2106.07447v1 [cs.CL] 14 Jun 2021

arxXiv

HuBERT: Self-Supervised Speech Representation
Learning by Masked Prediction of Hidden Units

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia,
Ruslan Salakhutdinov, Abdelrahman Mohamed

Abstract—Self-supervised approaches for speech representa-
tion learning are challenged by three unique problems: (1) there
are multiple sound units in each input utterance, (2) there is
no lexicon of input sound units during the pre-training phase,
and (3) sound units have variable lengths with no explicit
segmentation. To deal with these three problems, we propose
the Hidden-Unit BERT (HuBERT) approach for self-supervised
speech representation learning, which utilizes an offline clustering
step to provide aligned target labels for a BERT-like prediction
loss. A key ingredient of our approach is applying the prediction
loss over the masked regions only, which forces the model to learn
a combined acoustic and language model over the continuous
inputs. HuBERT relies primarily on the consistency of the
unsupervised clustering step rather than the intrinsic quality
of the assigned cluster labels. Starting with a simple k-means
teacher of 100 clusters, and using two iterations of clustering, the
HuBERT model either matches or improves upon the state-of-
the-art wav2vec 2.0 performance on the Librispeech (960h) and
Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and
960h fine-tuning subsets. Using a 1B parameter model, HuBERT
shows up to 19% and 13% relative WER reduction on the more
challenging dev-other and test-other evaluation subsets

Index Terms—Self-supervised learning, BERT.

I. INTRODUCTION

The north star for many research programs has been learning
speech and audio representations through listening and inter-
action, similar to how babies learn their first language. High
fidelity speech representation includes disentangled aspects
of the spoken content along with non-lexical information of
how it is delivered, e.g., speaker identity, emotion, hesitation,
interruptions. Furthermore, reaching a complete situational
understanding requires modeling structured noise interleaving
and overlapping with the speech signal, e.g., laughter, cough-
ing, lip-smacking, background vehicle engine, birds chirping,
or food sizzling sounds.

The need for such high-fidelity representations drove re-
search in self-supervised learning for speech and audio where
the targets driving the learning process of a designed pretext
task are drawn from the input signal itself. Examples of
pretext tasks for self-supervised speech representation learning
include distinguishing near-by features from temporally distant
ones [ 1|-[3], next-step prediction of audio features [4], masked
prediction of audio features given unmasked context [5]], [6].
Besides, self-supervised learning methods do not rely on any
linguistic resources during training, allowing them to learn

IThe code, pre-trained and fine-tuned models are available at https:/
github.com/pytorch/fairseq/tree/master/examples/hubert.

universal representations since labels, annotations, and text-
only material ignores rich information in the input signal.

Learning speech representations without reliance on large
volumes of labeled data is crucial for industrial applications
and products with ever-increasing coverage of new languages
and domains. The time needed to collect large labeled datasets
covering each of these scenarios is the real bottleneck in the
current fast-moving Al industry, with time-to-market playing
a critical role for product success. Building more inclusive
applications covering spoken-only dialects and languages is
another significant benefit of reducing dependence on lin-
guistic resources. Given their non-standard orthographic rules,
many of these languages and dialects have very little or no
resources at all.

Pseudo-labeling (PL), also known as self-training and be-
longs to the family of semi-supervised learning techniques,
has been the dominant approach for utilizing unlabeled speech
and audio with successful applications dating back to the mid-
1990s [7]-[10]. PL starts with some supervised data to train
a “teacher” model in one specific downstream task. Pseudo-
labels are then generated for the unlabeled data using the
teacher model. Next, a student model is trained using the
combined supervised and teacher-labeled data either using the
standard cross-entropy [9]] loss or using a contrastive loss [11]
to account for noise in teacher-generated labels. The pseudo-
labeling process may be repeated multiple times to improve
teacher label quality [12] iteratively.

Without discounting the immense success of pseudo-
labeling techniques, self-supervised representations offer two
unique advantages: (1) Pseudo-label methods force student
models to merely mimic a teacher model, which is limited by
its supervised data size and the provided annotation quality. On
the other hand, self-supervised pretext tasks force the model
to represent the entire input signal by compressing much
more bits of information into the learned latent representation.
(2) In pseudo-labeling, the supervised data of the teacher
model forces the whole learning to be geared towards a single
downstream task. On the contrary, self-supervised features
show better generalization to a multitude of downstream
applications.

There have been impressive successes for self-supervised
learning in Computer Vision (CV) [13]-[15] and Natural
Language Processing (NLP) [[16]-[18] applications. Learning
representations of discrete input sequences, such as in Natural
Language Processing (NLP) applications, uses either masked
prediction [19], [20] or auto-regressive generation [ 18], [21]
of input sequences with partial obfuscation. For continuous


https://github.com/pytorch/fairseq/tree/master/examples/hubert
https://github.com/pytorch/fairseq/tree/master/examples/hubert

inputs, such as in Computer Vision (CV) applications, repre-
sentations are often learned through instance classification, in
which each image and its augmentations are treated as a single
output class to be pulled together [[14f], [[15] or contrasted
against other negative samples [22].

Speech signals differ from text and images in that they
are continuous-valued sequences. Self-supervised learning for
the speech recognition domain faces unique challenges from
those in CV and NLP. Firstly, the presence of multiple sounds
in each input utterance breaks the instance classification as-
sumption used in many CV pre-training approaches. Secondly,
during pre-training, there is no prior lexicon of discrete sound
units available, as in NLP applications in which words or word
pieces are used, hindering the use of predictive losses. Lastly,
the boundaries between sound units are not known, which
complicates masked prediction pre-training.

In this paper, we introduce Hidden unit BERT (HuBERT)
that benefits from an offline clustering step to generate noisy
labels for a BERT-like per-training. Concretely, a BERT model
consumes masked continuous speech features to predict pre-
determined cluster assignments. The predictive loss is only
applied over the masked regions, forcing the model to learn
good high-level representations of unmasked inputs to infer
the targets of masked ones correctly. Intuitively, the HuBERT
model is forced to learn both acoustic and language models
from continuous inputs. First, the model needs to model
unmasked inputs into meaningful continuous latent representa-
tions, which maps to the classical acoustic modeling problem.
Second, to reduce the prediction error, the model needs to
capture the long-range temporal relations between learned
representations. One crucial insight motivating this work is
the importance of consistency of the targets, not just their
correctness, which enables the model to focus on modeling
the sequential structure of input data. Our approach draws
inspiration from the DeepCluster method for self-supervised
visual learning [23[]; however, HUBERT benefits from the
masked prediction loss over speech sequences to represent
their sequential structure.

When the HuBERT model is pre-trained on either the
standard Librispeech 960h [24] or the Libri-Light 60k hours
[25]], it either matches or improves upon the state-of-the-
art wav2vec 2.0 [6] performance on all fine-tuning subsets
of 10mins, 1h, 10h, 100h, and 960h. We present systematic
results on three model sizes pre-trained with HuBERT: BASE
(90M parameters), LARGE (300M), and X-LARGE (1B). The
X-LARGE model shows up to 19% and 13% relative WER
improvement from LARGE models on dev-other and test-other
evaluation subsets when pre-trained on the Libri-Light 60k
hours.

II. METHOD
A. Learning the Hidden Units for HuBERT

An acoustic model trained on text and speech pairs provides
pseudo-phonetic labels for each frame via forced alignment in
semi-supervised learning. On the contrary, the self-supervised
representation learning setup has access to speech-only data.
Nevertheless, simple discrete latent variable models such as

k-means and Gaussian mixture models (GMMs) infer hidden
units that exhibit non-trivial correlation with the underlying
acoustic units [26] (see also Table E) More advanced sys-
tems can achieve better acoustic unit discovery performance
using better graphical models [27]], [28] or parameterizes the
distributions with more powerful neural network models [29]-
[33]].

Acoustic Unit Discovery System
(e.g., K-means on MFCC)

Lz ) [z [z [z] [z] [2]
":.-.TUBERT Transformer |\ :
! i i i f i
| : | IMsk] Msk] [MsK] | . || : |

\ CNN Encoder |
1 =

.....u---u\ilhuu.-_ .

LA L
Fig. 1: The HuBERT approach predicts hidden cluster assign-
ments of the masked frames (y2, y3, y4 in the figure) generated
by one or more iterations of k-means clustering.

Inspired by this, we propose to use acoustic unit discovery
models to provide frame-level targets. Let X denote a speech
utterance X = [z1,--- , 27| of T frames. Discovered hidden
units are denoted with h(X) = Z = [z, -, 27|, where
z; € [C] is a C-class categorical variable and h is a clustering
model, e.g. k-means.

B. Representation Learning via Masked Prediction

Let M C [T] denote the set of indices to be masked for a
length-T' sequence X, and X = r(X, M) denote a corrupted
version of X where z; is replaced with a mask embedding &
if t € M. A masked prediction model f takes as input X and
predicts a distribution over the target indeces at each timestep
ps(- | X,t). There are two decisions to be made for masked
prediction: how to mask and where to apply the prediction
loss.

Regarding the first decision, we adopt the same strategies
used in SpanBERT [34] and wav2vec 2.0 [|6] for mask genera-
tion, where p% of the timesteps are randomly selected as start
indices, and spans of [ steps are masked. To address the second
decision, we denote the cross-entropy loss computed over
masked and unmasked timesteps as L,, and L,,, respectively.
L., is defined as:

Lo (f; X, M, Z) = Y logpy(z | X, 1), (1)
teM

and L, is of the same form except that it sums over ¢t &
M. The final loss is computed as a weighted sum of the two



terms: L = oL, + (1 — a)L,. In the extreme case when a =
0, the loss is computed over the unmasked timesteps, which
is similar to acoustic modeling in hybrid speech recognition
systems [35[]-[38]. In our setup, this limits the learning process
to mimicking the clustering model.

In the other extreme with o = 1, the loss is only computed
over the masked timesteps where the model has to predict
the targets corresponding to the unseen frames from context,
analogous to language modeling. It forces the model to learn
both the acoustic representation of unmasked segments and
the long-range temporal structure of the speech data. We
hypothesize that the setup with @ = 1 is more resilient to
the quality of cluster targets, which is demonstrated in our
experiments (see Table [V).

C. Learning with Cluster Ensembles

A simple idea to improve target quality is to utilize multi-
ple clustering models. While an individual clustering model
may perform terribly, cluster ensembles can provide com-
plementary information to facilitate representation learning.
For example, an ensemble of k-means models with different
codebook sizes can create targets of different granularity,
from manner classes (vowel/consonant) to sub-phone states
(senones). To extend the proposed framework, let Z (%) be the
target sequences generated by the k-th clustering model. We
can now re-write L,,, as:

Lon(F; X 20, M) = > logpl (57 | X,1), @)
teM k

and similarly for the unmasked loss L,. This is analogous
to multi-task learning, but with tasks created by unsupervised
clustering.

Additionally, ensembling is intriguing because it can be
used alongside product quantization (PQ) [39], where a fea-
ture space is partitioned into multiple subspaces, and each
subspace is quantized separately. PQ allows effective Eu-
clidean distance-based quantization such as k-means for high-
dimensional features and heterogeneous features whose scale
differs significantly between subspaces. In this case, the theo-
retical size of the target space is the product of all codebooks’
sizes.

D. Iterative Refinement of Cluster Assignments

In addition to using cluster ensembles, another direction
for improved representation is refining the cluster assignments
throughout the learning process. Since we expect a pre-trained
model to provide better representations than the raw acoustic
feature such as MFCCs, we can create a new generation of
clusters by training a discrete latent model over the learned
latent representations. The learning process then proceeds with
the newly discovered units.

E. Implementation

Our pre-trained models follows the wav2vec 2.0 architec-
ture [6f], with a convolutional waveform encoder, a BERT
encoder [19]], a projection layer and a code embedding layer.

We consider HuBERT in three different configurations: BASE,
LARGE, and X-LARGE. The fisrt two follow the architectures
of wav2vec 2.0 BASE and LARGE closely. The X-LARGE
architecture expands the model size to about 1 billion pa-
rameters, similar to the size of the Conformer XXL model
in [40]. The waveform encoder is identical for all the three
configurations, which is composed of seven 512-channel layers
with strides [5,2,2,2,2,2,2] and kernel widths [10,3,3,3,3,2,2].
The BERT encoder consists of many identical transformer
blocks, whose parameters along with the parameter of the
subsequent projection layer are specified in Table [I]

| BASE LARGE X-LARGE
strides 5,2,2,2,2,2,2
CNN Encoder kernel width 10, 3,3, 3,3,2,2
channel 512
layer 12 24 48
embedding dim. 768 1024 1280
Transformer inner FEN dim. 3072 4096 5120
layerdrop prob 0.05 0 0
attention heads 8 16 16
Projection dim. | 256 768 1024
Num. of Params | 95M 317M 964M

TABLE I: Model architecture summary for BASE, LARGE,
and X-LARGE HuBERT models

The convolutional waveform encoder generates a feature
sequence at a 20ms framerate for audio sampled at 16kHz
(CNN encoder down-sampling factor is 320x). The audio
encoded features are then randomly masked as described in
Section The BERT encoder takes as input the masked

sequence and outputs a feature sequence [o01,--- ,or|. The
distribution over codewords is parameterized with
- exp(sim(A®oy,, e.) /T

PP(e] X, t) = e OIMA 0w e)/7) 3)

Y0y exp(sim(A®oy, ex) /1)’

where A is the projection matrix, e. is the embedding for
codeword ¢, sim(-,-) computes the cosine similarity between
two vectors, and 7 scales the logit, which is set to 0.1. When
cluster ensembles are used, one projection matrix A% is
applied for each clustering model k.

After HuBERT pre-training, We use the connectionist tem-
poral classification (CTC) [41]] loss for ASR fine-tuning of the
whole model weights except the convolutional audio encoder,
which remains frozen. The projection layer(s) is removed
and replaced with a randomly initialized softmax layer. The
CTC target vocabulary includes 26 English characters, a space
token, an apostrophe, and a special CTC blank symbol.

III. RELATED WORK

We discuss recent studies on self-supervised speech rep-
resentation learning by grouping them by training objective.
The earliest line of work learns representations by postulating
a generative model for speech with latent variables, which
are assumed to capture the relevant phonetic information.
Training of these models amounts to likelihood maximization.
Different latent structures have been applied to encode the



prior assumption, such as continuous [29]], discrete [31], [42],
or sequential [28], [30], [32], [33], [43].

Prediction-based self-supervised learning has gathered in-
creasing interests recently, where a model is tasked to predict
the content of the unseen regions [4], [44]-[50] or to contrast
the target unseen frame with randomly sampled ones [1]-
[3]], [6]. Some models combine both the predictive and the
contrastive losses [5]], [51]]. These objectives can usually be
interpreted as mutual information maximization [52]. Other
objectives do not belong to these categories, for example, [53]].

This work is most related to DiscreteBERT [51]: both
HuBERT and DiscreteBERT predict discrete targets of masked
regions. However, there are several crucial differences. First,
instead of taking quantized units as input, HuBERT takes raw
waveforms as input to pass as much information as possible
to the transformer layers, which was shown to be important
in [|6]. Furthermore, in the experiment section, we show that
our model, with simple k-means targets, can achieve better
performance than DiscreteBERT that uses vg-wav2vec [5]
learned units. Second, we also present many techniques to
improve teacher quality instead of using a single fixed teacher
as done in DiscreteBERT.

HuBERT is also related to wav2vec 2.0 [6]. However, the
latter employs a contrastive loss that requires careful design of
where to sample negative frames from, an auxiliary diversity
loss to encourage the discrete unit usage, and demands a
proper Gumbel-softmax temperature annealing schedule. In
addition, it only explores quantizing the waveform encoder
output, which may not be the best feature for quantization
due to the limited capacity of the convolutional encoder, as
suggested by our ablation studies in Figure [2] Concretely,
our proposed method adopts a more direct predictive loss by
separating the acoustic unit discovery step from the masked
prediction representation learning phase and achieves the state-
of-the-art results that match or outperform wav2vec 2.0 on
different fine-tuning scales.

Finally, the idea of iterative refinement target labels is simi-
lar to iterative pseudo labeling for semi-supervised ASR [12],
[54], which leverages an improving student model to generate
better pseudo-labels for the next iteration of training. The
HuBERT approach can be seen as extending this method to
the self-supervised setup with a masked prediction loss.

IV. EXPERIMENTAL DETAILS
A. Data

For unsupervised pre-training, we use the full 960
hours of LibriSpeech audio [24] or 60,000 hours of
Libri-light [25] audio, both of which are derived from
the LibriVox project that contains English recordings of
copyright-free audiobooks by volunteers from the In-
ternet. For supervised fine-tuning, five different parti-
tions are considered: Libri-light 10-minute, I-hour, 10-
hour splits and LibriSpeech 100-hour (train-clean-100)
and 960-hour (train-clean-100, train-clean—-360,
train-other-500 combined) splits. The three Libri-light
splits are subsets of the the LibriSpeech training split, and each
of them contain half of the audio from train-clean-~ and
the other from train-other-500.

B. Unsupervised Unit Discovery

To demonstrate the effectiveness of the proposed method
on utilizing low-quality cluster assignments, we consider the
k-means algorithm [55] for acoustic unit discovery by default.
It is one of the most naive unit discovery models that can be
treated as modeling an isotropic Gaussian with the same scalar
variance for each acoustic unit. To generate labels for the
first iteration HUBERT training over the 960 hour LibriSpeech
training set, we run k-means clustering with 100 clusters on
39-dimensional MFCC features, which are 13 coefficients with
the first and the second-order derivatives.

To generate better targets for the subsequent iterations, we
run k-means clustering with 500 clusters on the latent features
extracted from the HuBERT model pre-trained in the previous
iteration (not fine-tuned) at some intermediate transformer
layer. Since the feature dimension at the transformer output
is much higher than the MFCC features (768-D for HuBERT
BASE), we cannot afford to load the entire 960 hour training
split to the memory. So instead, we randomly sample 10% of
the data for fitting the k-means model.

The MiniBatchKMeans algorithm implemented in the
scikit-learn [56] package is used for clustering, which
fits a mini-batch of samples at a time We set the mini-batch
size to be 10,000 frames. k-means++ [57] with 20 random
starts is used for better initialization.

C. Pre-Training

We train the BASE model for two iterations on the 960
hours of LibriSpeech audio on 32 GPUs, with a batch size
of at most 87.5 seconds of audio per GPU. The first iteration
is trained for 250k steps, while the second iteration is trained
for 400k steps using labels generated by clustering the 6-th
transformer layer output of the first iteration model. Training
for 100k steps takes about 9.5 hours.

Next we train HUBERT LARGE and X-LARGE for one
iteration on 60,000 hours of Libri-light audio on 128 and
256 GPUs, respectively, for 400k steps. The batch sizes are
reduced to 56.25 and 22.5 seconds of audio per GPU due to
memory constraints. Instead of restarting the iterative process
from clustering MFCC features, we extract features from the 9-
th transformer layer of the second iteration BASE HuBERT for
clustering and use those labels for training these two models.
Hence, these two models can also be seen as the third iteration
models.

For all HuBERT configurations, mask span is set to | =
10, and p = 8% of the waveform encoder output frames are
randomly selected as mask start if not otherwise mentioned.
Adam [58] optimizer is used with 8 = (0.9,0.98), and the
learning rate ramps up linearly from O to the peak learning
rate for the first 8% of the training steps, and then decays
linearly back to zero. The peak learning rates are Se-4/1.5e-
3/3e-3 for BASE/LARGE/X-LARGE models.

D. Supervised Fine-Tuning and Decoding

We fine-tune each model on 8 GPUs on the labeled splits
described in Section The batch sizes per GPU are at

21t still requires loading the entire dataset to the memory first.



most 200/80/40 seconds of audio for BASE/LARGE/X-LARGE
models. During fine-tuning, the convolutional waveform audio
encoder parameters are fixed. Like wav2vec 2.0, we introduce
a freeze-step hyperparameter to control how many fine-tuning
steps the transformer parameters are fixed, and only the new
softmax matrix is trained. We sweep over peak learning rate
([1e-5, le-4]), learning rate schedule (percentage of steps
for linear ramp-up and decay), number of fine-tuning steps,
freeze step, and waveform encoder output masking probability
for each model size and fine-tuning split combination using
the word error rate (WER) on the dev—-other subset as a
criterion for model selection.

We use the wav2letter++ [59]] beam search decoder wrapped
in Fairseq [[60] for language model-fused decoding, which
optimizes:

log perc(Y | X) +wilog Poay(Y) + wol|Y], )

where Y is the predicted text, |Y| is the length of the text,
and w; and wy denote the language model weight and word
score. The decoding hyperparameters are searched with Ax,
a Bayesian optimization toolkitﬂ In this work, we consider
both n-gram and transformer language models trained on the
official Librispeech language modeling data.

E. Metrics of Target Quality

For analysis, we derive frame-level forced-aligned phonetic
transcripts using a hybrid ASR system to measure the corre-
lation between the k-means cluster assignments and the ac-
tual phonetic units. Given aligned frame-level phonetic labels
[y1,- - ,yr| and k-means labels [z1,--- , zr], the joint distri-
bution between the two variables p,.(%,j) can be estimated
by counting the occurrences:

_ Sl =inz =]

pyZ(Z7.]) - T 9 (5)

where ¢ denotes the ¢-th phoneme class and j denotes the j-th
k-means label class. The marginal probabilities are computed
as p.(j) = >, py=(i,7) and p,(j) = ijyz(iaj)-

For each phone class i, we further compute the most likely
target label as:

Z*(Z) = argm].a‘xpyz(i>j)- (6)

Likewise, for each k-means class j, we compute the most
likely phone label as:

y* (]) = arg m?'Xpyz (Z,j) @)

Three metrics are considered:
1) phone purity (Phn Pur.):

Ep. iy [py=(v™(5) | 7)), (8)

where py.(i | j) = py=(4,7)/p-(j) denotes the condi-
tional probability of phone given a k-means label. This
metric measures the average phone purity within one
class, which can be interpreted as the frame-level phone
accuracy if we transcribe each k-means class with its

3https://github.com/facebook/Ax

most likely phone label. When comparing different sets
of target labels with the same number of units, higher
purity indicates better quality. However, this metric is
less meaningful when comparing two sets with different
numbers of units: in the extreme case where each frame
is assigned a unique target label, the phone purity would
be 100%.
2) cluster purity (Cls Pur.):

Ep, i) P21y (2 (0) | )], )

where p.,(j | i) = py-(4,7)/py(i) denotes the condi-
tional probability of a k-means label given phone label.
Cluster purity is the counterpart of phone purity, whose
value would typically decrease when the number of units
increases. When comparing target labels with the same
number of units, higher cluster purity also indicates a
better quality, as frames of the same phone are more likely
labeled as the same k-means label class.
3) phone-normalized mutual information (PNMI):

5 5, Py i ) log Luzed)

I(y; 2) py(0)p=(J)

H(y) S 1y () 108 0y (1) {10
_ H(y) ;I(I;’)(y | 2) (11
—1- W (12)

PNMI is an information-theoretic metric that measures
the percentage of uncertainty about the phone label y
eliminated after observing the k-means label z. Higher
PNMI also indicates better k-means clustering quality.

V. RESULTS
A. Main Results: Low- and High-Resource Setups

Table [[I] presents results for the low-resource setup, where
pre-trained models are fine-tuned on 10 minutes, 1 hour, 10
hours, or 100 hours of labeled data. We include comparison
with semi-supervised (iterative pseudo labeling (IPL) [12],
slimIPL. [54]], noisy student [61]]) and self-supervised ap-
proaches (DeCoAR 2.0 [50], DiscreteBERT [51], wav2vec
2.0 [6]) in the literature. Increasing the amount of unlabeled
data and increasing the model size improve performance,
demonstrating the scalability of the proposed HuBERT self-
supervised pre-training method. In the ultra-low resource setup
with just 10 minutes of labeled data, the HuBERT LARGE
model can achieve a WER of 4.7% on the test-clean set
and 7.6% on the test-other set, which is 0.1% and 0.6%
WER lower, respectively than the state-of-the-art wav2vec 2.0
LARGE model. By further scaling up the model size to 1B
parameters, the HUIBERT X-LARGE model can further reduce
the WER to 4.6% and 6.8% on test-clean and test-other. The
superiority of HuBERT persists across setups with different
amounts of labeled data, with the only exceptions being fine-
tuning on 100 hours of labeled data, where HUBERT LARGE
is 0.1% WER higher than wav2vec 2.0 LARGE on test-clean,
and HuBERT BASE is 0.1% WER higher than wav2vec 2.0


https://github.com/facebook/Ax

Model Unlabeled Data LM dev-clean  dev-other test-clean  test-other
10-min labeled
DiscreteBERT [51] LS-960 4-gram 15.7 24.1 16.3 25.2
wav2vec 2.0 BASE [6] LS-960 4-gram 8.9 15.7 9.1 15.6
wav2vec 2.0 LARGE [6] LL-60k 4-gram 6.3 9.8 6.6 10.3
wav2vec 2.0 LARGE [6] LL-60k Transformer 4.6 7.9 4.8 8.2
HUBERT BASE LS-960 4-gram 9.1 15.0 9.7 15.3
HUBERT LARGE LL-60k 4-gram 6.1 94 6.6 10.1
HUBERT LARGE LL-60k Transformer 4.3 7.0 4.7 7.6
HUBERT X-LARGE LL-60k Transformer 4.4 6.1 4.6 6.8
1-hour labeled
DeCoAR 2.0 [50] LS-960 4-gram - - 13.8 29.1
DiscreteBERT [51] LS-960 4-gram 8.5 16.4 9.0 17.6
wav2vec 2.0 BASE [6] LS-960 4-gram 5.0 10.8 5.5 11.3
wav2vec 2.0 LARGE [6] LL-60k Transformer 2.9 5.4 2.9 5.8
HUBERT BASE LS-960 4-gram 5.6 10.9 6.1 11.3
HUBERT LARGE LL-60k Transformer 2.6 4.9 2.9 54
HUBERT X-LARGE LL-60k Transformer 2.6 4.2 2.8 4.8
10-hour labeled
SlimIPL [54] LS-960 4-gram + Transformer 5.3 7.9 5.5 9.0
DeCoAR 2.0 [50] LS-960 4-gram - - 54 13.3
DiscreteBERT [51] LS-960 4-gram 53 13.2 59 14.1
wav2vec 2.0 BASE [6] LS-960 4-gram 3.8 9.1 4.3 9.5
wav2vec 2.0 LARGE [6] LL-60k Transformer 2.4 4.8 2.6 49
HUBERT BASE LS-960 4-gram 3.9 9.0 43 9.4
HUBERT LARGE LL-60k Transformer 2.2 4.3 24 4.6
HUBERT X-LARGE LL-60k Transformer 2.1 3.6 2.3 4.0
100-hour labeled
IPL [12] LL-60k 4-gram + Transformer 3.19 6.14 3.72 7.11
SlimIPL [54] LS-860 4-gram + Transformer 2.2 4.6 2.7 5.2
Noisy Student [[61] LS-860 LSTM 3.9 8.8 4.2 8.6
DeCoAR 2.0 [50] LS-960 4-gram - - 5.0 12.1
DiscreteBERT [51] LS-960 4-gram 4.0 10.9 4.5 12.1
wav2vec 2.0 BASE [6] LS-960 4-gram 2.7 7.9 34 8.0
wav2vec 2.0 LARGE [6] LL-60k Transformer 1.9 4.0 2.0 4.0
HUBERT BASE LS-960 4-gram 2.7 7.8 34 8.1
HUBERT LARGE LL-60k Transformer 1.8 3.7 2.1 3.9
HUBERT X-LARGE LL-60k Transformer 1.7 3.0 1.9 3.5

TABLE II: Results and comparison with the literature on low resource setups (10-min, 1-hour, 10-hour, and 100-hour of labeled

data).

BASE on test-other. In addition, HuBERT also outperforms
DiscreteBERT by a large margin in all setups, while both are
trained with a virtually identical objective - masked predic-
tion of discovered units. The considerable performance gap
suggests two things. First, using waveform as the input to
the model is crucial for avoiding loss of information during
quantization. Second, while vg-wav2vec [5], the units that
DiscreteBERT uses for training, may discover better units than
k-means clustering of MFCC features, the proposed iterative
refinement benefits from the improving HuBERT model and
learn better units eventually. We will verify these statements
in the ablation study sections.

We report results of fine-tuning HuBERT models on the full
960 hours of Librispeech data and compare with the literature
in Table[MI] Prior studies using additional unpaired speech are
classified into:

1) self-training: first train an ASR on labeled data to anno-
tate unlabeled speech, and then combine both golden and
ASR-annotated text-speech pairs for supervised training.

2) pre-training: first use unlabeled speech for pre-training a

model, and then fine-tune the model on labeled data with
a supervised training objective.

3) pre-training + self-training: first pre-train and fine-tune a
model, and then use it to annotate unlabeled speech for
self-training combined with supervised data.

HuBERT outperforms the state-of-the-art supervised and self-
training methods and is on par with the two best pre-training
results in the literature; both are based on wav2vec 2.0 con-
trastive learning. In contrast, it lags behind methods combining
pre-training with self-training. However, as observed in [63]
and [40], we expect that HuBERT can achieve comparable or
better performance after combining with self-training, since
the pre-trained HUuBERT model is on par or better than the
pre-trained model those two methods use for pseudo labeling.

B. Analysis: K-Means Stability

To better understand why masked prediction of discovered
units is effective, we conduct a series of analyses and ablation
studies. We start with probing the stability of the k-means clus-
tering algorithm concerning different numbers of clusters and



Model Unlabeled Data LM dev-clean  dev-other  test-clean  test-other
Superivsed

Conformer L [62] - LSTM - - 1.9 3.9
Self-Training

IPL [12] LL-60k 4-gram + Transformer 1.85 3.26 2.10 4.01

Noisy Student [61] LV-60k LSTM 1.6 34 1.7 34
Pre-Training

wav2vec 2.0 LARGE [6] LL-60k Transformer 1.6 3.0 1.8 3.3

pre-trained Conformer XXL [40] LL-60k LSTM 1.5 3.0 1.5 3.1

Pre-Training + Self-Training
wav2vec 2.0 + self-training [63]] LL-60k Transformer 1.1 2.7 1.5 3.1
pre-trained Conformer XXL + Noisy Student [40]] LL-60k LSTM 1.3 2.6 1.4 2.6
This work (Pre-Training)
HUBERT LARGE LL-60k Transformer 1.5 3.0 1.9 33
HUBERT X-LARGE LL-60k Transformer 1.5 2.5 1.8 2.9

TABLE III: Comparison with the literature on high resource setups using all 960 hours of labeled LibriSpeech data.

different sizes of its training data. Two features are considered:
39-dimensional MFCC features and 768-dimensional output
from the 6-th transformer layer of the first iteration HuBERT-
BASE model. These two features are used to produce cluster
assignments for the first and the second iteration HUBERT
training, respectively.

For k-means clustering, we consider K = {100,500}
clusters fitted on {1, 10, 100} hours of speech sampled
from the LibriSpeech training split. Each combination of the
hyperparameters and the features are trained for 10 trials,
and the mean and standard deviation of the supervised PNMI
metric on the development set (combining dev-clean and dev-
other from LibriSpeech) is reported in Table The results
show that the k-means clustering is reasonably stable given the
small standard deviations across different hyperparameters and
features. Furthermore, increasing the amount of data used for
fitting k-means models improves PNMI in general, but the gain
is only as much as 0.012, suggesting the feasibility of using
k-means for unit discovery even with limited CPU memory
relative to the feature matrix size. Lastly, the PNMI score
is much higher when clustering on HuBERT features than
clustering on MFCC features, and the gap is even larger with
500 clusters, indicating that iterative refinement significantly
improves the clustering quality.

PNMI (mean =+ std) with K-means Training Size =

feature € ‘ ih 10h 100h
MFce 100 | 025140001 0253+ 0001 0253 % 0001
500 | 0283 +0.001 0285+ 0000 0287 + 0.001
BaseiilLe 100 [ 056340012 0561 %0012 0575 + 0.008
500 | 0.680 + 0.005 0.684 + 0.003  0.686 + 0.004

TABLE IV: Stability of K-means as an unsupervised unit
discovery algorithm with respect to different features, numbers
of clusters, and training data sizes. PNMI stands for phone-
normalized mutual information.

C. Analysis: Clustering Quality Across Layers and Iterations

We next study how each layer of the HuBERT model from
each iteration performs when used for clustering to generate

0.4 T T T T S — — I I I I m
—F— C=100, BASE-itl —&— C=500, BASE-itl —&— C=1000, BASE-itl
—— C=100, BASE-it2 —&— C=500, BASE-it2 —&— C=1000, BASE-it2

0.3

0.2

Cluster Purity (%)

0.1

0

0.7
0.6
0.5
0.4+

Phone Purity (%)

0.7
0.6
0.5
0.4}

PNMI (%)

Fig. 2: Quality of the cluster assignments obtained by running
k-means clustering on features extracted from each transformer
layer of the first and the second iteration BASE HuBERT
models.

training targets. The two BASE HuBERT models from the first
two iterations as described in Section [[V-C| are considered,
which are referred to as BASE-it] and BASE-it2, respectively.
There are 26 features representing 12 transformer layers plus
the input to the first transformer layer (denoted as “Layer 0”)
from the two HuBERT models. For each feature, we fit three k-
means models (K = {100, 500, 1000} clusters) on a 100 hour
subset randomly sampled from the LibriSpeech training data.



dev-other WER (%)
teacher C PNMI a=10 a=05 a=00 teacher WER
Chenone (supervised top-line) 8976 ‘ 0.809 ‘ 10.38 9.16 9.79 K-means {50,100} 17.81
K-means {50,100,500} 17.56
50 0.227 18.68 31.07 94.60
K-means on MECC 100 | 0243 | 17.86 29.57 96.37 Product K-means-0-100 19.26
500 | 0.276 18.40 33.42 97.66 Product K-means-1-100 17.64
Product K-means-2-100 18.46
K-means on BASE-itl-layer6 500 0.637 1191 13.47 23.29 Product K-means-{0,1,2}-100  16.73
K-means on BASE-it2-layer9 500 0.704 10.75 11.59 13.79

TABLE V: The effect of the training objective and clustering quality on performance.
C refers to the number of units, and « is the weight for masked frames.

The teacher quality measured in cluster purity, phone purity,
and phone normalized mutual information (PNMI) is shown
in Figure E} As a baseline, MFCC achieves (cluster purity,
phone purity, PNMI) = (0.099, 0.335, 0.255) for K = 100
and (0.031, 0.356, 0.287) for K = 500.

Both BASE-itl and BASE-it2 features result in significantly
better clustering quality on all three metrics than MFCC with
the same number of clusters. On the other hand, the best
BASE-it2 feature is better than the best BASE-itl on phone
purity and PNMI, but slightly worse on cluster purity. Finally,
we observe different trends across layers from BASE-itl and
BASE-it2: while BASE-it2 model features generally improve
over layers, BASE-it]l has the best features in the middle
layers around the 6th layer. Interestingly, the quality of the
last few layers degrades dramatically for BASE-itl, potentially
because it is trained on target assignments of worse quality,
and therefore the last few layers learn to mimic their bad label
behavior.

D. Ablation: The Importance of Predicting Masked Frames

We present a series of ablation studies in the following
sections to learn how pre-training objective, cluster quality,
and hyperparameters affect the performance. The models for
ablation studies are pre-trained for 100k steps and fine-tuned
on the 10-hour libri-light split using fixed hyperaprameters.
MFCC-based k-means units with C=100 are used if not
otherwise mentioned. We report WERs on the dev-other set
decoded with the n-gram language model using fixed decoding
hyperparameters.

To understand the importance of our proposal to predict the
masked frames only, we compare three conditions: 1) predict-
ing masked frames, 2) predicting all frames, and 3) predicting
unmasked frames, which can be simulated by setting « to 1.0,
0.5, and 0.0, respectively. We are comparing three k-means
models learned from clustering MFCC teachers with 50, 100,
500 clusters, one learned from clustering HuBERT-BASE-itl]
6th transformer layer features, and supervised labels obtained
from the forced-alignment of character-based HMM models
(chenone) [64].

Results shown in Table [V] indicate that when learning from
bad cluster assignments, computing loss only from the masked
regions achieves the best performance, while the inclusion of
unmasked loss results in significantly higher WERs. However,
as the clustering quality improves, the model would suffer
less when computing losses on the unmasked frames (BASE-

TABLE VI: Cluster ensembles with
k-means and product k-means.

itl-layer6) or even achieve better performance as the case of
chenone.

E. Ablation: The Effect of Cluster Ensembles

To understand the effect of combining multiple k-means
models for generating targets, we consider two setups. The
first one has k-means models of different numbers of clusters
presented in Table denoted with KM-{50,100,500}. The
second one has k-means models trained on spliced MFCC
features with a window of three; hence, each input feature
is represented as a 117-dimensional vector. In this second
case, we apply product quantization on the spliced features,
where dimensions are split into the coefficients of the zeroth,
first, and second-order derivatives, with each 39-dimensional
subspace quantized to a codebook of 100 entries. We denote
these codebooks with Product k-means-{0,1,2}-100, respec-
tively. By comparing the results from Table [V| and Table
it is clear that using an ensemble leads to better performance
than what a single k-means clustering can achieve.

FE. Ablation: Impact of Hyperparameters

Figure 3] and Table studies how hyperparameters affect
HuBERT pre-training. It is shown that (1) the portion of frames
selected as mask start is optimal at p =8%; (2) increasing
the batch size can significantly improve the performance;
(3) training for longer consistently helps for both k-means
models with C={50, 100}, and the best model achieves a WER
of 11.68%. These findings are also consistent with those from
BERT-like models [20]. In addition, we include a comparable
result from DiscreteBERT [51]] in Table which applies k-
means to quantize the same MFCC features into 13.5k units,
used as both the output and the inpur to the BERT model.
Besides using continuous speech input rather than discrete
units, We hypothesize that HuBERT achieves significantly
better performance because its fewer k-means clusters of 100
or 500 help capture broad phonetic concepts without delving
into inter/intra-speaker variation.

VI. CONCLUSION

This paper presents HuBERT, a speech representation learn-
ing approach that relies on predicting K-means cluster assign-
ments of masked segments of continuous input. On both the
Librispeech 960 hours and the 60,000 hours Libri-light pre-
training setups, HUBERT matches or outperforms the state-
of-the-art systems over all fine-tuning subsets of 10mins, 1h,



teacher C dev-other WER (%)
steps=100k 250k 400k 800k
Kemean 50 18.68 13.65 1240 11.82
-means 00 17.86 1297 1232 11.68
[510 13.5k | 26.6

TABLE VII: Varying the number of HUBERT pre-training
steps. p is set to 6.5%.

S S 40 ! [
N— N
= 20 o 30 .
M 18 M o20 | .
= 16 - \ L . = \ \
2 45 6.5 8 9 8 16 32
p #GPUs

Fig. 3: Varying masking probability p (left) and effective batch
size through the number of GPUs (right).

10h, 100h, and 960h. Furthermore, the learned representation
quality improves dramatically with iteratively refining K-
means cluster assignments using learned latent representations
for a previous iteration. Finally, HuBERT scales well to a
1B transformer model showing a relative reduction in WER
of up to 13% on the test-other subset. For future work, we
plan to improve the HuBERT training procedure to consist
of a single phase. Furthermore, given the high quality of
its representations, we will consider using HuBERT pre-
trained representations for multiple downstream recognition
and generation tasks beyond ASR.

[1]
[2]

[3]

[5]

[6]

[7

—

[8]
[9

—

[10]

(11]

[12]

[13]

REFERENCES

A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.
S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” arXiv preprint
arXiv:1904.05862, 2019.

E. Kharitonov, M. Riviere, G. Synnaeve, L. Wolf, P.-E. Mazaré,
M. Douze, and E. Dupoux, “Data augmenting contrastive learn-
ing of speech representations in the time domain,” arXiv preprint
arXiv:2007.00991, 2020.

Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsupervised
autoregressive model for speech representation learning,” arXiv preprint
arXiv:1904.03240, 2019.

A. Baevski, S. Schneider, and M. Auli, “vg-wav2vec: Self-
supervised learning of discrete speech representations,” arXiv preprint
arXiv:1910.05453, 2019.

A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” arXiv
preprint arXiv:2006.11477, 2020.

G. Zavaliagkos and T. Colthurst, “Utilizing untranscribed training data
to improve performance,” in DARPA Broadcast News Transcription and
Understanding Workshop, 1998.

J. Ma, S. Matsoukas, O. Kimball, and R. Schwartz, “Unsupervised
training on large amounts of broadcast news data,” in /CASSP, 2006.
J. Kahn, A. Lee, and A. Hannun, “Self-training for end-to-end speech
recognition,” in ICASSP, 2020.

W.-N. Hsu, A. Lee, G. Synnaeve, and A. Hannun, “Semi-
supervised speech recognition via local prior matching,” arXiv preprint
arXiv:2002.10336, 2020.

A. Xiao, C. Fuegen, and A. Mohamed, “Contrastive semi-supervised
learning for asr,” arXiv preprint arXiv:2103.05149, 2021.

Q. Xu, T. Likhomanenko, J. Kahn, A. Hannun, G. Synnaeve, and
R. Collobert, “Iterative pseudo-labeling for speech recognition,” arXiv
preprint arXiv:2005.09267, 2020.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” CoRR, vol. abs/2006.09882, 2020.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]
(27]

(28]

[29]
(30]

(31]

[34]

[35]

[36]

[37]
(38]

[39]

X. Chen and K. He, “Exploring simple siamese representation learning,”
CoRR, vol. abs/2011.10566, 2020.

J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own
latent: A new approach to self-supervised learning,” CoRR, vol.
abs/2006.07733, 2020.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” CoRR, vol.
abs/2005.14165, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” arXiv preprint arXiv:1910.13461, 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” arXiv
preprint arXiv:2003.10555, 2020.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in NAACL,
2018.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in ECCV, 2018.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in ICASSP, 2015.

J. Kahn et al., “Libri-light: A benchmark for asr with limited or no
supervision,” in ICASSP, 2020.

C.-y. Lee and J. Glass, “A nonparametric bayesian approach to acoustic
model discovery,” in ACL, 2012.

L. Ondel, L. Burget, and J. Cernocky, “Variational inference for acoustic
unit discovery,” Procedia Computer Science, vol. 81, pp. 80-86, 2016.
J. Ebbers, J. Heymann, L. Drude, T. Glarner, R. Haeb-Umbach, and
B. Raj, “Hidden markov model variational autoencoder for acoustic unit
discovery.” in INTERSPEECH, 2017.

W.-N. Hsu, Y. Zhang, and J. Glass, “Learning latent representations for
speech generation and transformation,” in INTERSPEECH, 2017.
——, “Unsupervised learning of disentangled and interpretable repre-
sentations from sequential data,” in NeurIPS, 2017.

J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord, “Unsu-
pervised speech representation learning using wavenet autoencoders,”
IEEE/ACM transactions on audio, speech, and language processing,
vol. 27, no. 12, pp. 2041-2053, 2019.

S. Khurana, S. R. Joty, A. Ali, and J. Glass, “A factorial deep
markov model for unsupervised disentangled representation learning
from speech,” in ICASSP, 2019.

S. Khurana, A. Laurent, W.-N. Hsu, J. Chorowski, A. Lancucki,
R. Marxer, and J. Glass, “A convolutional deep markov model
for unsupervised speech representation learning,” arXiv preprint
arXiv:2006.02547, 2020.

M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy,
“Spanbert: Improving pre-training by representing and predicting spans,”
Transactions of the Association for Computational Linguistics, 2020.
S. Young, “Large vocabulary continuous speech recognition: A review,”
IEEE Signal Processing Magazine, vol. 13, no. 5, pp. 45-57, 1996.

O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” in 2012 IEEFE international conference on Acous-
tics, speech and signal processing (ICASSP). 1EEE, 2012, pp. 4277-
4280.

D. Povey, “Discriminative training for large vocabulary speech recogni-
tion,” Ph.D. dissertation, University of Cambridge, 2005.

H. A. Bourlard and N. Morgan, Connectionist speech recognition: a
hybrid approach. Springer Science & Business Media, 2012, vol. 247.
R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, vol. 44, no. 6, pp. 2325-2383, 1998.



[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]
(571
[58]
[59]
[60]

[61]

[62]

[63]

[64]

Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V. Le,
and Y. Wu, “Pushing the limits of semi-supervised learning for automatic
speech recognition,” arXiv preprint arXiv:2010.10504, 2020.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in /ICML, 2006.

A. van den Oord, O. Vinyals et al., “Neural discrete representation
learning,” in NeurIPS, 2017.

T. Glarner, P. Hanebrink, J. Ebbers, and R. Haeb-Umbach, “Full bayesian
hidden markov model variational autoencoder for acoustic unit discov-
ery.” in INTERSPEECH, 2018.

Y.-A. Chung and J. Glass, “Generative pre-training for speech with
autoregressive predictive coding,” in ICASSP, 2020.

——, “Improved speech representations with multi-target autoregressive
predictive coding,” arXiv preprint arXiv:2004.05274, 2020.

S. Ling, Y. Liu, J. Salazar, and K. Kirchhoff, “Deep contextualized
acoustic representations for semi-supervised speech recognition,” in
ICASSP, 2020.

W. Wang, Q. Tang, and K. Livescu, “Unsupervised pre-training of
bidirectional speech encoders via masked reconstruction,” in /CASSP,
2020.

A. T. Liu, S.-w. Yang, P.-H. Chi, P.-c. Hsu, and H.-y. Lee, “Mockingjay:
Unsupervised speech representation learning with deep bidirectional
transformer encoders,” in ICASSP, 2020.

P-H. Chi, P-H. Chung, T.-H. Wu, C.-C. Hsieh, S.-W. Li, and H.-y.
Lee, “Audio albert: A lite bert for self-supervised learning of audio
representation,” arXiv preprint arXiv:2005.08575, 2020.

S. Ling and Y. Liu, “Decoar 2.0: Deep contextualized acoustic repre-
sentations with vector quantization,” arXiv preprint arXiv:2012.06659,
2020.

A. Baevski, M. Auli, and A. Mohamed, “Effectiveness of self-supervised
pre-training for speech recognition,” arXiv preprint arXiv:1911.03912,
2019.

Y.-H. H. Tsai, Y. Wu, R. Salakhutdinov, and L.-P. Morency, “Self-
supervised learning from a multi-view perspective,” arXiv preprint
arXiv:2006.05576, 2020.

S. Pascual, M. Ravanelli, J. Serra, A. Bonafonte, and Y. Bengio,
“Learning problem-agnostic speech representations from multiple self-
supervised tasks,” in INTERSPEECH, 2019.

T. Likhomanenko, Q. Xu, J. Kahn, G. Synnaeve, and R. Collobert,
“slimipl: Language-model-free iterative pseudo-labeling,” arXiv preprint
arXiv:2010.11524, 2020.

S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129-137, 1982.

F. Pedregosa et al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, 2011.

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., 2006.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

V. Pratap et al., “wav2letter++: The fastest open-source speech recog-
nition system,” arXiv preprint arXiv:1812.07625, 2018.

M. Ott et al., “fairseq: A fast, extensible toolkit for sequence modeling,”
in NAACL, 2019.

D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and Q. V.
Le, “Improved noisy student training for automatic speech recognition,”
arXiv preprint arXiv:2005.09629, 2020.

A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” arXiv preprint arXiv:2005.08100,
2020.

Q. Xu, A. Baevski, T. Likhomanenko, P. Tomasello, A. Conneau,
R. Collobert, G. Synnaeve, and M. Auli, “Self-training and pre-
training are complementary for speech recognition,” arXiv preprint
arXiv:2010.11430, 2020.

D. Le, X. Zhang, W. Zheng, C. Fiigen, G. Zweig, and M. L. Seltzer,
“From senones to chenones: Tied context-dependent graphemes for
hybrid speech recognition,” in ASRU, 2019.



	I Introduction
	II Method
	II-A Learning the Hidden Units for HuBERT
	II-B Representation Learning via Masked Prediction
	II-C Learning with Cluster Ensembles
	II-D Iterative Refinement of Cluster Assignments
	II-E Implementation

	III Related Work
	IV Experimental Details
	IV-A Data
	IV-B Unsupervised Unit Discovery
	IV-C Pre-Training
	IV-D Supervised Fine-Tuning and Decoding
	IV-E Metrics of Target Quality

	V Results
	V-A Main Results: Low- and High-Resource Setups
	V-B Analysis: K-Means Stability
	V-C Analysis: Clustering Quality Across Layers and Iterations
	V-D Ablation: The Importance of Predicting Masked Frames
	V-E Ablation: The Effect of Cluster Ensembles
	V-F Ablation: Impact of Hyperparameters

	VI Conclusion
	References

