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Attention for Single and Multi-Talker Speech
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and Haizhou Li

Abstract—Speaker verification has been studied mostly under
the single-talker condition. It is adversely affected in the presence
of interference speakers. Inspired by the study on target speaker
extraction, e.g., SpEx, we propose a unified speaker verification
framework for both single- and multi-talker speech, that is able
to pay selective auditory attention to the target speaker. This
target speaker verification (tSV) framework jointly optimizes a
speaker attention module and a speaker representation module
via multi-task learning. We study four different target speaker
embedding schemes under the tSV framework. The experimental
results show that all four target speaker embedding schemes sig-
nificantly outperform other competitive solutions for multi-talker
speech. Notably, the best tSV speaker embedding scheme achieves
76.0% and 55.3% relative improvements over the baseline sys-
tem on the WSJ0-2mix-extr and Libri2Mix corpora in terms of
equal-error-rate for 2-talker speech, while the performance of tSV
for single-talker speech is on par with that of traditional speaker
verification system, that is trained and evaluated under the same
single-talker condition.

Index Terms—Target speaker verification, speaker extraction,
single- and multi-talker speaker verification.

I. INTRODUCTION

RADITIONAL speaker verification (SV) methods, such
T as i-vector [1]-[3] with probabilistic linear discriminant
analysis (PLDA) [4], x-vector PLDA [5]-[7], assume that input
speech is uttered by a single speaker. These methods, however,
degrade significantly in the presence of interference speak-
ers. Speaker diarization technique seeks to inform ‘who spoke
when?” It segments the multi-talker speech temporally into
speaker turns, and identifies speaker-overlapping segments [7]—
[12]. By doing so, one is able to exclude speaker-overlapping
segments from speaker verification [13], [14]. Along the same
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line of thought, the recent studies on target-speaker voice ac-
tivity detection (VAD) show that we are able to obtain the
target speaker’s boundary in a multi-talker speech, e.g. personal
VAD [15], target VAD [16]. In general, the speaker diarization
technique is helpful only if the speakers overlap sporadically,
while it fails when the speakers are heavily overlapped in time.

From the time-frequency analysis point of view, multi-talker
speech can be considered as multiple single-talker speech sam-
ples overlapping in both temporal and spectral dimensions. To
recover a single-talker speech sample, the monaural speech sep-
aration techniques could come in handy. Successful implemen-
tations include deep clustering [17], deep attractor network [18],
permutation invariant training [19]-[21], Conv-TasNet [22],
DPRNN [23]. However, speech separation technique seeks to
recover the single-talker speech for each individual, that is
not only an overkill for speaker verification, but also difficult
particularly when we don’t know the number of speakers in the
multi-talker speech.

For speaker verification, we are only interested in the presence
or absence of the target speaker. Speaker extraction technique,
a variant of speech separation, that aims to extract one tar-
get speaker at a time, is clearly more relevant to the speaker
verification task. The question is how to optimize the speaker
extraction algorithm so as to better serve the purpose of speaker
verification. The speaker extraction techniques typically rely on
areference speech to direct the selective auditory attention to the
target speaker in the observed speech [24]. For brevity, the selec-
tive auditory attention mechanism is referred to as speaker atten-
tion hereafter. Many successful speaker extraction techniques
are proposed recently, instances include SpeakerBeam [25],
SBF-MTSAL [26], SBE-MTSAL-Concat [26], Voicefilter [27],
DENet [28], SpEx [24], and SpEx+ [29]. In speaker verification,
areference speech of the target speaker is always available, that
is required by the enrollment process, thus also called enrollment
utterance. Such reference speech can be readily used to direct
speaker attention.

The idea of speaker extraction (SE) followed by speaker
verification, i.e., SE-SV [30] pipeline, was previously studied to
address speaker verification for multi-talker speech. The SE-SV
system extracts the speech of the target speaker in the first stage,
and subsequently processes the extracted speech with a standard
speaker verification module, such as i-vector PLDA [1]-[3]. Un-
fortunately, within the SE-SV framework, the speaker extraction
front-end and the speaker verification back-end are optimized
separately, leading to a potential mismatch between the two
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modules. Furthermore, the SE-SV system is designed for over-
lapped multi-talker speech input, that presents another mismatch
when presented with single-talker speech input. In this paper,
we propose an end-to-end neural network architecture for target
speaker verification (tSV), which can effectively overcome the
aforementioned mismatches.

Specifically, the proposed tSV system consists of three main
components: a speaker attention module, a speaker representa-
tion module, and a speaker verification decision module. The
speaker attention module extracts the target speaker’s voice,
that is further encoded by the speaker representation module
into a discriminative speaker embedding for effective speaker
verification. There have been studies on joint optimization be-
tween speech enhancement and speaker verification [31]-[33].
Along a similar line of thought, we propose to jointly optimize
a speaker attention module and a speaker representation module
by simultaneously minimizing a signal reconstruction loss and
a speaker identity loss. For speaker verification decision, a
PLDA [4] classifier is trained on the speaker embeddings derived
from the speaker representation module.

In this work, we seek to develop a unified framework for both
single- and multi-talker speech inputs, that is fulfilled by expos-
ing the tSV system to both single- and multi-talker input speech
during training. This marks a departure from the single-talker
assumption in traditional speaker verification systems, such as
x-vector [5], d-vector [34], and other speaker representation
techniques [35]. In summary, this paper makes the following
contributions:

1) We propose a unified network architecture that performs
target speaker verification (tSV) for both single- and multi-
talker speech.

2) We formulate a multi-task learning algorithm for joint
optimization of a speaker attention module and a speaker
representation module in a target speaker verification sys-
tem.

3) We perform comprehensive studies on each individual
network modules as well as at the system level. We
successfully show that the proposed tSV framework not
only works well under the multi-talker condition, but also
performs as competitively as traditional SV under the
single-talker condition.

The remainder of the paper is organized as follows. In
Section II, we introduce the proposed target speaker verification
(tSV) system in details. In Section III, we describe the experi-
ments through which we systematically evaluate the proposed
tSV framework. In Section IV, we report the experimental
results. Finally, we conclude the study in Section V.

II. UNIFIED TARGET SPEAKER VERIFICATION SYSTEM FOR
SINGLE AND MULTI-TALKER SPEECH

As shown in Fig. 1, the proposed tSV system consists of
a speaker attention module, a speaker representation module,
and a PLDA classifier. During training, let () be a reference
speech from the target single talker, and y(¢) be the observed
speech that could come from either a single talker or multiple
talkers. The speaker attention module is trained to extract the
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Fig. 1. The proposed tSV system consists of a speaker attention module,

a speaker representation module, and a speaker verification decision module
(PLDA classifier). z(¢) and y(t) denote the single-talker reference speech and
the observed speech during the training stage, whereas they are also used to
denote the enrollment utterance and test utterance during the inference stage.
Path A and Path B represent two output paths of the speaker attention module.
“J1” is a multi-scale scale-invariant signal-to-distortion loss. “J2” and “.J3” are
cross-entropy losses.

enhanced speech that contains only the target speaker from y(t)
with the reference of x(¢). The extracted speech is taken by the
speaker representation module either in the form of an internal
representation S (n), (Path A in Fig. 1) or as a reconstructed
speech §(t) (Path B in Fig. 1), and further transformed into an
appropriate speaker embedding e. We train the speaker attention
module and the speaker representation module jointly via a
multi-task learning algorithm that will be explained in details in
Section II-C. Finally, a PLDA classifier is trained on the derived
speaker embeddings e to perform speaker verification.

During inference, let z(t) be an enrollment utterance, a.k.a
the reference speech used for speaker attention modeling, from
the target single talker, and y(¢) be the test utterance for the
target speaker verification. We leverage the trained speaker
attention module and speaker representation module to derive an
enrolled speaker embedding e, for z(t), and a target speaker
embedding e;s; for y(t). It is commonly assumed that the en-
rollment utterance is pre-recorded from the target single speaker.
Therefore, it is not necessary for the enrollment utterance to
pass through the speaker attention module. However, to keep
the input to the speaker representation module consistent across
both training and inference stages, we pass both the enrollment
utterance and the test utterance through the shared speaker
attention module as illustrated in Fig. 1. This is referred to as
the standard inference configuration.

Under this configuration, x(t) serves as the input reference
speech, and at the same time, the input observed speech to obtain
an internal representation 3, (t) or S,z (n) for the enrolled
target speaker. Besides, x(t) is also served as the reference
speech to extract a target speaker representation $es¢(t) or
Syest(n) for the test utterance y(t). In the case where the target
speaker is absent from y(t), no speech content of the target
speaker is expected in Sy (t) or §test(n).

The speaker representation module then encodes $,.s(t)
and S;.5¢(t) (Path B), or Sref(n) and S’test(n) (Path A), into
speaker embeddings e,.y and eycs¢, respectively. e,y encodes
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Fig. 2. TIllustration of the speaker attention module that extracts the target
speaker’s voice from y(t) with respect to the reference speech x(¢). The outputs

are represented either in the form of an internal representation S (n) or as
a reconstructed speech §(¢). “De-Conv” is the de-convolution operation to
reconstruct the time-domain signal.

the enrolled target speaker, and e, 5; encodes the extracted target
speaker as long as he/she is present in y(¢). Finally, the PLDA
classifier compares e,y and e to accept or reject the speaker
identity claim.

A. Speaker Attention Module

The speaker attention module in Fig. 1 consists of a shared
speech encoder, a speaker encoder, a speaker extractor, and a
speech decoder [24]. As a more detailed illustration shown in
Fig. 2, the speech encoder encodes the observed speech y(t),
either single-talker or multi-talker, into spectrum-like embed-
ding coefficients. Built on top of the shared speech encoder,
the speaker encoder encodes the reference speech x(t) into
an utterance-level latent representation v that represents the
target speaker. It guides the speaker extractor to estimates an
auditory mask for the target speaker, which only lets pass the
target speaker’s voice. Finally, the speech decoder reconstructs
the time-domain speech signal from the modulated embedding
coefficients of the observed speech.

1) Speech Encoder: Inspired by the multi-scale time domain
speech encoder introduced in [24], we use three parallel 1-D
convolutional layers, each has a different temporal resolution,
to encode the speech inputs y(t) € Rt and x(t) € R1*7z,
Each of these convolutional layers has [V filters but with different
kernel sizes of L1 (short), La(middle), Ls(long), respectively.
The rectified linear unit (ReLU) activation function is used in
these layers to produce non-negative embedding coefficients as
the following

Y; =ReLU(y xU;), i=1,2,3 (1)
X; =ReLU(z xU;), i=1,2,3 2)
where * denotes the 1-D convolutional operator. U; € RN L

refers to the N convolutional filters that has a kernel size of
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Fig. 3. (a) The diagram of a ResNet block. “1 x 1 Conv” is a 1-dimensional
convolution layer with the kernel size of 1 x 1.“X”is the normalized embedding
coefficients of the reference speech x(t). (b) The diagram of a stacked TCN
module that has I blocks, each of which has a dilated depthwise convolution
layer “D-Conv” with dilation ratio of 2t-1 5 — 1,...I. “GLN” refers to the
global layer normalization. The target speaker representation v is only presented
at the first block. “Y™ is the normalized embedding coefficients of the observed

speech y(t).

L; each. These filters are applied to the speech inputs at a
fixed stride of L, /2 samples to allow easy concatenation of the
filter outputs at different temporal resolutions. Y; € RY>*51 and
X, € RV*K2 gre the encoded embedding coefficients, wherein
K1 = 2(T1 — Ll)/Ll + 1 and K2 = 2(T2 - Ll)/Ll + 1 are
the number of output frames. The outputs from these three par-
allel convolution layers are aligned and concatenated into multi-
scale embedding coefficients Y € R3NV*K1 or X ¢ R3NVxKz2,

2) Speaker Encoder: Following SpEx+ [29], we introduce
a speaker encoder to encodes the reference speech z(t) into
an utterance-level representation v, which can characterize the
voiceprint of the target speaker. Built on top of the shared speech
encoder, a 1-D convolutional layer with a kernel size of 1 x 1,
thatiscalledal x 1 Conv,is applied to the normalized (channel-
wise) embedding coefficients, followed by N identical residual
network (ResNet) blocks to progressively modify the representa-
tion. The details of each residual block are provided in Fig. 3(a).
Finally, a 1 x 1 Conv layer together with a mean pooling is
used to transform the frame-level feature representations into a
fixed dimensional utterance-level representation v € R?*1. To
summarise, the speaker encoder can be expressed as a function
g(+) of the input speech z(t),

v =g(z(t)) ©)

To train this speaker encoder, we attach an output layer to
classify the speaker identity of each utterance, which is trained
jointly with other modules within a multi-task learning frame-
work as will be explained in Section II-C. It worth mentioning
that the output layer and the loss function are not required during
inference.

3) Speaker Extractor: The speaker extractor estimates a se-
lective filter (i.e., mask), that only lets pass speech content related
to the target speaker while masks off that of other interference
speakers. To this end, the multi-scale embedding coefficients Y
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of the observed speech is first normalized channel-wise before
being filtered by a1 x 1 Conv layer with O filters. Then, stacked
temporal convolutional network (TCN) modules are repeated
Ng times to transform the input embedding into an effective
representation for mask estimation. The details of one such
stacked TCN module are provided in Fig. 3(b), wherein [ dilated
depthwise separable convolution layers are stacked with dila-
tion factors of 2-1) i = 1,2, ..., I. The depthwise convolution
with P filters and a kernel size of 1 x @ is coupled witha 1 x 1
Conv layer with O fiters and global layer normalization (“GLN")
to keep the total number of parameters manageable.

To achieve target speaker extraction, the mask estimation
is conditioned on the target speaker representation v derived
from the speaker encoder during both training and inference.
Specifically, the representation v is repeated and concatenated
to the normalized embedding coefficients Y as the inputs Y e
R(O+D)xK1 (5 each stacked TCN module. Next, three paral-
lel 1 x 1 convolutions layers with NV filters each are used to
estimate mask M; € RV*%1 4 = 1,2, 3, one for each encoded
embedding coefficient Y; € RV* K1,

Finally, the modulated embedding coefficients S; e
of the target speaker are obtained, for different scale i = 1, 2, 3,
by applying the estimated mask M, onto the corresponding
embedding coefficients Y;,

Si=M;®Y,
=fY,0)®Y; 4)

where ® denotes the element-wise multiplication, and f(-)
represents the operations of the speaker extractor. S; represents
the temporal sequence of S;(n),n € [1, K1].

4) Speech Decoder: The speech decoder reconstructs the
time-domain signal §;(¢) from the modulated embedding co-
efficients S, through a de-convolutional layer that performs 1-D
transposed convolution operations as follows,

() =S;*V;, i=1,2,3 (5)

RNxKl

where V; € RY*Li ig the decoder basis.

B. Speaker Representation Module

Speaker representation module seeks to encode the speaker
characteristics of an utterance of variable duration into a fixed-
length vector, that is called speaker embedding, for example,
x-vector [5]. The speaker representation with a fixed-length
vector greatly facilitates the speaker comparison. In this paper,
the speaker embedding, denoted as e, is derived from a speaker
attention-representation pipeline, therefore, it is called target-
speaker-vector, or ts-vector for short. It should be noted that the
speaker embedding e, as the output of the speaker representation
module, is derived for speaker comparison. Here, e is not to be
confused with the reference utterance latent representation v in
3, that is derived for the speaker attention purpose.

As introduced in the earlier section, the speaker attention
module is trained to produce time-domain speech signal for
the target speaker. As reported in [24], for speaker attention
module with multi-scale speech encoding, the quality of the re-
constructed speech signal §; (¢) with a high temporal resolution
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(a small kernel size) outperforms $5(¢) and §3(¢) with middle
and low temporal resolutions, as shown in Fig. 2. Therefore,
$1(t) from the speaker attention module is chosen in this paper
as the time-domain input to the speaker representation module
(Path Bin Fig. 1). Meanwhile, we also study the use of modulated
embedding coefficients S(n) (Path A in Fig. 1) as the input to the
speaker representation module. We next discuss four different
ts-vector speaker embedding schemes derived from them.

1) Speaker Embedding With Embedding Coefficients S (n):
As shown in Fig. 4(a), following a similar network architecture
as the speaker encoder introduced in Section II-A2, we design a
network to transform the temporal sequence S (n) into a speaker
embedding. To ensure a fixed dimensional output from the
network, we use a mean pooling layer to read out the target
speaker embedding e, or ts-vector. We refer to the resulting
speaker embedding e as ts-vector-R, and the tSV system as tSV-R
hereafter. Since the temporal sequences S (), S5 (n) and S5 (n)
are directly taken by the speaker representation module, the
speech decoder of the speaker attention module is not involved
during run-time inference.

2) Speaker Embedding With Time-Domain Encoder: We
now take the best reconstructed signal §; (¢) from Path B of the
speaker attention module as the input to the speaker representa-
tion module. As the reconstructed speech $; (¢) is a time-domain
signal, the time-domain processing is required to encode the
speech signal. For fair comparison with S (n) from Path A that
spans across multiple time scales, §; (¢) is first encoded by a
time-domain encoder with the same temporal resolutions to

For simplicity, we adopt the same speaker encoder as intro-
duced in Section II-A2, which consists of a trainable speech
encoder front-end. As illustrated in Fig. 4(b), the encoded multi-
scale representation is further transformed into a speaker em-
bedding using the same network structure as adopted for tSV-R.
We denote the resulting speaker embedding e as ts-vector-T,
and the tSV system as tSV-T hereafter. With such a trainable
time-domain speech encoder, we would like to compare tSV-T
with tSV-R, and other frequency-domain speech encoders in the
experiments. This speaker embedding scheme is also introduced
for the study of an alternative inference workflow in Fig. 6, as
will be discussed in Section III-E and I'V-E.

3) Speaker Embedding With Frequency-Domain Encoder:
We further use $; (¢) from Path B of the speaker attention module
as the input but in a different way. As illustrated in Fig. 4(c),
instead of using a trainable time-domain speech encoder, we
study the use of frequency domain processing via the short-time
Fourier transform (STFT) analysis.

Comparing to the tSV-T shown in Fig. 4(b), we note that, be-
sides the difference in speech encoder front-end, the frequency-
domain speaker representation module shares the same archi-
tecture with that of tSV-T. The resulting speaker embedding e is
referred to as ts-vector-F, and the tSV system as tSV-F hereafter.

4) Speaker Embedding With Frequency-Domain Attention:
For frequency-domain SV, i.e., i-vector PLDA [1]—[3], the static
and dynamic features are shown to improve the effectiveness
of speaker embeddings, for example, mel-frequency cepstral
coefficients (MFCC) with its delta and acceleration [36]. In
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Fig. 1, where the enrollment utterance is directly taken by speaker representation
module, bypassing the speaker attention module.

addition, when deriving an utterance-level speaker embedding
from a frame-level representation, studies have shown the su-
periority of using the attention mechanism to replace the mean
pooling [37], [38]. Therefore, we extend the frequency-domain

speaker representation module tSV-F by 1) including delta and
acceleration of the magnitude spectrum as additional features,
and 2) replacing the mean pooling layer with an attentive statistic
pooling layer. The details of the proposed model are illustrated
in Fig. 4(d). We refer to the resulting speaker embedding e as
ts-vector-FA, and the tSV system as tSV-FA hereafter.

To train these speaker representation modules, we leverage
a speaker classification task that forms part of the multi-task
learning framework as introduced in the following section.

C. Multi-Task Learning

Speaker attention module primarily seeks to enhance the
perceptual quality of the target speaker, which does not directly
contribute to the improvement of speaker discrimination at the
speaker representation module. Therefore, to unify their con-
tributions, we propose to jointly optimize the speaker attention
module and the speaker representation module via a multi-task
learning framework. In the following, we will explain how
multiple loss functions are contributed individually as well as at
the system level to improve the speaker discrimination.

Asdiscussed in Section II-A, the main objective of the speaker
attention module is to extract target speaker’s voice with a
high perceptual quality. This can be achieved by optimizing a
multi-scale scale-invariant signal-to-distortion ratio (SI-SDR)
loss [39], denoted as J;.

J1= —[(1 == P)p(31,8) + ap(32,8) + Bp(83,8)]  (6)

where o and (3 are tunable hyperparameters to adjust the con-
tributions at different temporal scales. $;, S and S3 are the
reconstructed signals from modulated embedding coefficients
5’1, Sg and 5’3, respectively. s is the target clean signal. The
SI-SDR loss [39], denoted as p(-, -),! measures the error between

'We may add a small value to the numerator and denominator of the loss
function to handle situations where the target speaker is absent from the input
speech mixture during training [40].
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the reconstructed and the target clean signals.

I ss) slf?

5—§\|2

p(8,s) = 10logyg (7

H es*)

where (-, -) indicates the inner product. In order to ensure scale
invariance, the signals § and s are normalized to zero-mean in
the above formulation.

Since speaker representation v is crucial to the success of
speaker extraction, we further introduce a speaker classification
task [24] to the speaker encoder within the speaker attention
module, so as to improve the quality of speaker representation
v. Specifically, the cross-entropy loss .J» is applied to the speaker
classification task.

ch log(P(c|)) @®)
where C' is the total number of speakers in the speaker clas-
sification task. p. is 1 if the segment x belongs to speaker c,
otherwise, p. is 0. P(c|z) is the probability for the segment z
to be speaker c. Besides optimized for the speaker classification
task through .J5, the speaker encoder is also jointly optimized
for speaker extraction via J;.

The speaker representation module seeks to encode the enroll-
ment utterance and the test utterance into speaker embeddings
erey and e;eq that are suitable for speaker comparison. To
effectively characterize the speakers, the speaker representation
module is trained together with the speaker attention module
under another speaker classification task with a cross-entropy
loss J3, as shown in Fig. 4,

ch log(P(c|9)) ©)
or

ch log(P(c|$1)) (10)
where S = [5‘ 1 Sg; 5'3] and $; are the modulated embedding co-

efficients and the reconstructed signal from the speaker attention
module for Path A and Path B, respectively.

Finally, we jointly optimize the proposed framework with a
total loss J, that is the weighted sum of .J;, J5 and J3,

J=J1+~vJ2+nJs (11

where v and 7 are tunable hyperparameters to align different
objectives.

D. Target Speaker Verification

The PLDA classifier [4] has been applied widely to many
speaker embeddings, such as, i-vector [1]-[3], x-vector [5]-[7],
and d-vector [34]. With the four target speaker embedding
schemes implemented in the speaker representation module,
we are now ready to train a PLDA classifier for target speaker
verification.
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Specifically, prior to the PLDA classification, the speaker
embeddings (ts-vectors) are centered following a linear discrim-
inate analysis (LDA) for dimensionality reduction and a length
normalization. To improve the system generalizability, we train
the PLDA classifier using the extracted speaker embeddings
from the training set that consists of both single talker and multi-
talker speech samples. During the run-time inference, the PLDA
classifier compares the enrolled target speaker and the extracted
target speaker using their respective speaker embeddings, i.e.,
erey and eycs. Finally, PLDA scores are normalized with an
adaptive s-norm [41], and used to accept or reject the speaker
identity claim.

III. EXPERIMENTAL SETUP
A. Speech Corpora

To evaluate the performance of the proposed target speaker
verification system, we conducted experiments on two standard
corpora:2 1) WSJO [42] and its 2-talker mixture version (WSJO-
2mix-extr) [26] with a total number of 119 speakers, and 2) Lib-
riSpeech [43] and its 2-talker mixture version (Libri2Mix) [44]
with a total number of 1212 speakers.

1) WSJO and WSJO-2mix-Extr Corpora: WSJO corpus [42]
consists of read speech from the Wall Street Journal. It has
three original collections: “si_tr_s,” “si_dt_05,” and “si_et_05".
In this work, we first generated a single-talker dataset (WSJO-
1talker) by randomly selecting speech from the WSJO corpus for
single-talker SV. WSJO-1talker consists of three subsets: train-
ing, development, and evaluation. Specifically, 11 560 utterances
from a total of 101 speakers (50 male and 51 female speak-
ers) were selected from WSJO “si_tr_s” set, and split into the
training set (8769 utterances) and the development set (the rest
2791 utterances). The evaluation set includes 1857 enrollment
utterances and 1478 test utterances of 18 speakers (10 male and
8 female speakers) from the WSJO “si_dt_05" and “si_et_05"
sets. From this evaluation set, we further constructed 3000 target
trials and 48 000 non-target trials. The speech samples were
down-sampled to 8 kHz.

WSJO-2mix-extr [26] corpus was generated from the WSJO
Corpus by mixing two randomly selected utterances as a 2-talker
dataset (WSJO-2talker).> WSJO0-2talker also consists of train-
ing, development, and evaluation sets. Specifically, the training
set included 20 000 mixtures that were generated by mixing
two randomly selected utterances from the aforementioned 101
speakers in the WSJO corpus. Similarly, the development set with
5000 mixtures was also generated from the same 101 speakers.
The evaluation set has 3000 mixtures generated from the afore-
mentioned 18 different speakers as the test utterances, which are
unseen during training. The signal-to-noise ratio (SNR) between
the target speaker and the interference speaker of each mixture
was randomly chosen between 0 dB and 5 dB. For the training
and evaluation of the speaker attention module, each mixture

2All the configurations (including the utterances list for training, develop-
ment and evaluation) and the code could be found here: https://github.com/
xuchenglin28/target_speaker_verification

3The WSJO-2mix-extr corpus simulation code is available at: https:/github.
com/xuchenglin28/speaker_extraction


https://github.com/xuchenglin28/target_speaker_verification
https://github.com/xuchenglin28/speaker_extraction
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has a corresponding reference speech and a single talker target
speech. For the multi-talker SV evaluation, 3000 target trials
and 48 000 non-target trials were generated from the same 1875
enrollment utterances from WSJO-1talker dataset and the above
3000 2-talker test utterances.

The mixtures in the WSJO-2talker were generated according
to the maximum duration protocol, where the shorter utterance
was appended with zeros to match the duration of the longer
utterance. The maximum duration protocol leads to various
overlapping rates for the mixtures, as summarized in Fig. 5(a).
Most 2-talker speech samples are heavily overlapped. The av-
erage duration of enrollment and test utterances is 7.2 s and
7.3 s, respectively. The distribution of utterance duration for the
enrollment and evaluation sets is summarized in Fig. 5(b). Most
utterances used for both enrollment and test are less than 10.0
seconds.

In both the WSJO-1talker and WSJO-2talker, the speakers in
the evaluation set are excluded from the training and develop-
ment sets.

2) LibriSpeech and Libri2Mix Corpora: LibriSpeech [43] is
derived from audiobooks that are part of the LibriVox* project.
Libri2Mix [44] is a clean 2-talker mixture corpus generated
from the LibriSpeech corpus by mixing two randomly selected
utterances. Libri2Mix’ consists of several subsets: “train-360”
with 50 800 utterances (212 hours, 921 speakers), “train-100”
with 13 900 utterances (58 hours, 251 speakers), “dev” with
3000 utterances (11 hours, 40 speakers), and “test” with 3000
utterances (11 hours, 40 speakers).

To study the speaker attention mechanism, each 2-talker
mixture speech could be reused in the following way. In the
first instance, we take one speaker, e.g., Speaker A as the target
speaker, and another speaker e.g., Speaker B as the interference
speaker. By swapping the role of Speaker A and Speaker B, we
can use the same speech sample in the second instance.

We generated a 2-talker dataset (Libri-2talker) with a training
set, a development set, and an evaluation set. The training
set (127 056 examples, 1172 speakers) and development set
(2344 examples, 1172 speakers) are randomly chosen from
the “train-360” and “train-100" sets of the Libri2Mix corpus.
The evaluation set includes 2260 enrollment utterances from
the “test-clean” set of the LibriSpeech corpus and 6000 test
utterances from “test” set of the Libri2Mix corpus. With these
enrollment and test utterances, 6000 target trials and 114 000
non-target trials were generated to evaluate the performance of
proposed system for multi-talker SV.

We also generated a single-talker dataset (Libri-1talker),
which consisted of training, development, and evaluation sets.
The training set (125 925 utterances) and development set (6628
utterances) were randomly selected from the original “train-
clean-100” and “train-clean-360” of the LibriSpeech corpus with
a total of 1172 speakers and around 460 hours of clean speech.
The evaluation set includes the same 2260 enrollment utterances
and 6000 test utterances of target single-talker speech from the
“test” set in Libri2Mix corpus with 40 speakers. Similarly, 6000

“https:/librivox.org
>The simulation code of Libri2Mix is:https://github.com/JorisCos/LibriMix
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target trials and 114 000 non-target trials were generated to
evaluate the performance of the SV system under the single
speaker’s condition.

The Libri2Mix was simulated according to the minimum
duration protocol, where the longer utterance was cut short to
match the duration of the shorter one. The minimum duration
protocol leads to roughly 100% overlapping rate. The average
duration of enrollment and test utterances is 7.4 s and 5.0 s,
respectively. The duration distribution of enrollment and test set
is reported in Fig. 5(b). Most utterances for both enrollment and
test are less than 8.0 seconds.

B. Configuration of Speaker Attention Module

We adopt the complete time-domain implementation [29] as
the speaker attention mechanism for target speaker extraction.
The shared speech encoder encodes both the mixture speech
and the reference speech into multi-scale embedding coefficients
by three parallel 1-D convolutions with N (=256) filters each.
The three 1-D convolutions apply different filter lengths of
L1(=2.5 ms), La(=10 ms), L3(=20 ms) for complementary
temporal resolutions. The multi-scale embedding coefficients
are firstly normalized by their mean and variance with trainable
gain and bias on the channel dimension in the speaker extractor.
Then the 1 x 1 convolution linearly transforms the normalized
embedding coefficients to have O(=256) channels. Each TCN
block has a dilated depthwise convolution with P (=512) fil-
ters and a kernel size of 1 x Q(=3). I(= 8) TCN blocks are
stacked into a module and further repeated for Ng(= 4) times.
The ReLU activation function is adopted to estimate the mask
instead of sigmoid by following the recommendation in [24],
[29]. The speech decoder reconstructs the modulated embedding
coefficients into time-domain speech signals. The configuration
of the de-convolution is kept the same as that used in the speech
encoder.

Since the extraction pipeline requires the information of the
target speaker, the speaker encoder employs same normalization
and 1 x 1 convolution as in speaker extractor. Then the normal-
ized embedding coefficients are used as inputs to the following
Ngr(=3) ResNet block. The ResNet block has two 1 x 1 convo-
lutions layers with 256 filters each, and a 1-D max-pooling layer
with the kernel size of 1 x 3. The whole network is trained with
random initialization.

C. Configuration of Speaker Representation and Speaker
Verification Modules

As shown in Fig. 4, the four speaker representation modules
share a similar network architecture except for some variations
in the speech encoding front-end. For tSV-R, it directly takes
the modulated embedding coefficients S(n) from Path A as
inputs. The tSV-T uses three parallel 1-D convolution blocks
that has the same network configurations as the speech encoder
in the speaker attention module. Both tSV-F and tSV-FA systems
employ the STFT with a hamming window of size 32 ms (=256
samples), and a stride of 16 ms to perform signal analysis. In
addition, the delta and acceleration features are calculated with
an order of 2 inside the tSV-FA system.


https://librivox.org
https://github.com/JorisCos/LibriMix
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These speech encoding front-ends are followed by channel-
wise normalization, 1 x 1 Conv with 256 filters, and Nr(=3)
stacked ResNet blocks. Each ResNet block has two 1 x 1 Conv
layers with 256 filters and a 1-D max-pooling layer with the
kernel size of 1 x 3. The resulting output speaker embedding
from the mean pooling layer has a dimension of 256. For
tSV-FA, the attentive statistic pooling layer is formed by two
fully-connected layers that have 500 and 1 neurons, respectively.
The ReLU activation function is applied after the first layer. A
softmax activation function is applied on the temporal dimension
to obtain a normalized weight coefficient for each frame-level
feature. The output speaker embedding, with adimension of 512,
is generated by concatenating the weighted mean and standard
deviation vectors.

For the speaker verification module, the LDA and Gaussian
PLDA models with 100 latent variables are trained on the derived
speaker embeddings from the training data.

D. Training Procedure

We organized the training of the proposed tSV system into
three stages. At the first stage, following the same configuration
in [29], we trained the speaker attention module with 2-talker
mixture speech segments that had a fixed duration of 4 s. The
module was trained with the weighted loss J = J; + .J2, where
J1 was defined in 6 and J> was defined in 8. The weights «,
in J; and ~y were fine-tuned to take the values of 0.1, 0.1, and
10, respectively. The learning rate was initialized at 10~3, and
halved whenever the loss was stagnant for 3 consecutive epochs.
To ensure the front-end speaker attention module also works well
under the single talk condition, we further fine-tuned the module
with both the same 2-talker mixtures and the additional single
speaker’s speech at a reduced learning rate of 10~

At the second stage, we froze the speaker attention module
and further trained the speaker representation module using the
extracted speech from both the 2-talker mixture and the single
speaker. A learning rate of 10~* was used at this stage. Lastly,
to improve the synergy between the front-end speaker attention
module and the back-end speaker embeddding extractor, they
were jointly fine-tuned using the weighted loss J = J; + v.Jo +
nJs at a reduced learning rate of 10~°, where a same value of
10 were used for both « and 7. The Adam algorithm [45] was
adopted to optimize the network across all three stages.

E. Alternative Configuration for tSV Inference With Path B

InFig. 1, to keep the same processing procedures for both e, ¢
and e;. 5+ during inference, we pass the enrollment utterance and
the test utterance through the shared speaker attention module in
the same way. We note an alternative implementation to Path B
is bypassing the speaker attention module and directly feeding
the enrollment utterance into the speaker representation module.

In this way, the speaker representation model can generate
erey directly from x(t) instead of using its reconstructed version
Sref(t), asillustrated in Fig. 6. The resulting speaker embedding
éres and eqcs; can be compared by the PLDA classifier to make
the speaker verification decision. However, e, is derived from
the enrollment utterance z(t), while e is derived from the
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TABLE I
PERFORMANCE OF SPEX+ ON WSJ0-2MIX-EXTR DATABASE UNDER MISMATCH
CONDITIONS BETWEEN TRAINING AND EVALUATION

[ Systems | Training data | Test data [ SI-SDR (dB) |

SpEx+ I Mixture Mixture 18.1
P Mixture Single 10.9
Mixture+Single Mixture 17.9

SpEx+ 1T Mixture+Single Single 56.7

extracted speech Sy (). This marks a mismatch between their
representations, which may lead to a sub-optimal decision. To
evaluate the effect of this mismatch, we conducted an experiment
on this alternative configuration, and reported the results in
Section IV-E.

FE. Evaluation Metrics

The speaker attention module was evaluated using the SI-
SDR [39] loss defined in 7 for both 2-talker mixture and clean
single speaker conditions. The speaker verification decision
module (i.e., PLDA classifier) was evaluated using equal error-
rate (EER), minimum of the normalized detection cost function
(DCF) with P_Target = 0.01 (denoted as DCFOS [46]), and DCF
with P_Target = 0.001 (denoted as DCF10 [47]), respectively.

IV. EXPERIMENTAL RESULTS

We start by validating the proposed speaker attention module
and speaker representation module through experiments. We
then evaluate the proposed tSV system with four target speaker
embedding schemes on the WSJO and WSJO-2mix-extr corpora
in Section I'V-A to Section IV-E. We also compare the proposed
tSV with other state-of-the-art solutions to multi-talker speaker
verification on the WSJO-2mix-extr corpus in Section IV-F. We
further evaluate the proposed tSV system on LibriSpeech and
Libri2Mix corpora, that are larger datasets, in Section IV-G.
Finally, we evaluate our target speaker embedding scheme across
WSJO-2mix-extr and Libri2Mix corpora in Section IV-H.

A. Speaker Attention to Single- Vs. 2-Talker Speech on
WSJO- 1talker and WSJO-2talker Datasets

While SpEx+ system [29] demonstrates superior target
speaker extraction performance when trained and evaluated
on multi-talker speech, it remains unknown how such system
performs in face of the single talker speech. To understand the
impact of mismatch between training and testing, we use the
single-talker speech to test the SpEx+ system that trained solely
on the 2-talker mixture data. We refer to the resulted system
as SpEx+ I. From Table I, we notice that the SpEx+ I system
achieves 18.1 dB and 10.9 dB in terms of SI-SDR for 2-talker
and single talker speech, respectively. This huge performance
gap can be explained by the mismatch of training and testing
conditions.

To study how much the multi-condition training, using both
single and 2-talker speech data, helps in improving the system
generalizability, we fine-tuned the SpEx+ I system using data
from both conditions, which we referred to as SpEx+ II. From
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TABLE I
A COMPARISON BETWEEN TRADITIONAL SV SPEAKER EMBEDDINGS AND THE
SPEAKER EMBEDDINGS BY THE PROPOSED SPEAKER REPRESENTATION
MODULE IN FIG. 1 UNDER SINGLE-TALKER CONDITION ON
WSJO-1TALKER DATASET

[ Systems [ EER (%) [ DCF08 [ DCF10 ]
i-vector PLDA [1] 3.00 0.360 0.522
x-vector PLDA [5] 5.87 0.692 0.888
SV-T 4.40 0.450 0.630
SV-F 4.37 0.416 0.587
SV-F w/ A & AA 3.27 0.458 0.662
SV-FA 2.90 0.363 0.517

Table I, we note the performance on single talker speech im-
proved significantly from 10.9 dB to 56.7 dB, while for 2-talker
speech is still remains comparable. Motivated by this result, we
apply the multi-condition training protocol to construct a unified
tSV system that works for both single- and multi-talker speech
in this work.

B. Speaker Representation for SV on WSJO-Italker Dataset

The speaker representation module in Fig. 1 is designed
to work with the speaker attention module for target speaker
recognition. Therefore, the speaker embedding process in tSV
is different from that in other traditional speaker verification
systems where single talker speech is assumed. To justify the
effectiveness of proposed speaker representation module, we
compare various speaker embedding SV systems, namely, time-
domain SV (SV-T), the frequency SV (SV-F) and the frequency-
domain attention-based SV (SV-FA), as shown in Fig. 4(b), 4(c)
and 4(d) respectively, with the traditional single-talker systems,
i.e., x-vector PLDA [5], under the single talker test condition.
The traditional SV system with the single-talker assumption is
also referred to as the single-talker SV system. In this study, the
speaker attention module is not required for our system.

We observe from Table II that 1) SV-T, SV-F, and SV-FA
systems consistently outperform the x-vector PLDA system
in terms of EER; 2) both temporal dynamic features (delta
and acceleration) and attention pooling contribute to the per-
formance improvement of SV-FA by comparing SV-FA with
SV-F and SV-F w/ A&AA; 3) SV-FA system achieves the best
EER among all systems. The results suggest that the proposed
speaker representation module is as competitive as, if not better
than, i-vector or x-vector systems for single talker speech. We
proceed with our proposed speaker representation module in the
subsequent tSV studies.

C. Evaluating Target Speaker Embeddings on WSJO-2talker
Dataset

To investigate the effect of multi-talker speech on single-talker
SV, we compare the traditional SV and the proposed tSV with
four different target speaker embedding schemes, namely tSV-
R, tSV-T, tSV-F, and tSV-FA, on 2-talker mixture evaluation
dataset, i.e. WSJO-2talker.

The system setups and experiment results are summarised in
Table III(a). First, we report three zero-effort baselines (Sys-
tem 1, 10, and 17) that follow traditional speaker embedding
schemes, SV-T, SV-F, and SV-FA. They are trained on single
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talker dataset (WSJO-1talker) and evaluated on 2-talker mixture
evaluation set. We further report 3 reference systems (System 9,
16, and 24) that are trained and evaluated both on single-talker
speech. As they don’t include interference speakers, the speaker
attention module is not involved in the study. For multi-talker ex-
periments, System 9 represents the upper-bound performance of
tSV-R and tSV-T; Systems 16 and 24 represent the upper-bound
performances of tSV-F and tSV-FA respectively.

For the upper-bound reference systems, we observe that the
SV-FA system outperforms the SV-T and SV-F systems, benefit-
ing from the dynamic features and attention pooling. Comparing
System 1 and 9, 10 and 16, and 17 and 24, we observe that the
performance of the single-talker SV systems seriously degrade
in the presence of interference speakers.

We also report three competitive baselines (System 2, 11,
and 18) that follow the target speaker extraction-verification
(TSE-SV) pipeline [30], where speaker extraction and speaker
verification modules are trained separately. Between the zero-
effort baselines and competitive baselines, in particular, between
System 17 and 18, we observe the followings: 1) The target
speaker extraction front-end greatly improves the SV perfor-
mance under multi-talker test condition; 2) Among System 2,
11 and 18, the frequency-domain SV systems (SV-F and SV-FA)
appear to be more robust than the time-domain counterpart (SV-
T). This suggests that the time-domain SV system is sensitive
to the mismatch between speaker verification module trained
with single talker speech, and the extracted speech from speaker
extraction module.

The difference between the target speaker extraction-
verification pipeline [30] and the proposed tSV system mainly
lies in their training schemes. The former trains the extraction
module and verification module separately, while the latter en-
ables a multi-task joint training between speaker attention and
speaker representation modules. To reduce the mismatch of the
pipeline system, we train the back-end speaker representation
module with extracted speech as System 19. We observe that
System 19 outperforms System 18.

We investigate a sharing and unsharing schemes between the
speaker encoder in the speaker attention module and the speaker
representation module. We find that the unsharing scheme
achieves better performance. Therefore, we adopt this unsharing
scheme in the subsequent experiments. Next we summarize the
results for the four target speaker embedding schemes under
multi-talker test condition.

Now we look into 4 groups of experiments for 4 target
speaker embedding schemes in Table I1I(a). Let’s examine how
the systems perform on 2-talker speech including System 3
(tSV-R), Systems 5 (tSV-T), Systems 12 (tSV-F), and Systems
20 (tSV-FA). We observe the followings: 1) tSV-FA achieves
significantly better performance than other three schemes, which
deliver comparable results. 2) tSV-FA improves the performance
on 2-talker speech by 76.0%, 45.6% and 32.4% relative improve-
ment over the single talker trained SV baseline (System 17)
in terms of EER, DCF08 and DCF10, respectively. 3) tSV-FA
achieves 24.1%, 23.0% and 20.4% relative improvement over
the competitive baseline (System 18) in terms of EER, DCFO8
and DCF10, respectively, that is attributed to the joint optimiza-
tion between the speaker attention and speaker representation
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TABLE III
A SUMMARY OF TARGET SPEAKER VERIFICATION EXPERIMENTS ON (A) WSJO-1TAKER AND WSJO-2TALKER, (B) LIBRI-1TALKER AND LIBRI-2TALKER DATASETS.
“PATH”” DENOTES THE OUTPUT PATH OF THE SPEAKER ATTENTION MODULE IN FIG. 1. “SPEECH DATA TYPE” COLUMN INDICATES THE TYPE OF TRAINING AND
EVALUATION DATA INVOLVED (‘M’ FOR MULTI-TALKER, ‘S’ FOR SINGLE-TALKER). IN “SPEAKER EMBEDDING INPUT” COLUMN, “TRAINING,” “TEST,” AND
“ENROL” INDICATE THE TYPE OF SPEECH REPRESENTATION FOR SPEAKER EMBEDDING, WHERE “s”” AND “y” REPRESENT SINGLE- AND 2-TALKER SPEECH; “z” IS
THE ORIGINAL SINGLE-TALKER ENROLLMENT SPEECH; “S.” “S‘test” AND “Sm ¢” ARE THE MODULATED EMBEDDING COEFFICIENTS FROM THE SPEAKER
ATTENTION MODULE; “8,” “St¢st” AND “3,.¢ ¢ ARE THE RECONSTRUCTED SIGNALS FROM THE SPEAKER ATTENTION MODULE. “BASELINE]”” REPRESENTS THE
ZERO-EFFORT TEST CASE WHERE SV SYSTEM IS TRAINED WITH SINGLE-TALKER SPEECH AND EVALUATED ON 2-TALKER SPEECH. “BASELINE2” REPRESENTS
THE SPEAKER EXTRACTION-VERIFICATION PIPELINE SYSTEMS. “UPPER BOUND”” DENOTES THE CASE WHERE SINGLE-TALKER SPEECH IS USED IN BOTH
TRAINING AND EVALUATION. “{” REPRESENTS THE ALTERNATIVE ENROLLMENT PROCESS IN FIG. 6. “PARA.” INDICATES THE NUMBER OF PARAMETERS DURING
INFERENCE

[ Speech Data Type | Speaker Embedding Input [ Para. | EER
| Training | Test | Training [ Test | Enrol | (M) (%)

[ (a) Single- and multi-talker speaker verification experiments on WSJO-1talker and WSJO-2talker |

System ID Architecture

Path ‘ Joint Opt.

‘ DCF08 ‘ DCF10 ‘

1 (Baselinel) SV-T - - S M s Y T 1.77 19.37 0.864 0.928
2 (Baseline2) TSE-SV-T - No M+S M s Stest T 12.64 | 16.97 0.815 0.897
3 tSV-R A Yes M+S M S Stest | Sref 12.57 6.67 0.580 0.774
4 SV-R A Yes M+S S s Stest | Spey | 1257 | 400 | 0371 | 03561
5 tSV-T B Yes M+S M H Stest Spef 12.64 6.60 0.582 0.759
6 tSV-T B Yes M+S S § Stest Spef 12.64 4.63 0.424 0.671
7 {SV-T B Yes M+S M E Stest | x| 1264 | 6213 | 1.000 | 1.000
8 tSV-T B Yes M+S S 8 Stest zf 12.64 | 77.93 1.000 1.000
9 (Upper Bound) SV-T - - S S s s T 1.77 4.40 0.450 0.630
10 (Baselinel) SV-F - - S M s y T 1.08 20.07 0.849 0.894
11 (Baseline2) TSE-SV-F - No M+S M s Stest T 12.08 10.53 0.686 0.789
12 tSV-F B Yes M+S M § Stest Spef 12.08 6.67 0.573 0.721
13 tSV-F B Yes M+S S § Stest Sref 12.08 3.87 0.352 0.531
14 tSV-F B Yes M+S M § Stest xf 12.08 6.53 0.570 0.708
15 tSV-F B Yes M+S S § Stest zf 12.08 4.03 0.380 0.553
16 (Upper Bound) | SV-F - - S S s s T 1.08 4.37 0.416 0.587
17 (Baselinel) SV-FA - - S M s y T 1.33 20.97 0.825 0.893
18 (Baseline2) TSE-SV-FA - No M+S M s Stest T 12.19 6.63 0.583 0.759
19 tSV-FA B No M+S M 5 Stest Sref 12.19 5.27 0.500 0.680
20 tSV-FA B Yes M+S M § Stest Sref 12.19 5.03 0.449 0.604
21 tSV-FA B Yes M+S S § Stest Sref 12.19 2.63 0.325 0.505
22 tSV-FA B Yes M+S M 8 Stest zf 12.19 5.13 0.443 0.602
23 tSV-FA B Yes M+S S 3 Stest ot 12.19 2.73 0.325 0.492
24 (Upper Bound) | SV-FA - - S S s B x 1.33 2.90 0.363 0.517
| (b) Single- and multi-talker speaker verification experiments on Libri-1talker and Libri-2talker |
25 (Baselinel) SV-FA - - S M s y T 1.33 17.62 0.855 0.938
26 (Baseline2) TSE-SV-FA - No M+S M s Stest x 12.19 | 10.80 0.684 0.812
27 tSV-FA B No M+S M H Stest Spef 12.19 8.22 0.539 0.743
28 tSV-FA B Yes M+S M § Stest Spef 12.19 7.88 0.508 0.681
29 tSV-FA B Yes M+S S § Stest Spef 12.19 6.22 0.348 0.675
30 tSV-FA B Yes M+S M 3 Stest xf 12.19 7.80 0.514 0.685
31 tSV-FA B Yes M+S S 8 Stest zf 12.19 6.33 0.354 0.677
32 (Upper Bound) | SV-FA - - S S s s T 1.33 5.70 0.293 0.403

modules. 4) tSV with all four target speaker embedding schemes i.e. with zero overlapping rate. The results are summarized as
consistently outperform zero-effort baselines and competitive System 4, 6, 13 and 21 in Table IIl(a).
baselines for multi-talker speech. To evaluate under single talker condition, we adopt the tradi-
It is encouraging to see that the proposed tSV systems evalu-  tional single talker SV system as a baseline. Comparing among
ated on multi-talker speech achieve comparable performance Systems 4, 6 and 9, we observe that the tSV-R system (System
with the upper-bound reference systems evaluated on single 4) achieves significant better performance than SV-T system
speaker speech. (System 9) in terms of EER, DCF08 and DCF10. While this is a
pleasantly surprising result, we consider that the target speaker
extraction system in tSV-R does the first-round verification by
only extracting the target speaker’s voice. This extra step helps
to decline the non-target trials. Although the tSV-T system only
shows superior performance in terms of DCF08, we observe
In real world applications, one expects that the same speaker the same findings as tSV-R system in both tSV-F and tSV-FA
verification system is able to handle single talker and multi-talker ~ systems (System 13 vs. 16 and System 21 vs. 24) in terms of
speech seam]essly because we don’t know in advance whether EER, DCF0O8 and DCF10. With the same Single talker evaluation
the speakers would overlap. We have studied the performance condition, the tSV-FA method achieves the best performance of
of tSV systems for multi-talker speech at different overlapping  2.63% (EER), 0.325 (DCFO08) and 0.505 (DCF10) among the
rate in Section IV-C. It is interesting to know the performance proposed four approaches. Comparing with the SV-FA system
of the proposed tSV systems on single talker’s evaluation set, (System 24) trained and evaluated on same clean single speaker

D. Evaluating Target Speaker Embeddings on WSJO- Italker
Dataset
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condition, the tSV-FA method achieves 9.3%, 10.5% and 2.3%
relative improvements in terms of EER, DCF08 and DCF10.

From Section IV-C, we conclude that the proposed tSV
systems significantly improve multi-talker speaker verification.
When the same model is evaluated in this section on single talker
speech, they even outperform the traditional SV systems trained
and evaluated for single talker condition. With these findings, we
confirm that the proposed tSV system with various target speaker
embedding schemes represents an unified framework for single
and multi-talker speech, with tSV-FA as the top achiever.

E. Alternative Configuration for Target Speaker Enrollment

As enrollment utterance always contains single talker’s voice,
Fig. 6 shows an alternative to the standard configuration in Fig. 1.
In the alternative configuration, we directly extract e,y from
the enrollment utterance x(¢) bypassing the speaker attention
module. This alternative configuration works for all Path B
schemes, i.e., tSV-T, tSV-F and tSV-FA.

In Table ITI(a), the systems that follow the alternative configu-
ration in Fig. 6 are marked with “”. We observe that alternative
tSV-F and tSV-FA systems (system 14, 15, 22, and 23) achieve
comparable performance to those with the standard configura-
tions (System 12, 13,20 and 21). This suggests that the extracted
speech from the speaker attention module is of similar quality as
the original signal as far as speaker embedding is concerned. The
SI-SDR performance of the extracted speech (56.7 dB) leads to
the same conclusion, as reported in Table I.

However, we also observe that the alternative tSV-T system
fails short of the expectation when comparing with the standard
configuration, as reported in System 7 and 8 of Table III(a).
We consider that the speaker representation module adopts a
time-domain trainable speech encoder that is accustomed to
extracted speech from speaker attention module. Therefore,
there is a mismatch between the extracted speech and the original
clean speech, that adversely affect the SV performance. This cor-
roborates that the time-domain speaker representation module
is sensitive to the mismatch between the extracted speech for
training and clean speech for inference.

F. Benchmarking Against the State-of-The-Art on
WSJO-2talker Dataset

Recently studies, such as personal VAD [15], target VAD [16],
seek to address speaker diarization problem for multi-talker
speech. They could be used as the front-end for multi-talker
SV when the speakers don’t overlap. We are interested in the
performance of multi-talker SV with such an oracle speaker
diarization front-end. We obtain the ground-truth VAD by firstly
applying the energy-based VAD on the single talker speech that
makes up the mixture speech, and use the VAD labels as the
diarization label for mixture speech.

Since the speech in WSJO corpus is quite clean and the energy-
based VAD works well on the clean speech, we consider the
obtained diarization labels as oracle diarization labels. With the
oracle speaker diarization, the average percentage of removed
non-target speech frames in the mixture speeches is around 24%.
“OSD-SV” in Table IV shows the performance of multi-talker
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TABLE IV
COMPARISONS BETWEEN TSV SYSTEMS AND OTHER STATE-OF-THE-ART
SYSTEMS ON WSJO-2TALKER DATASET. “OSD-SV” REPRESENTS THE CASE
WHERE WE REPLACE THE SPEAKER ATTENTION MODULE IN FIG. 1 WITH AN
ORACLE SPEAKER DIARIZATION (OSD). “SE-SV1” AND “SE-SV2” ARE TWO
SPEAKER EXTRACTION-VERIFICATION PIPELINE SYSTEMS WITH SBE-MTSAL
AND SBF-MTSAL-CONCAT [26] AS THE SPEAKER EXTRACTION
FRONT-END, RESPECTIVELY

[ Systems | EER (%) | DCF08 | DCF10 |
OSD-SV 14.60 0.851 0.908
SE-SV1 [31] 8.30 0.643 0.777
SE-SV2 [31] 7.717 0.631 0.747
tSV-R 6.67 0.580 0.774
tSV-T 6.60 0.582 0.759
tSV-F 6.53 0.570 0.708
tSV-FA 5.03 0.449 0.604
Upper-Bound 2.90 0.363 0.517

SV system with the oracle speaker diarization front-end, which
also means the best performance achieved by speaker diarization
for multi-talker SV. Compared with the multi-talker speaker
verification results by tSV-R, tSV-T, tSV-F and tSV-FA, as
reported from Table III(a), it is shown that the proposed tSV
system significantly outperforms “OSD-SV”.

We further compare the proposed tSV system with the speaker
extraction-verification pipeline, as summarized in Table IV.
“SE-SV1” and “SE-SV2” are speaker extraction-verification
pipeline systems [30], where SBF-MTSAL and SBF-MTSAL-
Concat methods [26] serve as the speaker extraction front-end,
and i-vector PLDA serves as the speaker verification back-
end, without joint optimization. We observe the followings:
1) The proposed tSV system with various target speaker em-
bedding schemes consistently outperform SE-SV1 [30] and
SE-SV2[30];2) The tSV-FA system achieves 35.3%, 28.8% and
19.1% relative improvement over SE-SV2, the most competitive
system, in terms of EER, DCF08 and DCF10, respectively.

G. Evaluating tSV-FA on Libri-ltalker/Libri-2talker Datasets

We further conduct experiments on a large Libri2Mix corpus
with 1172 speakers in the training set. As the tSV-FA system
achieves the best performance on WSJO-1talker and WSJO-
2talker datasets, we only train and evaluate the tSV-FA system
on the Libri-1talker and Libri-2talker datasets.

As summarized in Table III(b), System 25 and 32 are the
baseline and the upper-bound systems for multi-talker speaker
verification. Both are traditional SV systems trained under single
talker condition, while the baseline is evaluated on 2-talker
speech, and the upper bound system is evaluated on single talker
speech. Similar to System 18 and 19, the pipeline systems are
also trained on the Libri-1talker and Libri-2talker datasets as
System 26 and 27.

We also evaluate the trained tSV-FA model on both 2-talker
and single talker speech, denoted as Systems 28 and 29, just
like in Section IV-C and Section IV-D. We observe that the
tSV-FA system (System 28) achieves 55.3%, 40.6% and 27.4%
relative improvements over the baseline (System 25) in terms
of EER, DCFO08 and DCF10, respectively. The tSV-FA system
(System 28) also achieves better performance than the pipeline
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TABLE V
EVALUATION OF THE TSV-FA SYSTEM ACROSS CORPORA

[ Training Set { Test Set { EER (%) { DCF08 { DCF10 \

WSJO-2talker 5.03 0.449 0.604

WSJO-1talker & | WSJO-1talker 2.63 0.325 0.505
‘WSJO-2talker Libri-2talker 16.85 0.936 0.988
Libri-1talker 11.33 0.744 0.907

WSJO-2talker 4.9 0.444 0.558

Libri-1talker & | WSJO-1talker 243 0.322 0.467
Libri-2talker Libri-2talker 7.88 0.508 0.681
Libri-1talker 6.22 0.348 0.675

systems (System 26 and 27). The performance of tSV-FA system,
evaluated either on 2-talker speech (System 28) or on single
talker speech (System 29) is approaching that of the upper-bound
system (System 32). The results further validate that tSV-FA sys-
tem represents a unified solution for both single and multi-talker
speech.

We further evaluate the alternative configurations in Fig. 6.
Bypassing the speaker attention module, we directly extract
eres from the enrollment utterance «(¢), and evaluate such an
alternative tSV-FA system on the same 2-talker (System 30) and
single talker (System 31) datasets. We observe that the alter-
native systems perform similarly to the standard configurations
(Systems 28 and 29).

H. Evaluating tSV-FA Across Corpora

We further evaluate tSV-FA, that is trained on either WSJO or
LibriSpeech dataset, but evaluated across WSJ0 and LibriSpeech
datasets. The results are summarized in Table V.

Among the training-evaluation data pairs, we observe a low
EER for WSJO-WSJO, and LibriSpeech-WSJO pairs. The EER
for LibriSpeech-WSJO0 is even lower than that for WSJO-WSJO,
which we consider is due to the fact that LibriSpeech is a larger
database with many more speakers, thus, leading to a more robust
tSV-FA system. This is an encouraging result, that confirms the
ability of cross-corpus generalization from LibriSpeech-trained
model to WSJO evaluation condition.

However, we haven’t observed the same generalization abil-
ity for WSJO-trained tSV-FA model. The EER for WSJO-
LibriSpeech is higher than that of LibriSpeech-LibriSpeech.
Nonetheless, these results match our expectation, as we know
that system performance under mismatched training-evaluation
conditions is always poorer than that under matched conditions.
We understand that WSJO is a smaller database with a small
number of speakers. Furthermore, WSJO is recorded in a quiet
acoustic environment with only one type of microphone channel,
that may leads to the poor generalization under the LibriSpeech
test condition.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we present a unified target speaker verifica-
tion framework tSV for both single- and multi-talker speech.
This framework jointly optimizes a speaker attention module
and a speaker representation module via a multi-task learning
framework. We systematically evaluated the performance of
each individual module as well as the whole framework us-
ing two standard corpora. Experimental results show that the
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proposed framework significantly improves speaker verification
performance for multi-talker speech, approaching that of tra-
ditional SV systems under the single-talker condition. It also
outperforms other solutions, for instance, combining the state-
of-the-art speaker extraction and speaker verification systems
in tandem. Through multi-condition training, using both single-
and multi-talker speech, we show that the proposed framework
can easily generalize across different testing conditions.

There have been many studies on speaker extraction and
speaker verification in literature. While these studies are usually
carried out in isolation. For the first time, we show that with
an advanced speaker attention-verification mechanism, we can
achieve accurate speaker verification in multi-talker environ-
ment using the same enrollment utterance as what we have in
the conventional single-talker speaker verification system.

We would like to acknowledge that it remains a challenge for a
system to work in an unknown real-world acoustic environment.
A universal solution is beyond the scope of this work. Instead,
we have devoted this work to the exploration of a unified speaker
verification solution for both single and multi-talker speech.
Although we only conducted experiments on single and 2-talker
speech, the proposed framework can be easily extended for
scenarios with three or more speakers, together with noise and
reverberation. As a future work, we are particularly interested
in a training strategy, that can be enabled by self-supervised
learning [48] and incremental learning [49], to allow the tSV
system to adapt itself in the real-world changing environments.

It is in our plan to further the study of tSV by exploring the
use of state-of-the-art loss functions and network structures, i.e.,
triplet loss [50]. We will also look into optimization of sys-
tem architecture for computational efficiency, such as, network
pruning and parameter quantization. By so doing, we will study
the proposed system on an even larger database and benchmark
against the pipeline baseline systems.
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