian-Bernoulli
RBM by speech representation experiments. Both objective and
subjective evaluations illustrated the advantage of the proposed
model.

Index Terms—Boltzmann machine, nonnegative data modeling,
gamma distribution, speech parameterization, speech synthesis.

I. INTRODUCTION

L EARNING data representation is a fundamental task,
and many methods have been proposed, e.g., variational

autoencoders (VAEs) [1]–[3], generative adversarial networks
(GANs) [4]–[7], autoregressive (AR) models [8], [9], and nor-
malizing flows [10], [11]. One theoretically well-founded model
for this task is the Boltzmann machine [12]. It is a stochastic
neural network that can automatically discover data representa-
tions in terms of probability distribution. Some advantages of the
Boltzmann machine include its interpretability as a generative
model with good prospect, and the number of parameters for
training is relatively small. The restricted Boltzmann machine
(RBM) [13] is a computationally efficient variant of Boltzmann
machines. Since RBMs can be trained with computational ef-
fort less than the other models, RBMs has been successfully

Manuscript received September 8, 2020; revised April 11, 2021 and June 17,
2021; accepted July 4, 2021. Date of publication July 8, 2021; date of current
version August 13, 2021. This work was supported by JSPS KAKENHI under
Grant 21K11957. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Yu Tsao. (Corresponding author: Toru
Nakashika).

Toru Nakashika is with the Graduate School of Informatics and Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan (e-mail:
nakashika@uec.ac.jp).

Kohei Yatabe is with the Department of Intermedia Art and Science, Waseda
University, Tokyo 169-8555, Japan (e-mail: k.yatabe@asagi.waseda.jp).

Digital Object Identifier 10.1109/TASLP.2021.3095656

utilized in various applications involving pattern recognition
and machine learning, e.g., computer vision [14], collaborative
filtering [15], and even geochemical analysis [16], to name a
few. Its capability in discovering latent representations without
supervision has potential for further expansion, and hence it
should be worthwhile to develop an RBM for a specific class of
data.

In audio applications, the Gaussian-Bernoulli RBM [17], [18]
has been utilized for modeling signals through the magnitude
spectra. Since spectral components are important for auditory
perception, audio signals can be well characterized in the fre-
quency domain. Therefore, RBMs are trained to approximate
the probability distribution of the given data in a domain related
to frequency. For example, many studies have applied RBMs
to model the mel-frequency cepstral coefficients (MFCC) [19],
[20] or mel-cepstral features [21], [22] of speech signals. For
extracting richer information from the signals, raw magnitude
or STRAIGHT [23] spectra have also been considered [24]–[26].
Moreover, some studies attempted modeling the raw signals us-
ing RBMs [27], [28]. These representations are real-valued, and
hence a Gaussian-Bernoulli RBM is a natural choice for audio
modeling because it handles the observable data through the
Gaussian distribution (as opposed to the original RBM defined
for binary signals). Since magnitude spectrum is the standard
representation of audio signals, this paper focuses on modeling
of magnitude spectra.

For modeling magnitude spectra, their two aspects must be
carefully taken into account: nonnegativity and logarithmic
scale. Firstly, magnitude spectra are essentially nonnegative-
valued. Since calculation of magnitude spectra involves abso-
lute value, by definition, negative values never appear in the
observable data to be modeled. Erroneous negative sign results
in 180◦ phase shift, and hence nonnegativity of the modeled
magnitude spectra must be maintained. Secondly, modeled mag-
nitude spectra should be accurate in terms of a logarithmic scale.
The human auditory system perceives magnitude of sound in
the logarithmic-like scale rather than a linear scale. Based on
this fact, many handcrafted audio features as MFCC involves
the logarithmic operation within their calculation processes. A
model of magnitude spectra must handle the data logarithmically
in a reasonable manner.

However, a Gaussian-Bernoulli RBM has trouble in consider-
ing the above two aims. The Gaussian distribution allows nega-
tive values that are not consistent with the concept of magnitude.
It is not straightforward to limit the Gaussian distribution into
nonnegative values, and therefore the learned representation
should contain unavoidable model error. Taking logarithm of
data before inputting to an RBM may seem a solution to this
problem. Nevertheless, the asymmetric nature of the logarithmic
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function can make the training difficult for symmetric mod-
els as the Gaussian distribution. Moreover, log-magnitude of
approximately sparse spectra (e.g., those of typical audio and
speech signals) can cause extreme outliers when the magnitude
is around zero. Thus, a specific mechanism for audio modeling
must be developed.

In this paper, we propose a variant of RBMs called gamma-
Bernoulli RBM for modeling magnitude spectra in consideration
of the logarithmic scale.1 To manage both linear and logarithmic
scales, we define an energy function consisting of the usual
quadratic term and an additional log-magnitude term. This en-
ergy function provides a general gamma Boltzmann machine
that simultaneously considers linear- and log-magnitude spectra.
The term gamma is assigned to this Boltzmann machine because
its conditional distribution of a unit (given the other units) is the
gamma distribution. Then, its connection is restricted to form
the gamma-Bernoulli RBM. The proposed RBM represents the
conditional distribution of the visible units (given hidden units)
by the gamma distribution, which naturally limits the domain
of data to positive numbers. We also propose several variants of
the gamma-Bernoulli RBM by considering combinations of the
trainable parameters. The optimal model among the proposed
RBMs was investigated by speech representation experiments.
Both objective and subjective evaluations illustrated the advan-
tage of the gamma-Bernoulli RBM.

The rest of the paper is organized as follows. In Section II,
the ordinary Boltzmann machine and RBMs are summarized
for contrasting the difference between the conventional and
proposed models. Then, the proposed models are discribed in
Section III. Specifically, a general gamma Boltzmann machine
is introduced in Section III-A. Furthermore, by restricting its
connection, the gamma-Bernoulli RBM is proposed in Sec-
tion III-C. Some notes on implementation and optimization of
the gamma-Bernoulli RBM follow them. The properties and
performances of the proposed RBMs are experimentally investi-
gated in Section IV. An extension of the gamma-Bernoulli RBM
and a gamma-gamma RBM are additionally proposed in Ap-
pendices A and B, respectively, for experimental investigations.
Finally, the paper is concluded in Section V.

II. PRELIMINARIES

A. Boltzmann Machine

The Boltzmann machine [12] is an unsupervised neural net-
work for approximating a probability distribution of a set of
given data. LetX be a space of the variables under investigation,
and its element be denoted by x ∈ X (both x and X will
be clarified later). Then, a Boltzmann machine represents a
probability density function (PDF) of x as

p(x) =
1

Z
e−E(x), (1)

1A preliminary version of this study has been published in the proceedings
of 12th APSIPA ASC [29]. In this paper, we intended to extend the prelim-
inary study by proposing several variants of the gamma-Bernoulli RBM and
experimentally investigating the optimal choice of the model. Both objective
and subjective comparisons were conducted with deeper discussions.

where Z =
∫
X e−E(x) dx is the normalizing constant called

partition function, and E( · ) is the so-called energy function.
A Boltzmann machine is defined through the energy function.
In this section, the following energy function involving a matrix
U and a vector u is considered for the conventional models:

E(x) = −1

2
xTUx− uTx, (2)

where the explicit forms of U and u are given later.

B. Restricted Boltzmann Machine (RBM)

RBM is one of the most practical (and hence important)
variants of a Boltzmann machine. The above general Boltz-
mann machine may not be practical because calculation (or
even approximation) of the integral is difficult. For a practical
dimensionality, its training can be extremely slow. To develop a
fast training algorithm and avoid such difficulty, RBMs restrict
the connection between the units.

An RBM separates the variables into two parts: the visible
and hidden variables denoted by v and h, respectively, where an
element of these vectors is called unit. The vector v corresponds
to observable data (and hence visible), while h represents the
latent variables for conditional hidden representation of the data.
That is, a PDF of the visible variable v is given by the following
marginalization:

p(v) =

∫
H
p(v,h) dh =

1

Z

∫
H
e−E(v,h) dh, (3)

where Z =
∫
V×H e−E(v,h) dvdh, and V and H are the spaces

of visible and hidden variables, respectively.
The connections between units are determined by the energy

function. An energy function of RBM E(v,h) is defined such
that both visible and hidden units do not have interconnec-
tions. In other words, RBM does not have visible-visible and
hidden-hidden connections. This property is realized by setting
all non-diagonal elements of a square matrix W of quadratic
forms vTWv and hTWh to zero. Such restriction enables
fast training by sampling from two conditional distributions:
p(v|h) and p(h|v). These conditional probabilities are the key
ingredients of RBMs and characterize the type of an RBM.

C. Bernoulli-Bernoulli RBM

The original RBM [13] was defined for binary variables, i.e.,V
and H are the sets of binary vectors: v ∈ {0, 1}D, h ∈ {0, 1}H ,
where D and H are the dimensions of v and h, respectively. Its
energy function EBB(v,h) is defined as

EBB(v,h) = −vTWh− bTv − cTh, (4)

that is related to the general Boltzmann machine in Eq. (2) as

x =

[
v
h

]
, U =

[
O W
WT O

]
, u =

[
b
c

]
, (5)

whereW ∈ RD×H , b ∈ RD, c ∈ RH ,O represents the all-zero
matrix with appropriate size, and the operations between the
binary and real numbers are performed by regarding the binary
symbols as real numbers.
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An RBM defined by the above energy function EBB(v,h)
is called Bernoulli-Bernoulli RBM. This is because the two
conditional probabilities required for its training result in the
element-wise Bernoulli distributions B( · ;p):

p(v|h) = B(v; fσ[ b+Wh ]), (6)

p(h|v) = B(h; fσ[ c+WTv ]), (7)

wherep ∈ [0, 1]D (or [0, 1]H ) is a vector representing the proba-
bilities of taking the value 1 for each element, and fσ[ · ] denotes
the element-wise sigmoid function.

D. Gaussian-Bernoulli RBM

The Bernoulli-Bernoulli RBM has a severe practical limita-
tion. Even though many of the interesting real-world data are
not binary in nature, it can only handle binary data. To avoid
this limitation, the Gaussian-Bernoulli RBM [17] modified the
definition of the above energy function as follows: 2

EGB(v,h) =
1

2
vTΣ−1v − vTWh− bTv − cTh, (8)

that is related to the general Boltzmann machine in Eq. (2) as

x =

[
v
h

]
, U =

[−Σ−1W
WT O

]
, u =

[
b
c

]
, (9)

where Σ = diag(σ2) is a diagonal matrix, σ2 ∈ RD
++ is the

model parameter representing variance of the visible variables
(R++ is the set of positive numbers), and diag(·) is the oper-
ator constructing the diagonal matrix from an input vector. An
RBM defined by this energy function EGB(v,h) can naturally
handle real-valued data v ∈ RD, while the hidden variables
are remained binary, h ∈ {0, 1}H . Note that the difference of
EGB(v,h) from EBB(v,h) in Eq. (4) is just the first term
vTΣ−1v that represents the self-connection of the visible units.
This term does not introduce interconnection of the visible units
because the matrixΣ−1 does not have any non-diagonal element.

An RBM defined by the energy function in Eq. (8) is called
Gaussian-Bernoulli RBM since its conditional probabilities are

p(v|h) = N (v;Σ(b+Wh),Σ), (10)

p(h|v) = B(h; fσ[ c+WTv ]), (11)

where N ( · ;μ,Σ) is the Gaussian distribution with a mean
vectorμ ∈ RD and a covariance matrixΣ ∈ RD×H . That is, ob-
servable data are handled by the Gaussian distribution. Hence, it
can approximate the distribution of real-valued data by learning
the parameters (Σ,W, b, c) from the given data.

III. GAMMA BOLTZMANN MACHINE

Among Boltzmann machines, the Gaussian-Bernoulli RBM
has been utilized as a standard choice for real-world applications.

2Note that this definition is somewhat different from those defined in [17]
or [18]. We defined the energy function as in Eq. (8) because we empirically
found that this works better for our application in Section IV.

Fig. 1. Graphical representation of the proposed gamma Boltzmann machine,
which handles the data not only in linear domain but also in logarithmic domain.
U12 indicates the bidirectional-connection weight between x1 and x2, while
S12 indicates the weight between log(x1) and log(x2).

This should be because it can naturally handle real-valued sig-
nals, and the Gaussian distribution is one of the most fundamen-
tal distributions in science and engineering. In audio applica-
tions, one essential and important target of generative modeling
is magnitude spectrum [7], [26], [30]–[32]. However, as men-
tioned in the Introduction (4th paragraph), Gaussian-Bernoulli
RBMs have two issues on modeling magnitude spectra: produc-
tion of negative values and mismatch to the logarithmic scale.
To avoid these issues, we propose a new variant of Boltzmann
machines named gamma-Bernoulli RBM.

A. Proposed Gamma Boltzmann Machine

At first, we propose a general gamma Boltzmann machine
without restriction and explain its relation to the gamma dis-
tribution. As summarized in the previous section, Boltzmann
machines are characterized by the energy function. Since our
purpose in this paper is to represent data in consideration of a
logarithmic scale, we propose the following energy function:

EΓ(x) = −1

2
xTUx− uTx

− 1

2
log(x)TS log(x)− sT log(x), (12)

as in Fig. 1, where −U ∈ RI×I
++ , UT = U, Uii = 0 ∀i, S ∈

RI×I
++ , ST = S, Sii = 0 ∀i, −u ∈ RI

+, and s+ 1 ∈ RI
+. Note

that R+ and R++ denote the sets of nonnegative and positive
numbers, respectively. log(·) is the element-wise logarithmic
function, x ∈ RI

++ is a positive vector (i.e., xi> 0 ∀i ), and its
PDF is given by Eq. (1): p(x) = exp(−EΓ(x))/Z.

The seemingly strange constraints on the trainable parameters
(Uij < 0, ui ≤ 0, Sij > 0, si ≥ −1 ∀i, j) come from the corre-
sponding distribution as follows. For calculating the conditional
distribution of xi given the other units, let Eq. (12) be rewritten
by gathering the variables as

EΓ(xi;xj ∀j �= i) = βixi − (αi − 1) log xi − ri, (13)

where EΓ(xi;xj ∀j �= i) represents the energy function for xi

obtained by fixing the other variables xj (∀j �= i), αi and βi are
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the terms related to log(xi) and xi, respectively,

αi = 1 + si +
∑
j �=i

Sij log xj , βi = −ui −
∑
j �=i

Uijxj , (14)

and ri is the term unrelated to log(xi) and xi.3 Then, the
conditional distribution p(xi|xj ∀j �= i) can be calculated as

p(xi|xj ∀j �= i) = G(xi;αi, βi), (16)

where G(x;α, β) is the gamma distribution,

G(x;α, β) = βα

Γ(α)
xα−1e−βx, (17)

Γ( · ) is the gamma function, and the computation is detailed in
the footnote.4 This is the reason why we termed the proposed
Boltzmann machine as gamma Boltzmann machine. By defini-
tion of the gamma distribution, the parameters are constrained
to be positive: αi > 0 and βi > 0. Therefore, from Eq. (14), the
parameters of the proposed Boltzmann machine are constrained
as Uij < 0, ui ≤ 0, Sij > 0, and si ≥ −1 ∀i, j. Owing to the
gamma distribution, this model naturally forces the variables
x to be positive. By introducing the log-related parameters S
and s in addition to the ordinary Boltzmann machine in Eq. (2),
the proposed model can learn a PDF with consideration of the
logarithmic scale.

B. Transition From Gamma Boltzmann Machine to RBM

By separating x into visible and hidden units and imposing
restriction, we can obtain an RBM based on the above gamma
Boltzmann machine. Yet, some additional care is necessary.

Because of the logarithmic function in Eq. (12), all units
must be positive. In our model, data are assumed to be positive,
v ∈ RD

++, and the hidden variables are binary, h ∈ {0, 1}H .
However, this assumption cannot be directly accepted because
log(h) takes−∞wheneverh contains 0. Therefore, we consider
the (element-wise) exponential function that makes the values
positive: exp(h) ∈ {1, e}H .

With this modification, an energy function is defined as

EΓBpre(v,h) = − vTW exp(h)− bTv − cT exp(h)

− log(v)T(Vh− 1)− dTh, (21)

3The explicit form of the term unrelated to log(xi) and xi is given by

ri =
∑
j �=i

(ujxj + sj log xj) +
1

2

∑
�=i

(Ui′j′xi′xj′ + Si′j′ log xi′ log xj′ ),

(15)
where the second summation is taken for i,′ j′ that are not equals to i.

4Since p(xi|xj ∀j �= i) = 1
Z e−EΓ(xi;xj ∀j �=i) by definition, we obtain

1

Z
e−EΓ(xi;xj ∀j �=i) =

e−βixi+(αi−1) logxi+ri∫ ∞
0

e−βixi+(αi−1) logxi+ri dxi

, (18)

=
x
αi−1
i e−βixi∫ ∞

0
x
αi−1
i e−βixi dxi

, (19)

=
β
αi
i

Γ(αi)
x
αi−1
i e−βixi , (20)

which is the gamma distribution, and hence p(xi|xj ∀j �= i) = G(xi;αi, βi).

that can be derived from Eq. (12) by inserting

x =

[
v

exp(h)

]
, U =

[
O W
WT O

]
, u =

[
b
c

]
, (22)

S =

[
O V
VT O

]
, s =

[−1
d

]
, (23)

where −W ∈ RD×H
++ , V ∈ RD×H

++ , 1 ∈ {1}D, −b ∈ RD
+ ,

−c ∈ RH
+ d ∈ RH , and the joint density function of v and h

is given as in Eq. (3): p(v,h) = exp(−EΓBpre(v,h))/Z. Note
that the upper part of s is fixed to −1 because of the condition
required by the gamma distribution.

C. Proposed Gamma-Bernoulli RBM

Based on the above energy function, we propose gamma-
Bernoulli RBM through the following simplification.5

One drawback of the above RBM is that exp(h) cannot take
zero, i.e., all column vectors of W must be active regardless
of the hidden state. To circumvent this unfavorable situation,
we consider a specific choice for the bias vector: b = −W1
(multiplication of the matrix W and the all-one vector 1). This
choice of b simplifies the above energy function as

EΓB(v,h) = − vTW(exp(h)− 1)− cT exp(h)

− log(v)T(Vh− 1)− dTh, (24)

which is more symmetric for linear and logarithmic domains. By
this simplification, the elements of exp(h)− 1 can take zero,
and hence the hidden variables can work as binary selectors like
in the usual RBMs. Note that we can further simplify this energy
function by omitting c as shown in the experimental section (see
Table 1).

The proposed RBM based on Eq. (24) is termed gamma-
Bernoulli RBM since its conditional distributions are given by

p(v|h) = G(v;Vh,−W(exp(h)− 1)), (25)

p(h|v) = B(h; fσ[ (e− 1)(c+WTv)

+ d+VT log(v) ]), (26)

where G( · ;α,β) for a vector input represents the element-wise
i.i.d. gamma distribution with a shape-parameter vector α ∈
RD

++ and a rate-parameter vector β ∈ RD
++, i.e., G(x;α,β) =∏

i G(xi;αi, βi). This relation shows that the proposed gamma-
Bernoulli RBM handles data through the gamma distribution.
Note that the Bernoulli distribution in Eq. (26) arises from the
binary assumption of h. By removing the binary assumption,
we can obtain a gamma-gamma RBM that handles both visible
and hidden units by the gamma distribution (see Appendix B).

The gamma distribution is a natural choice for modeling
positive data. Furthermore, some research has reported that the
gamma distribution can approximate the distribution of speech
signals better than the Gaussian distribution regardless of the

5Note that a variant of gamma-Bernoulli RBM has been proposed for synthetic
aperture radar image classification [33]. Its focus is not on handling data in
logarithmic domain, and therefore it is essentially different from the proposed
RBM that equally treats linear and logarithmic domains.
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type of speech parameterization [34]–[37]. Thus, the proposed
gamma-Bernoulli RBM should be more suitable for modeling
magnitude spectra than the Gaussian-Bernoulli RBM.

D. Implementation of Gamma-Bernoulli RBM

Since the gamma-Bernoulli RBM has specific conditions on
trainable parameters, they must be handled with care. We ensure
the conditions by the following techniques.

From Eq. (25), Vh and −W(exp(h)− 1) correspond to the
parameters of the gamma distribution (α and β, respectively)
that are positive by definition. Hence, the elements of V and
−W must be positive for satisfying the definition of the gamma
distribution because both h and (exp(h)− 1) are nonnegative.
To ensure positivity of V and −W without causing instability
of training, we parameterize them as follows [18]:

W = −f+(W̃), V = f+(Ṽ), (27)

where W̃ ∈ RD×H , Ṽ ∈ RD×H , and f+( · ) is a positive func-
tion. In this paper, we consider the exponential and softplus
functions as examples of f+, respectively given as

f+(x) = exp(x), f+(x) = log(1+ exp(x)). (28)

The choice of these positive functions will be investigated in the
experimental section.

Even though positivity of V and −W is ensured by the
above parametrization,Vh and−W(exp(h)− 1) become zero
whenever h = 0. In order to avoid such situation, the vector s
given in Eq. (23) may be modified ass = [ (−1+ ε)T,dT ]T with
a small positive constant ε > 0. This addition makes the shape
parameter of the gamma distribution in Eq. (25), α = Vh+ ε,
always positive as required by the definition. In the same way,
the rate parameter can be forced positive by modifying it to
β = −W(exp(h)− 1+ ε). However, based on our prelim-
inary study, these modifications have no impact in practice
because h = 0 rarely happens. Hence, we did not add ε in
experiments to reduce the number of tunable parameters.

E. Objective Function and Parameter Optimization

As the conventional Boltzmann machines, the objective of the
proposed RBM is to maximize the log-likelihood:

L({v(n)}n) = 1

N

∑
n

log(p(v(n))) (29)

=
1

N

∑
n

log
(∑

h(n)

p(v(n),h(n))
)

(30)

=
1

N

∑
n

log
(∑

h(n)

e−E(v(n),h(n))
)
− logZ, (31)

where v(n) and h(n) are the nth training data and the corre-
sponding hidden variables, respectively, and

∑
h(n) represents

marginalization over all possible states of h(n).
For optimizing an RBM, the gradient of the log-likelihood

function w.r.t. the parameters θ = (W̃, Ṽ, c,d) is required.

Although it can be explicitly written as

∂L

∂θ
=

〈
−∂E

∂θ

〉
data

−
〈
−∂E

∂θ

〉
model

, (32)

this gradient is practically intractable owing to the second term,
where 〈 · 〉data and 〈 · 〉model represent the expectations on data
and model distributions, respectively. Therefore, as usual in the
conventional Boltzmann machines, the contrastive divergence
method [38] is applied to approximate the gradient:

∂L

∂θ
≈

〈
−∂E

∂θ

〉
data

−
〈
−∂E

∂θ

〉
recon

, (33)

where 〈 · 〉recon is the expectation on the reconstructed data
usually obtained through the Gibbs sampling.

The negative partial gradients of the energy function in
Eq. (24) w.r.t. the vectors c and d are obtained as follows:

−∂EΓB

∂c
= exp(h), −∂EΓB

∂d
= h. (34)

The gradients w.r.t. W̃ and Ṽ depend on their parametrization
in Eq. (27). If f+( · ) = exp( · ), their gradients are given by

−∂EΓB

∂W̃
= exp(W̃) ◦ (v(1− exp(h))T), (35)

−∂EΓB

∂Ṽ
= exp(Ṽ) ◦ (log(v)hT), (36)

where ◦ denotes the element-wise multiplication. Similarly, if
f+( · ) = log(1+ exp( · )), their gradients are given by

−∂EΓB

∂W̃
= fσ[W̃] ◦ (v(1− exp(h))T), (37)

−∂EΓB

∂Ṽ
= fσ[Ṽ] ◦ (log(v)hT). (38)

By using these formulae, the gamma-Bernoulli RBM can be
trained with a gradient-based optimization algorithm. Note that,
when f+( · ) = exp( · ), gradients in Eqs. (35) and (36) can be
computed using−W andV, instead of calculating exp(W̃) and
exp(Ṽ), that can reduce the computational cost.

F. Some Extensions of the Proposed Boltzmann Machines

In the next section, we will compare the proposed gamma-
Bernoulli RBM with its variants. Since these variants are pro-
posed merely for experimental investigation, we leave their
details in Appendices and just briefly mention them here.

Firstly, a gamma-Bernoulli RBM that can automatically bal-
ance the contribution from linear and logarithmic scales is
proposed in Appendix A. It can be expected that the preference
of the scales might depend on a task: some task prefers a
linear scale more than a logarithmic scale, and vice versa. A
gamma-Bernoulli RBM in Appendix A introduces a trainable
trade-off parameter that balances the importance of linear and
logarithmic scales. The effect of this extension will be experi-
mentally investigated in Section IV-F.

Secondly, a gamma-gamma RBM that handles both visible
and hidden units by the gamma distribution is proposed in
Appendix B. Unlike the gamma-Bernoulli RBM, the gamma-
gamma RBM considers real-valued hidden units, which have
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a better expressivity than binary units. Its performance will be
experimentally investigated in Section IV-G.

IV. EXPERIMENTS

In this section, the properties of the proposed gamma-
Bernoulli RBM are investigated, and then its performance is
compared with those of the Gaussian-Bernoulli RBM and VAE
by speech representation experiments.

Firstly, the experimental conditions are summarized in Sec-
tion IV-A. Then, the properties of the proposed RBM are in-
vestigated in Section IV-B. Using the best setup revealed in
Section IV-B, the proposed RBM is compared with the conven-
tional RBM in Section IV-C. It is also compared with VAEs
in Section IV-D. Moreover, discussion on data compression
and binarization are provided in Section IV-E. Finally, some
extensions of the proposed RBM are tested in Sections IV-F and
IV-G for further discussion.

A. Experimental Configuration

In the experiments, the ATR speech corpus (set B, speaker
FTK) was utilized. The speech signals of 50 sentences (SDA)
were utilized for training, while the other 53 sentences (SDJ)
were used for evaluation. Those signals originally sampled at
20 kHz were downsampled to 16 kHz for speeding up the
computation. The short-time Fourier transform (STFT) was
implemented with a 256-sample-long Blackman window and
a hop size of 64 samples. The 129-dimensional data vector v(n)

was calculated by taking the absolute value of the spectrum of
each windowed segment. After discarding silent segments, the
number of the data samples for training was 51 197.

Utilized data were normalized so that the data distribution was
standardized. That is, as usual, each dimension was normalized
so that the data were distributed with center 0 and standard
deviation 1. Evaluation was performed after canceling the effect
of normalization by the inverse operation.

All RBMs were trained by the Adam optimizer [39] with a
batch size 100 and a learning rate 0.01. After training with 100
epochs, magnitude spectra of a signal in the evaluation dataset
were encoded and reconstructed using the trained RBMs by cal-
culating expectation of v from expectation of the encoded code
h of the inputted data samples, i.e., reconstruction is obtained
from p(v|Ep(h|v(n))[h]). The reconstructed magnitude spectra
were evaluated by a subjective test or objective measures: MSE
(mean-squared error), PESQ (perceptual evaluation of speech
quality) and STOI (short-time objective intelligibility), where
time-domain signals were calculated using the inverse STFT
with the original phase.

B. Properties of the Proposed Gamma-Bernoulli RBM

At first, we investigated the proposed gamma-Bernoulli RBM
from three viewpoints: (1) combination of trainable parameters
b, c and d; (2) choice of f+ for parametrizing W and V; and
(3) normalization of data.

1) Combination of the Bias Parameters b, c and d: The
proposed RBM in Eq. (24) has three bias parameters b, c and

TABLE I
PESQ OF THE PROPOSED RBMS (800 HIDDEN UNITS) USING DIFFERENT

COMBINATIONS OF BIAS PARAMETERS (c, d, AND b = −W1) IN EQ. (24)

TABLE II
PESQ OF THE PROPOSED RBMS (800 HIDDEN UNITS) USING DIFFERENT

COMBINATIONS OF POSITIVE FUNCTIONS f+ IN EQ. (28)

d [recall that b is explicitly defined in Eq. (21) and fixed to
b = −W1 in Eq. (24)]. Note that our preliminary version [29]
did not contain b, i.e., we decided to make the model more
general. Since the performance should depend on the choice of
these parameters, their effect is investigated here.

Table 1 shows PESQ scores (averaged over all evaluation
data) for 5 variants of the proposed gamma-Bernoulli RBM.
The first row indicates our preliminary version in [29], and the
other 4 rows represents RBMs newly developed in this paper.
From the result, it can be seen that b (= −W1) is essential for
achieving a better performance, but using only b cannot learn
data representation properly. One of c or d should be contained
in the gamma-Bernoulli RBM in addition to b, but all of them
does not have to be used. Since discarding a trainable parameter
can reduce the computational complexity, we utilize b and d and
omit c hereafter.

2) Choice of the Positive Function f+( · ): As in Eq. (28), we
consider two choices for f+ in this paper: the exponential and
softplus functions. To see the effect of these positive functions,
we compared all combinations of them (since they are applied
to W and V, there are 4 combinations).

Table 2 shows PESQ scores for all combinations of f+ and
W,V. From the result, it can be seen that the choice of f+
has little impact on the reconstruction performance in terms of
PESQ. However, it had some impact on the Frobenius norm
of W and V as shown on the right side of Table 2. For stable
training, the norm of parameters should not be excessively large.
Since W with the exponential function resulted in a larger
norm value, the softplus function seems a better choice for W.
Hereafter, we utilize the softplus function for both W and V
(note that the previous subsection also used it).

3) Normalization of Data: Data normalization is the stan-
dard strategy to make training easier. As mentioned in Sec-
tion IV-A, experiments in this paper utilized the usual standard-
ization (mean 0 and standard deviation 1). Here, we compared
normalization methods to see whether this choice is right or
not. For the proposed gamma-Bernoulli RBM, we additionally
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Fig. 2. Original and reconstructed (linear-)magnitude spectra. The reconstructed spectra were obtained by the proposed (gamma-RBM (H800)) and by the
conventional (Gauss-RBM (log, H800) and Gauss-RBM (amp, H800)) models. The red points represent negative values which should not exist.

TABLE III
PERFORMANCE OF RBMS (800 HIDDEN UNITS) USING DIFFERENT

NORMALIZATION METHODS [MAX1 REPRESENTS EQ. (39)]

considered the following normalization:

x̃ = β̂x = αx/x, (39)

where x denotes mean of x, and β̂ is the maximum-likelihood
estimation ofβ. This is because the gamma distribution, assumed
as G(x;α, β̂), becomes the standard form, G(x̃;α, 1). In this
experiment, α = 1 was used for the normalization.

Table 3 shows PESQ scores for different normalization meth-
ods. This table shows not only the proposed RBM (gamma-
RBM) but also the Gaussian-Bernoulli RBM (Gauss-RBM)
for comparison. Furthermore, two variations for the Gaussian-
Bernoulli RBM were considered: (log) represents that all
data (magnitude spectra) were computed with the logarithmic
function, while (amp) denotes those without logarithm (raw
magnitude spectra). From the result, it can be seen that the
performance of the Gaussian-Bernoulli RBM heavily depends
on the presence of the normalization. In contrast, the proposed
gamma-Bernoulli RBM was able to perform well regardless of
the normalization. This might be because W and V can balance
the scale of data, which is indicated by the Frobenius norm on
the right side of Table 3.

C. Performance Comparison With the Conventional RBM

Next, the proposed gamma-Bernoulli RBM is compared with
the conventional Gaussian-Bernoulli RBM. Here, comparison is
made from four aspects: (1) qualitative comparison of magnitude
spectra; (2) quantitative comparison using PESQ, STOI and
MSE; (3) comparison of MSE during the training; and (4)
subjective comparison of reconstructed signals.

In the following figures and table, the proposed gamma-
Bernoulli RBM is denoted by gamma-RBM, while the conven-
tional Gaussian-Bernoulli RBM is denoted by Gauss-RBM.
For Gauss-RBM, log and amp respectively represent the
RBM trained with and without the logarithmic transformation
of data. In other words, Gauss-RBM (amp) was trained
and utilized with raw magnitude spectra, while Gauss-RBM
(log) was trained and utilized in the logarithmic domain
(with log-magnitude spectra). The number of hidden units is
represented with H as the indicator, e.g., H800 represents that
the number of hidden unit was 800.

1) Qualitative Comparison of Reconstructed Spectrograms:
Magnitude spectra reconstructed by the RBMs are shown in
Figs. 2 and 3 using the linearly and logarithmically scaled colors,
respectively. In Fig. 2, negative values, which never exist in
magnitude spectra, are marked by red points. From Fig. 2, it can
be seen that Gauss-RBM (amp) produced negative values. In
contrast, both Gauss-RBM (log) and gamma-RBM did not
produce any negative value. This result indicates that the pro-
posed RBM can properly handle positive data without producing
a negative value.

From Fig. 3, it is obvious that Gauss-RBM (amp) was
not able to reconstruct small values (illustrated by light green).
Comparinggamma-RBMwithGauss-RBM (log),gamma-
RBMproduced smoother spectra for very small values (illustrated
by dark blue). This slight difference should be evaluated using
quantitative metrics.
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Fig. 3. Original and reconstructed log-magnitude spectra. The reconstructed spectra were obtained by the proposed (gamma-RBM (H800)) and by the
conventional (Gauss-RBM (log, H800) and Gauss-RBM (amp, H800)) models. Color range is 84.0 dB (from dark blue to bright yellow).

Fig. 4. PESQ scores for the proposed (gamma-RBM, red) and conventional
(Gauss-RBM (log), black, andGauss-RBM (amp), blue) models defined
with various numbers of hidden units.

2) Quantitative Comparison of Reconstructed Signals: The
proposed gamma-RBM was compared with the conventional
Gauss-RBMs using PESQ, STOI and two MSEs defined by

MSEamp =
1

N

N∑
n=1

∥∥v(n) − v̂(n)
∥∥2
2
, (40)

MSElog =
1

N

N∑
n=1

∥∥ log |v(n)| − log |v̂(n)| ∥∥2
2
, (41)

where ‖ · ‖2 is the Euclidean norm,v(n) is a magnitude spectrum
in the evaluation dataset, and v̂(n) is its reconstruction by an
RBM, which may have negative values (see Fig. 2).

PESQ and STOI are illustrated in Figs. 4 and 5, respectively.
From Fig. 4,Gauss-RBM (amp) (drawn by the blue line) per-
formed worst for all numbers of hidden units. Compared PESQ
of gamma-RBM (red line) with that of Gauss-RBM (log)
(black line), Gauss-RBM (log) marginally outperformed
gamma-RBMwhen the number of hidden units was small (H100

Fig. 5. STOI scores for the proposed (gamma-RBM, red) and conventional
(Gauss-RBM (log), black, andGauss-RBM (amp), blue) models defined
with various numbers of hidden units.

and H200). The proposed gamma-RBM outperformed the con-
ventional Gauss-RBM (log) when the number of hidden
units was large enough (H800, H1600 and H3200). Note that
Fig. 3 show the case H800. It indicates that the slight difference
in very small values in Fig. 3 was not so important in terms
of PESQ. Gauss-RBM (log) models very small values with
equal importance compared to larger values, and hence it suffers
from v

(n)
i ≈ 0which becomes outlier in the logarithmic domain.

To see the performance of RBMs trained and tested with
more speakers, the RBMs were also compared by using the
DR1 subset of the TIMIT dataset. The training data consisted
of 380 utterances from 38 speakers, and the test data were
110 utterances from the other 11 speakers. The other training
conditions were the same. Table 4 shows the averaged scores
of PESQ and STOI for the RBMs (H800). As can be seen
from the table, the proposed RBM was able to outperform the
conventional RBM for this case as well.
MSEamp and MSElog are illustrated in Figs. 6 and 7, respec-

tively. As shown in the figures, Gauss-RBM (amp) reduced
MSEamp successfully, while Gauss-RBM (log) reduced
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TABLE IV
PESQ AND STOI OF THE RBMS (800 HIDDEN UNITS) TRAINED AND TESTED

BY USING THE TIMIT DATASET CONSISTED OF MANY SPEAKERS

Fig. 6. MSE of magnitude spectra obtained by the proposed (gamma-
RBM, red) and conventional (Gauss-RBM (log), black, and Gauss-RBM
(amp), blue) models defined with various numbers of hidden units.

Fig. 7. MSE of magnitude spectra obtained by the proposed (gamma-RBM,
red) and conventional (Gauss-RBM (log), black andGauss-RBM (amp),
blue) models defined with various numbers of hidden units.

MSElog. This is a natural consequence of applyingGauss-RBM
in the linear or logarithmic domain. The proposed gamma-RBM
was able to reduce MSElog like Gauss-RBM (log) as in
Fig. 7. Furthermore, gamma-RBM was also able to reduce
MSEamp to some extent (Fig. 6).

3) MSEs During Training: MSEamp and MSElog during the
training are illustrated in Figs. 8 and 9, respectively. From the
figures, Gauss-RBMs (black and blue) was able to rapidly de-
crease one of the MSEs. In other words, Gauss-RBM (amp)
rapidly decreased MSEamp as in Fig. 8, while Gauss-RBM
(log) rapidly decreased MSElog as in Fig. 9. However, they
were slow to decrease the other MSE that was not considered
by their definition. In contrast, the proposed gamma-RBM (red)
was able to rapidly decrease both MSEs within, say, 10 epochs
as in Figs. 8 and 9. These results indicate that the proposed
gamma-RBM can model data with consideration of both linear
and logarithmic scales.

Fig. 8. MSE of magnitude spectra during training of the proposed (gamma-
RBM, red) and conventional (Gauss-RBM, black and blue) models. The number
after H indicate the number of hidden units.

Fig. 9. MSE of magnitude spectra during training of the proposed (gamma-
RBM, red) and conventional (Gauss-RBM, black and blue) models.

TABLE V
RESULT OF THE SUBJECTIVE TEST WITH 43 PARTICIPANTS (MOS OF THE

RECONSTRUCTED SIGNALS). CI REPRESENTS THE CONFIDENCE INTERVAL

4) Subjective Evaluation: A subjective test was performed
to compare the sound quality of reconstructed signals. We asked
43 participants to evaluate the original and reconstructed speech
signals using the following five labels: Excellent (5), Good (4),
Fair (3), Poor (2), and Bad (1). After the evaluation, mean opin-
ion scores (MOS) was calculated. As the reference, the original
signals and those analyzed and synthesized by WORLD [40]
were also evaluated.6 The number of hidden units of RBMs
was set to 800 because, from the viewpoint of information
compression, using excessive number of hidden units is not of
interest.

The evaluated scores are shown in Table 5. The 95% confi-
dence interval is also shown on the side of each score. From
the table, it can be seen that the proposed gamma-RBM signif-
icantly outperformed the conventional Gauss-RBM (log).

6Note that the comparison between RBMs and WORLD is not fair. The
reconstructed signals by RBMs utilized phase of the original signals, while
WORLD did not. Therefore, the score of WORLD is shown merely as a
reference. We focused on modeling of magnitude spectra in this paper, and
modeling of phase is left as a future work.
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Fig. 10. PESQ scores for the proposed RBMs (red) and the AEs/VAEs (blue
and black, respectively) w.r.t. the number of parameters.

Fig. 11. STOI scores for the proposed RBMs (red) and the AEs/VAEs (blue
and black, respectively) w.r.t. the number of parameters.

Moreover, the sound quality of gamma-RBM was comparable
to the original signals. This result indicates that the proposed
RBM can effectively model audio signals.

D. Performance Comparison With Deep Neural Networks

Here, the proposed RBM is compared with VAEs in terms of
the objective measures and the number of parameters. In this
experiment, the input 129-dimensional vector was handled by
the fully-connected layers whose output dimension was 100. By
stacking the fully-connected layers with ReLU as the activation
function, the networks were made deeper. The networks are
distinguished by their depth, which is indicated by the number
after the indicator L, e.g., L3 consisted of 3 fully-connected
layers for the encoder and 3 fully-connected layers for the
decoder.7 They were trained by the Adam optimizer with a learn-
ing rate 0.001. The other conditions were the same as those given
in Section IV-A. For reference, the plain autoencoders (AEs)
without probabilistic assumptions, whose network architectures
were the same as VAEs, were also compared.

PESQ and STOI of the reconstructed signals are shown in
Figs. 10 and 11, respectively. To compare the different networks
in a single figure, the scores are plotted w.r.t. the number of

7The dimensions of the encoder of L3 were 129 → 100 → 100 → 100,
where the arrow represents the combination of the layers. Those of the decoder
were reversed, i.e, 100 → 100 → 100 → 129. Note that, for VAEs, the output
dimension of the last layer of the encoder was doubled because the output of
VAEs were the 100-dimensional mean and variance vectors.

Fig. 12. PESQ scores for the proposed RBMs (red) and the enhanced
AEs/VAEs (blue and black, respectively) w.r.t. the number of parameters.

Fig. 13. STOI scores for the proposed RBMs (red) and the enhanced
AEs/VAEs (blue and black, respectively) w.r.t. the number of parameters.

trainable parameters, where the horizontal axis is represented
with the prefix kilo (k). Note that the scores for the proposed
RBM are the same as Figs. 4 and 5. As in the figures, deeper
networks resulted in poor scores compared to the shallower net-
works. This should be due to the simple network architecture of
the encoder and decoder (fully-connected network with ReLU),
which causes difficulty of training, e.g., gradient vanishing. To
make the training reliable, we implemented enhanced versions of
the networks and trained them for better comparison as follows.

The network architecture of AEs/VAEs were improved by
incorporating deep learning techniques. Specifically, the batch
normalization layer [41] and skip connection [42] were applied
to all layers. PESQ and STOI for the enhanced AEs/VAEs are
shown in Figs. 12 and 13, respectively. The proposed RBM with
800 hidden layers (H800) resulted in the scores comparable to
AEs. While some shallow AEs were better than the proposed
RBM, AEs cannot be used as a generative model because they
do not have probabilistic background. VAEs can be used as a
generative model, but their scores were considerably lower than
the RBMs. One reason for this low reconstruction performance
should be because of the over-smoothing of log-amplitude spec-
tra generated by VAEs. From these results, it can be confirmed
that the proposed RBM performs well even though it can be used
as a generative model.
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Fig. 14. Histogram of encoded values by the proposed gamma-Bernoulli
RBM.

E. Data Compression by the Binary Representation

Since the hidden units of the RBMs are assumed to be binary,
the proposed RBM can provide compressive representation
of data. For the above example, in the case of 800 hidden
units (H800), a 129-dimensional vector is represented by an
800-dimensional binary vector. If the input is given by double
precision (64 b), then the compression rate is 800/(129× 64) ≈
0.097. That is, the proposed RBM can simultaneously extract
latent features and reduce 90 % of the storage compared to
the input in double precision8. However, since the computation
inside the RBMs is performed by floating-point arithmetic, rep-
resenting the latent features by strictly binary numbers requires
binarization, which have not been performed in the previous sub-
section. Here, the effect of binarization is discussed as follows.

A histogram of the encoded values without binarization is
shown in Fig. 14, where all data in the dataset were encoded
by the proposed RBM (H800), and the number of bins was
100. As can be seen from the figure, most of the values were
concentrated around 0 and 1. That is, the encoded values were
approximately binary as expected from the binary assumption.
The effect of binarization is caused by the values greater than
0 and less than 1, which infrequently occur according to the
histogram in Fig. 14.

The effects of binarization on the reconstructed signals in
terms of PESQ and STOI are shown in Figs. 15 and 16, re-
spectively. Although binarization degraded the performance for
all situations, the amount of degradation was not so significant.
As STOI of the proposed RBMs with binarization was better
than than the conventional RBMs without binarization for H800
and H3200, the proposed RBM seems more robust against
binarization. To see this quantitatively, ratio of the scores before
and after binarization is shown in Fig. 17. It is calculated by
dividing the dotted lines by the solid lines in Figs. 15 and 16.
As in the figure, the performance of the proposed RBM did not
degrade much compared to the conventional RBM. Therefore,

8Note that this is lossy compression because the RBMs have loss of infor-
mation as shown in the experiments. Therefore, this compression rate is not so
impressive compared to other lossy methods specialized for data compression.
Our motivation of using RBMs is not compression but representation of the data,
i.e., RBMs can extract some meaningful latent features (e.g., phonological dis-
tinctive features [43]). Hence, we do not discuss about the practical applicability
of RBMs to data compression.

Fig. 15. PESQ scores for the proposed (gamma-RBM, red) and conventional
(Gauss-RBM (log), black, and Gauss-RBM (amp), blue) models with
(solid) and without (dotted) binarization.

Fig. 16. STOI scores for the proposed (gamma-RBM, red) and conventional
(Gauss-RBM (log), black, and Gauss-RBM (amp), blue) models with
(solid) and without (dotted) binarization.

Fig. 17. Ratio of the objective scores before and after binarization.

the proposed RBM is better suited for data compression than the
conventional RBM.

F. Balance Between the Linear and Logarithmic Scales

In the proposed gamma-Bernoulli RBM defined in Eq. (24),
terms related to the linear scales and those related to the logarith-
mic scales are summed together. One may suspect the optimality
of this model: it might be possible to obtain a better model by
adjusting the effect of those two kinds of terms. For example,
one may emphasize the contribution from the logarithmic scale
more than that from the linear scale so that the gamma-Bernoulli
RBM can perform better for audio signals. To investigate the
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Fig. 18. Result of the experiment investigating the balance of linear and logarithmic scales (Section IV-F). Since the hyperparameter γ is controlled by the scalar
parameter t, their relation is illustrated in the top-left figure as PDFs of the prior distributions of γ (the variance parameter s was fixed to 0.01). The other five
figures illustrate the result: from bottom left to bottom right, PESQ, MSEamp, MSElog, ‖W‖F , and ‖V‖F .

correctness of this expectation, we propose an extension of
the gamma-Bernoulli RBM that can emphasize the contribution
from one of the two scales.

Since this section is for experimental investigations, details
of the proposed extension are separately given in Appendix A.
Here, we briefly summarize the features of the extended RBM.
The gamma-Bernoulli RBM is extended by a trainable weight
γ ∈ [0, 1]D that can emphasize one of the two scales: only linear
scale is considered when γ → 0, and only logarithmic scale is
considered when γ → 1. It can take values between 0 and 1,
and hence it can balance the contributions from the two scales.
For easier adjustment of the weight, γ is associated with a scalar
t such that t → 0 prefers the linear scale, and t → 1 prefers the
logarithmic scale.

By changing the parameter t that controls the contributions
from the two scales, we investigated the effect of balancing the
scales. The results are illustrated in Fig. 18, where the number
of the hidden units was 800. From the bottom-left figure, it
can be seen that PESQ scores did not vary much by changing
t. Note that the proposed gamma-Bernoulli RBM without the
extension achieved 4.23 with the same number of hidden units
(see Fig. 4, H800), i.e., the extension resulted in worse PESQ
scores. Therefore, the gamma-Bernoulli RBM proposed in Sec-
tion III-C is a reasonable model for handling audio signals with
consideration of both linear and logarithmic scales. Interestingly,
the other four metrics show trade-off relations: MSEamp and
MSElog were traded by t, and likewise, ‖W‖F and ‖V‖F were
traded by t. These trade-off relations indicate that the effect of
t (and hence γ) was absorbed by W and V. In other words, the
proposed gamma-Bernoulli RBM can automatically balance the
importance of the two scales by adjusting the magnitude of W
and V.

TABLE VI
PESQ OF GAMMA-BERNOULLI RBM AND GAMMA-GAMMA RBM

G. Gamma-Gamma RBM

From the viewpoint of information compression, considering
the binary hidden units is reasonable. Yet, an upper bound of the
expressive power of an RBM based on the gamma distribution is
also interesting to investigate because, to the best of our knowl-
edge, such investigation has not been performed in the literature.
To investigate the expressive power of a gamma-distribution-
based RBM, we propose an extension of the gamma-Bernoulli
RBM that handles not only visible but also hidden units by the
gamma distribution.

Details of the extended RBM, named gamma-gamma RBM,
are given in Appendix B. Here, its features are briefly sum-
marized. The gamma-gamma RBM is obtained by simplifying
the energy function of the gamma-Bernoulli RBM (by setting
b = 0, c = 0, d = −1, and omitting the exponential function
of the hidden units). Then, the two conditional distributions,
p(v|h) and p(h|v), are represented by the gamma distribution.
Similarly to the gamma-Bernoulli RBM, the constraints on the
parameters of the gamma distribution must also be satisfied by
the gamma-gamma RBM. This is realized by division using
a small positive constant ε which was set to 10−10 in this
experiment. Optimization of the parameters was performed in
the same manner as for the gamma-Bernoulli RBM.

PESQ scores of both the gamma-gamma RBM and gamma-
Bernoulli RBM are shown in Table 6. Since the gamma-gamma
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RBM treats the hidden units as positive real numbers, its expres-
sive power should be higher than the gamma-Bernoulli RBM that
treats the hidden units as binary numbers. Such tendency can be
clearly seen when the number of hidden units was small (i.e.,
less than or equals to 400). Therefore, the gamma-gamma RBM
should be preferable if the number of hidden units is forced to
be small. In such a case, information compression occurs owing
to the smallness of the number of hidden units (especially when
the number is smaller than the dimension of the data vectors).
However, difference of the performances between the gamma-
gamma RBM and gamma-Bernoulli RBM became small for the
larger number of hidden units (i.e., more than or equals to 800).
Thus, the gamma-Bernoulli RBM is more interesting than the
gamma-gamma RBM in terms of information compression when
the number of hidden units can be sufficiently large.

V. CONCLUSION

In this paper, we proposed a novel RBM named gamma-
Bernoulli RBM. At first, we introduced a general gamma Boltz-
mann machine and showed that its conditional distribution is
given by the gamma distribution. Then, we proposed the gamma-
Bernoulli RBM by restricting the general gamma Boltzmann
machine. Since its conditional distributions are given by the
gamma and Bernoulli distributions, its training is practically
tractable as the ordinary Gaussian-Bernoulli RBM. By modeling
observable data via the gamma distribution, the proposed RBM
can naturally handle positive data such as magnitude spectra. As
it optimizes the parameters by considering data simultaneously
in the linear and logarithmic scales, a trained gamma-Bernoulli
RBM should be suitable for an application sensitive to both
linear and logarithmic quantities. The properties and effective-
ness of the proposed RBM were investigated through speech
representation experiments, and its potential of audio modeling
was demonstrated. Two extensions of the proposed RBM were
also proposed for further investigation.

This paper presented the basic gamma-Bernoulli RBM and
focused on investigation of its properties, because this is the
first step of the research. There are many possible directions of
research towards practical applications. One obvious direction is
to consider a deep network based on the proposed RBM. Stack-
ing it should be interesting for improving the ability of modeling
complicated data structure. Another direction is to construct a
model that handles complex-valued data. Some recent speech
processing systems target raw waveform or complex spectro-
gram for directly handling phase information [43]–[47]. Since
the proposed RBM can handle magnitude simultaneously in the
linear and logarithmic domains, its combination with a system
that handles phase information should be a promising approach
to complex-valued data modeling. Proceeding these directions
as well as developing applications of the gamma-Bernoulli RBM
are left as the future works.

APPENDIX A
GAMMA-BERNOULLI RBM WITH ADJUSTABLE SCALE

Some tasks may prefer a linear scale more than a logarithmic
scale, and the other tasks may be in the opposite situation. To

balance the contributions from linear and logarithmic scales, a
weighting parameterγ ∈ [0, 1]D is introduced into the proposed
gamma-Bernoulli RBM as follows:

Eγ
ΓB(v,h) = − (v ◦ (1− γ))TW(exp(h)− 1)

− (log(v) ◦ γ)T(Vh− 1)− dTh, (42)

wherep(v|h)becomes the exponential distribution whenγ → 0
and becomes the Pareto distribution when γ → 1. Note that the
parameter c is omitted based on the experiment in Section IV-B
(see Table 1).

To manually adjust the hyperparameter γ for each task, max-
imum a posteriori (MAP) estimation is considered:

LMAP(θ) = log(p(θ|{v}N1 )) (43)

∝ log(p({v}N1 |θ)) + log(p(θ)), (44)

where the parameter-shared i.i.d beta distribution is applied for
the prior distribution of γ,

p(γ;α, β) =
∏
i

Beta(γi;α, β), (45)

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, (46)

and B(α, β) is the beta function. To make variance of the beta
distribution constant regardless of its mode (see Fig. 18), we
propose the following parametrization of α(t) and β(t):

α = rs(τ) sin(τ), β = rs(τ) cos(τ), (47)

where rs is defined with a user-given variance parameter s,

τ(t) =
πt

2
, rs(τ) =

(1− 2˜s) sin(τ) cos(τ)− s

s (sin(τ) + cos(τ))3
, (48)

s ∈ (0, 1/12], t ∈ (1/2− T (s), 1/2 + T (s)) (⊂ [0, 1]), and
T (s) = (2/π) tan−1(

√
1− 4˜s). Smaller t prefers the linear

scale, and larger t prefers the lograithmic scale.
The partial derivative of the objective function w.r.t. γ is

∂LMAP

∂γ
≈

〈
−∂Eγ

ΓB

∂γ

〉
data

−
〈
−∂Eγ

ΓB

∂γ

〉
recon

+
α− 1

γ
− β − 1

1− γ
,

(49)
where the partial derivative of the energy function is given as

−∂Eγ
ΓB

∂γ
= log(v) ◦ (Vh− 1)− v ◦ (W(exp(h)− 1)).

(50)
By parametrizing γ to satisfy 0 < γ < 1 as

γ = fσ(γ̃), (51)

the hyperparameter γ̃ can be optimized using the chain rule:

∂LMAP

∂γ̃
=

∂γ

∂γ̃
◦ ∂LMAP

∂γ
= γ ◦ (1− γ) ◦ ∂LMAP

∂γ
, (52)

For the other parameters, the uniform distribution is consid-
ered as the prior. Then, by recasting the visible units as

v → v ◦ (1− γ), log(v) → log(v) ◦ γ, (53)

gradients w.r.t W̃ and Ṽ stay the same as in Eqs. (35)–(38).
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APPENDIX B
GAMMA-GAMMA RBM

While the binary nature of hidden units should be more
interesting in terms of data representation, we can define a
gamma-gamma RBM that handles hidden units as positive num-
bers. It is defined via the following energy function:

EΓΓ(v,h) = − vTWh− log(v)TV log(h) (54)

+ log(v)T1+ log(h)T1, (55)

that can be derived from Eq. (12) by inserting

x =

[
v
h

]
, U =

[
O W
WT O

]
, u =

[
0
0

]
, (56)

S =

[
O V
VT O

]
, s =

[−1
−1

]
. (57)

where −W ∈ RD×H
++ , and V ∈ RD×H

++ . This energy function
defines an RBM with the following conditional distributions:

p(v|h) = G(v;V log(h),−Wh), (58)

p(h|v) = G(h;VT log(v),−WTv), (59)

i.e., both visible and hidden units are handled by the gamma
distribution, and hence gamma-gamma RBM.

In order to fulfill the condition of the gamma distribution,
V log(h) > 0 and VT log(v) > 0 must be satisfied. These
inequalities depend on h and v, and therefore they must be
modified. By setting a small positive constant ε > 0 such that
hi > ε and vi > ε for all i, we redefine s as

s =

[ −1− log(ε)V1
−1− log(ε)VT1

]
. (60)

Then, the corresponding conditional distributions become

p(v|h) = G(v;V log(h/ε),−Wh), (61)

p(h|v) = G(h;VT log(v/ε),−WTv), (62)

which satisfy V log(h/ε) > 0 and VT log(v/ε) > 0 whenever
hi, vi > ε ∀i.
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