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Abstract

Adversarial examples are vital to expose
the vulnerability of machine learning mod-
els. Despite the success of the most popular
substitution-based methods which substitutes
some characters or words in the original ex-
amples, only substitution is insufficient to un-
cover all robustness issues of models. In this
paper, we present AdvExpander, a method
that crafts new adversarial examples by ex-
panding text, which is complementary to pre-
vious substitution-based methods. We first uti-
lize linguistic rules to determine which con-
stituents to expand and what types of modi-
fiers to expand with. We then expand each
constituent by inserting an adversarial modi-
fier searched from a CVAE-based generative
model which is pre-trained on a large scale
corpus. To search adversarial modifiers, we
directly search adversarial latent codes in the
latent space without tuning the pre-trained pa-
rameters. To ensure that our adversarial exam-
ples are label-preserving for text matching, we
also constrain the modifications with a heuris-
tic rule. Experiments on three classification
tasks verify the effectiveness of AdvExpander
and the validity of our adversarial examples.
AdvExpander crafts a new type of adversarial
examples by text expansion, thereby promis-
ing to reveal new robustness issues.

1 Introduction

Adversarial examples are deliberately crafted from
original examples to fool machine learning models,
which can help (1) reveal systematic biases of data
(Zhang et al., 2019b; Gardner et al., 2020), (2) iden-
tify pathological inductive biases of models (Feng
et al., 2018) (e.g., adopting shallow heuristics (Mc-
Coy et al., 2019) which are not robust and unlikely
to generalize beyond training data), (3) regularize
parameter learning (Minervini and Riedel, 2018),

*Corresponding author: Minlie Huang.

Matched Case Example
Paraphrase (0.754) V' — Non-paraphrase (0.731) X

‘What are some mind-blowing vehicle accessories that exist
that most people don't know about?

Substitution

Sentence 1

Sentence 2 ‘What are some mind-blowing [vehicle — automobile] accessories

that exist that most people don't know about?
AdvExpander  Paraphrase (0.754) V' — Non-paraphrase (0.707) X

Sentence 1

‘What are some mind-blowing vehicles tools that exist

that most people whom I interviewed don't know about?
Sentence 2 What are some mind-blowing vehicle accessories that exist

that most people whom I interviewed don't know about?

Unmatched Case Example
Non-paraphrase (0.991) v — Paraphrase (0.675) X

What's the best way to send mass emails?

Substitution

Sentence 1
Sentence 2 How can I send mass [emails — emailed] without being aggravating?
AdvExpander  Non-paraphrase (0.991) v’ — Paraphrase (0.758) X

Sentence 1

What's the best way to send mass emails despite higher fees?

Sentence 2 How can I send mass emails without being aggravating?

Figure 1: Adversarial samples on Quora Question Pairs,
crafted against BERT by a substitution-based attack
method and the insertion-based AdvExpander. [A —
B] means substituting word A with word B. The under-
lined expressions are adversarial modifiers inserted to
expand the target constituents in bold.

(4) and evaluate stability (Cheng et al., 2019) or
security level of models in practical use.

The most prevalent and effective practice of
crafting natural language adversarial examples for
classification is to flip characters (Ebrahimi et al.,
2018) or substitute words with their typos (Gao
etal., 2018; Liang et al., 2018), synonyms (Paper-
not et al., 2016; Alzantot et al., 2018; Ren et al.,
2019; Jin et al., 2019) or other context-compatible
words (Zhang et al., 2019a), while reusing the la-
bels of the original examples as long as perturba-
tions are few enough. However, these adversarial
attacks limit the search space to the neighborhood
of the original text and introduce only small lexical
variation, which may not be able to uncover all
robustness issues of models.

In this work, we present AdvExpander, which

crafts new adversarial examples for classification
by expanding text under the black-box setting.



Specifically, we first use linguistic rules to iden-
tify constituents that are safe to expand without
leading to an ill-formed text structure. We then
expand each constituent by inserting an adversarial
modifier which is searched from a CVAE-based
(Conditional Variational Auto-Encoder (Sohn et al.,
2015)) generative model pre-trained on the Bil-
lion Word Benchmark (Chelba et al., 2014). We
search adversarial modifiers using REINFORCE
(Williams, 1992). However, we avoid tuning pre-
trained parameters as it can easily sacrifice gram-
maticality; instead, we additionally introduce a
lightweight feed-forward network to search adver-
saries in the latent space. To make AdvExpander
applicable to text matching (e.g., natural language
inference and paraphrase identification) besides
text classification (e.g., sentiment classification),
we design a heuristic rule to ensure modifications
are label-preserving: for matched cases (e.g., en-
tailment pairs in natural language inference and
paraphrase pairs in paraphrase identification), we
only expand shared constituents in both texts with
the same modifiers (see the matched case in Fig 1).

We characterize AdvExpander in two aspects.
First, AdvExpander differs from the aforemen-
tioned substitution-based attacks considerably. As
the semantics of modifiers is far less restricted, and
the expressions can be much more diverse than
lexical substitutes, AdvExpander has larger search
space and can introduce more linguistic variations
besides lexical variation, e.g., syntactic variation
and semantic variation. Take the marched case in
Fig 1 for example. For most existing substitution-
based attack methods, the candidate substitutes of
“vehicle” are restricted to its synonyms, e.g., “au-
tomobile”, “car”. By contrast, for AdvExpander,
there exist many reasonable modifiers of different
types for “most people”, e.g., clauses like “whom
I interviewed”, and prepositional phrases like “in
the neighborhood”. Therefore, AdvExpander is
promising to measure the generalization ability of
models. Second, as AdvExpander and substitution-
based attacks adopt different types of manipula-
tions (ours is based on insertion) and search ad-
versarial examples in different search spaces, they
complement each other and can be combined to
boost attack performance.

We applied AdvExpander to attack three state-of-
the-art models (including RE2 (Yang et al., 2019),
BERT (Devlin et al., 2019), and WCNN (Kim,
2014)) and two models with certified robustness

to adversarial word substitutions (Jia et al., 2019)
(including bag-of-words and CNN) on SNLI (Bow-
man et al., 2015), Quora Question Pairs!, and
IMDB? which are commonly used datasets for nat-
ural language inference, paraphrase identification,
and text classification respectively. We success-
fully reduce the accuracy of all target models to
significantly below-chance level. Furthermore, the
validity of our adversarial examples is verified by
human evaluation.

Our contributions are summarized as follows: (1)
We propose AdvExpander, which generates new
adversarial examples by expanding constituents in
texts with modifiers. This method is able to in-
troduce rich linguistic variations and differs sub-
stantially from existing substitution-based meth-
ods; (2) On three classification datasets, AdvEx-
pander substantially degrades the performance of
three state-of-the-art models and two models robust
to word substitutions, while human annotators re-
main highly accurate on such adversarial examples,
which verifies the validity of our method.

2 Related Work

Adversarial examples are of high value as they can
reveal robustness issues of very successful deep
classification models. According to how adver-
sarial examples are crafted, recent work can be
roughly divided into generation-based ones and
edit-based ones.

2.1 Generation-based Adversarial Examples

Some studies utilize rules or neural generation
methods to craft adversarial examples. (McCoy
et al., 2019) focused on natural language infer-
ence and generates an adversarial hypothesis from
a premise based on linguistic rules. Though ef-
fective, rule-based methods introduce limited vari-
ations. (Iyyer et al., 2018) introduced syntactic
variation by paraphrasing original text with syntax-
controlled network. The generated examples are
not optimized to be adversarial. (Kang et al., 2018)
utilized Generative Adversarial Nets (Goodfellow
et al., 2014) with generator generating adversar-
ial examples and discriminator being the target
model. This method is hard to balance grammati-
cality and adversary. (Zhao et al., 2018) trained an
inverter to map a text to a latent representation and

"https://data.quora.com/First-Quora-Dataset-Release-
QuestionPairs
*https://datasets.imdbws.com/



Original Text Stage 1

Determining Insertion Instructions

Target Constituent  Type of Modifier Insertion Position(s)
Text Classification

The movie is very touching .

The movie PP/Appos/CL. (1.2)
An Unmatched Case
The girl, plays the piano
[ Theginl PP/Appos/CL. (12)
L thepiano PP/Appos/CL. (1,3)
L plays the piano PP/ADVP (1,5)
The girl plays the guitar .
l———  Thegil PP/Appos/CL. 22)
the guitar PP/Appos/CL. 25)
plays the guitar PP/ADVP 25)
A Matched Case
The girl writs a song .
The girl PP/Appos/CL. 12),2.2)
asong PP/Appos/CL. (15), 2.5)

The girl ' composes a song * .

Rank Step2
Top-K Vulnerability Score

Stage 2

Beam Search

Current Instruction
(2) I=<plays the piano, PP/ADVP, (1,5)>

CVAE Pre-trained Prior

7 N <PP>
plays the piano || PP © 9
N g;’( <Pp>

Adversarial Prior

®

Current Beams Intermediate Adversarial Examples, Next Beams

<) Inherited from Step 1 Top-Z Py(Matched)
X The girl <CL.> plays the piano. X
(0) The girl plays the guitar.
® The girl <CL> plays the piano <PP;>. v
X The girl plays the guitar.
X
The girl <CL.> plays the piano. | The girl <CL.> plays the piano <PP,>. X
The girl plays the guitar. The girl plays the guitar.
The girl <CL.> plays the piano <ADVP,>. X
(©) The girl plays the guitar.
©
The girl <CL.> plays the piano <ADVP,>. X

The girl plays the guitar.

Figure 2: Workflow of AdvExpander for text classification and text matching. “(CL.)”, “(PP)”, and “(ADVP)”
denote a modifier of type CL., PP, and ADVP, respectively. Stage 1 mainly determines the insertion instructions,
i.e., which constituents to expand, what types of modifiers to expand with, and where to insert the modifiers (we
use (i, j) to indicate that the output modifier should be inserted after the j** word of the i‘* sentence). Stage 2
is to search adversarial examples via beam search; in the beginning, beams are initialized as the original example.
Each beam search step follows one instruction to search adversarial modifiers from a pre-trained CVAE. In this
figure, beam size is 1; “(CL.)” is the modifier inserted at beam search step 1; underlined modifiers (e.g., “(PP1)”)
are newly inserted modifiers at beam search step 2. If some successful adversarial example(s) is/are found after
a beam search step, AdvExpander stops the beam search and returns the successful adversarial example with the

lowest perplexity scored by GPT-2.

searched adversaries nearby with heuristic rules.
They trained the inverter on the original dataset,
which might be insufficient to learn a smooth latent
space. Also, their search strategy still has space for
improvement. AdvExpander also involves neural
generation. By contrast, we choose not to generate
a complete text but generate only modifiers which
are easier to control and thus less prone to syntactic
errors. To learn smooth latent representations of
texts, we pre-train a generative model on a large
scale corpus. To balance grammaticality, efficiency
and effectiveness when finding adversaries, we do
not optimize pre-trained parameters but addition-
ally introduce a lightweight feed-forward network
to search adversaries in the latent space.

2.2 Edit-based Adversarial Examples

Most studies craft adversarial examples by editing
the original text. Substitution is the most popular
edit type. Substitution-based attacks are to search
an optimal combination of adversarial substitutions
under constraints. Under the black-box setting, ad-
versarial attacks often involves scoring the impor-
tance of tokens (characters or words), which helps
focus attention on important ones to reduce queries
and perturbations. A common way of importance
scoring is to measure changes of target model out-

put after removing a token (Yang et al., 2018). The
optimization process can be conducted by substitut-
ing tokens (1) in word order (Papernot et al., 2016)
, (2) from important ones to less important ones
(Ren et al., 2019; Jin et al., 2019; Li et al., 2020a),
(3) with beam search (Ebrahimi et al., 2018), (4)
or with population-based methods (Alzantot et al.,
2018; Zang et al., 2020). Constraints can be gram-
maticality, semantics-preservation, or context com-
patibility (Li et al., 2020b).

Compared with substitution which mainly in-
troduces lexical variation, insertion and deletion
together are likely to introduce richer variations
but are far less popular, as they are more likely to
render an adversarial example invalid. (Wallace
et al., 2019) inserted universal triggers into text but
the inserted strings are meaningless. (Zhang et al.,
2019a) supported all three edit types but on token
level, thus limited to small perturbations. Most
relevantly, (Liang et al., 2018) inserted adversarial
phrases which were crafted manually. To the best
of our knowledge, AdvExpander is the first effi-
cient method that can automatically insert complex
expressions, i.e., modifiers of constituents.



3 Method
4 Task Definition

Suppose a classifier M maps the input text space
X to the label space ). Let X = s1s5...5y be an
input text and Y is its label. For text classification,
X is a text with N sentences and s; is the " sen-
tence. For text matching, N = 2 and < s1, 52 > is
the pair to be classified. Our goal is to craft a valid
adversarial input X4, by expanding X, so that
M(Xadv) # Y. Under the black-box setting, we
only have access to the target model’s predictions
and the confidence scores.

4.1 Overview

Our method (Fig 2) can be divided into two stages.
For convenience, we first introduce the concept
“insertion instruction”: an insertion instruction
specifies one constituent to expand and the fea-
sible type(s) of modifier to expand with. At the
first stage, we utilize linguistic rules to analyze
the feasible insertion instructions, while ensuring
that the insertions will not render the text struc-
ture ill-formed. We consider a text structure ill-
formed if it is syntactically incorrect or there ex-
ists a constituent having multiple modifiers of the
same constituency type (e.g., “The man in white
behind the door ...”). To ensure that insertions are
label-preserving for text matching, we further pro-
cess the instructions so that we only expand shared
constituents in both sentences with the same mod-
ifiers for matched cases (e.g., entailment pairs in
natural language inference and paraphrase pairs
in paraphrase identification). For computational
efficiency, we only keep the most promising in-
structions (Eq. 3).

The second stage follows these instructions to
find adversarial examples via beam search. At each
beam search step, we follow one instruction to
search adversarial modifiers in the latent space of a
pre-trained generative model. We craft an adversar-
ial example by inserting adversarial modifiers into
the original example. In the end, we measure the
perplexity of each successful adversarial example
with GPT-23 (Radford et al., 2019), and return the
top-ranking one which is expected to be the most
syntactically correct.

4.2 Stage 1: Determining Insertion
Instructions

AdvExpander expands text by adding modifiers.
We consider four types of modifiers, namely ad-
verb phrase (ADVP), prepositional phrase (PP),
appositive (Appos), and clause (CL.). For each
input sentence s;, we first obtain its constituency
structure*, and then utilize handcrafted parsing tem-
plates’ to determine which constituents to expand
and what types of modifiers to expand with. To
avoid rendering the text structure ill-formed, we
ignore those types of modifiers that the target con-
stituents already have. These analytical results are
formatted as a sequence of insertion instructions.
Each instruction [ is defined as:

I={c,t,P) M

which means a modifier of type ¢ (one of the four
types mentioned above) should be inserted into
every position within the set P to modify the tar-
get constituent c. For example, the unmatched
case in Fig 2 has three feasible insertion instruc-
tions for each sentence. One of the instructions is
I=(c="“The girl”, t="“PP/Appos./CL.”, P={(1,2)}),
where (1,2) means that the modifier should be in-
serted after the 2"! word in the 1°! sentence.

To ensure insertions are label-preserving for
text matching, we only expand shared constituents
in both texts with the exact same modifiers for
matched cases. Take the matched case in Fig 2 for
example. We only expand the shared constituents —
“The girl” and “a song” — with the exact same mod-
ifiers, but ignore the different verb phrases “writes
a song” and “composes a song”. Therefore, the
instruction associated with “The girl” has insertion
position set P={(1,2),(2,2)}.

For computational efficiency, we only retain
those instructions with top-K vulnerability score:

Z = Top-K;Score(I) 2)

Score(I) = 1= Py (Y| Xaaw) (3)

max
Xadv€EBS-step(I,{X})
where BS_step(I, {X}) (see the next section) re-
turns S adversarial examples searched in one-step
beam search which follows the instruction / and
starts from X. Py (Y| X44,) is the probability of
Y given the intermediate adversarial example X, 4,,.
For an instruction I, vulnerability score measures

*https://s3-us-west-2.amazonaws.com/allennlp/models/elmo-

3https://s3.amazonaws.com/models.huggingface.co/bert/gpt2- constituency-parser-2018.03.14.tar.gz

pytorch_model.bin

For more details, refer to supplementary material.



the vulnerability of the target constituent by inser-
tion trials. We can calculate vulnerability score for
each instruction in parallel.

4.3 Stage 2: Searching Adversarial Examples

The second stage follows the insertion instructions
in decreasing order of vulnerability score to search
adversarial examples via beam search. During
beam search, we maintain a set of intermediate
adversarial examples B. At each beam search step,
we follow one instruction I, and search adversarial
modifiers for each X4, € B from the latent space
of a CVAE-based generative model.

4.3.1 Design of Generative Model

Pg(mlc,t,2)

Figure 3: Graphical model of our CVAE-based gener-
ative model, where ¢, t, z, and m denote target con-
stituent, type of output modifier, latent variable, and
output modifier, respectively. Dashed arrows are con-
nections for the posterior distribution ¢ (z|c, t, m).

Fig 3 shows the graphical model of our gener-
ative model. Our generative model takes as input
the target constituent ¢ and the expected type of
the modifier ¢, samples the latent variable 2, and
generates the modifier m. We encode ¢ and decode
m with bi- and uni- directional RNNS, respectively.

Our generative model has two critical designs.
First, we choose CVAE instead of Sequence-to-
Sequence (Seq2Seq) model (Bahdanau et al., 2015).
This is because Seq2Seq trained with maximum
likelihood estimation mainly captures low-level
variations of expressions (Serban et al., 2017; Shao
et al., 2019), thus failing to provide rich candidates
of adversarial modifiers. Second, we generate mod-
ifiers conditioned on the target constituent instead
of the entire text. This makes the distribution of
conditions denser, which is beneficial to learn a
smoother latent space and to improve the diversity
and quality of text. This design also mitigates the
gap between pre-trained corpus and attacked cor-
pora, so that we can apply one pre-trained genera-
tive model to attack classifiers on different datasets.

4.3.2 Pre-training Generative Model

To learn a smooth latent space, we pre-trained our
generative model on the Billion Word Benchmark.
For training data, we treated each sentence in this

corpus as having been expanded, and utilize the
parsing templates used in stage 1 to extract con-
stituents and their modifiers.

The loss function £ is the sum of two terms:

LP =P 4 ort “

The first term []ft is the negative evidence lower
bound of log Pg(m|c,t) which is log likelihood
of modifier m given its type ¢ and the modified
constituent c:

Eﬁ)t =— Eyq(zle,t,m) [log Pg(m|c, t, Z)]

5
+ Drrlgazle.tom)lpo(le)) O

where pg(z|c, t) and g (z|c, t, m) are the prior and
posterior distribution of the latent variable z re-
spectively, which are isotropic Gaussian density
function. D (+) is KL divergence.

The second term E’z’t is the loss of reconstructing
t from the latent variable z, which encodes ¢ into
z so that the type of output modifier can be better
controlled (Ke et al., 2018).

L5 = —Eqg (sle.t,m) [log Po (t]2)] ©)

4.4 Beam Search

Before beam search, the set of intermediate adver-
sarial examples is initialized as By = {X}. Let I;
be the i*" promising instruction in Z according to
its vulnerability score. The i*” beam search step fo-
cuses on I; to expand X4, € B;. The next beams
B;41 is updated as follows:

1— Par(Y[Xoa)
@)

Bi+1 = TOp-ZX/

a

4o €EBiUBS_step(1;,B;)

where BS_step(I;, B;) is a beam search step; fol-
lowing I;, for each X4, € B;, it searches .S modi-
fiers from the generative model and separately in-
serts them into X4, resulting in S new intermedi-
ate adversarial examples.

A straightforward way to search adversarial mod-
ifiers is to randomly sample S latent codes from
the prior distribution and decode a modifier mq,
for each code:

Maay = argmax Pe(mlc,t,2), z ~ Pa(z|c,t) ()

As the generative model is capable of producing
arich set of diverse modifiers, this method shows
good attack performance. However, this searching
process takes no consideration of the target model.
We can further optimize the attack performance
using REINFORCE(Williams, 1992).



To avoid sacrificing grammaticality for adver-
sary, we choose not to finetune the pre-trained
parameters of our generative model but directly
search latent codes that will produce adversarial
modifiers. As the prior network of our CVAE-based
model maps an input to a space of proper but not
necessarily adversarial latent codes, we addition-
ally introduce an adversarial prior network, which
is a trainable lightweight feed-forward network that
narrows the latent space down to adversarial region
(see Stage 2 in Fig 2).

The adversarial prior network computes ad-
versarial prior distribution ¢4™(z|c,t) which is
isotropic Gaussian density function. The adversar-
ial prior network is initialized with the parameters
of the pre-trained prior network, and is finetuned
with REINFORCE. The reward is defined as:

Madw = argmax Po(mle, t,z), z ~ P& (z|e, t)

R(Z) = - log(PIW(Y‘madv — Xadv) + a)

®

where mq, is the modifier decoded from the latent
code z which is sampled from the adversarial prior
distribution, maq, — Xado 18 the intermediate adver-
sarial example crafted by inserting mgq, into Xaay
(€ B:), a is a hyperparameter. To restrict that ad-
versarial latent codes lie in the pre-trained prior dis-
tribution and produce modifiers of expected types,
we regularize the finetuning procedure with:

A =Dx1(gg" (2le,D)llpc (2le, 1)

(10)
- qud”(z\c,t) [log PG (t|2)]
Therefore, the total loss is:
ﬁadv = _Eand”(z|c,t)[R(z)} -‘r’yA (] l)

The beam search step BS_step(I;, B;), for each
Xado € Bi, minimizes £ for S steps, and returns
S new adversarial example (one example per step).
Each X,.4, € B; can be processed in parallel.

4.4.1 Finalization of Adversarial Examples

If some intermediate adversarial example X,y €
BS_step(I;, B;) fools the target model, we return the
adversarial example with the lowest perplexity:

X2 =arg min perplemity(X:ldv)
X;dUEBS,step(Iisz‘) (12)

’
M(X} ) 2Y

otherwise we continue beam search.

5 Experiments

5.1 Tasks

We evaluated AdvExpander on three datasets: (1)
SNLI: A large scale dataset for natural language in-
ference which is to judge whether a premise entails,
contradicts or is independent of a hypothesis. The
train/validation/test split is 550,152/10,000/10,000,
respectively.  (2) QQP: Quora Question Pairs
for paraphrase identification which is to iden-
tify whether two sentences are paraphrases. The
train/validation/test split is 384,348/10,000/10,000,
respectively (Wang et al., 2017). (3) IMDB: Movie
reviews for document-level two-way sentiment
classification, with 25,000/25,000 training/test in-
stances respectively.

5.2 Target Models

We attacked RE2 and BERT on both SNLI and
QQP, and attacked WCNN and BERT on IMDB.
To verify that AdvExpander crafts new adversarial
examples, we also attacked two models with cer-
tified robustness to adversarial word substitution,
i.e., RBOW and RCNN from (Jia et al., 2019).

(1) RE2: A simple but effective model which ex-
ploits rich alignment features for text matching. (2)
BERT: Bidirectional Transformer encoder which
is pre-trained on large scale corpora. We finetuned
BERT}a5euncased On the three datasets respectively.
(3) WCNN: Word-based Convolutional Neural Net-
work. (4) RBOW: A robustly trained classifier
with bag-of-words encoding. (5) RCNN: A ro-
bustly trained bag-of-words model with input word
vectors transformed by a CNN layer.

5.3 Substitution-based Attack Algorithms

To verify that we can craft new adversarial exam-
ples, we compare AdvExpander with three recently
proposed black-box substitution-based attack algo-
rithms, i.e., PWWS, BERT-Attack, and TextFooler.
The three algorithms mainly differ in their estima-
tion of word importance and the source of substi-
tutes. As the three algorithms are demonstrated to
be more effective than or comparable to many other
algorithms, they are representative.

PWWS: (Ren et al.,, 2019) crafts semantic-
preserving adversarial examples by replacing
words with their synonyms (using WordNet®) or re-
placing named entities with other similar ones. As
PWWS has no named entity substitution rules spe-

Shttps://wordnet.princeton.edu/



cialized for SNLI or QQP, we applied PWWS on
SNLI and QQP without named entity substitutions.
BERT-Attack: (Li et al., 2020b) crafts adversarial
examples by substituting (sub)words with context
compatible alternatives sampled from BERT.
TextFooler: (Jin et al., 2019) crafts semantic-
preserving adversarial examples and finds syn-
onyms with counter-fitting word embeddings
(Mrksic€ et al., 2016).

5.4 Implementation Details

Insertion budget K is 3/3/5 for SNLI/QQP/IMDB,
respectively. Search steps S is 80 and beam size
Z is 5. Thus, AdvExpander queries a target model
for no more than 240/240/400 times to craft an
adversarial example on SNLI/QQP/IMDB, respec-
tively. For detailed implementation details, ab-
lation analyses, case study, and error analysis,
refer to supplementary material.

5.5 Automatic Evaluation

Dataset SNLI QQP IMDB

Model RE2 BERT RBOW |RE2 BERT | WCNN BERT RCNN

Ori. Test 86.9 90.7 794 |88.6 913 | 90.0 920 793
Adv. 238 272 214 |33.0 442 | 109 164 6.6

Adv. Len. |354 368 327 [46.3 50.8 | 2743 290.7 268.0
Ori. Len. 238 238 237 |24.1 238 | 2450 257.1 238.0
Ori. Test (long) | 86.6 89.9 773 |950 964 | 893 879 788

Table 1: Automatic evaluation performance, including
model accuracy on the original test examples (“Ori.
Test”) and model accuracy on the corresponding ad-
versarial examples crafted by AdvExpander (“Adv.”).
“Adv. Len.” and “Ori. Len.” denote the average
length of successful adversarial examples and the cor-
responding original examples before expansion, re-
spectively. “Ori. Test (long)” denotes model accuracy
on the original test examples that are longer than the
average length of successful adversarial examples.

We evaluated AdvExpander on the entire test
sets for SNLI and QQP but on 1,000 random test
samples for IMDB, as texts in IMDB are hundreds
of words long and even the baseline PWWS is
slow. We measured model accuracy on the original
test examples and the corresponding adversarial
examples respectively (Table 1).

AdvExpander is effective in crafting adversarial
examples; it degrades the accuracy of all target
models substantially. For example, the accuracy
of BERT drops from above 90% to below 28% on
both SNLI and IMDB.

As AdvExpander crafts adversarial examples by
expanding text, we further investigate the influence
of text length on model accuracy. As shown in

Dataset SNLI QQP IMDB
Model |RE2 BERT RBOW | RE2 BERT|WCNN BERT RCNN
PS 287 363 412 |492 535 | 79 29.1 148
BA 101 128 17.6 | 303 366 | 08 121 90
TF 29 44 89 |321 381 | 04 143 100

PS+BA |55% 8.1*% 11.4* |29.6% 35.6%| 0.6* 11.0% 3.0%
PS+TF |1.6¥ 3.0%* 6.4% |31.4* 37.0%| 0.1 13.1¥ 4.1*
BA+TF |[1.5% 23* 45*% |26.6% 32.8*| 0.0 10.5% 27
Ours +PS |3.6% 5.5% 10.1*% |21.0% 29.2% | 2.9% 12.9% 2.6*
Ours + BA|1.6% 1.9% 5.6* | 15.5 22.7 | 04* 7.2 1.9
Ours +TF| 0.3 04 1.3 |164* 23.8%| 0.2 8.6 1.8

Table 2: Comparison between AdvExpander and
substitution-based attack methods. “PS”/“BA”/“TF”
denotes PWWS/BERT-Attack/TextFooler, respectively.
All numbers are model accuracy on the adversarial ex-
amples crafted by different attack methods. We also
report model accuracy under the attacks of any two
combined methods (e.g., “PS + BA”): an attack is suc-
cessful if at least one algorithm fools the target model.
Accuracy that is significantly higher than the lowest ac-
curacy (in bold) is marked with * for p-value < 0.05
according to bootstrap resampling (Koehn, 2004).

Table 1, though AdvExpander makes input texts
longer, the target models remain high accuracy on
the original test examples that are longer than the
average length of adversarial examples, indicating
that text length is not the factor why AdvExpander
is successful to fool target models.

Comparison with Substitution-based Attacks
We further investigate the relationship between Ad-
vExpander and previous substitution-based attack
algorithms (Table 2).

AdvExpander degrades model accuracy more
remarkably than PWWS in the most cases, but
less remarkably than BERT-Attack and TextFooler.
Note that we choose not to modify an example
if any insertion will render the text structure ill-
formed. When ignoring those examples we choose
not to modify, the accuracy of BERT under our at-
tacks is 6.2% on SNLI and 37.1% on QQP, respec-
tively, which is competitive with the performance
of BERT-Attack and TextFooler.

To verify that AdvExpander crafts new adver-
sarial examples compared with substitution-based
methods, we attacked RBOW and RCNN which
have certified robustness to word substitutions. Due
to robust training, the two models are even harder to
fool than some structurally more advanced models
for substitution-based attacks. However, as RBOW
and RCNN have rather simple architecture and are
only trained to be robust to word substitutions, they
are unsurprisingly easier to fool than the other mod-
els for AdvExpander. Take IMDB for example.
RCNN is significantly more accurate (10.0%) than



WCNN (0.4%) under TextFooler’s attacks, but is
much less accurate (6.6%) than WCNN (10.9%)
under our attacks. Therefore, certified robustness
to word substitutions may not indicate robustness
to insertion-based adversarial examples.

We also combined AdvExpander with a
substitution-based method to attack the target mod-
els (Table 2). Specifically, an attack is considered
successful if at least one of the two method fools
the target model. The combinatorial attacks con-
sistently boost attack performance. In the most
cases, the highest performance boost is brought by
combining AdvExpander with a substitution-based
method but not by combining two substitution-
based methods. In other words, AdvExpander can
craft adversarial examples in a way substitution-
based methods is incapable of. Thus, AdvExpander
is complementaryx to substitution-based methods
and is promising to reveal new robustness issues.

5.6 Human Evaluation

Dataset QQP IMDB
Metrics | Accuracy Grammaticality | Accuracy Naturalness
Ori. Sampled| 85.0 2.65 88.0 2.69
TF 71.5 2.45 84.0 2.57
Ours 80.0%* 2.39 84.5 2.65%

Table 3: Human evaluation of adversarial examples
against BERT, in terms of human accuracy and gram-
maticality/naturalness. “TF” denotes TextFooler. “Ori.
Sampled” shows evaluation on the corresponding orig-
inal test samples. Bootstrap resampling (Koehn, 2004)
is used as significance test between the two methods.
** marks significantly better performance for p-value ;
0.01, and * for p-value < 0.05.

To verify the validity of our adversarial exam-
ples, we conducted human evaluation (Table 3).
We randomly sampled 200 adversarial examples
against BERT on QQP and IMDB, respectively.
These samples are mixed with the corresponding
original test samples and the corresponding adver-
sarial examples crafted by TextFooler; each ex-
ample is presented to three workers on Amazon
Mechanical Turk to annotate its label and whether
it is grammatical/natural’ (3-point Likert Scale).
For each example, we aggregated human-predicted
labels with majority vote, and computed human ac-
curacy as the consistency between the aggregated
labels and the gold labels. We also computed the
average grammaticality/naturalness score.

" As IMDB reviews are informal and contain grammatical
errors, we measure naturalness on IMDB.

Human accuracy on the original examples and
our adversarial examples is close. By contrast, on
TextFooler’s adversarial examples, human accuracy
drops to 71.5% on QQP, mostly due to imperfec-
tion of synonym candidates (e.g., substituting “me-
chanical” in “mechanical engineer” with “mecha-
nised”). Therefore, our adversarial examples are
label-preserving at an acceptable level. Moreover,
the grammaticality/naturalness score of our adver-
sarial examples is close to that of the original sam-
ples, indicating that our adversarial examples are
of good quality. Overall, these results demonstrate
the validity of our adversarial examples.

5.7 Adversarial Training

We separately retrained RE2 on SNLI augmented
with 80K adversarial examples crafted on the train-
ing set by AdvExpander and TextFooler, and tested
their robustness on the original test set (Table 4).

For both TextFooler and AdvExpander, adver-
sarial training helps improve a model’s robustness
to the attack method it is trained with, and slightly
improves model accuracy on the original test set.
Notably, as the original training set is large, train-
ing models with more adversarial examples can
further improve models’ robustness.

We also observed that adversarially training RE2
with TextFooler can hardly improve accuracy under
AdvExpander’s attacks (23.8% — 24.1%), and vice
versa (2.9% — 3.1%). After augmenting the train-
ing set with both AdvExpander’s and TextFooler’s
adversarial examples (80K for each), we im-
proved model accuracy under AdvExpander’s at-
tacks (23.8% — 30.8%) and TextFooler’s attacks
(2.9% — 7.4%). This indicates that AdvExpander
can generate new adversarial examples, and can
reveal robustness issues that TextFooler fails to re-
veal. They complement each other.

Training Set | Ori. Train +TF +Ours |+ Ours & TF
Ori. Test 86.9 |87.3(+0.4)(87.0 (+0.1)| 87.2(+0.3)
TF 2.9 8.0(+5.1) | 3.1 (+0.2) | 7.4 (+4.5)
Ours 23.8 |24.1(+0.3)]30.0 (+6.2)| 30.8 (+7.0)

Table 4: Model accuracy on the original test exam-
ples (“Ori. Test”) and adversarial examples (“TF” and
“Ours”) after adversarially training RE2 on SNLI with
TextFooler (“+TF”), with AdvExpander (“+QOurs”),
or with both AdvExpander and TextFooler (“+QOurs &
TF”). “TF” stands for TextFooler. Numbers in paren-
theses are improvements over the model trained on the
original training set (“Ori. Train”).



6 Conclusion

In this paper, we present AdvExpander which gen-
erates new natural language adversarial examples
by expanding text. Extensive experiments demon-
strate the effectiveness of our algorithm and the
validity of our adversarial examples. Our adversar-
ial examples are substantially different from previ-
ous substitution-based adversarial examples, thus
promising to reveal new robustness issues.
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