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Abstract—Adapting speaker recognition systems to new en-
vironments is a widely-used technique to improve a well-
performing model learned from large-scale data towards a task-
specific small-scale data scenarios. However, previous studies
focus on single domain adaptation, which neglects a more
practical scenario where training data are collected from multiple
acoustic domains needed in forensic scenarios. Audio analysis for
forensic speaker recognition offers unique challenges in model
training with multi-domain training data due to location/scenario
uncertainty and diversity mismatch between reference and nat-
uralistic field recordings. It is also difficult to directly employ
small-scale domain-specific data to train complex neural network
architectures due to domain mismatch and performance loss.
Fine-tuning is a commonly-used method for adaptation in order
to retrain the model with weights initialized from a well-
trained model. Alternatively, in this study, three novel adaptation
methods based on domain adversarial training, discrepancy
minimization, and moment-matching approaches are proposed to
further promote adaptation performance across multiple acoustic
domains. A comprehensive set of experiments are conducted to
demonstrate that: 1) diverse acoustic environments do impact
speaker recognition performance, which could advance research
in audio forensics, 2) domain adversarial training learns the
discriminative features which are also invariant to shifts between
domains, 3) discrepancy-minimizing adaptation achieves effective
performance simultaneously across multiple acoustic domains,
and 4) moment-matching adaptation along with dynamic distri-
bution alignment also significantly promotes speaker recognition
performance on each domain, especially for the LENA-field
domain with noise compared to all other systems. Advancements
shown here in adaptation therefore helper ensure more consistent
performance for field operational data in audio forensics.

Index Terms—discrepancy loss, forensics, multi-source domain
adaptation, domain adversarial training, maximum mean dis-
crepancy, moment-matching, speaker recognition.

I. INTRODUCTION

IN general, no two speakers are identical, differing in
anatomy, physiology, and acoustically from a speech pro-

duction viewpoint. Considering human speech as a discrimi-
native biometric, speaker recognition serves as an important
tool in law enforcement, national security, and forensics in
general. The need for forensic speaker recognition arises
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when an individual contributes his/her voice as evidence,
including telephone recordings, wiretaps, audio surveillance,
or informant recordings [1]. The use of technology for forensic
speaker recognition has been considered as early as 1926 based
on speech waveform analysis [2]. It was popularized much
later in the 1970s, when it came to be known incorrectly as the
”voiceprint” [3]. Approaches to forensic speaker recognition
include spectrographic, auditory, acoustic-phonetic, and auto-
matic. Forensic speaker recognition is commonly performed
fully or partially by human expert phoneticians who generally
have backgrounds in linguistics and statistics. Full or assisted
automatic approaches are also considered as an efficient tool
for forensic speaker recognition to aid the forensic examiner
in quantifying the strength of evidence [4]–[7].

In the forensic context, speaker recognition assists inves-
tigators and legal/courtrooms (judge or jury) to identify an
unknown speaker suspected of a crime in legal proceedings.
In general, for forensic speaker recognition, a likelihood ratio
is needed to determine how likely a voice recording was
produced by a speaker of known identity (typically a suspect)
or not [2], [8].

Great progress has been made in speaker recognition in
recent decades, thus solidifying automatic speaker recognition
as a core tool in the forensic field. Previously, the segment-
level vectors that represent speech entitled i-Vectors with prob-
abilistic linear discriminant analysis (PLDA) as a backend have
dominated the text-independent speaker recognition research
field [9]. Additionally, i-Vector variants have been widely used
in multiple fields of paralinguistic speech attribute recogni-
tion [10]–[12]. With the emergence of large speaker labeled
audio datasets and growing computational resources, there
is increased interest in applying more effective approaches
including x-Vector and other neural network architectures to
speaker recognition tasks [13]–[19].

Forensic speech data as potential evidence can be ob-
tained in random naturalistic environments resulting in vari-
able data quality. Additionally, speaker-based uncertainties
such as stress, sentiment, vocal effort, and other intrinsic
speaker factors introduce unknown mismatch challenges [1].
Mismatch variability consisting of intrinsic and extrinsic char-
acteristics can degrade performance of speaker recognition.
Intrinsic speaker characteristics represent speech traits that
are dependent on the speaker vs. extrinsic characteristics that
are dependent on audio capture and environmental factors
[1]. Intrinsic properties include the speaker’s age, gender,
ethnicity, vocal effort, noise-induced Lombard effect [20],
situational stress, emotional and physical state (e.g., angry,
sad, stressed, distracted, etc.). Extrinsic properties include
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recording equipment conditions such as microphone type and
placement, background noise, room reverberation, and other
environmental scenario-based issues. Some factors, such as
noise and non-target speech, may impact system performance
by their mere presence. Variations caused by multi-faceted
acoustic scenarios pose major challenges for effective model
development to recognize a speaker in mismatched conditions.

To mitigate the impact of condition mismatch or domain
shift, domain adaptation is needed to generalize a well-trained
model learned for one acoustic domain to encompass new
domains with task-specific data. Some theoretical insights can
be drawn from the computer vision (CV) field. For example,
some domain adaptation methods [21]–[23] employ neural
networks with a Maximum Mean Discrepancy (MMD) loss
to diminish domain discrepancy; other methods introduce
novel model training schema to optimize domain alignments
such as moment matching [24], adversarial domain confusion
[25]–[27] and Generative Adversarial Network (GAN)-based
alignment [28]–[30]. Such methods have also been adopted by
the speaker adaptation community to address tasks focusing on
domain mismatch, training techniques, and new architectures.
Learning domain-invariant speaker embeddings with GAN
have been considered to mitigate the impact of language
mismatch between training and evaluation sets [31], [32]. For
example, [33], [34] proposed to adapt speaker recognition sys-
tems with MMD at both frame-level and segment-level, which
is assumed to be more robust against duration discrepancy.
New architectures optimizing with objective-targeting losses
have also been investigated to extract robust embeddings [35],
[36]. However, the domain adaptation methods noted above
mainly align the distributions of representations that may only
contain partial information for a single domain, which are not
practical in many forensic scenarios where speech samples
are typically collected from diverse naturalistic domains with
multiple mismatches containing unknown context knowledge,
thereby, requiring Multi-source domain adaptation (MSDA).
Our previous work [37] utilized the discrepancy minimization
method for cross-domain adaptation and evaluated system
performance within a closed-set using forensic data. Related
works have also been applied in the CV field recently, such
as novel cross-domain structures based on the formalism of
multi-class domain adaptation were proposed. These studies
consider the concept of minimizing the domain distance or
category shift with measures such as MMD, Moment Distance
(MD), and Multi-Class Scoring Disagreement (MCSD) [38]–
[42].

In this study, we develop three multi-source domain
adaptation approaches to learn domain-invariant information
across naturalistic environments containing extrinsic varia-
tions. These variations alter speaker identity traits, whose
instantiation variants require new learning objectives which
either coincide with or resemble widely-used methods, thus
partially underscoring their effectiveness in more practical
scenarios. To address the lack of available real naturalistic
forensic audio corpora with ground-truth speaker identity,
we introduce our CRSS-Forensic dataset for benchmarking
state-of-the-art multi-source domain adaptation methods. The
dataset includes four subsets: (i) Clean (e.g. audio recorded

with a close-talk mic and a desk-top mic), (ii) Far-field (e.g.
audio recorded with distance mics), (iii) LENA-booth (e.g.
audio recorded with a asynchronous mobile data collection
platform called LENA worn by the participant), and (iv)
LENA-field (e.g. audio recorded in public environments with
noise), where three kinds of mismatch such as distance mis-
match, channel mismatch, and noise mismatch exist among
these subsets. First, an x-Vector system is pre-trained with a
large-scale VoxCeleb dataset, followed by fine-tuning the high-
level neural network layers to learn speaker information from
the CRSS-Forensic corpus. In addition to the pre-trained x-
Vector model, we perform a multi-source domain adaptation
using two alternative methods. One is based on discrepancy
minimization to align the domain-specific distributions with
maximum mean discrepancy (MMD). The second employs
a moment-matching method to minimize the inter-domain
discrepancies and dynamically aligns the moments of em-
bedding distributions with an adversarial training strategy. In
terms of our test protocol, we evaluate the pre-trained x-
Vector system, fine-tuned system, discrepancy-minimization
adaptation system, and moment-matching system with the
Phase-1 portion of the CRSS-Forensic dataset under an open-
set framework. The main contributions of this study are as
follows,

1) we demonstrate the impact of different acoustic environ-
ments on speaker recognition system performance.

2) A set of speaker recognition adaptation approaches are
proposed to address forensic speaker recognition under
diverse acoustic environments.

3) A discussion regarding best practices on how the pro-
posed speaker recognition system could assist the ”trier
of fact” (i.e., a judge, a panel of judges, or a jury) in
making decisions regarding the origin of speech on voice
recordings of a speaker whose identity is in question.

This paper is organized as follows: Sec. II describes the
x-Vector backbone system and fine-tuning details. Sec. III
elaborates on our domain adversarial training approach. The
description of our proposed adaptation system framework
based on discrepancy minimization along with each com-
ponent are presented in Sec. IV. Sec. V elaborates on the
proposed system framework based on moment matching and
our corresponding adversarial training schema. A brief de-
scription of each system’s evaluation corpus and configurations
are also illustrated, and the dataset description is included
in Sec. VI. The effectiveness of the proposed methods is
demonstrated in Sec. VII using a performance comparison
across each sub-domain subset of the CRSS-Forensic corpus.
Finally, conclusions are summarized in Sec. VIII.

II. BACKBONE SYSTEM AND FINE-TUNING

Since the x-Vector [13] has shown competitive results when
trained on large proprietary datasets and is widely accepted as
an effective speaker recognition solution, we employ the x-
Vector system as the backbone system. Here, we pre-train an
x-Vector system with large-scale VoxCeleb data to obtain a
preliminary discriminative speaker representation, then fine-
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tune that model using audio data from the CRSS-Forensic
corpus.

A. Pre-trained System

The time-delay layer F(N,D,K) [43] forms the basic
component of the x-Vector system which computes fixed-
length speaker embeddings from variable-length acoustic seg-
ments. At each time-step, activations from the previous layer
are computed using a context width of K, and a dilation
of D. Here, N represents the output embedding dimension.
The temporal short-term context is processed by this feed-
forward time-delay architecture at the frame-level, where the
statistics pooling layer is used to aggregate over frame-level
representations to compute corresponding mean and standard
deviations as the concatenation output. At the segment-level,
additional fully-connected layers are used to operate on non-
temporal concatenated information followed by a softmax
output layer [44]. Ultimately, the goal of this architecture is
to generate speaker embeddings over the entire utterance that
hopefully will generalize well to unseen speakers within the
training set. Therefore, suppose there are S speakers with M
training samples, then the training objective is to maximize
the probability P (yS |x(M)

1:T ) for speaker S given the T input
frames x

(M)
1 , x

(M)
2 , . . . , x

(M)
T . The optimization process can

then be written as,

Θ∗ = arg max
Θ

[Ex[log pΘ(y|x)]. (1)

Here, Θ = {Wl,bl}Ll=1 denotes the trainable parameters of
the L-layer neural network, (x, y) represents the frame-level
feature of an utterance and its corresponding label.

In this study, we employ the same backend probabilistic
linear discriminant analysis (PLDA) [45] training method for
each system. Speaker embeddings are centered and dimen-
sionality reduction is accomplished using Linear Discriminant
Analysis (LDA). After LDA, scores for pairs of length-
normalized embeddings are generated using the PLDA model
and normalized with an adaptive s-norm [46]. Next, a PLDA
backend is used to compute scores for paired embeddings,
which enables a similarity metric to be trained on potentially
diverse situational datasets.

B. Fine-tuning

In general, x-Vector performance appears to be highly
sensitive to both the amount and type of training data. This
deep neural network has an extensive number of parameters,
which for our solution totals 4.4 million parameters excluding
the softmax output layer (it is not needed after training and
will of course vary across different tasks). Any forensic dataset
to be examined, in general, might not be very large in size due
to the specialty of how the forensic dataset was collected in
restricted acoustic environments. Additionally, speech samples
may include variability due to vocal effort such as whisper-to-
shout over 911 emergency calls, whereas others might include
situational stress in a field location or interview room [1], [47].
Training the x-Vector model on a small or domain-mismatched
dataset greatly affects the model’s ability to generalize, often

resulting in over-fitting, especially if the last few layers of
the network are fully connected layers. Therefore, model
adaptation with fine-tuning is indispensable in this case. More
often in practice, existing networks trained on a large dataset
such as VoxCeleb [48] would continue to be trained on a
targeted smaller task-specific dataset. Given that if the small
dataset is not drastically different in terms of context from
the original training dataset, the pre-trained model is assumed
to have already learned basic speaker-based features relevant
to a target final task. There is a common practice to truncate
the last layer (softmax layer) of the pre-trained network and
replace it with a new softmax layer consistent with speaker
labels of a new task to adapt the network. Since we expect
pre-trained weights to be quite effective compared to randomly
initialized weights, it is important not to modify them either
too quickly or too much. Thus, an initial fine-tuning learning
rate should be smaller than the one used for training from
scratch. Additionally, it is beneficial to freeze the weights of
the first few layers of the pre-trained network. Since the first
few layers capture universal acoustic features that are also
relevant to those for a new task, instead of keeping weights
intact, we encourage the network to focus on learning task-
specific features for the subsequent intermediate and high-level
layers.

III. DOMAIN ADVERSARIAL TRAINING

The commonly-used Fine-tuning method is generally effec-
tive in single-source domain adaptation, however, it cannot
address the loss in performance resulting from a domain shift.
Optimizing the classification objectives alone cannot guarantee
effective generalization to multiple domains simultaneously
without reducing the divergence between diverse distributions
for each domain. Domain adversarial training utilizes domain
information and promotes the emergence of features that are
discriminative for speaker identity and invariant with respect
to domain shift [26], [49].

We decompose a deep feed-forward architecture (see in Fig.
1) into three parts including (i) a universal feature extractor
G with the parameters θg , (ii) a speaker label classifier Cs
with the parameters θs, and a (iii) domain label classifier Cd
with parameters θd. As training progresses, the parameters θg
maximize the loss of the domain label classifier while simul-
taneously the parameters θd minimize the loss of the domain
label classifier. Additionally, the parameters θs minimize the
loss of the speaker label classifier. The multi-task softmax
cross-entropy J loss can be written as,

LossDAT =
∑N
i=1

∑Mi

j=1

(
J
(
Cs
(
G(xij)

)
, yij
)

−λJ
(
Cd
(
G(xij)

)
, dij
))
. (2)

Given N domains, here (xij , y
i, dij) represents the input data

of the j-th utterance for domain i, the corresponding speaker
label, and the domain label. Domain i has M i utterances in to-
tal. The parameters θd minimize the domain classification loss
while the parameters θs minimize the speaker classification
loss. The parameters θg minimize the speaker classification
loss and simultaneously maximize the domain classification
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loss, where the former makes the embeddings discriminative
for speaker identity and the latter encourages domain-invariant
embeddings to emerge in the course of optimization. The
parameter λ is a trade-off factor between the two losses. This
process is implemented by a gradient reversal layer (GRL)
[26]. The gradient reversal layer has no trainable parameters,
and acts as an identity transform in the forward propagation.
During the back-propagation, the GRL takes the gradient from
the subsequent level, multiplies it by −λ and passes it to the
preceding layer.
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Fig. 1: Domain adversarial training framework.

IV. DISCREPANCY MINIMIZATION ON FEATURES

To mitigate the affect of domain discrepancy, multi-source
domain adaptation based on discrepancy minimization, bridg-
ing the classification and discrepancy minimization, is em-
ployed to extract domain-invariant representations for all do-
mains by means of respectively aligning the distributions of
all domain pairs at both the frame-level and segment-level.

A. Pair-wise Distribution Alignment

Maximum mean discrepancy (MMD) is a pair-wise dis-
tribution discrepancy measure which is employed over a
probability space by computing the mean squared difference of
the statistics of samples [50], [51]. Given that two generated
distributions are identical, MMD assumes all corresponding
statistics are the same and the distribution discrepancy will
asymptotically equal 0. The definition in Eq. (3) estimates the
maximum mean discrepancy between each domain pair,

D(Xa,Xb) =
∥∥Ex∼XaΦ(xa)− Ex∼Xb

Φ(xb)
∥∥2
, (3)

where MMD computes the mean square distance between the
two collections Xa = {xai }

|Xa|
i=1 and Xb = {xbj}

|Xb|
j=1 of i.i.d.

sampling from domain Xa and Xb, Φ(·) denotes a feature map,
where the mapping is from acoustic frame-level features to an
embedding space. Given |Xa| = L and |Xb| = M , Eq. (3)
can be expanded as,

D(Xa,Xb) = 1
L2 ×

∑L
i=1

∑L
i′=1 Φ(xai )ᵀΦ(xai′)

− 2
LM ×

∑L
i=1

∑M
j=1 Φ(xai )ᵀΦ(xbj)

+ 1
M2 ×

∑M
j=1

∑M
j′=1 Φ(xbj)

ᵀΦ(xbj′). (4)

The dot product can be replaced with the kernel function
k(·, ·),

D(Xa,Xb) = 1
L2 ×

∑L
i=1

∑L
i′=1 k(xai ,x

a
i′)

− 2
LM ×

∑L
i=1

∑M
j=1 k(xai ,x

b
j)

+ 1
M2 ×

∑M
j=1

∑M
j′=1 k(xbj ,x

b
j′). (5)

A widely-used kernel function is the radial basis function
(RBF) kernel, which ensures that the MMD measure contains
all moments of data in the feature space [52]. This kernel
function is written as,

k(xa,xb) = exp(− 1

2σ2

∥∥xa − xb
∥∥2

), (6)

where σ is a bandwidth parameter of the Gaussian kernel [52].
The motivation for a pair-wise distribution alignment is

to ensure that the network predictions are consistent even if
inputs are subject to an intrinsic/extrinsic [1] domain shift. As
noted in [23], larger domain discrepancy gaps typically exist
in deeper layers such as the fully-connected layer generating
the embeddings. Therefore, we will minimize the discrepancy
among embeddings produced by data from each domain.
Additionally, the employed network uses an adaptive training
scheme where samples are grouped into short segments (400
frames randomly out of 1000 frames) in each mini-batch,
similar to the pre-training scheme based on sampling arbitrary-
length segments from 200 to 400 frames. Moreover, the
statistics pooling may also distort speech sequence features,
especially based on temporal-related information. To alleviate
this possible embedding distribution shift caused by speech
sampling and statistics pooling, we also adapt frame-level
features including the last TDNN layer’s output before statis-
tics pooling to avoid this inaccurate discrepancy estimate.
Let Ol

a = {oli}
|Xa|
i=1 denote the collection of l-layer outputs

from the distribution Ola for domain Xa. Multiple domains
will possess a domain shift with each other, where domain-
invariant representations for each paired domain can be learned
by minimizing the Lossmmd as follows,

Lossmmd =
(
N
2

)−1∑N−1
i=1

∑N
j=i+1

(
D(OF5

i ,OF5
j )

+D(Ofc1i ,Ofc1j )
)
, (7)

where F5 is the last TDNN layer before statistics pooling
in the universal embedding extractor, and fc1 is the first
fully-connected layer which generates the embeddings. The
discrepancy loss is computed between each pair of N domains.

B. Domain-specific Classification

Each domain-specific subnet is followed by a softmax
classifier. We use a softmax cross-entropy J loss for each clas-
sifier to ensure that the embedding distribution performance is
improved for each domain. The classification loss function is
written as,

Losscls =

N∑
i=1

Mi∑
j=1

J
(
Ci
(
G(xij)

)
, yij
)
. (8)
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Given N domains, classification loss is computed for each
domain-specific subnet. Here, (xi, yi) represents the acoustic
frame-level input feature of an utterance for domain i and
the corresponding speaker label. Domain i has M i utterances
in total, and G represents the universal embedding extractor,
which maps the input feature to a universal embedding.
Finally, Ci is the classification subnet of the domain i out
of N domains after employing the embedding extractor.

C. Discrepancy Minimization Adaptation Framework

Given an input data sequence, the universal feature extractor
projects the sequence data into a temporal orderless embed-
ding. The classification component will have four independent
subnets corresponding to specific domains. The framework of
the cross-domain adaptation in each step is illustrated in Fig.
2. Here, the multi-task loss function is formulated as,

Losstotal = µ(Lossmmd) + Losscls, (9)

where µ is a variant adaptation factor with a progressive
schedule from 0 to 1 in order to stabilize parameter sensitivity
in the early adaptation stage.

Here, we employ our pre-trained x-Vector system as the
universal embedding extractor, which is extended with classi-
fication subnets. The distributions of each domain are aligned
simultaneously by minimizing domain discrepancies. Subse-
quently, the domain-invariant representations are specifically
learned. Furthermore, the domain-specific classification sub-
nets are employed to optimize recognition performance for
individual domains of interest.
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Fig. 2: Discrepancy minimization adaptation framework.

V. MOMENT MATCHING ON THE CLASSIFICATION
POSTERIOR

For this study, four domains of our CRSS-Forensics dataset
are investigated (details later in Sec. V). In general, multi-
source domain data reduces the effectiveness of any single do-
main adaptation method. Additionally, the domain discrepancy

will also vary in each pair of the domain-specific data. For
this corpus, Clean, Far-field, and LENA-booth data were col-
lected in the same recording environment (sound booth). For
LENA-field data, speech data was collected using a portable
LENA recording unit worn by the participant, with recording
environments including seven pre-defined indoor and outdoor
locations. Based on these corpus specifics, data collected in the
sound booth have marginal domain shifts among each dataset
(e.g. only close-talk mic (CTM) vs. desktop or distance mics
at 4 ft and 8 ft). In contrast, a distinct domain discrepancy
exists between LENA-field data and all data collected in the
environment controlled sound booth. Therefore, we consider
a multi-source domain adaptation based on moment matching
and disposed multiple complex adversarial training procedures
[41]. This method is employed to minimize the inter-domain
discrepancies and transfer knowledge learned from sound-
booth data to the more diverse LENA-field data by dynam-
ically aligning moments of their feature distributions.

A. Moment-matching Components

Given labeled data collections X1,X2, . . . ,XN with dis-
tinct domain discrepancies for input feature space X , the
moment-matching process aims to find discriminative rep-
resentations in the hypothesis embedding space H, which
minimizes the testing error on each domain. In [41], the
domain discrepancy was measured with the Moment Distance.
Here, we use the measurement in Eq. (3) instead to define
the moment distance. The kernel function lifts the sample
vectors into an infinite dimensional feature space and covers all
orders of statistics, consequently minimizing MMD with this
kernel which is equivalent to minimizing a distance between
all moments of the two distributions [50].

We employ a moment-matching model, which comprises
of a universal embedding extractor G, along with a set of N
classifiers C = {C1,C2, . . . ,CN} (e.g. this is the same setup as
described in Sec. III). The MMD measurement minimizes the
moment-related distance between domains as defined in Eq.
(3). The overall loss function in Eq. (9) is therefore rewritten
as the following objective function,

minG,C
∑N
i=1 JXi + µminG

(
N
2

)−1∑N−1
i=1

∑N
j=i+1

(D(OF5
i ,OF5

j ) +D(Ofc1i ,Ofc1j )), (10)

where JXi
is a softmax cross-entropy loss for the classifier Ci

for domain Xi, and µ is a trade-off parameter with a progres-
sive schedule. The objective of moment-matching adaptation
is to match different distributions by minimizing the moment
distance between multiple acoustic domains. Furthermore, for
our task, we also intend to leverage knowledge learned from
the noise-free sound-booth data to recalibrate the distribution
for our diverse LENA-field data.

B. Adversarial Training Schema

We follow the training paradigm suggested in [27], in order
to utilize the domain-specific decision boundaries. Consider-
ing the relationship between class boundary and LENA-field
samples, the paired domain-specific classifiers are taken as
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a discriminator to detect the presence of LENA-field samples
from that reflecting the sound-booth domain. Paired classifiers
are likely to classify those outliers in LENA-field samples dif-
ferently. The tandem adaptive training includes the following
three steps:

1) Train the universal embedding extractor G and classifier
collection C to minimize moment distances as in Eq. (3) among
domains and perform classification on each domain. Model
parameters are updated using the objective from Eq. (10).

2) Fix the parameters of G, so as to maximize the dis-
crepancies of classifier pairs. To measure the discrepancy of
the two classifiers, we utilize the MMD as in Eq. (3), which
formulates the objective in this training step,∑N−1

i=1

(
minCi JXi −D(Ci(Xi),CN (XN ))

)
+

minCN

(
JXN

− 1
N−1

∑N−1
j=1 D(Cj(Xj),CN (XN ))

)
,(11)

where Ci(Xi) and CN (XN ) represent the probability outputs
of Ci and CN respectively from one of the sound-booth
domains and LENA-field domains. The classification loss on
each domain is added to stabilize system performance.

3) Finally, we fix C and train G to minimize the discrepancy
of each classifier pair. The objective of this step is written as,

min
G

N−1∑
i=1

D(Ci(Xi),CN (XN )). (12)

This entire procedure is summarized as Algorithm 1. For this
solution, we train the classifiers and generator in an adversarial
manner until the entire network (see in Fig. 3) reach a point
of convergence.
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Fig. 3: Moment-matching adaptation architecture.

VI. EXPERIMENT

A. Data Description

1) VoxCeleb: We use the Vox2 and Vox1 dev corpora
for embedding training [48], which is extracted from videos
based on YouTube as training data for our pre-trained systems.
Videos included in the dataset are recorded in a large number
of challenging visual and auditory environments, including
background conversations, laughter, overlapping speech, and
varying room acoustics. Over 2.2 million utterances from
≈7300 speaker identities were used with corresponding an-
notation for speaker labels. Following a baseline Kaldi recipe,
we use the dev and test splits from Vox2 and the dev split
from Vox1 for embedding-oriented pre-training.

Algorithm 1 Moment-Matching Adaptation Network

Input: X = {X1,X2, . . . ,XN}, pre-trained G
Output: pre-trained G and a set of N classifiers C = {C1,C2, . . . ,CN}
1: Given T1 and T2 training iterations
2: for t in 1 : T1 do
3: for j in 1 : N do
4: Sample mini-batch {xj

i ,y
j
i}

m
i=1 from Xj

5: Feed {xj
i ,y

j
i}

m
i=1 to G

6: Feed embeddings from G to Cj

7: end for
8: Update G and C according to Equation(10)
9: end for

10: for t in 1 : T2 do
11: for j in 1 : N do
12: Sample mini-batch {xj

i ,y
j
i}

m
i=1 from Xj

13: Feed {xj
i ,y

j
i}

m
i=1 to G

14: Feed embeddings from G to Cj

15: end for
16: Fix G
17: Update C according to Equation(11)
18: Fix C
19: for t′ in 1 : 4 do
20: Update G according to Equation(12)
21: end for
22: end for

2) CRSS-Forensic: As noted earlier, the CRSS-Forensics
corpus1 contains read speech, prompted speech, and sponta-
neous speech in three conditions: clean (noise-free recorded
in the sound booth), field recordings (with background noise
and reverberation), and high stress (actual police interviews).
Two phases are included in the recording process. Phase-1
contains speech data recorded in a controlled noise-free sound
booth, and diverse public acoustic field environments. Speech
in Phase-2 is collected in a law enforcement facility, using an
interview room with an actual police officer/detective. Figure 5
shows sample recording environments for the noise-free sound
booth, public field environments, and police interview room.

For the sound booth in Phase-1, speech data is simulta-
neously recorded using multiple wired/wireless microphones
(sample rate: 44.1 kHz) and a participant body-worn mobile
data collection platform called LENA unit (sample rate: 16
kHz). Microphones are positioned at 4 different locations
in a 13′ × 13′ sound booth (SB); one being a close talk
microphone (CTM), the other three representing distances
from each microphone to the speaker are 18-24 in (Desktop
Mic (DTM)), 4 ft, and 8 ft, as shown in Fig. 4. In LENA-field
environments, speech is collected by a LENA unit worn by
the participant, with recording environments that include seven
indoor and outdoor locations (7IOL): office, hallway, cafeteria,
parking lot, game room, lobby, walking path (see in Fig.5 (a-
g)). In Phase-2, speech data is simultaneously recorded using
a participant body-worn LENA unit and a microphone. Here
a detective conducts an investigative interview of the partici-
pant concerning a specific scenario while following standard
procedures in law enforcement interview room (LEIR) (see in
Fig. 5 (h)).

Table I summarizes the specific acoustic data size for each
session. For the 75 speakers in the corpus, 65 are native
English speakers and 10 non-native speakers, with 27 male

1The CRSS-Forensics corpus will be released with a license.
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TABLE I
DATA STATISTICS FOR CRSS-FORENSICS CORPUS

Info Session Name Duration Speaker

Phase-1.SB
Clean (CTM & DTM) 32 h/channel 75
Far-field (4 ft & 8 ft) 32 h/channel 75

LENA-booth 33.9 h 75

Phase-1.7IOL LENA-field 99.4 h 75

Phase-2.LEIR Interview (LENA & Mic) 20.4 h 58

speakers and 48 female speakers. Each participant was allowed
to opt-out of Phase-2 (i.e., IRB protocol due to high-stress
level exposure), so there are 17 speakers absent from the
Phase-2 police interview set.

In this study, data from Phase-1 is used for multi-source do-
main adaptation. We note that various recording environments
are considered as the extrinsic characteristics for audio sam-
ples, while speech from speakers under stress for the Interview
in Phase-2 contain intrinsic variations. Consequently, data in
Phase-2 is not compatible with environmental mismatch data
in Phase-1 for domain-invariant information extraction. We
consider 16 speakers (8 male, 8 female) out of 75 speakers for
each set to perform evaluation. There exists no speaker overlap
between the training and evaluation sets, abiding by an open-
set protocol. The number of test trials is over 22,000 total.
For sound booth data, speech data with CTM and DTM are
designated as the Clean set; data collected from the remaining
two distant mics (4 ft & 8 ft) are taken as Far-field data;
and data recorded by the LENA body-worn unit was used to
explore channel mismatch influence.

B. Pre-training System Setup

Gender independent i-Vector extractors were trained on the
VoxCeleb dataset to produce 400-dimensional i-Vectors. 20-
dimensional MFCCs were then augmented with their delta and
double-delta coefficients, producing a set of 60-dimensional
MFCC feature vectors.

In order to implement a competitive and fair baseline, we
developed the x-Vector system. Our model is similar to an x-
Vector Kaldi recipe2 with respect to VoxCeleb corpora and
network architecture. The model architecture consists of 5
time-delay layers, which model temporal context information,
followed by a statistical pooling layer to map into a fixed-
dimensional vector at the segment-level. This is followed by
two fully-connected layers with 512 units in each layer and
the probability output layer. We extract 30-dimensional MFCC
features using a frame width of 25ms and window shift of
10ms. Training data is augmented with noise, music, and bab-
ble speech from the MUSAN corpus [53], and reverberation
of the RIR NOISES3 corpus. The augmented data consist of
7323 speakers and 2.2M utterances. Specially, all utterances
shorter than 4 seconds in duration, and all speakers with fewer
than 8 utterances are set aside in the data pre-processing
phase. Cepstral mean normalization with a sliding window of
3 seconds was employed to suppress channel effects. We use
an Adam optimizer with betas of (0.9, 0.98) to update model

2https://kaldi-asr.org/models/m7
3http://www.openslr.org/28

parameters, initializing the learning rate of 1e-3. The learning
rate was adjusted with the warm-up scheduling named “Noam”
in [54]. Batch normalization and Dropout are also used to
perform regularization at each layer. Finally, a mini-batch of
32 samples is used at each iteration.

C. Fine-tuning Setup

In this work, all adaptation methods only update parameters
of the last time-delay layer before statistics pooling and the
first fully-connected layer after pooling in the pre-trained
x-Vector model. The last fully-connected layer is replaced
according to speaker labels from the CRSS-Forensic data. We
perform fine-tuning on the pre-trained model with our data
using the Adam optimizer to retrain the model for 40 epochs
using a batchsize of 64. The learning rate is scheduled using
the formula,

ηp =
η0

(1 + αp)β
, (13)

where η0 = 1e-4, α = 10, β = 0.75 and p is set to linearly
increase from 0 to 1 corresponding to the training steps.

D. Domain Adversarial Training System Setup

We keep the pre-trained x-Vector model as the feature ex-
tractor, and extract embeddings from the first fully-connected
layer after statistic pooling. For the speaker label classifier, we
retain the three fully-connected layers (Embedding → 512
→ 512 → 59), and use a simpler architecture (Embedding
→ GRL (described in Sec. III) → 128 → 4) for domain
classification. The model is trained on 64-sized batches. In
order to suppress noisy signals from the domain classifier at
the early training stages instead of fixing the trade-off factor λ,
we gradually change this value from 0 to 1 using the following
schedule:

µ =
2

1 + exp(−θp)
− 1, (14)

where θ = 10, p is set to linearly increase from 0 to 1
corresponding to the training steps.

E. Discrepancy-minimizing System Setup

In addition to the pre-trained model, we keep the first fully-
connected layer after statistics pooling as part of the embed-
ding extractor. Embeddings from each domain are processed
by a fully-connected layer with 512 units and the final layer
which outputs speaker posterior probabilities, respectively.
The discrepancy-minimizing model is trained on the CRSS-
Forensic data for 40 epochs using a batchsize of 64. We use the
Adam optimizer to update parameters of the partial pre-trained
model with a learning rate of 1e-4, and for each classification
subnet, the learning rate is set to 1e-3. Since there exists no
parameter-wise differences between each subnet in the early
adaptation stage, Eq.(9) may result in noisy activations. To
stabilize parameter sensitivity, a progress strategy [26] is used
for Eq.(9) as noted in Eq.(14).

https://kaldi-asr.org/models/m7
http://www.openslr.org/28
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² Corpus Collection: Sound Booth
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Fig. 4: Sound booth forensic voice data collection setup, including 5 audio streams (M1: close-talk mic, M2: desk-top mic, M3 & M4: far-field distance
mics, M5: asynchronous body-worn LENA recorder).
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Fig. 5: LENA-Field forensic audio collection locations (a) to (g); plus Police Interview location (LENA-Police) recording environments (h).

F. Moment-matching System Setup
The model setup for moment-matching system is basically

consistent with the previous description for the discrepancy-
minimizing system with the exception for the training schema
and loss functions constituted by another discrepancy mea-
surement (details in Sec. V). The moment-matching model is
trained for 40 epochs as T1 in Algorithm 1 then proceeds for
another 40 epochs as T2 in Algorithm 1 with a batchsize of
64.

For each system, we take embeddings from the outputs
of the first fully-connected layer after statistics pooling for
evaluation purposes, and score trials using PLDA [55] after
performing dimensionality reduction to 200 using LDA and
length-normalization. Here, LDA and PLDA multi-conditional
training are conducted in each system with generated em-
beddings from the training portion in CRSS-Forensic corpus
containing 59 speakers, which can compensate for domain
mismatch.

VII. RESULT AND ANALYSIS

This section focuses on the analysis of each system imple-
mented based on setups described in Sec. VI. To evaluate these
experiments, we adopt several measurement criteria concen-
trating on evaluating discrimination abilities and calibration of
speaker recognition systems. In terms of speaker recognition
system evaluation, the trade-off between missed speakers
Pmiss and false alarms PFA has always been a key diagnostic
tool. The Detection Error Trade-off (DET) curve [56] reflects
what happens as the decision threshold is swept across the
entire operating range. Noting that Pmiss and PFA move in
opposite directions as the decision threshold is shifted, a point
where Pmiss = PFA called the Equal Error Rate (EER),
provides a standard point for the discrimination capability of
the system. However, the EER does not measure calibration
(the ability to set decision thresholds). It is noted that the
recognition system actually produces the log-likelihood-ratio
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(a) Clean � (b) Far-field �

(c) LENA-booth � (d) LENA-field �

Fig. 6: DET curves for each system on four domains.

Lt of the score for each trial. The Log-likelihood-ratio cost
function [57] Cllr is a simultaneous measurement of the
discrimination abilities of the log-likelihood-ratio scores and
calibration for application-independent detection decisions,
which is formulated as,

Cllr(Lt) = 1
2

(
1

Ntar

∑
t∈Ttar

log(1 + e−Lt)

+ 1
Nnon

∑
t∈Tnon

log(1 + eLt)
)
, (15)

where Lt is the log-likelihood-ratio score of trial t, Ttar is
a set of Ntar target trials and Tnon is a set of Nnon non-
target trials. Furthermore, Cllr can be minimized as measured
on a warped log-likelihood-ratio score L′t = w(Lt) scale
using a monotonic rising warping function w, resulting in
the performance measure Cminllr = Cllr

(
{w(Lt)}

)
. Finally,

w can be optimized using the Pool Adjacent Violators (PAV)
approach [57]. We visualized each speaker recognition system
performance on each acoustic domain using DET curves (see

in Fig. 6).

A. Score Calibration

The recognition system produces the log likelihood ratio
in terms of PLDA scores, but the scores are uncalibrated
which may adversely affect the validity and reliability of
this evaluation. Score calibration has been recognized as an
important component in effective evaluation of current speaker
recognition systems [57]–[59]. Thus, we calibrate the log-
likelihood-ratio (LLR) scores by finding a linear transform
that optimizes the CLLR measure to reach a value of C ′llr
closer to Cminllr . In this study, we employ a commonly-used
linear calibration transformation,

s′ = w0 + w1s, (16)

where an uncalibrated score s is transformed into a calibrated
score s′ using offset w0 and scaling factor w1 parameters.
Logistic regression optimization [60] is employed to acquire
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TABLE II
SCORE CALIBRATION RESULT FOR EACH SYSTEM ON FOUR DOMAINS

Clean Far-field LENA-booth LENA-field

Cllr C′
llr Cmin

llr Cllr C′
llr Cmin

llr Cllr C′
llr Cmin

llr Cllr C′
llr Cmin

llr

i-Vector 0.241 0.172 0.138 0.335 0.247 0.231 0.364 0.234 0.176 0.591 0.428 0.399
x-Vector 0.211 0.130 0.110 0.323 0.189 0.168 0.331 0.180 0.136 0.610 0.315 0.314

Fine-tuning 0.200 0.098 0.072 0.364 0.183 0.167 0.288 0.144 0.123 0.621 0.323 0.293
DAT 0.272 0.118 0.064 0.312 0.145 0.134 0.294 0.114 0.105 0.528 0.276 0.254

Discrepancy-minimizing 0.172 0.085 0.063 0.298 0.155 0.139 0.231 0.124 0.109 0.526 0.284 0.256
Moment-matching 0.272 0.080 0.060 0.276 0.140 0.131 0.211 0.111 0.100 0.479 0.254 0.233

the two calibration parameters w0 and w1. We summarized
score calibration results for each speaker recognition system
on each acoustic domain using DET curves (as shown in Table
II), where C ′llr corresponds to Cllr after calibration.

B. Location Analysis

Next, speaker recognition (SR) performance is assessed in
terms of EER and Cllr for both i-Vector and x-Vector system
over the range of evaluation datasets (as shown in Table
III). The pre-trained x-Vector system shows better speaker
recognition performance, so it is taken as the embedding
extractor for subsequent adaptation methods. Additionally, it
is noted that the x-Vector architecture is based on a deep
neural network, which allows for fine-tuning and to concate-
nate with other deep-learning structures. In terms of impact
due to domain mismatch on system performance, channel,
speaker-to-mic distance, and environmental noise all exert
some mismatch influence on system recognition performance,
with noise mismatch having the greatest impact.

TABLE III
SR RESULT FOR I-VECTOR & X-VECTOR SYSTEMS

i-Vector x-Vector

EER C′
llr Cmin

llr EER C′
llr Cmin

llr

Clean 3.50% 0.172 0.138 3.23% 0.130 0.110
Far-field 6.48% 0.247 0.231 4.59% 0.189 0.168

LENA-booth 4.80% 0.234 0.176 4.20% 0.180 0.136
LENA-field 12.12% 0.428 0.399 9.85% 0.315 0.314

TABLE IV
SR RESULT FOR X-VECTOR SYSTEM IN 7 LOCATIONS

7IOL EER Cllr C′
llr Cmin

llr

Cafeteria 12.61% 0.807 0.409 0.372
Game room 13.78% 0.900 0.444 0.416

Hallway 9.23% 0.632 0.314 0.292
Lobby 8.55% 0.493 0.293 0.267
Office 6.64% 0.395 0.241 0.224

Parking Lot 7.35% 0.401 0.262 0.240
Walking Path 9.01% 0.545 0.311 0.290

The LENA-field set includes 7 naturalistic locations (7IOL
as shown in Fig. 5). We evaluate x-Vector system performance
on data across each environmental location (as shown in Table
IV). Results show that speech data captured in public cafeteria
and game room locations had the lowest speaker recognition
results versus other locations. Cafeteria and game room data

contain secondary people talking, and sporadic background
music and random noise/sound events which are clearly heard
especially in the game room. Speaker identity is more easily
discriminated with data from the office context, since noise
content is less, though background talking can occur at times.
Other locations contain varying amounts of reverberation and
ambient noise, also resulting in degradation in recognition
performance.

C. Fine-tunning Layers Selection

In order to explore the best fine-tuning result, we performed
fine-tuning of the pre-trained x-Vector system for different
layers. Here, we present the fine-tuning results across 3
different options: (F4,F5, fc1), (F5, fc1) and fc1 (definition
see Fig. 2) as shown in Table V.

TABLE V
Cllr RESULT FOR X-VECTOR MODEL FINE-TUNING

F4,F5, fc1 F5, fc1 fc1

C′
llr Cmin

llr C′
llr Cmin

llr C′
llr Cmin

llr

Clean 0.102 0.075 0.098 0.072 0.100 0.074
Far-field 0.174 0.191 0.183 167 0.187 0.170

LENA-booth 0.150 0.127 0.144 0.123 0.147 0.125
LENA-field 0.334 0.304 0.323 0.293 0.328 0.298

Table V shows that fine-tuning of the pre-trained x-Vector
model achieves the best result for C ′llr and Cminllr when applied
in the last layer before statistics pooling, and the first layer
after pooling. By performing fine-tuning in the proper layers,
knowledge of the pre-training data is effectively transferred
towards the current model, and the model also learns effective
speaker information for the new dataset. We only fine-tune
subsequent layers to maintain the learned universal speaker
features from undue distortion. The fine-tuned system lowers
pre-trained system’s EER with a relative decrease of 41.18%,
4.79%, 12.49%, 14.05% in each set, respectively, with an
averaged relative decrease in EER of 18.13%. Obviously, the
Clean set benefits the most from fine-tuning.

D. Adaptive Training with Domain Information

Fine-tuning effectively improves speaker recognition per-
formance for the pre-trained x-Vector system, though the
achieved improvement is unbalanced across each domain.
Therefore, it is necessary to explore other options to improve
use of domain information for better speaker recognition
performance. This can be achieved by DAT [49] which uses a
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Fig. 7: Zoo-plot for discrepancy minimization system.

gradient reversal layer to remove the domain variation and
projects the alternate domain data towards the same sub-
space. This approach learns a domain-invariant and speaker-
discriminative feature representation. The DAT system lowers
EER of the pre-trained system with a relative decrease of
48.92%, 18.52%, 20.24%, 19.90% for each set, respectively,
with an averaged relative EER decrease of 26.90%.

E. Frame-level Effectiveness in Discrepancy Minimization

An alternative strategy to address mismatch is to consider
a multi-task loss function in order to improve the pre-trained
system performance across acoustic environments. The main
objective is to minimize the domain discrepancy so as to
achieve system performance gains for each domain.

TABLE VI
SR RESULT FOR DISCREPANCY MINIMIZATION SYSTEM

frame-level frame-level & seg-level

EER C′
llr Cmin

llr EER C′
llr Cmin

llr

Clean 1.65% 0.081 0.060 1.63% 0.0.83 0.063
Far-field 3.84% 0.156 0.141 3.68% 0.151 0.139

LENA-booth 3.27% 0.123 0.107 3.23% 0.127 0.109
LENA-field 7.50% 0.280 0.254 7.42% 0.289 0.256

Based on this motivation, we consider discrepancy mini-
mization within an adaptation procedure at both the segment-
level and frame-level to avoid inaccurate discrepancy esti-

mation caused by the domain-wise embedding distribution
deviation. Results from Table VI show improvement with
adaptation based on discrepancy minimization, where frame-
level adaptation contributes to improvement with a slight EER
reduction. Additionally, we utilize a zoo-plot visualization [61]
to explore a sample analysis on individual speakers, or speaker
groups (see in Fig. 7). The zoo-plot shows a scatter type
visualization based on mean values of both target and non-
target scores for each speaker label, and speakers who fall
within the four quartiles are assigned to animal groups (worms,
chameleons, doves, and phantoms) with each set showing
different characteristics. The black ellipses show mean values
of all target and non-target scores for each domain, with the
domain-index color in the center of each eclipse. Speakers
toward the upper right corner have lower genuine variability
and higher imposter variability. For example, speakers in
the CRSS-Forensic LENA-field (recorded in 7 indoor and
outdoor locations) tend to be more difficult to verify correctly
than those in other domains. This visualization helps reveal
potential algorithmic weaknesses against certain classes of
speakers and domains. In terms of a statistics comparison,
discrepancy minimization does improve EER of the pre-trained
system with a relative decrease of 49.54%, 19.83%, 24.67%,
23.09% in each set, respectively. The average relative EER
decrease is 29.28%.
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F. Reducing the Noise Mismatch Impact

For the CRSS-Forensic corpus, the LENA-field portion
consists of 7 diverse individual locations, which differ from the
other three forensic portions obtained in the sound booth. As
shown in the experiment results from Table IV, the noise mis-
match exerts a significant impact on speaker recognition per-
formance. Therefore, here we employ the moment-matching
method with an adversarial training schema for adaptation to
minimize both the domain shift and simultaneously mitigate
the impact of noise.

TABLE VII
SR RESULT FOR MOMENT-MATCHING SYSTEM

EER Cllr C′
llr Cmin

llr

Clean 1.50% 0.173 0.08 0.060
Far-field 3.45% 0.276 0.14 0.131

LENA-booth 3.05% 0.211 0.111 0.100
LENA-field 6.53% 0.479 0.254 0.233

The moment-matching advancement is shown to reduce
EER of the pre-trained system with a relative decrease of
53.56%, 24.84%, 33.71%, 27.38% in each set, respectively.
The average relative EER decrease is 34.87%. As shown in
Table VII, moment-matching with adversarial training im-
proves SV performance for both sound-booth and LENA-field
datasets by dynamically aligning the distribution of the LENA-
field set with sound-booth captured audio sets. This distribu-
tion alignment is a mutual recalibration process, which sug-
gests sound-booth data provides more distinguishable speaker
information versus LENA-field data. Here, LENA-field data
increases data diversity of sound-booth data for better gen-
eralization. Specifically, Table VIII summarizes the statistics
for system SV results for each location of the LENA-field set.
A comparison of Table VIII versus baseline x-Vector result
(as shown in Table IV) confirms the dramatic benefits of the
proposed solution.

TABLE VIII
SV RESULT FOR THE MOMENT-MATCHING SYSTEM IN 7 LOCATIONS

7IOL EER Cllr C′
llr Cmin

llr

Cafeteria 9.48% 0.693 0.334 0.301
Game room 9.36% 0.702 0.358 0.324

Hallway 6.13% 0.491 0.248 0.221
Lobby 5.17% 0.377 0.212 0.181
Office 3.30% 0.254 0.132 0.118

Parking Lot 4.19% 0.279 0.177 0.152
Walking Path 6.18% 0.451 0.231 0.206

To visualize the effect of the moment-matching system
on speaker recognition performance for LENA-field data, we
further assess the quality of the learned speaker features using
a t-distributed Stochastic Neighbor Embedding (t-SNE) plot
[62] (see in Fig. 8). We plot embeddings after LDA from 16
speakers of the CRSS-Forensic test set, which are generated
by the discrepancy-minimizing system and moment-matching
system. In the center of Fig. 8 (a), there is a cluster of outlier
samples for the LENA-field speaker embeddings from the
discrepancy-minimizing system, which confirms that they are
easily misclassified with ambiguous identities. Alternatively,

Fig. 8 (b) shows a sparse confusion cluster in the center
which highlights how utilizing the domain-specific decision
boundaries (noted in Sec. VI.B) works to improve speaker
discrimination of outlier samples near the classification bound-
aries by dynamically aligning distributions in the moment-
matching system. Several previous outlier samples in Fig. 8
(a) are also reclustered into corresponding groups in Fig. 8 (b),
where most of the remaining samples could be actual outliers
such as noise and speech of non-target speakers. Speech in the
LENA-field will often contain sporadic noise and non-related
speech due to the naturalistic field locations, which are also
labeled as target speakers with a coarse-grained transcription.

VIII. FORENSIC SPEAKER RECOGNITION

The object of forensic speaker recognition is to assist in
the ”trier of fact” (i.e., a judge, a panel of judges, or a jury)
in order to render a decision about the origin of a speech
voice recording whose identity is in question. Systems with
lower EER or LLR suggest that they are more capable to
generate instructive scores with higher validity and reliability.
We explored several speaker adaptation methods and compared
their speaker recognition performance, which aim to achieve
a reliable system able to produce a measure of evidence in
the form of a likelihood ratio (LR) score as the strength of
evidence. The LRs expresses the likelihood of the speech
evidence under the two competing hypotheses (i.e. the prose-
cution hypothesis H0: the suspected speaker is the same as
the source of the questioned recording versus the defense
hypothesis H1: the suspected speaker is different from the
source of the questioned recording [63]). The LRs is the ratio
between these two statements H0 and H1.

The x-Vector modeling approach with a PLDA backend can
be applied for calculating LRs. The goal of PLDA is to project
data samples from the feature space to a latent space such
that samples from the same class are modeled using the same
distribution [45]. Given n utterance-level speaker embeddings
{upi }ni=1 of speaker p in the latent space and one utterance-
level speaker embedding uq of speaker q in the latent space,
if we need to find whether they belong to same speaker or
not, then we compute the likelihood ratio R based on two
hypothesis H0 and H1,

R({upi }
n
i=1,u

q) =
likelihood(H0)

likelihood(H1)
=

P ({upi }ni=1,u
q)

P ({upi }ni=1)P (uq)
,

(17)
where

P ({upi }
n
i=1) =

∫
P (up1|v)...P (upn|v)P (v)dv (18)

is the distribution of a set of examples,given that they belong
to the same class, and v represents the class centers in the
latent space. The log likelihood ratio log(R) is known as
PLDA scores. With larger log(R) values, there is stronger
support for the H0 hypothesis, and with smaller log(R) values,
there is stronger support for the H1 hypothesis. Here, we
took 6 utterances for each speaker as enrollment data (here,
n = 6 in Eq. (17)). Table IX gives an example of quantitative
measurement in the form of PLDA score generated by the
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(a) discrepancy-minimization

(b) moment-matching

Fig. 8: Visualization of LENA-field speaker embeddings by discrepancy-minimizing (a) and moment-matching (b) systems using t-SNE.

Moment-Matching system between the given speakers and a
specific recording.

Speech data from these 16 speakers constitute the entire
test set. The suspected speakers during LRs calculation are
called the relevant population in forensic speaker recognition.
To avoid potential bias in the case proper, those speakers are
often selected by a panel of listeners (e.g., police officers
with linguistic background have no prior knowledge of a
particular case) [64]. Since we already have the LRs, it can be
interpreted based on the odds form of Bayes’ theorem, which

is represented as,

P (H0|E)

P (H1|E)
=
P (E|H0)

P (E|H1)
× P (H0)

P (H1)
, (19)

where E represents the observed speech evidence. This
Bayes’ theorem shows how the LRs can be combined with
prior knowledge concerning the case (knowledge unrelated to
speech data) in order to arrive at posterior odds. Only the LRs
is the province provided by the speaker recognition system; the
prior odds and posterior odds are the province of the court. The
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TABLE IX
PLDA SCORES BETWEEN EACH SPEAKER AND A RECORDING

speaker id record id PLDA score

21VV 21V V LENA field 100 7.585
2ILH 21V V LENA field 100 -15.393
36KZ 21V V LENA field 100 0.145
6BYZ 21V V LENA field 100 -13.596
DFHE 21V V LENA field 100 -15.123
EMDI 21V V LENA field 100 -4.790
PR6X 21V V LENA field 100 -11.299
R57I 21V V LENA field 100 -9.353
UR29 21V V LENA field 100 -10.282
V9ZG 21V V LENA field 100 -0.368

VWLM 21V V LENA field 100 -1.464
W412 21V V LENA field 100 -5.462

WNYR 21V V LENA field 100 -5.688
Z56P 21V V LENA field 100 -4.420
ZKN7 21V V LENA field 100 -11.657
ZMB7 21V V LENA field 100 -5.653

forensic experts should only produce the LRs in actual court
cases and leave prior odds to the court or jury to interpret or
assess. The judge or the jury in the court can use such an
non-categorical opinion for their deliberations and decision.

IX. CONCLUSION

For forensic speaker recognition, addressing mismatch due
to naturalistic field locations is a significant challenge. In
general, fine-tuning is commonly employed for network model
adaptation when a domain mismatch exists between train and
test data. However, that approach usually considers only a sin-
gle domain mismatch. In practical scenarios for forensic audio
analysis, speech data are typically collected in multiple acous-
tic environments, which offer unique challenges to speaker
recognition system development due to location uncertainty
and diverse mismatch between reference and naturalistic field
recordings. A speaker recognition system can deliver different
speaker discrimination performance while evaluated on the
dataset collected from multiple acoustic environments. In this
study, we adopted a domain adversarial training (DAT) method
with a gradient reversal layer to learn domain-invariant and
speaker-discriminative representations. The DAT gives com-
petitive results on each domain. Additionally, we formulated a
discrepancy-minimizing solution to perform model adaptation
for the purpose of improving speaker recognition performance
across each potential field location with an overall smaller
domain discrepancy. As demonstrated in our results, the so-
lution improves speaker recognition system performance for
each domain, which demonstrates that minimizing the domain
discrepancy at both the frame-level and segment-level benefits
system speaker discrimination. However, this improvement can
still be unbalanced, as was shown with a higher EER result for
the LENA-field set versus others. The LENA-field data was
collected in locations entirely different from environments of
the other three datasets. Accordingly, we proposed a moment-
matching solution with an adversarial training schema for
model adaptation to minimize domain discrepancy and simul-
taneously mitigate the impact of noise for LENA-field data

with the help of sound-booth captured audio. Consequently,
the moment-matching system achieved the best speaker recog-
nition results for each domain, with absolute EERs of 1.50%,
3.45%, 6.53%, 3.05% for the Clean, Far-field, LENA-field, and
LENA-booth sets, respectively. Overall, the learned speaker
representations through domain adversarial training (DAT),
discrepancy-minimizing, and moment-matching solutions are
less dependent on shifts in acoustic domains, which provides
a solution to the challenging multi-source domain adaptation
problem in forensic speaker recognition. Finally, we applied
the most effective overall system for an independent simulative
forensic case to show how the system solution can support
the judge or jury in a court scenario to make a decision with
a strength-of-evidence statement in the form of a likelihood
ratio.
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