
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

CSS-LM: A Contrastive Framework for
Semi-supervised Fine-tuning of Pre-trained

Language Models
Yusheng Su, Xu Han, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Peng Li, Jie Zhou, Maosong Sun

Abstract—Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks
recently. However, in many scenarios with limited supervised data, the conventional fine-tuning strategies cannot sufficiently capture the
important semantic features for downstream tasks. To address this issue, we introduce a novel framework (named “CSS-LM”) to improve
the fine-tuning phase of PLMs via contrastive semi-supervised learning. Specifically, given a specific task, we retrieve positive and
negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to the task.
We then perform contrastive semi-supervised learning on both the retrieved unlabeled instances and original labeled instances to help
PLMs capture crucial task-related semantic features. The experimental results show that CSS-LM achieves better results than the
conventional fine-tuning strategy on a series of downstream tasks with few-shot settings by up to 7.8%, and outperforms the latest
supervised contrastive fine-tuning strategy by up to 7.1%. Our datasets and source code will be available to provide more details.

Index Terms—Pre-trained Language Model, Few-shot Learning, Contrastive Learning, Semi-supervised Learning, Fine-tuning
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1 INTRODUCTION

PRE-TRAINED language models (PLMs) like BERT [1]
and RoBERTa [2] can learn general language understand-

ing abilities from large-scale unlabeled corpora, and provide
informative contextual representations for downstream tasks.
In recent years, instead of learning task-oriented models
from scratch, it has gradually become a consensus to fine-
tune PLMs for specific tasks, which has been demonstrated
on various downstream NLP tasks, including dialogue [3],
summarization [4], [5], question answering [6], [7], and
relation extraction [8], [9].

Although fine-tuning PLMs has become a dominant
paradigm in the NLP community, it still requires large
amounts of supervised data to capture critical semantic
features for downstream tasks [10], [11]. Without sufficient
supervised data for downstream tasks, the conventional
fine-tuning strategy might capture biased features for the
downstream tasks that may cause errors or have decision
boundary bias in Fig. 1. Therefore, fine-tuning PLMs is still
challenging in those scenarios with limited data, and cannot
be well generalized to many real-world applications whose
labeled data is hard and expensive to obtain. Hence, a natural
question to ask is: How can we effectively capture crucial
semantic features for downstream tasks with limited super-
vised data?

To address this issue, some preliminary works have
made some attempts to utilize semi-supervised methods
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with unlabeled data for fine-tuning PLMs [12]. Nevertheless,
these methods require extra efforts on high-quality labeling
to start the semi-supervised learning process. Another way,
which can capture crucial semantic features from the limited
supervised data in the fine-tuning stage without labeling, is
applying contrastive learning [13], by forcing the positive
instances to be close to each other in the semantic space, and
meanwhile forcing the negative instances to be far away from
the positive ones. However, existing contrastive learning
methods for enhancing PLMs still lack leveraging the rich
large-scale open-domain corpora.

In order to make the use of large-scale open-domain cor-
pora to capture crucial semantic features better, we introduce
a novel Contrastive framework for Semi-Supervised Fine-
tuning PLMs (named “CSS-LM”), which extends the conven-
tional supervised fine-tuning strategy into a semi-supervised
form enabling PLMs to leverage extra task-related data from
large-scale open-domain corpora without annotating new
labels. More specifically, CSS-LM separates the unlabeled
data into the positive instances and the negative ones accord-
ing to these instances’ semantic relatedness to downstream
tasks. Afterward, CSS-LM applies contrastive learning to
let PLMs distinguish the nuances between these instances,
so that PLMs can learn informative semantic features not
expressed by the limited supervised data of the downstream
task. We give an intuitive motivation description in Fig. 1
to show how our framework could better capture crucial
semantics from unsupervised data to make final fine-tuned
pre-trained language models more discriminative and have
better decision boundaries.

As to use all unlabeled data is nearly impossible, we
require to find the most informative positive and negative
instances for our contrastive learning. Therefore, one key
challenge of CSS-LM is how to measure the semantic
relatedness of unlabeled instances to downstream tasks.
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Fig. 1. The overall framework of CSS-LM, which illustrates how we leverage specific task instances (red and blue dots) to retrieve task-related
instances (light red and light blue dots in the green cluster) by measuring domain-related and class-related semantics. In the upper figure, by
performing contrastive semi-supervised leaning fine-tuning, we can obtain a better decision boundary for the task.

In this paper, we consider both domain-level and class-
level semantic relatedness of instances to downstream tasks.
More specifically, we encode unlabeled instances into the
domain-level and class-level semantic spaces, respectively,
and define the domain-level and class-level relatedness as
the similarity of their representations in the correspond-
ing semantic spaces. When performing contrastive semi-
supervised learning for the domain-level representations, all
supervised instances of downstream tasks are used as the ini-
tialized positive instances. After that, we continue to retrieve
unlabeled instances closest and farthest from the existing
positive instances as new positive and negative instances.
When performing contrastive semi-supervised learning for
the class-level representations, we apply operations similar to
learning domain-level representations; the only difference is
that learning class-level representations requires considering
fine-grained class-level semantics rather than coarse-grained
domain-level semantics when selecting positive and negative
instances.

In the experiments, the results on three typical classifica-
tion tasks, including sentiment classification, intent classifica-
tion, and relation classification, show that our proposed
framework can outperform the conventional fine-tuning
strategy, the conventional semi-supervised strategies, and
the latest supervised contrastive fine-tuning strategies under
the limited supervised data settings. These results explicitly
indicate a promising direction of utilizing unlabeled data
for fine-tuning PLMs based on contrastive semi-supervised
learning.

To summarize, our major contributions are as follows:

(1) We propose a contrastive semi-supervised framework
CSS-LM, which can better leverage unlabeled instances
from open-domain corpora to capture task-related fea-
tures and enhance the model performance on the down-
stream tasks.

(2) CSS-LM is free to the domain dependence, which can ef-
ficiently capture domain information from open-domain

corpora and retrieve domain-related instances.
(3) We conduct experiments on six classification datasets.

The experimental results show that CSS-LM outperforms
various typical fine-tuning models under the few-shot
settings. Besides, sufficient empirical analyses of our
retrieval mechanism and retrieval instances demonstrate
that contrastive semi-supervised learning is more helpful
than semi-supervised learning (pseudo labeling) to learn
from unlabeled data.

2 RELATED WORK

2.1 Pre-trained Language Models

Various recent PLMs like BERT [1], RoBERTa [2] and XL-
Net [14], provide a new perspective for NLP models to utilize
a large amount of open-domain unlabeled data. Inspired by
these works, a series of works have designed specific self-
supervised learning objectives to help PLMs learn specific
abilities in the pre-training phase, such as representing token
spans [6] and entities [15], [16], [17], [17], [18], conferential
reasoning [19], multi-lingualism [20], multi-modality [21],
[22], [23], [24], [25], etc. Besides, some PLMs [26], [27], [28]
are devoted to learning specific domain semantics by pre-
training on the specific domain corpora, and these works
demonstrate their effectiveness as well.

As PLMs are aimless concerning various downstream
tasks in the pre-training stage. Hence, to adapt PLMs for
a specific task requires a fine-tuning on extra supervised
data of the tasks. Specifically, fine-tuning often replaces the
top layers of PLMs with a specific task sub-network, and
continues to update the parameters with the supervised
data. Fine-tuning PLMs has also demonstrated its effective-
ness on various downstream tasks, including dialogue [3],
summarization [4], [5], question answering [7], and relation
extraction [8], [9].

However, without sufficient supervised data, the conven-
tional fine-tuning methods cannot effectively capture useful
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features for downstream tasks, which may lead to the side
effect on performance. To address this issue, a series of works
focus on exploring various heuristics during tuning the
parameters of PLMs. Howard and Ruder et al. [29] gradually
unfreeze the layers of PLMs with a heuristic learning rate
schedule to enhance the fine-tuning performance of PLMs.
Then, Peters et al. [30] study which layers of PLMs should
be adapt or freeze during the fine-tuning stage. Houlsby et
al. [31] and Stickland et al. [32] leverage some additional
layers to PLMs and update parameters of specific additional
layers during the fine-tuning phase.

Besides, some preliminary works have made some at-
tempts to utilize unlabeled data for fine-tuning PLMs: Gu et
al. [33] conduct selective language modeling with unlabeled
data to focus on the semantic features related to the fine-
tuning tasks. Gururangan et al. [34] propose a framework to
retrieve task-related data from large-scale in-domain corpora
to enhance fine-tuning PLMs. The in-domain instances often
meet an individual margin probability distribution over
instances, and they thus have correlated semantics in the
feature space that is beneficial for specific tasks. Du et al. [12]
further introduce a text retriever trained on a large amount
of supervised data to retrieve task-specific in-domain data
from large-scale open-domain corpora.

Existing works for enhancing fine-tuning rely on pre-
defined in-domain corpora, massive supervised data, or extra
efforts on labeling, limiting them to be applied to broad real-
world applications. Unlike these works, our proposed con-
trastive semi-supervised framework can automatically and
iteratively utilize large-scale open-domain data to improve
fine-tuning under the few-shot settings without annotating
extra data.

2.2 Contrastive Learning

Unlike conventional discriminative methods that learn a
mapping to labels and generative methods that reconstruct
input instances, contrastive learning is a learning paradigm
based on comparing. Specifically, contrastive learning can
be considered as learning by comparing among different
instances instead of learning from individual instances
one at a time. The comparison can be performed between
positive pairs of ”similar” instances and negative pairs of
”dissimilar” instances. The early efforts for self-supervised
contrastive learning have led to significant advances in
NLP [9], [35], [36], [37], [38] and CV [39], [40], [41], [42], [43],
[44] tasks. Nevertheless, self-supervised contrastive learning
still has a limitation: it cannot utilize the supervised data of
downstream tasks and sufficiently capture the fine-grained
semantics to specific classes. Intuitively, self-supervised
contrastive learning tends to distinguish instances rather
than to classify instances.

Therefore, Khosla et al. [45] propose supervised con-
trastive learning to leverage the supervised instances of
downstream tasks. More recently, Gunel et al. [13] verify the
effectiveness of supervised contrastive learning in the fine-
tuning stage of PLMs. However, it only considers the limited
amounts of the supervised data, and ignores the potential
information distributed in the unlabeled data.

In this paper, our approach is a general semi-supervised
fine-tuning framework based on contrastive learning, which

could capture richer semantics from unlabeled data and
align features with the supervised data of downstream tasks,
simultaneously distinguishing and classifying instances.

3 METHODOLOGY

In this work, we mainly focus on fine-tuning PLMs for
classification tasks. Unlike conventional fine-tuning methods
aiming to learn features by classifying the limited labeled
training data, CSS-LM leverages unlabeled data in open-
domain corpora to capture better features. More specifically,
as illustrated in Fig. 1, CSS-LM utilizes contrastive semi-
supervised learning in the fine-tuning phase of PLMs, aiming
to identify all crucial semantic features to distinguish the
instances of different domains and classes with both labeled
and unlabeled data, and further obtain the better decision
boundary.

CSS-LM consists of five important modules, including
(1) contrastive semi-supervised learning, (2) informative
instance retrieval, (3) semantic representation learning,
(4) downstream task fine-tuning, and (5) efficient representa-
tion updating. In this section, we will first give some essential
notations and then introduce these essential modules.

3.1 Notations
Given a specific downstream classification task, we de-
note its class set as Y , and its training set as T =
{(x1T , y1T ), (x2T , y

2
T ), . . . , (xNT , y

N
T )}, where yiT ∈ Y is the

supervised annotation of the instance xiT and N is the
instance number of the training set. Under the few-shot
setting, for each class y ∈ Y , we denote the number of
instances whose class is y as Ky .

As our framework will utilize large-scale unsupervised
open-domain corpora, we denote the open-domain unlabeled
corpora as O = {x1O, x2O, · · · , xMO }, where M is the instance
number of unlabeled corpora. We use the bold face to indicate
the representation of an instance computed by PLMs, e.g.,
the representation of xiT is xiT . As xiT is computed by the
PLM-based encoder, we denote the encoder as Enc(·), which
will be introduced in 3.4.1.

Note that our framework is applicable to any PLMs. In
experiments, we select BERT [1] and RoBERTa [2] as our
encoders, considering they are the state-of-the-art and widely-
used ones of existing PLMs.

3.2 Contrastive Semi-supervised Learning
Given the training set of a specific downstream task T ,
we first introduce how to apply contrastive learning for
supervised fine-tuning:

LCS = −
N∑
i=1

∑
j∈C(i) f(xiT ,x

j
T )− logZi

|C(i)| ,

Zi =
N∑
k=1

ef(x
i
T ,x

k
T ),

(1)

where C(i) = {j|j 6= i, yjT = yiT } is the index set of instances
that share the same label with the instance xiT , and f(·, ·) is
the similarity function. Considering many downstream tasks
only have limited supervised data, we apply contrastive
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semi-supervised learning in the fine-tuning phase of PLMs
instead of Eq. (1). Specifically, we retrieve positive and
negative instances from the open-domain corpora O for
each supervised instance.

We denote the positive instance index set of xiT as P(i)
and the negative one as N (i). Formally, the contrastive semi-
supervised objective for fine-tuning PLMs is:

LCSS = −
N∑
i=1

(∑j∈C(i) f(xiT ,x
j
T )− logZis

|C(i)| +∑
j∈P(i) f(xiT ,x

j
O)− logZis

|P(i)| +∑
j∈P(i)

∑
k∈P(i),j 6=k f(xjO,x

k
O)− logZju

(|C(i)|+ 1)× |P(i)| × (|P(i)| − 1)

)
,

(2)

where Zis and Zju are calculated as:

Zis =
N∑
k=1

ef(x
i
T ,x

k
T ) +

∑
k∈N (i)∪P(i)

ef(x
i
T ,x

k
O),

Zju =
∑

k∈P(i),j 6=k

ef(x
j
O,x

k
O) +

∑
k∈N (i)

ef(x
j
O,x

k
O).

(3)

Intuitively, by applying contrastive semi-supervised learning
with Eq. (2), we can simultaneously consider the similarities
among both supervised and retrieved instances, which can
let PLMs well capture semantics from the unlabeled data of
the task T .

3.3 Informative Instance Retrieval
Given a supervised instance xiT , we retrieve the most
informative instances from the open-domain corpora O to
build the positive instance index set P(i) and the negative
one N (i).

A straightforward retrieval solution is to regard the most
similar instances as positive instances and the most dissimilar
ones as negative instances, i.e., retrieve the instances x∗O
according to f(xiT ,x

∗
O). However, this straightforward solu-

tion is too coarse to select those most informative instances,
since the instances of the open-domain corpora may belong to
various quite different domains and classes. We cannot know
which semantic levels would make the greater contribution
with the coarse-grained function f(xiT ,x

∗
O) measuring.

Thus, instead of using f(·) to retrieve instances, we
introduce a similarity function fT (·) for retrieving the most
informative instances by empirically considering the seman-
tic relatedness between instances from two perspectives:
domain-level and class-level similarities. More specifically,
given instances xiT , x

∗
O , fT (·) obtains the instance relatedness

by calculating the summation of the domain relatedness and
class relatedness as:

fT (xiT ,x
∗
O) = fD(diT ,d

∗
O) + fC(ciT , c

∗
O), (4)

where fD(·) is the domain similarity function, fC(·) is the
class similarity function, diT ,d

∗
T are the domain-level repre-

sentations, and ciT , c
∗
T are the class-level representations. In

this way, we could build the positive instance index set P(i)
and the negative one N (i).

However, how to obtain domain-level and class-level
representations is still a problem. Next, we will introduce

Text Encoder

[DOMAIN] [CLASS] The food go.

�

�

�

d c

x

�

Fig. 2. Given an instance, we add two special tokens [DOMAIN] and
[CLASS] into the sequence, and then input the sequence into the PLM-
based encoder. d and c are the representations of [DOMAIN] and
[CLASS] respectively. x is the concatenation of the two special token
representations.

how to encode instances into domain-level and class-level
spaces, and how to learn their representations respectively
under our contrastive semi-supervised framework.

3.4 Semantic Representation Learning

This section gives the details of the text encoder and
introduces how to learn domain-level and class-level instance
representations.

3.4.1 Encoder Based on Pre-trained Language Models

Given an instance x (either a supervised instance or a
unlabeled one), as show in Fig. 2, we first add two
special tokens in front of the input sequence of x, i.e.,
x̄ =

[
[DOMAIN], [CLASS], x

]
. Then, we input x̄ into the

encoder, which is a multi-layer bidirectional Transformer
encoder, such as BERTBASE [1] and RoBERTaBASE [2], and
use the output representations of [DOMAIN] and [CLASS]
as the domain-level representation d and the class-level
representation c respectively. We then define the whole
instance representation x as the concatenation of the domain-
level and class-level representations as:

x = [d; c] = Enc(x̄), (5)

where d and c are the representations of [DOMAIN] and
[CLASS] respectively, [·; ·] is the concatenation of represen-
tations, and Enc(·) indicates the PLM-based text encoder.

3.4.2 Domain-level Representations

We hope that domain-level representations can push in-
stances with different domains far away, and meanwhile,
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cluster those instances with similar domains. Hence, the
whole learning objective is:

LD = −
N∑
i=1

(∑N
j=1 fD(diT ,d

j
T )− logZid

N

+

∑
j∈PD(i) fD(diT ,d

j
O)− logZid

|PD(i)|
)
,

Zid =
N∑
k=1

efD(di
T ,d

k
T ) +

M∑
k=1

efD(di
T ,d

k
O),

(6)

where PD(i) is the domain-related positive instance index
set of xiT . xiT is retrieved from the open-domain corpora
according to the similarity between domain-level representa-
tions computed by fD(·). Besides the instances mentioned in
xiT , we regard all other instances of the open-domain corpora
O as domain-related negative instances.

3.4.3 Class-level Representations

Class-level representations aim to distinguish the semantic
difference between the different classes of the task, and push
away those instances not related to one specific class. Hence,
the learning objective is formulated as:

LC = −
N∑
i=1

(∑N
j=1 fC(ciT , c

j
T )− logZic

N

+

∑
j∈PC(i) fC(ciT , c

j
O)− logZic

|PC(i)|
)
,

Zic =
N∑
k=1

efC(ci
T ,c

k
T ) +

∑
k∈PC(i)∪NC(i)

efC(di
T ,d

k
O),

(7)

where PC(i) is the class-related positive instance index set of
xiT retrieved from the open-domain corpora according to the
similarity between the class-level representations computed
by fC(·). Note that, given the class of xiT , we take the
supervised instances belonging to all other classes and the
retrieved positive instances of all other classes as the negative
instance set of xiT . The index set of these negative instances
of xiT is denoted as NC(i).

3.5 Efficient Representation Updating

Note that we set P(i), PD(i) and PC(i) as empty sets at the
beginning of the fine-tuning phase, since at that time, three
kinds of representations are not well trained. Then, we will
iteratively retrieve instances from the open-domain corpora
to expand these sets. Since we found the PLM parameters
will not change vastly during fine-tuning for the downstream
task, for computational efficiency, we only update the parts
of instance representations in the open-domain corpora O,
which are retrieved in every step, rather than updating the
whole instance representations.

3.6 Downstream Task Fine-tuning and Optimization

In classification tasks, we are devoted to finding effective
decision boundaries with semantic representations. Given
the training instances (xiT , y

i
T ) ∈ T , we encode xiT to xiT

with the text encoder Enc(·). Similar to the conventional

PLM fine-tuning, we apply the cross-entropy loss to learn
task-specified classifier as:

LCE = −
N∑
i=1

log ftask(xiT , y
i
T ), (8)

where ftask(·) is the neural layers for specific tasks built on
the PLMs to compute the probability p(yiT |xiT ).

Algorithm 1: Contrastive Semi-supversied Learning
Data: Training set T ; open-domain corpora O;

development set E ;
Result: The optimal CSS-LM parameters θ
Initialization: Parameters of CSS-LM θ [Refer to 4.2];
task-related sets P(i), N (i); domain-related set
PD(i); class-related sets PC(i), NC(i);

for epoch← [0, .., E] do
while i ∈ N do

Encode an instance of the training set:
xiT = [diT ; ciT ] = Enc(x̄iT ) [Refer to 3.4.1] ;

Retrieve the domain-related instances by fD(·)
and update PD(i),ND(i),
[djO; cjO] = Enc(x̄jO), where
x̄jO ∈ {PD(i),ND(i)},
djO ← Selectd([djO; cjO]),
diT ← Selectd([diT ; ciT ]),
Perform LD [Refer to 3.4.2] ;

Retrieve the class-related instances by fC(·)
and update PC(i),NC(i),
[djO; cjO] = Enc(x̄jO), where
x̄jO ∈ {PC(i),NC(i)},
cjO ← Selectc([d

j
O; cjO]),

ciT ← Selectc([d
i
T ; ciT ]),

Perform LC [Refer to 3.4.3] ;

Retrieve the task-related instances by fT (·)
and update P(i),N (i) [Refer to 3.3],
xjO = Enc(x̄jO), where x̄jO ∈ {P(i),N (i)},
xjO ← xjO,
xiT ← xiT ,
Perform LCSS [Refer to 3.2] ;

Leverage Enc(·) to update representations of
x̄jO ∈ {PD(i),ND(i),PC(i),NC(i),P(i),N (i)}
to the open-domain corpora representation
set [Refer to 3.5] ;

Calculate the total loss:
L = LCSS + LD + LC + LCE [Refer to 3.6];

Compute gradient ∇θL(θ; T );
Update parameters θ = θ − λ · ∇θL(θ; T );

end
Save θ as θepoch in every epoch;

end
Return: the optimal θepoch in the development set E ;
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We optimize the domain-level, class-level, and the whole
instance representations jointly. Therefore, the overall learn-
ing objective is defined as the sum of four losses:

L = LCSS + LD + LC + LCE , (9)

where LCSS is the contrastive semi-supervised loss, both LD
and LC are the functions to let the encoder learn domain-
level and class-level representations respectively. LCE is the
conventional fine-tuning cross-entropy loss.

The overall detail can refer to Algorithm 1. Given an
instance in each step, first, CSS-LM retrieves domain-related,
class-related, and task-related instances, then delivers to
the corresponding positive and negative instance index set.
Second, CSS-LM updates the representations of retrieved
instances to the open-domain corpora representation set.
Finally, CSS-LM leverage these instances to perform con-
trastive semi-supervised to obtain model parameters in every
epoch. We will evaluate the CSS-LM on the development set
every epoch and choose the optimal one as our model in
downstream tasks.

4 EXPERIMENTS

In this section, we would first introduce the datasets, the
experimental settings, and the details of the baseline models
used in our experiments. After that, we give some empirical
analyses to show the effectiveness of our contrastive semi-
supervised learning, indicating the promising results of
leveraging unlabeled instances. Then, we perform some
ablation studies to show which level of semantic relatedness
mainly contributes to CSS-LM and the influence of the
retrieved size. Finally, we perform visualization and case
studies for a more intuitive observation.

4.1 Datasets and Tasks
We conduct our experiments on three typical text clas-
sification tasks including sentiment classification, intent
classification, and relation extraction:

(1) Sentiment classification is the task of classifying the
polarity of a given sentence. Sentiment classification is a core
task of text classification. For sentiment classification, we
select SemEval [46] and SST-5 [47] for our experiments.

(2) Intent Classification is the task of correctly labeling
a natural language utterance from a predetermined set of
intents. Similar to sentiment classification, intent classifi-
cation is also a core task of text classification. For intent
classification, we select SciCite [48] and ACL-ARC [48] for
our experiments.

(3) Relation Extraction is the task of predicting at-
tributes and relations for entities in a sentence. For example,
given a sentence “Barack Obama was born in Honolulu,
Hawaii.”, a relation classifier aims at predicting the relation
of “bornInCity”. Relation extraction is the key component
for building relational knowledge graphs, and it is of crucial
significance to natural language understanding applications,
such as structured search, question answering, and summa-
rization. For relation extraction, we select SciERC [49] and
ChemProt [50] for our experiments. More details of these
datasets are shown in Table 1.

To build few-shot learning settings, we randomly sample
a part of instances from the dataset as the training set

T . Additionally, we prepare the open-domain corpora O
consisting of unused instances that share the same classes
with T from all downstream datasets. We also add English
Wikipedia, which is used to train the original BERTBASE [1]
and RoBERTaBASE [2], into O. CSS-LM will leverage the open-
domain corpora O to perform contrastive semi-supervised
learning; thus, to fairly compare baseline PLMs such as
BERTBASE and RoBERTaBASE, the baseline PLMs are all pre-
viously pre-trained on the open-domain corpora O in the
experiments.

4.2 Experimental Settings

We choose BERTBASE [1] and RoBERTaBASE [2] as our encoders,
using the official released parameters 1,2. The other parame-
ters of CSS-LM are all initialized randomly.

For training, we set the learning rate as 2×10−5, the batch
size as 4. The remaining settings follow the original ones of
BERTBASE and RoBERTaBASE. For the retrieved instance size,
we perform a grid search over multiple hyper-parameters
{16, 32, 48, 64}, and take the best one measured on the whole
development set for our model.

The objective function of CSS-LM is L = LCE + LCSS +
LD + LC , which enables CSS-LM to retrieve task-related
instances and enhance the performance of downstream
tasks; however, LD and LC terms may make the perfor-
mance drop on some downstream tasks during contrastive
semi-supervised learning sometimes. Thus, we degrade
the objective function L = LCE + LCSS + LD + LC to
L = LCE + LCSS when the performance starts to drop in
the development sets. Then, we continuously train CSS-LM
with the new objective function.

Besides, to avoid the result instability [51], [52], we
report the average performance across 5 different randomly
sampled data splits.

4.3 Baselines

We compare our CSS-LM with the following effective fine-
tuning strategies:

Standard fine-tuning (Standard), which is the typical
fine-tuning method in PLMs [1], [2] and its training objective
is LCE mentioned in Eq. (8).

Supervised contrastive fine-tuning (SCF) [13], which
only performs supervised contrastive learning with the
supervised data of downsteam tasks, and its fine-tuning
loss is LCE + LCS , referring to Eq. (1) and Eq. (8).

CSS-LM-ST, a variant of our CSS, which also retrieves
task-related in-domain data with domain-related and class-
related relatedness (i.e., the positive instances) by contrastive
semi-supervised learning as we mentioned in the section 3.2.
The difference is CSS-LM-ST performing the standard fine-
tuning method with pseudo labeling [53], which is the
simple and efficient semi-supervised learning method for
deep neural networks, instead of contrastive semi-supervised
learning to capture critical features from the retrieved
instances. We can denote the learning objective of CSS-LM-ST
as LD+LC +L′

CE , where L′

CE is the same downstream task

1. https://storage.googleapis.com/bert models/2020 02 20/
uncased L-12 H-768 A-12.zip

2. https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz

https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1
The details of the datasets used in our experiments. To build few-shot settings, we sample N = Ky × |Y| instances from the original training set,

where Ky is the sampled instance number for each class and |Y| is the number of class types.

Task Domain Dataset |Y| #Train #Test #Dev Class types

Sentiment
Classification

Review SemEval 3 4,665 2,426 4,665 positive, neutral, negative

Review SST-5 5 8,544 2,210 1,101 v. pos., positive, neutral, negative, v. neg.

Intent
Classification

Multi Scicite 3 7,320 1,861 916 result, method, background

CS ACL-ARC 6 1,688 139 114 background, uses, motivation, compareOrcontrast, extends, future

Relation
Classification

CS SciERC 7 3,219 974 455 part-of, conjunction, hyponymy, used-for, feature-of, compare, evaluate-for

BIO ChemProt 13 4,169 3,469 2,422
substrate, antagonist, indirect-upregulator, activator, indirect-downregulator,
inhibitor, upregulator, downregulator, product-of, agonist, agonist-activator

TABLE 2
The results (%) of various fine-tuning methods on six classification datasets. All fine-tuning strategies are applied on RoBERTaBASE and

BERTBASE models and set Ky = 16 for the few-shot experimental settings.

Task Sentiment Classification Intent Classification Relation Classification

Dataset SemEval SST-5 SciCite ACL-ARC SciERC ChemProt

Base Model RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT

Fine-tune on the whole training set

Standard [2] 89.1 87.4 56.8 54.1 86.0 84.8 81.3 77.5 88.7 88.6 82.3 80.6
SCF [13] 88.9 86.9 57.4 53.6 86.5 85.4 84.2 77.8 87.5 87.7 81.8 81.0

CSS-LM-ST 89.2 87.0 57.5 53.5 86.0 85.0 82.0 78.2 88.7 88.4 82.4 81.0
CSS-LM 89.5 87.7 57.5 54.8 86.0 85.4 84.2 78.9 89.0 89.0 82.3 81.9

Fine-tune on few-shot setting (Ky = 16)

Standard [2] 68.9 63.9 39.4 36.1 74.3 75.0 45.7 43.7 46.9 40.5 47.6 44.1
SCF [13] 69.1 65.3 39.6 35.5 75.8 75.0 50.9 47.1 52.0 40.3 46.9 45.4

CSS-LM-ST 71.1 70.0 39.5 36.0 75.9 76.9 50.4 46.6 53.0 46.1 48.2 47.6
CSS-LM 73.0 70.0 39.5 36.1 77.5 77.4 48.8 47.5 54.7 47.4 49.0 48.3

fine-tuning loss in the section 3.6 but leverages extra pseudo
labeled instances of open-domain corpora.

CSS-LM and CSS-LM-ST leverage the same method to
retrieve task-related instances but apply different mech-
anisms to learn semantic features from the retrieved in-
stances. CSS-LM learns semantic features by contrastive
semi-supervised learning. CSS-LM-ST uses the conventional
semi-supervised learning with pseudo labels to learn the
features, which may be sensitive to the quality of labels.
The key advantage of CSS-LM is free to pseudo labels. In
the following parts, we will extensively study CSS-LM and
CSS-LM-ST.

4.4 Overall Results
We conduct experiments on the three selected tasks under
the standard and few-shot settings (Ky = 16). The results
are shown in Table 2. From the table, we can see that:

(1) Our CSS-LM framework achieves improvements on
almost all six datasets compared to the baseline models
(including the state-of-the-art SCF), especially under the
few-shot settings. This demonstrates that our contrastive
semi-supervised framework for fine-tuning could effectively
capture the important semantic features for the task from the
large-scale unlabeled data.

(2) Although utilizing the retrieved task-related in-
domain data can help fine-tuning, CSS-LM-ST outperforms

standard fine-tuning yet does not obtain the same perfor-
mance improvements as CSS-LM under the few-shot settings.
It indicates that our framework can retrieve high-quality
instances by contrastive semi-supervised learning; applying
contrastive semi-supervised learning is better than assigning
pseudo labels to the retrieved instances to train classifiers. In
fact, under the few-shot settings, some retrieved instances
will be linked to some classes close to their implicit golden
labels rather than the golden labels. Therefore, directly
annotating pseudo labels may lead to a biased model. In
contrast, these instances corresponding to wrong classes
can still provide correlation information for the contrastive
learning of CSS-LM.

(3) We also compare CSS-LM under two different settings:
fine-tuning with the few-shot instances and the whole
training set instances. Although CSS-LM outperforms most
baseline models under the few-shot setting, CSS-LM ob-
tains slight improvements when fine-tuning with sufficient
training data. This is an intuitive observation that directly
fine-tuning PLMs will work well when the amount of data
is sufficient. However, not all NLP tasks have enough data;
low-resource tasks and long-tail classes are very common.
Our framework can improve the model performance in
few-shot learning scenarios without weakening the model
performance.
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Fig. 3. The results (%) of different fine-tuning strategies on the development sets of SemEval, Scicite and SciERC, with different numbers of instance
per class.

4.5 Effect of Supervised Data Size
In this part, we explore the effect of the supervised instance
number Ky for each class. From Fig. 3, we have the following
findings:

(1) Under the few-shot settings, both SCF and CSS-
LM outperform the standard fine-tuning strategy on two
datasets consistently. It indicates that performing contrastive
learning between instances of different classes could help
extract informative semantic features to distinguish them,
and benefit downstream tasks in the fine-tuning stage.

(2) CSS-LM has better results than SCF on all the datasets
of our experiments, especially when the supervised data size
is small. It demonstrates that although SCF could discover
the class relatedness from the supervised data to some extent,
it may ignore semantic information that is trivial in the
limited supervised data but crucial for the unseen task. In
contrast, our CSS-LM could effectively take account of the
unlabeled data to capture the informative semantic features
not expressed by supervised data.

4.6 Effect of Retrieved Instance Size
In order to learn discriminative features, CSS-LM needs to
leverage proper positive and negative pairs. As for CSS-LM-
ST, pseudo labeling quality is essential for the performance.
In this part, we explore the effect of different retrieved
instance size on CSS-LM and CSS-LM-ST. As shown in Fig. 4,
we have the following findings:

(1) When the size is small, CSS-LM retrieves too similar
instances to make them close to each other, according
to the contrastive learning paradigm, which cannot learn
the essential information. As the size increases, the model

performance can gradually increase. Since more informative
instances are retrieved from open-domain corpora, CSS-LM
will take unrelated instances as similar instances to learn the
false information when the size is too large. In future, it is
meaningful to study how to denoise the retrieved instances
for semi-supervised fine-tuning.

(2) When the size becomes large, the performance of CSS-
LM-ST decays earlier than CSS-LM since CSS-LM-ST needs
to learn features from high-quality labeled instances. Instead
of learning the features from an individual instance, CSS-LM
learns by comparing among different instances. Therefore,
CSS-LM can better leverage sufficient unlabeled instances.

4.7 Difference between Retrieving Instances from In-
domain Data and Open-domain Data

To show our framework can automatically extract in-domain
instances from open-domain corpora, we perform CSS-
LM[D+C] for the open-domain corpora, and perform CSS-
LM[C] for the in-domain corpora. Specifically, the in-domain
corpora contain some unused instances share same classes
with T . CSS-LM[D] is the domain-level term of our CSS-LM
and CSS-LM[C] is the class-level term, CSS-LM[D+C] is the
combination of [D] and [C]. The results are shown in Table 3.

From the table, we can see that: CSS-LM[D+C] can achieve
comparable performance with CSS-LM[C] trained on the
in-domain corpora. Although directly retrieving in-domain
data is easier than retrieving open-domain data, we can see
CSS-LM[C] is only slightly better than CSS-LM[D+C] in the
well-defined domain such as SemEval (Restaurant review)
and ChemProt (Biology); CSS-LM[D+C] even outperforms
CSS-LM[C] in SciCite, which belongs to multiple domains
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Fig. 4. The effect (%) of retrieved instance size on CSS-LM and CSS-LM-
ST on the development sets of SemEval, Scicite and SciERC.

(not well-defined). It demonstrates that CSS-LM can effi-
ciently learn to distinguish coarse-grained domains from a
large amount of the open-domain corpora, free to domain
dependence.

4.8 Contribution of Domain-Related and Class-Related
Semantics to CSS-LM

As we empirically apply domain-related and class-related
semantics for our framework, we wonder which semantic
levels makes the greater contribution to our framework. In
this part, we study the effect of the domain-level and class-
level terms of CSS-LM as shown in Table 4.

From the results, we can find that: CSS-LM[D+C] is
comparable to CSS-LM[C] and outperforms CSS-LM[D] in
almost all datasets. Therefore, compared with the domain-
level term, the class-level term is essential to retrieving high-
quality instances to enhance CSS-LM performance.

Although this paper mainly focuses on applying the
contrastive semi-supervised framework for fine-tuning rather
than exploring retrieving informative instances, we think
how to better consider domain-level semantic remains an
interesting problem in the future.

TABLE 3
The results (%) of CSS-LM on the open-domain corpora and in-domain
corpora. As in-domain corpora do not consider domain-level semantics,

we perform CSS-LM[C] on in-domain corpora.

Fine-tune on few-shot Ky = 16

Task Sentiment
Classification

Intent
Classification

Relation
Classification

Dataset SemEval SciCite SciERC

RoBERTaBASE

Open-domain corpora

CSS-LM[D+C] 73.0 77.5 54.7

In-domain corpora

CSS-LM[C] 73.0 75.9 54.9

BERTBASE

Open-domain corpora

CSS-LM[D+C] 70.0 77.4 47.1

In-domain corpora

CSS-LM[C] 71.0 76.1 47.4

TABLE 4
The results (%) of CSS-LM utilizing semantic relatedness at different

levels.

Fine-tune on few-shot Ky = 16 in open-domain corpora

Task Sentiment
Classification

Intent
Classification

Relation
Classification

Dataset SemEval SciCite SciERC

RoBERTaBASE

CSS-LM[C] 73.6 75.1 53.6
CSS-LM[D] 72.1 75.7 51.9
CSS-LM[D+C] 73.0 77.5 54.7

BERTBASE

CSS-LM[C] 69.8 75.8 46.0
CSS-LM[D] 68.1 74.4 45.7
CSS-LM[D+C] 70.0 77.4 47.7

4.9 Visualization

We apply t-SNE [54] to visualize instance embeddings of
the SemEval test set learned by standard, SCF, and CSS-LM
fine-tuning strategies in Fig. 5. We give the two-dimensional
points with different colors to represent its corresponding
label in the downstream task.

From the figure, we can intuitively see that direct fine-
tuning with sufficient data Fig. 5(a) has the best boundaries
among all classes. Without sufficient data, all fine-tuning
methods cannot detect neutral instances, but our CSS-LM
can obtain the coarse-grained neutral cluster and achieve
a better decision boundary between positive and negative
instances.
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(a) Stardard (Whole Set) (b) Stardard (c) SCF (d) CSS-LM

Fig. 5. The tSNE plots of the embeddings learned by standard, SCF, and CSS-LM fine-tuning methods on the SemEval dataset. Green: Negative
emotion; Blue: Positive emotion; Red: Neutral emotion. Except the embeddings in (a) are trained by the whole training set, the embeddings in (b) (c)
(d) are only trained by Ky = 16.

TABLE 5
The analyses of some retrieved instances from the corpora by CSS-LM. Yellow: Class-related; Gray: Domain-related.

Class Instances Related Instances

Negative Service was just ok, it is not what you’d expect for $500.
I’m not even going to bother to describe it; speaks for itself .

It’s only $1.95 for a regular slice and 4.00 for a slice with a
mushroom , not mushrooms .

Neutral
A great way to make some money is to buy a case of
snapple from costco and sell it right outside for only $2.50.

Try the times square cocktail – ginger lemonade with vodka.
I had the tuna tartare with sake, mushroom ravioli with
pinot noir, and the chocolate sampler [...].

Positive
The ambience was so fun, and the prices were great ,

on top of the fact that the food was really tasty .

Overall, I would highly recommend giving this one a try.

[...] Liverpool boss Klopp says win feels perfect .

Oh yeah ever on the west side try there sister restaurant
arties cafe .

4.10 Case Study

As shown in Table 5, we also give a case study to investigate
whether CSS-LM can capture domain-level and class-level re-
latedness of instances. We color the sub-sequence containing
human-annotated class-level information with yellow and
domain-level information with gray.

From the table, we can see that CSS-LM can retrieve
instances highly agreed with humans in most cases. Inter-
estingly, the neutral class did not exist any apparent class-
level information recognized by humans, but CSS-LM can
distinguish these instances in the sentence-level; however,
CSS-LM takes the instance, ... there sister restaurant arties
cafe, as the positive, which can be easily classified to the
neutral class by humans with sentence-level meaning. To
consider the sentence-level information during retrieving by
contrastive learning is a future work we can study.

5 CONCLUSION AND FUTURE WORK

In this work, we introduce the CSS-LM framework to
improve the fine-tuning phase of PLMs via contrastive
semi-supervised learning. The experimental results on three
typical text classification tasks show that CSS-LM could
effectively capture crucial semantic features for downstream
tasks with limited supervised data and achieve better perfor-
mances than the conventional, supervised contrastive fine-

tuning strategies. In future, we will explore the following
promising directions:

(1) The CSS-LM framework makes an initial attempt
to better fine-tune PLMs with limited supervised data of
downstream tasks in text classification. Extending it to other
NLP tasks, e.g., text generation, name entity recognition, and
question answering, is a valuable direction.

(2) From our experimental results, we find that better
methods to consider domain-level semantic remain a further
exploration. Finding out a better strategy to retrieve and
denoise instances is also a fascinating problem.

(3) CSS-LM is devoted to leveraging unannotated data
from the open-domain corpora to capture crucial semantic
features, which benefit the downstream tasks, instead of
considering invariant features between different tasks or
domains to perform transfer learning. How to better leverage
these invariant features is a direction we can explore.
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