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Abstract—Numerous compression and acceleration strategies
have achieved outstanding results on classification tasks in various
fields. Nevertheless, the same strategies may yield unsatisfactory
performance on regression tasks because the nature between re-
gression and classification tasks differs. In this paper, a novel sign-
exponent-only floating-point network (SEOFP-NET) technique is
proposed to compress the model size and accelerate the inference
time for speech enhancement, a regression task of speech signal
processing. The proposed method compressed the sizes of deep
neural network (DNN)-based speech enhancement models by quan-
tizing the fraction bits of single-precision floating-point parameters
during training. Before inference implementation, all parameters
in the trained SEOFP-NET model are adjusted to accelerate the
inference time by replacing the floating-point multiplier with an
integer-adder. The experimental results indicate that the size of
SEOFP-NET models can be significantly compressed by up to
81.249% without noticeably downgrading their speech enhance-
ment performance, and the inference time can be accelerated to
1.212x compared with the baseline models. The results also verify
that SEOFP-NET can cooperate with other efficiency strategies to
achieve a synergy effect for model compression. In addition, results
of a just noticeable difference experiment show that the listeners
cannot facilely differentiate between the enhanced speech signals
processed by the baseline model and SEOFP-NET. To the best of our
knowledge, this study is one of the first works that aims to compress
the model size and reduce the inference time of speech enhancement
while maintaining satisfactory performance. The promising results
confirm the potential applicability of SEOFP-NET to lightweight
embedded devices.

Index Terms—Speech enhancement, speech dereverberation,
deep neural network model compression, inference acceleration,
floating-point integer arithmetic circuit.
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I. INTRODUCTION

N RECENT years, many applications in different fields

have widely used deep neural network (DNN)-based ap-
proaches. These networks can perform well because their deep
structures enable DNN-based algorithms to efficiently derive
characteristic features while executing various classification
and regression tasks. Many studies have verified that DNN-
based algorithms outperform traditional techniques in differ-
ent computer vision and speech signal processing domains,
such as image detection [1], [2], object detection [3]-[5], speech
recognition [6]-[12], speaker recognition [13]-[15], and speech
enhancement [16]-[27]. However, owing to their deep struc-
tures, most DNN-based algorithms require large memory spaces
and incur high computing costs. As a result, many hardware
companies have developed high-level computing units, such as
graphics processing units [28]—[30], to satisfy the requirements
of memory and computation. In addition to personal computers
and mainframes, researchers have aimed to employ DNN-based
algorithms to applications in embedded devices used around
people. In this Internet-of-Things era, the number of small
embedded devices has exponentially increased. Such devices
cannot be equipped with large storage and high-level computing
units. That is, the applications in embedded devices can only use
DNN-based algorithms by accessing DNN models on remote
servers through network connections. However, the latency or
disconnection of wireless communication influences the require-
ments of real-time predictions. Accordingly, researchers have
attempted to locally install DNN-based algorithms in embedded
devices.

To implement DNN-based algorithms in embedded devices,
the algorithms must be compressed, and computational costs
must be reduced. To resolve this problem, many researchers
have successfully developed various compression methods [31]-
[36]. The BinaryConnect algorithm [31], which uses 1-bit wide
weights in the DNN model, yields satisfactory performance
in image classification tasks on various image datasets (e.g.,
MNIST [37], CIFAR-10 [38], and SVHN [39]). Gong et al. [32]
compressed deep convolutional neural networks (CNNs) using
vector quantization. The primeval weights in the models are
replaced by the centroid values through the proposed clustering
method. This method only results in a 1% loss of classification
accuracy for state-of-the-art CNNs. The incremental network
quantization (INQ) [33] converts pre-trained full-precision CNN
models into a low-precision version. The weights in the CNN
models are all constrained to be either powers of two or zero.
Several experiments on image classification tasks over different
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well-known CNN architectures (e.g., AlexNet [40], VGGNet
[1], and GoogleNet [41]) have been conducted. The experimen-
tal results show that the proposed INQ method achieves slightly
better performances in the top-1 and top-5 errors using 5-bit
quantization. Most of these compression methodologies have
been clearly observed as implementable in classification-based
DNN models, such as image recognition [32]-[34] and speech
recognition [42]-[47], which classify the input data into a set of
output categories. In contrast, for regression tasks, the output has
continuous values. In brief, the output form of regression tasks
considerably differs from that of classification tasks. Among
the existing techniques, Ko et al. [47] proposed a precision
scaling method for neural networks to achieve efficient au-
dio processing. They conducted several experiments on both
speech recognition (classification task) and speech enhance-
ment (regression task). The experimental results showed that
the proposed technique exhibited unsatisfactory performance
on speech enhancement but acceptable performance on speech
recognition. Sun et al. [48] developed an optimization method
for DNN-based speech enhancement models by utilizing a
weight-sharing technique for model compression. Their experi-
mental results showed that although the size of the DNN model
was compressed, the speech enhancement performance was
clearly degraded. Hence, even though the foregoing techniques
can efficiently reduce the DNN model size, they also degrade
the model performance on speech signal processing regression
tasks, such as speech enhancement. That is, regression tasks
compared with classification tasks are more sensitive to value
changes in the parameters of DNN-based models.

In the present work, a novel sign-exponent-only floating-
point network (SEOFP-NET) is proposed. It is a neural net-
work whose parameters are represented by a sign-exponent-only
floating-point for model compression and inference acceleration
of speech enhancement tasks. Hence, it is an extremely useful
application for speech signal processing. The proposed SEOFP-
NET compresses DNN-based speech enhancement models by
quantizing the fraction bits of the original single-precision
floating-point representation. After training, all parameters in the
trained SEOFP-NET model are slightly adjusted to accelerate
the inference time by replacing the floating-point multiplier logic
circuit with an integer-adder logic circuit. For generalization,
several experiments were conducted on two important regression
tasks in speech enhancement (i.e., speech denoising and speech
dereverberation) with two different model architectures (bidirec-
tional long short-term memory (BLSTM) [49], [50] and a fully
convolutional network (FCN) [51])) under two common corpora
(TIMIT [52] and TMHINT [53]). To evaluate the enhancement
performance, standardized objective evaluation metrics, includ-
ing the perceptual evaluation of speech quality (PESQ) [54] and
short-time objective intelligibility measure (STOI) [55], were
employed. The experimental results illustrate that the size of the
SEOFP-NET model can be substantially compressed by up to
81.249% without considerably downgrading the enhancement
performance. Moreover, the inference time can be accelerated
to 1.212x compared with that of baseline models. The result also
verifies that our SEOFP quantization can cooperate with other
efficiency strategies to achieve a synergy effect. In addition,
for the user study experiment, the just noticeable difference
(JND) [56]-[58] was employed to analyze the effect of speech
enhancement on listening. The experimental results indicate
that the listeners cannot effortlessly differentiate between the
speech signals enhanced by the baseline model and SEOFP-
NETs. To the best knowledge of the authors, this study is
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one of the first works that considerably compresses the size
of DNN-based algorithms and reduces the inference time of
speech enhancement tasks simultaneously while maintaining
satisfactory enhancement performance. These promising results
suggest that the application of DNN-based speech enhancement
algorithms to various lightweight embedded devices using the
proposed SEOFP-NET technique is advantageous.

The remainder of this paper is organized as follows. In Sec-
tion II, the background knowledge on speech enhancement and
floating-point-based parameters of DNN-based algorithms is
first presented; the research motivation is explained thereafter.
Section III elaborates on the size compression of DNN-based
models and the acceleration of the inference time of trained
models using the proposed SEOFP-NET methodology. Sec-
tion IV describes the conduct of experiments in the study with
various datasets and different speech enhancement tasks to illus-
trate the generalization of the proposed SEOFP-NET algorithm.
The disentanglement measurements with various metrics and
the relevance of the SEOFP-NET algorithm to speech enhance-
ment are also presented in this section. Finally, Section V
concludes the paper and discusses future work.

II. BACKGROUND AND MOTIVATION

In Sections II-A and II-B, two important speech enhancement
tasks in regression of speech signal processing, i.e., speech
denoising and dereverberation, are introduced, respectively. In
Section II-C, the background knowledge on the single-precision
floating-point representation, which is commonly used in DNN-
based models, is discussed. Next, in Section II-D, the electronic
circuits of multiplication operation are introduced based on
the aforementioned representation. Finally, in Section II-E, a
preliminary experiment is presented, and the motivation of this
work is explained.

A. Speech Denoising

The purpose of speech denoising is to generate improved
speech and remove noise from an original speech composed of
clean speech and environmental noise. Traditionally, speech de-
noising is carried out on the time-frequency magnitude spectro-
grams of speech signals [49], [50], [59]-[64]. This implies that
the raw noisy speech waveform is converted to the magnitude
spectrogram of noisy speech before denoising is implemented.
After denoising, the processed magnitude spectrogram is con-
verted back to waveform. Most spectrogram mapping-based
algorithms facilely use the phase of the noisy speech to rebuild
the waveform of the denoised speech. Recently, a number of
researchers have proposed the use of waveform mapping-based
techniques [65]—[72] to denoise speech in the waveform domain
without waveform-spectrogram conversion. In this study, the
proposed SEOFP-NET is applied to both spectrogram and wave-
form mapping-based speech denoising algorithms to illustrate
its generalizability.

In recent years, DNN models have been widely used in
speech denoising tasks. Generally, a DNN-based speech de-
noising model comprises two phases: offline training and online
inference. In the offline training phase, numerous noisy speech
signals consisting of various clean speech signals and types of
noise exist in the training corpus. These noisy speech signals in
the training corpus are alternately supplied to the DNN-based
speech denoising model, which then generates enhanced speech
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Fig. 1. Anexample of the IEEE-754 single-precision floating-point represen-
tation. The binary format are divided into three parts: sign, exponent, and
fraction. The decimal value of this binary example is 0.123400 corrected to
six decimal places.

based on the original noisy speech. To determine the differ-
ence between the two utterances, various criteria, such as the
mean square error (MSE) [49], [59]-[61], L1 norm [67], and
STOI [66], are selected as measurement standards. After mea-
surements, all parameters in the DNN-based model are updated
according to the evaluated difference. By contrast, in the online
inference phase, noisy speech containing mismatching clean
utterances and noise is supplied to the trained denoising model.
Ultimately, the denoising system generates an enhanced speech
based derived from noisy speech. Although the two phases are
similar among different DNN-based denoising systems, various
models, such as deep denoising autoencoders (DDAEs) [59],
[62], CNNs [61], [64], FCNs [65]-[68], and BLSTMs [49], [50],
may be applied. In this work, to illustrate the generalization of
the proposed technique, the SEOFP-NET is primarily applied to
two model architectures, BLSTM and FCN.

B. Speech Dereverberation

Speech reverberation is defined as the combination of speech
signal and its multiple reflections from objects or surfaces
within a given space. Speech reverberation has been con-
firmed to cause severely degraded speech quality and intel-
ligibility defects. Hence, reverberation can considerably af-
fect certain speech-related applications, such as automatic
speech recognition [9]-[12],[6], [8] and speaker identifica-
tion [13]-[15]. Reverberation also considerably affects all lis-
teners, normal and impaired. For decades, researchers have
proposed numerous approaches to address the reverberant is-
sue. Conventional dereverberation techniques include the min-
imum mean square error [73], beamforming [74], and matched
filtering [75].

With the rapid developments in the deep learning methods
over the past decade, the application of non-linear approaches
for dereverberation tasks has been proposed. DNNs or deep
fully connected networks with direct mapping methods have
been proposed to improve speech-related system performance
through the learning capabilities of deep structured networks.
Some researchers have proposed to using DNNs [76], [77] to
recover anechoic speech signals from their reverberated coun-
terpart.

C. Single-Precision Floating-Point Representation in DNN
Models

The DNN models for either speech denoising or derever-
beration contain a considerable number of parameters. Most
of these systems use the IEEE-754 single-precision floating
point [78] to represent the parameters; Fig. 1 shows the binary
representation of this floating point. The binary format has three
parts: sign, exponent, and fraction (also known as significand
or mantissa). The sign part has only one bit, i.e., bit[31], which
is regarded as the most important bit in the entire 32-bit binary
representation; it indicates the sign of the floating-point value
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Fig.2. Multiplication of two floating-point values A and B. The sign bit C'3q

is the result of XOR operation of A3; and Bsj. The exponent bits C'30_23
are the addition result of A3p_23 and Bsa_o3 with consideration of carrying
condition from fraction part. The fraction bits C'a2_ are the multiplication result
of unsigned A22_¢ and Bas_g.

(0 for positive and 1 for negative). The exponent part has eight
bits, i.e., bit[30 — 23], denoting an unsigned integer, which is
the number of times the power of two is raised. The fraction part
has 23 bits, i.e., bit[22 — 0], representing a real number. Similar
to scientific notation, the decimal value of a single-precision
floating point is indirectly calculated using Equation 1.

(value)1g = (—1)%9" x (fraction)io x 2(ezpenent)o=bias,
)
Owing to the unsigned integer feature, a bias is necessary for
shifting the value range of the exponent. In the single-precision
floating-point format, the bias for an 8-bit unsigned exponent
is 127 (27 — 1), shifting the value range of the exponent from
[0, 255] to [—127, 128]. In addition, the decimal value of the
fraction part can be calculated using the following equation.

22
(fraction)io =1+ Y _ bitli] x 223 )

i=0
For instance, consider the binary representation in Fig. 1 in
which the sign is 0, the 8-bit exponent is 01111011, and

the 23-bit fraction is 11111001011100100100100. It can be
calculated using the following equation.

value = (—1)% % (1.9744...) % 2137127 2 0.123400  (3)

The equation yields the decimal value 0.123400, which is correct
to six decimal places.'

D. Arithmetic Electronic Circuits

Fig. 2 illustrates a single-precision floating-point multiplier
circuit that operates the multiplication of two single-precision
floating-point values: A x B = C. For the sign part, two
operands, A[31] and B[31], execute an exclusive OR operation
to obtain the output sign, C'[31], of the result value, C'. For the ex-
ponent part, two unsigned integers, A[30 — 23] and B[30 — 23],
first execute an addition operation to obtain a temporary 9-bit
output value, T¥[8 — 0] The main reason for the 9-bit width is
to cope with over flow. The value range of the addition of two
8-bit unsigned operands whose value range is [0, 255] becomes
[0, 510]; consequently, the temporary value, T'¥[8 — 0] requires
at least 9 bits to receive the output. The bias of the single-
precision floating-point mentioned in Section II-C, i.e., 127, is

'For understanding the conversion from binary to decimal value in detail,
please consult https://www.exploringbinary.com/floating-point-converter.
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TABLE I
A PRELIMINARY EXPERIMENT ON DNN-BASED SPEECH DENOISING UNDER
THREE KINDS OF BIT-WIDTH IN THE FRACTION OF THE MODEL PARAMETERS.
THE MASK BIT-LENGTH REPRESENTS THE NUMBER OF BITS THAT ARE
MASKED BY 0 S IN THE END OF THE FRACTION

Biﬂiﬂ;th Binary Decimal PESQ
0 0011... 1100100100100 _ 0.123400002718... _ 2.1435
6 0011...1100100000000  0.123399734497...  2.1352
12 0011...1000000000000  0.123382568359...  2.1413

then subtracted from the temporary output value, T [8 — 0.
Considering 32.0 x 8.0 = 256.0 as example, the exponent of
256.0 is 10000111 which is calculated by the following:

10000111 = 10000100 + 10000010 — 01111111 (4)

where 10000100, 10000010 and 01111111 are the binary expo-
nents, 32.0 and 8.0, and the single-precision floating-point bias,
respectively. For the fraction part, two 23-bit values, A[22 — 0]
and B[22 — 0], first execute a multiplication operation to obtain
a temporary 24-bit output value, 7¥[23 — 0]. Similar to the
exponent part, the reason for the 24-bit width is to cope with
over flow. According to Equation 2, the original value range
of the fraction part is [1, 2); however, after multiplication, the
value range becomes [1, 4). As a result, the temporary value,
T¥[23 — 0], requires 24 bits to receive the output. An if-else
decision process determines whether or not 723 — 0] is less
than 2. Ifitis not less than 2, then T'¥'[23 — 0] is divided by 2. The
quotient is then carried to the result exponent, C'[30 — 23], and
the remainder is considered as the result of the 23-bit fraction,
C[22 - 0].

E. Preliminary Experiment and Motivation

Among the three parts of the single-precision floating-point
format, the sign and exponent segments are clearly designed for
the value range of the floating-point, and the fraction segment
is designed for the value precision. In the past, precision has
been a critical problem for many applications. Most bits in
the single-precision floating-point representation are used for
the fraction part (i.e., 23 bits in a 32-bit binary value). Recently,
the single-precision floating-point format has been used in
emerging DNN-based algorithms, as mentioned in Section II-C.
However, the necessity of this format to DNN-based speech
enhancement algorithms has to be ascertained. Accordingly,
a preliminary experiment is conducted on a BLSTM-based
denoising system; the experimental results are summarized in
Table I. All parameters of the BLSTM model are directly masked
by several O s at the end. Two bit lengths for the mask are used:
6 and 12. The row of the 0-bit mask represents the original
denoising model with unmasked parameters. Based on the re-
sults in the table, the downgrade of the PESQ metric scores
compared with those of the original model was not distinctly
observed. In addition, these scores increased from a 6-bit mask
to a 12-bit mask. These results motivated the authors to quantize
the fraction part of all single-precision floating-point parameters
of DNN-based speech enhancement systems.

Moreover, for executing arithmetic operations, the electronic
circuits can be classified into two types: integer and floating
point. In other words, many circuits, such as adders, subtractors,
multipliers, and dividers are designed for integer arithmetic,
whereas some circuits are designed for floating-point arithmetic.
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According to Section II-D and Fig. 2, the floating-point multi-
plier is composed of several sub-circuits of integer arithmetic.
However, many other floating-point circuits also have the same
feature, indicating that the circuits for integers are more efficient
than the circuits for the floating-point in executing arithmetic op-
erations. In addition, among the arithmetic circuits for integers,
complicated circuits are designed based on simple yet efficient
circuits. Consider the multiplier and divider as examples. The
integer multiplication is completed by several additions, whereas
the integer division is completed by several subtractions. This
feature motivated the authors to use simpler and more efficient
arithmetic circuits (e.g., integer adder or subtractor) to execute
complicated arithmetic operations (e.g., floating-point multipli-
cation or division) for the online inference phase of DNN-based
speech enhancement systems. Using this method, the inference
time of DNN models can be accelerated while performing speech
enhancement.

However, several design challenges are raised by this scheme.
First, the quantized limitation of the fraction part of the single-
precision floating-point format has to be determined, allowing
the quantized DNN models to achieve enhancement perfor-
mance similar to that of the original single-precision model.
Next, before replacing the complicated and inefficient arithmetic
circuits with simpler and more efficient alternatives, the three
parts of the floating-point parameter have to be adjusted for
the arithmetic results to be the same as those of the original
arithmetic operations.

III. SEOFP-NET

This section presents the proposed SEOFP-NET technique
for DNN-based speech enhancement algorithms. Section III-A
introduces the overall training procedure and model architecture
of SEOFP-NET. Section III-B elaborates on the philosophies and
algorithm of fraction quantization; it also presents the quantized
limitation of the fraction part of the single-precision floating-
point format to avoid the severe degradation of speech denoising
or dereverberation performance. Section III-C expounds on the
adjustment of the single-precision floating-point parameters of
the models to replace the complicated and inefficient floating-
point multiplier with a simpler and more efficient integer adder.
Finally, the quantization of the exponent part after training to
further compress the model size is discussed in Section III-D.

A. System Overview of SEOFP-NET Quantization

To quantize the fraction part of single-precision floating-point
parameters, several bits at the end of the fraction part may
be instinctively masked. Similar to the method employed in
the preliminary experiment (Table I, Section II-E), this may
be performed after training a DNN-based speech enhancement
model, such as the post-training quantization in Tensorflow
Lite [79]. However, casually modifying the parameters of a
well-trained DNN model will affect either the accuracy of a
classification task or the performance of a regression task. The
main reason is that this parameter modification does not take
the performance change into consideration. In other words, this
intuitive quantization method may considerably degrade the
speech enhancement performance. quantize model parameters
while minimizing the influence of task performance, quantiza-
tion should be implemented during training. Accordingly, all
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An overview of the DNN-based speech enhancement systems and the training procedure with the proposed SEOFP-NET technique. For generalization,

we tried both magnitude spectrogram and raw-waveform as the input data. We also used BLSTM and FCN to illustrate that our SEOFP-NET can be used in different
kinds of the model architectures. For evaluating the loss between the enhanced speech signals and the clean speech signals, we used either MSE or STOI as the

objective function after the forward propagation.

parameters of the DNN-based speech enhancement model are
forced to use a fixed number of bits in the training phase.

Fig. 3 shows an overview of the DNN-based speech en-
hancement systems and training procedure with the proposed
SEOFP-NET technique. After backward propagation in (k)-th
iteration, all single-precision floating-point parameters P are
quantized to P’ by our proposed SEOFP strategy. The quantized
parameters P’ are then used as the new model parameters for for-
ward propagation in the succeeding (k + 1)-th iteration. During
training, the DNN-based speech denoising or dereverberation
models learn minimum loss based on quantized parameters.
In addition, we attempted to use both magnitude spectrogram
and raw waveform as input data for the speech enhancement
system structure. To illustrate the generalization of different
types of model architectures, BLSTM and FCN are used as
speech enhancement models. The MSE or STOI was also used as
the objective function for evaluating the loss between enhanced
and ground-truth clean speech signals.

B. Fraction Quantization Algorithm

In Fig. 1, 71.875% of the single-precision floating-point
memory space (i.e., 23 bits in a 32-bit width representation)
is observed to be allocated to the fraction part. However, such
a high-precision 23-bit long fraction part is unnecessary for
the parameters of DNN models. Hence, in the training phase,
the DNN-based speech denoising or dereverberation systems
are first quantized in the fraction part of all single-precision
floating-point parameters. The quantization algorithm is placed
between backward propagation and forward propagation of two
adjacent iterations, as mentioned in Section III-A. Besides, the
algorithm is applied to all parameters (including weights and
biases) in the DNN-models.

Algorithm 1 presents the proposed fraction quantization
method. For the input, the algorithm is assigned two input
attributes: 1) a DNN model A with [ layers and 2) a posi-
tive integer, z, to indicate the remaining number of bits after
the fraction quantization. Please note that A is the model after the
backward propagation in any iteration, k. For the output, a model
A’, which is quantized with all floating-point parameters in bit
width x, is used for the forward propagation in the next iteration,
k + 1. Before the fraction quantization algorithm is applied, a

Algorithm 1: Fraction Quantization.

Input: A model A with [ layers, {L;|i = 1,2,...,l}. A
positive integer x for the width of the valid bits in a
single-precision floating-point value.

Output: A quantized model A’ with all floating-point
parameters in bit-width x.

1: kernel + [131 1sp... 1317a:+10317w0317:1;71 - 00]
2:  for each layer L; in the model A do
3: for each floating-point parameter P in L; do
4: Convert P into a 32-bit binary variable B[31 : 0]
5: if 32 > = > 9 then
6: B[32 — z] = B[32 — z] || B[31 — 1]
7: else if x = 9 then
8: B[30: 23] = B[30: 23] + B[22]
9: end if
10: B[31:0] = B[31: 0] & kernel[31 : 0]
11: Convert B back to P’
12: end for
13:  end for
14:  return A’

global binary variable, kernel with a 32-bit width is defined. The
head z bits of the kernel are 1 s, and the latter 32 — x bits are 0 s.
For each layer, L;, of the model, parameter P is fetched; P is first
converted from single-precision floating-point data point into a
32-bit binary variable, B. If x is greater than 9 and less than 32,
an OR operation is executed with two operands: B[32 — x| and
B[31 — x]; the result then updates the value of bit B[32 — x].
An OR operation is used to avoid overflow from the fraction
segment to the exponent segment. Here, B[30 : 32 — x] possibly
contains all 1 s and results in the domino effect of carrying 1. By
contrast, if x is equal to 9 (i.e., only the sign and exponent parts
are left in the single-precision floating-point value), the exponent
value B[30 : 23] is then added to the value of B[22]. The use
of rounding arithmetic prevents overflow from the exponent
segment to the sign segment. A floating-point value with an
exponent consisting of all 1 s (11111111) is an infinite value,
00, that does not appear in DNN-based speech enhancement
models. It is impossible that carrying 1 into the exponent part
leads to an overflow to the sign bit; hence, the exponent value,
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B30 : 23], can be directly rounded. The maximum value of x
is 32, which means that quantizing the single-precision floating-
point parameters is unnecessary. Finally, the binary variable, B,
is masked by the binary kernel and then converted back to the
floating-point parameter, P’.

In short, after the backward propagation in one iteration, k,
a rounding-like arithmetic is applied to quantize the fraction
segment of the single-precision floating-point parameters in the
DNN-based speech enhancement model A. Then, model A’ with
all floating-point parameters in bit width x is employed for the
forward propagation in the next iteration, k£ + 1. In addition,
after applying the fraction quantization strategy to the pro-
posed DNN-based speech enhancement system, the quantized
model, whose parameters are only all composed of the sign
and exponent parts (i.e., x = 9), is found capable of achieving
the denoising or dereverberation performance of the original
single-precision model. That is, quantizing all 23 bits in the
fraction part of the single-precision floating-point format is the
limitation of the fraction quantization strategy.

C. Replacement of Floating-Point Multiplier With Integer
Adder in Online Inference

After the offline training of a DNN-based speech enhancement
system, accelerating the online inference may be attempted.
Because of the simpler electronic circuit design, more efficient
integer adders may be employed to function as floating-point
multipliers for executing floating-point multiplication opera-
tions. However, a floating-point value and an integer value
considerably differ in their binary formats. Accordingly, a suit-
able strategy to solve this problem must be developed for the
enhanced utterance to remain unchanged after forward prop-
agation. More specifically, all floating-point parameters in the
trained speech denoising or dereverberation model must be ad-
justed to guarantee that the binary result from the integer addition
has the same value as that from the floating-point multiplication.
The following equation illustrates the target of replacement with
adjustment on two floating-point operands, A and B:

(A)2 + (B)2 = (A)2 x (B)2 ©)

where + is an integer addition operation, and X is a floating-
point multiplication operation; A" and B’ are two integer ad-
dition operands adjusted according to A and B, respectively.
In addition, because there are three parts (i.e., sign, exponent,
and fraction)in the binary format of a floating-point parameter,
these three segments are adjusted individually, as follows:

1) Sign: Overflow handling is inherent in integer adder cir-
cuits; hence, the mechanism is employed to assume the XOR
operation of sign in the floating-point multiplication. As men-
tioned in Section II-C, the sign value is either O or 1, representing
a positive or negative floating-point value, respectively. There
are only four sign cases in the XOR operation: {0,0}, {0, 1},
{1,0}, and {0,0}; and the XOR results are 0, 1, 1, and O
respectively. The results of the three cases ({0,0}, {0, 1}, and
{1,0}) are observed to be the same as those operated by the
integer addition. Hence, two sign operands in these cases can
be directly added without any label or modification. For the
{1, 1} case, the addition result is 10, and the overflow that occurs
is labeled by the integer adder. The integer adder handles this
overflow situation by abandoning 1 and allowing O to remain.
Therefore, in addition to replacing the XOR operation with
addition, the overflow label is removed. In this way, the sign
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Fraction

| 11111001 0111 0010 0100 100 ‘
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Fig.4. Anexample of the off-line training process for a floating-point param-
eter B. The decimal value of B was 0.123400 in the first iteration. After the
rounding-like fraction-quantization, the exponent value of B was carried by 1
and the fraction value became 0. The model then used the updated parameter
with value 0.125000 for the next iteration. The algorithm keeps quantizing the
model until the end of the training.

resulting from integer addition is identical to the result that is
yielded by floating-point multiplications in all four cases.

2) Fraction: To ensure that the fraction part resulting from
the integer addition of A’ and B’ is the same as that yielded
by the floating-point multiplication of A and B, the 23 bits in
the fraction part of either A’ or B’ should all be O s. In the
online inference, because A is represented as an input value of
one layer, it is not adjusted; this means that A’ has the same
value as A. Therefore, only the fraction value of B is adjusted.
The result presented at the end of the previous section indicates
that a quantized speech enhancement model may be obtained.
The performance of this model is similar to that of the original
single-precision model with parameters composed only of the
sign and exponent parts after the offline training. An example of
the offline training process of the floating-point parameter, B,
is shown in Fig. 4. With all B’ parameters without the fraction
values, the fraction resulting from integer addition is identical
to the result obtained by floating-point multiplication.

3) Exponent: There are two problems in adjusting the ex-
ponent part: the overflow from the exponent segment to the
sign segment and the subtraction using the bias, i.e., 127, for
the subtractor, as mentioned in II-D. For the overflow problem,
the concept is to avoid the most significant bit (MSB) of the
exponent (i.e., the leftmost bit) for both A and B tobe 1, allowing
the maximum binary value of the exponent segment to become
01111111. Consequently, the maximum addition result of the
two operands of the exponent is 10000000, and the sign bit is
never affected by the exponent addition. With this constraint,
the bit length of the addition result remains at 8. To achieve this
goal, all input values and model parameters are normalized in
the decimal value range [—1, 1]. This normalization restricts the
binary values of the exponent in the range [00000000,01111111]
for the MSB of the exponent to remain 0. Please note that
00000000 and 01111111 are the exponent values of 0 and £1,
respectively. With this method, the overflow from the exponent
segment to the sign segment never occurs.

For the second problem, directly increasing the subtraction
after the integer-adder replacement increases the number of in-
structions. More specifically, a floating-point multiplication in-
struction substituted by integer addition and integer subtraction
decelerates the online inference. Accordingly, the subtraction of
the bias (127) is divided into two parts: 64 and 63. The reason
for the separation is that both 274 and 273 are decimal values
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Trained DNN-based Speech
Enhancement System

Trained DNN Layer
Inplll; oefr this o = g x 264 Outpll;t :rf this
M pP'=px2-63 'y
X —) | Adjusted DNN Layer | - Y

Fig. 5. Adjustment of a DNN layer in a trained DNN-based speech enhance-
ment system. The model’s parameters and the standard deviation of normal-
ization are denoted as P and o respectively. After the off-line training, the o
is multiplied by 264 and the parameters P are divided by 2%3. In the on-line
inference, the input X is processed by the adjusted DNN layer with new P’ and
new o’. The output Y is then passed to the next adjusted DNN layer.

8-bit Exponent of A B
23-bit Fraction of A 3)_
NAND;

8-bit Exponent of B

23-bit Fraction of B
Fig. 6. An efficient computing logic circuit commonly used for determining
whether either of the operands is zero in various computing units. The circuit
composes of two OR gates followed by an NAND gate. All 31 bits in the exponent
and fraction parts of A and B first execute the OR operations. The results of OR

gates then execute a NAND operation. Finally, the result of the NAND gate is 1
indicates the multiplication result is zero since either of the operands is zero.

that are extremely smaller than the absolute values of the input
and model parameters. The subtractions of 64 and 63 are then
distributed to the each of the input values and model parameters.

Fig. 5 illustrates the adjustment of a DNN layer in a trained
DNN-based speech enhancement system. The input and output
floating-point values of the layer are denoted as X and Y,
respectively. In addition, all model parameters are represented
by Ps, and o indicates the standard deviation of normalization.
After the offline training, all Ps are divided by 2%, i.e., the
exponent values further subtract 63 (00111111); in contrast,
o is multiplied by 204, Because o is the denominator, the
multiplication of 254 to the denominator is equal to the division
of the entire value by 264 Therefore, the exponent values further
subtract 64 (01000000) during the normalization. The input, X,
is then processed by the adjusted DNN layer with the new P’
and new o¢’; and the output, Y, is passed to the next adjusted
DNN layer. With this technique, 127 is further subtracted from
the exponent values.

A special case exists in the floating-point multiplication, i.e.,
the zero-operand multiplication. If either of the operands is
zero, the result of the floating-point multiplication is zero. For
the single-precision floating-point representation, there are two
signed zeros, +0 and —0, whose 31 bits of the exponent and
fraction parts are all O s. Fig. 6 shows an efficient computing
logic circuit, which is composed of two OR operators followed
by an NAND operator; it is commonly used for determining
whether either of the operands is zero in various computing
units. If one of the OR results is O (which means that either A
or B is zero), then the result of the NAND gate is 1, indicating
that the multiplication result is 0. Otherwise, if both OR results
are 1 s, then the result of the NAND gate is 0, indicating that the
multiplication result is not 0. Accordingly, this efficient logic
is applied to the circuit in the zero-operand multiplication case.
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Value Floating-Point Multiplication
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Input
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Parameter
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Fig. 7.  An example of the conversion of two floating-point multiplication
operands for replacing the floating-point multiplier with a integer adder. The
decimal value of two floating-points: Input value and model parameter are
—0.8765 (A1) and —0.125 (B1); the decimal multiplication result is 0.1095625
(C'1). The binary values of two operands are Ay and Bs. After the adjustment,
the binary values transforms to A3 and Bs. The multiplication result of A and
Bs by a floating-point multiplier is C'> which equals to C'3 the addition result
of A3 and B3 by an integer adder.
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Fig. 8.  Value distribution of all parameters in logs for BLSTM and FCN. The
x-axis is the loga values and the y-axis is the number of parameters. The reason
for the range [—126, 127] of the x-axis is that —127 and 128 are used for 0 and
oo respectively in the 8-bit exponent ranging in [—127, 128].

Fig. 7 illustrates an example of the conversion of the two floating-
point multiplication operands for replacing the floating-point
multiplier with an integer adder.

D. Exponent-Quantization Algorithm

The maximum number of quantized bits for a single-precision
floating-point parameter can easily be verified as 23 based on the
fraction quantization algorithm presented in Section III-B. After
the offline training, 9 bits are left in the sign and exponent parts.
Fig. 8 shows the value distribution of all absolute parameters
in the BLSTM and FCN models in logs. Please note that the
8-bit exponent with the bias (i.e., 127) determines an exponent
value range in [—127, 128], where —127 and 128 are used for
0 and oco. Thus, the value range in the x-axis in Fig. 8 is from
—126to 127. A1l 9 bits in the sign and exponent parts are known
to be designed for a wide value range, i.e., from 27127 to
+2128 However, the normalization process commonly applied
to DNN-based models constrains all model parameters within
a narrow value range, as shown in Fig. 8. The main reason for
applying normalization is to reduce the differences among the
parameters. Based on observation, the parameters are further
quantized on these 9 bits. The exponent part should further be
quantized because of the 1 bit in the sign part. Accordingly, an
exponent quantization algorithm based on the value distribution
is proposed.

Algorithm 2 illustrates the proposed exponent quantization.
For the input, a trained speech enhancement model, A, is af-
forded to the algorithm. For the output, three output attributes
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Algorithm 2: Exponent-quantization.

Input: A trained model A
Output: The bit-width width. An exponent value min
in logs. A quantized model A’
Find the M AX and min which are the maximum and
minimum decimal exponent values in A (except for 0).
width = Ceil(loga(MAX — min + 1) 4+ 1))
for each parameter P in A do
FE is the exponent value of P in decimal.
if £/ # 0 then
E'=E—min+1
end if
P’ with the exponent value E’ substitutes for P in A’
end for
return width, min, and A’

—_

A S

[u—

are considered: 1) width indicating the number of bits necessary
for the exponent to represent all parameters; 2) min denoting
the minimum exponent value in the model; and 3) a quantized
model, A’, for exponent quantization. First, the M AX and min,
which are the maximum and minimum exponent values in logs
in A (except for zero values) are determined, respectively. There-
after, the least bit width is calculated through the ceiling function
of loga((MAX — min + 1) + 1) The reason for determining
the latter is that the 00000000 binary value is used to represent
the zero value, as explained in the previous paragraph. Next, for
each parameter in model A, the exponent value, F, is fetched
from parameter P. If E is not equal to zero, then the new
exponent value, F', is calculated by F — min + 1, i.e., the new
exponent value, ', is the offset between E and min. The addition
of 1 to the end is necessary because min is represented by 1.
Finally, with the new exponent value, E’, P’ is substituted for P
in model A’. For instance, if the parameter value range is [+0,
+2-11 4922] the M AX and min are2and —11 respectively.
In this case, only 5 bits (that is 1+[ loga(2 — (—11) + 1+ 1)])
are required for all parameters. The first 1 bit is for the sign part.
The new exponent values, i.e., E's of 0, +2-11 and +21 are
0, 1, and 13 respectively. Please note that the performance is
not affected because the bit length of the exponent part has been
reduced without changing the values.

IV. EXPERIMENTS AND RESULTS

This section presents the experimental setup and results
of SEOFP-NET on the speech denoising and dereverberation
tasks.? Section IV-A first describes the experimental setup in-
cluding the training/testing datasets, model architectures, and
performance metrics. Sections IV-B to IV-H describe the con-
duct of several experiments to compare the SEOFP-NET tech-
nique with other strategies. Section IV-B presents the compar-
ison of the proposed rounding-like fraction quantization with a
direct removing strategy to show that quantizing the fraction bits
without any constraint results in the evident degradation of the
speech denoising performance. Sections IV-C and IV-D explain
the application of the SEOFP-NET technique to the denoising
and dereverberation tasks, respectively, and the performance
evaluation of enhanced speech signals. The STOI is also in-
tegrated into the objective function to improve the performance

2The codes, pretrained models, and the JND test platform can be accessed
via: https://github.com/dwadelin/SEOFP-NET.
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of the STOI metric, as discussed in Section IV-E. Section IV-F
elaborates on the comparison between the model with the pro-
posed integer adder replacement and the original model in the
online inference time. Section IV-G presents the comparison of
all the model sizes in the original single-precision floating-point
models, models with fraction quantization, and models with
fraction-exponent quantization. In addition, a simple cooper-
ation of our quantization and an existing parameter pruning
strategy is presented thereafter. Finally, the JND metric, which
is applied to evaluate the results of the user study, is presented in
Section IV-H.

A. Experimental Setup

To clearly demonstrate the capability of the proposed SEOFP-
NET, extensive experiments were conducted on different model
architectures and datasets. The SEOFP-NET is also applied to
the denoising and dereverberation tasks, demonstrating that the
proposed technique can achieve satisfactory performance on dif-
ferent speech enhancement tasks of regression in speech signal
processing. To comprehensively understand the differences in
performance among the different speech denoising or derever-
beration systems, several metrics are employed to evaluate the
quality of the enhanced speech signals. The datasets, model
architectures, and evaluation metrics are detailed as follows:

1) Datasets: In the experiments, the TIMIT corpus [52] is
used as the dataset for the denoising task, whereas the TMHINT
corpus [53] is employed as the dataset for the dereverbera-
tion task. To evaluate the results objectively, a mismatch of
noises, SNR, and room impulse responses (RIRs) between
the training and testing sets is intentionally designed. For the
training set of the denoising task, all 4620 utterances from the
training set of the TIMIT corpus were used. These utterances
were corrupted with 100 different types of noise that are both
stationary and non-stationary at eight different signal-to-noise
(SNR) levels (from —10 to 25 dB at steps of 5 dB) to generate
4620 x 100(types) x 8(SNRs) = 3,696,000 noisy training
utterances. For the testing set of denoising tasks, 100 utterances
from the testing set of the TIMIT corpus were used; these were
different from the 4620 utterances employed in the training set.
These utterances were corrupted by five different noise types
(engine, street, two talkers, baby cry, and white) at four different
SNR levels (from —6 to 12 dB at steps of 5 dB) to generate
100 x 5(types) x 4(SN Rs) = 2000 noisy testing utterances
(i.e., 2.2 hours of noisy testing data).

For the dereverberation task, three room conditions were
simulated to generate different acoustic characteristics: room 1,
room 2, and room 3 with dimensions 4 x 4 x 4 m, 6 X 6 x 4
m, and 10 x 10 x 8 m, respectively. For the dereverberation
task training set, 360 utterances of the TMHINT corpus were
employed. These utterances were convolved with three different
RIRs and three considerations of Tgp, i.e., 0.3, 0.6, and 0.9 (s) to
generate 360 x 3(Tgos) x 3(RIRs) = 3240 reverberant train-
ing utterances (i.e., 3.2 hours of training data). For the testing
set of dereverberation tasks, 120 utterances from the TMHINT
corpus are used; these are different from the 360 utterances
used in the training set. These utterances were convolved with
a single RIR along with three considerations of T, i.e., 0.4,
0.7, and 1.0 (s) to generate 120 x 3(Tg0s) x 1(RIRs) = 360
reverberant testing utterances (i.e., 0.4 hours of testing data).

2) Model Architectures: Two different model architectures
are used, BLSTM and FCN, as shown in Fig. 3. For the
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TABLE I
PESQ SCORES OF ENHANCED SPEECH SIGNALS FROM BLSTM AND FCN
USING THE PROPOSED FRACTION-QUANTIZATION ALGORITHM AND DIRECTLY
REMOVING WITHIN 6 DIFFERENT BIT-WIDTHS ON DENOISING TASK

BLSTM FCN

Bit- Fraction Directly Fraction Directly

width Quantization Removing Quantization Removing
32 2.1435 2.1435 2.0642 2.0642
26 2.1364 2.1352 2.0743 2.0636
20 2.1252 2.1413 2.0811 2.0743
14 2.1354 2.1364 2.0931 2.0857
10 2.1541 2.1455 2.0544 2.0345
9 2.1124 2.0975 2.0758 1.8595

BLSTM-based speech enhancement systems, the spectrograms
of the speech signals were employed as the system input. The
speech signals were first parameterized into a sequence of
256-dimensional log-power spectrum features. Then, mapping
was performed frame-by-frame using the BLSTM model. This
model has two BLSTM layers followed by two fully connected
layers. Each BLSTM layer has 257 nodes, and the first fully
connected layer has 300 nodes; the second layer is a fully
connected output layer. The BLSTM architecture is similar to
that employed in [49]. In contrast, for the FCN-based speech en-
hancement systems, raw-waveform speech signals were directly
utilized as the system input/output without further waveform-
spectrum conversion. The FCN model has 10 convolutional
layers. Each of the first nine layers has 30 size 55 filters; the
last layer has only one size 55 filter. The FCN architecture is
similar to that used in [66].

3) Evaluation Metrics: To evaluate the performance of
speech denoising and dereverberation, two standardized objec-
tive evaluation metrics are used: PESQ [54] and STOI [55]. For
PESQ, whose score range is from —0.5 to 4.5, a higher value
represents better speech signal quality. For STOI, whose score
range is from O to 1, a higher score represents better speech
signal intelligibility. In addition, the JND [56]-[58] is applied
to evaluate the response times of participants in determining
the similarity between two enhanced speech signals processed
by the original single-precision floating-point model and the
proposed SEOFP model.

B. Proposed Rounding-Like Strategy Versus Direct Removal
Technique for Fraction Quantization

An intuitive method to quantize the fraction bits is to maintain
the required number of x bits and directly remove the last 32 —
x bits in the fraction segment. However, the removal of some
bits without considering their effect may result in performance
degradation. Accordingly, a rounding-like fraction quantization
algorithm is proposed in Section III-B. The performance of this
proposed quantization algorithm is compared with that of the
direct removal method in the denoising task. Table Il summarizes
the PESQ scores of the models with six different bit widths (i.e.,
32,26, 20, 14, 10, and 9). Please note that the 32-bit models are
the original single-precision floating-point models, and the 9-bit
models indicate that all parameters in those models do not have
fraction bits. Each PESQ score listed in Table II is the average
score in the three noise types and four SNR levels.

The PESQ scores listed in the table are only slightly down-
graded when the proposed rounding-like fraction quantization
is applied. For example, although the bit width decreased from
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32 t0 9, the PESQ scores degraded by only 1.45% (from 2.1435
to 2.1124) and —0.56% (from 2.0642 to 2.0758) for BLSTM
and FCN, respectively. The negative value, —0.56%, indicates
that the performance of the 9-bit quantized FCN model is better
than that of the original single-precision floating-point FCN
model. However, the PESQ scores are apparently downgraded
if several bits when directly removed from the fraction part.
For example, although the bit width decreased from 32 to
9, the PESQ scores degraded by only 2.15% (from 2.1435
to 2.0975) and 9.92% (from 2.0642 to 1.8595) for BLSTM
and FCN, respectively. The results illustrate the potential of
the proposed fraction quantization, which uses a rounding-like
strategy to quantize the fraction bits to reduce the approximation
erTor.

C. Denoising Using Fraction Quantization

The results listed in Table II not only show the feasibility
of fraction quantization but also suggest that similar denoising
performance can still be maintained with only 9 bits (i.e., the
sign and exponent bits) left in all model parameters. Table III
lists the detailed PESQ and STOI scores for the BLSTM and
FCN using the original single-precision floating-point models
and the proposed SEOFP-NET models under four specific SNR
conditions. Each value is an average score in five noise types
(engine, street, two talkers, baby cry, and white). The SEOFP
models are quantized by fraction quantization within a 9-bit
width. The score reductions are represented as a percentages
from the baseline scores to the SEOFP-NET scores. In addition,
the PESQ and STOI scores for the unprocessed noisy testing
utterances are also listed in the table.

The results in Table III indicate that in applying the SEOFP-
NET strategy to the BLSTM-based denoising models, the reduc-
tion in the PESQ score is only 1.45% (from 2.1435 to 2.1124),
whereas that for the STOI score is only 0.09% (from 0.7529 to
0.7522). Similarly, for the FCN-based denoising models, the
reduction in the STOI score is only 2.90% (from 0.7547 to
0.7328); however, the PESQ score improves by 0.56% (from
2.0642 to 2.0758). A possible reason for this improvement is
that the single-precision floating-point parameters may be ex-
tremely precise in that the trained parameters overfit the training
utterances.

Another observation from Table III is that the FCN-based
denoising model has suffered more reductions in the STOI
scores after the fraction quantization. A possible reason for this
phenomenon is that the number of parameters in the FCN is con-
siderably smaller than the number of parameters in the BLSTM;
consequently, each parameter performs a more important de-
noising function. The same slight error resulting from the frac-
tion quantization of a parameter differently affects the BLSTM
and FCN denoising models. Nevertheless, the compression rates
are approximately 3.56 x in both models, indicating that the sizes
of DNN-based models could be substantially compressed with
slight reductions in the denoising performance. Fig. 9 illustrates
the spectrograms and waveforms of a sample utterance in the
denoising task. Fig. 9(a) to (d), shows the spectrograms of clean
speech, noisy (engine noise), enhanced speech processed by the
original FCN, and enhanced speech processed by SEOFP-NET,
respectively; and Fig. 9(e) to (g), shows the speech signals in
the waveform format.
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TABLE III
DETAILED PESQ AND STOI SCORES FOR BLSTM AND FCN USING THE ORIGINAL SINGLE-PRECISION FLOATING-POINT MODELS AND THE PROPOSED

SEOFP-NETS UNDER SPECIFIC SNR CONDITIONS. EACH SCORE IS AN AVERAGE SCORE OF THREE NOISE TYPES (ENGINE, STREET, AND TWO TALKERS). THE

SCORE REDUCTIONS ARE REPRESENTED IN THE PERCENTAGE FROM BASELINE’S SCORES TO SEOFP-NET’S SCORES

Noisy - BLSTM - FCN
Baseline SEOFP-NET Baseline SEOFP-NET

SNR(dBj PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
1.2232 0.5094 1.4986 0.5676 1.4881 0.5685 1.3814 0.5483 1.4443 0.5384
-6 - - +0.2754 +0.0582 +0.2649 +0.0591 +0.1582 +0.0389 +0.2211 +0.0290

- - - - -0.70% +0.16% - - +4.55% -1.81%

1.6218 0.6592 1.9831 0.7280 1.9620 0.7246 1.8427 0.7189 1.8774 0.7001
0 - - +0.3613 +0.0688 +0.3402 +0.0654 +0.2209 +0.0597 +0.2556 +0.0409

- - - - -1.06% -0.47% - - +1.88% -2.62%

2.0161 0.7996 2.3932 0.8315 2.3612 0.8314 2.3036 0.8403 2.2813 0.8144
6 - - +0.3771 +0.0319 +0.3451 +0.0318 +0.2875 +0.0407 +0.2652 +0.0148

- - - - -1.34% -0.01% - - -0.97% -3.08%

2.4394 0.9005 2.6991 0.8846 2.6383 0.8842 2.7291 09112 2.7003 0.8783

12 - - +0.2597 -0.0159 +0.1989 -0.0163 +0.2897 +0.0107 +0.2609 -0.0222

- - - - -2.25% -0.05% - - -1.06% -3.61%

1.8251 0.7172 2.1435 0.7529 2.1124 0.7522 2.0642 0.7547 2.0758 0.7328
Average - - +0.3184 +0.0357 +0.2873 +0.0350 +0.2391 +0.0375 +0.2507 +0.0156
- - - - -1.45% -0.09% - - +0.56% -2.90%

(a) clean spectogram (b) noisy spectogram (c) Baseline spectogram (d) SEOFP-NET spectogram

(e) clean raw-waveform

(f) noisy raw-waveform

Fig. 9.

(g) Baseline raw-waveform

(h) SEOFP-NET raw-waveform

Spectrograms and waveforms of an example utterance in the denoising task: (a) and (e) clean speech signals; (b) and (f) noisy speech signals (engine

noise); (c) and (g) enhanced speech signals by the original single-precision floating-point FCN; (d) and (h) enhanced speech signals by the proposed SEOFP-NET.

D. Dereverberation With Fraction Quantization

To illustrate the capability of speech enhancement tasks of re-
gression in speech signal processing, the proposed SEOFP-NET
is applied to a speech dereverberation task. Table IV summarizes

the details of the PESQ and STOI scores in the dereverberation Reverberant Baseline SEOFP-NET
by the original single-precision floating-point FCN model and Tso | PESQ STOI | PESQ  STOL | PESQ  STOI
SEOFP-NET under the three specific reverberation conditions of 21887 06168 | 23217 07925 | 23153  0.7550
Tso- The score reductions are represented as a percentage from 0.4 . . +0.133 - +0.1757 | +0.1266  +0.1382
the baseline scores to the SEOFP-NET scores. The PESQ and _ _ _ _ -028%  -4.73%
STOI scores in the unprocessed reverberant testing utterances 1.8279 04728 | 19086 — 0.7019 | 19336 = 0.6495
. . e g . 0.7 - - +0.0807 +0.2291 | +0.1057  +0.1767
are listed in the table. The results indicate that in applying i i i . T131%  747%
the SEOFP-NET strategy to the FCN-based dereverberation 16531 04010 | 16681 05908 | 17494 05543
model, the STOI score was only reduced by 6.07% (from 1 ) ) +0.015  +0.1898 | +0.0963  +0.1533
0.6951 to 0.6529). In contrast, the PESQ score improved by B B ) B +487%  -6.18%
approximately 1.69% (from 1.9661 to 1.9994). These results 18899 04969 | 1.9661 06951 19994 06529
confirm that the proposed SEOFP-NET may also be applied Ave. _ _ +0.0762  +0.1982 | +0.1095 +0.1561
to different types of speech enhancement tasks of regression - - - - +1.69%  -6.07%

in speech signal processing to compress the model sizes of

TABLE IV

DETAILED PESQ AND STOI SCORES FOR DE-REVERBERATION ON THE
ORIGINAL SINGLE-PRECISION FLOATING-POINT FCN MODEL AND
SEOFP-NET UNDER THREE SPECIFIC REVERBERATION CONDITIONS T§q
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TABLE V
DETAILED PESQ AND STOI SCORES FOR DENOISING SYSTEMS USING STOI
AS THE OBJECTIVE FUNCTION ON THE ORIGINAL SINGLE-PRECISION
FLOATING-POINT FCN MODEL AND THE PROPOSED SEOFP-NET
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TABLE VI
AVERAGE INFERENCE TIMES AND SPEED UP RATIOS FOR BLSTM, FCN-10,
FCN-12 USING THE BASELINE MODELS AND THE PROPOSED SEOFP-NETS.
THE INFERENCE TIME (PER SECOND OF TESTING UTTERANCE) ARE IN UNITS

speech dereverberation systems with only marginal degrada-
tions in performance. Another observation is that the PESQ
scores improved under most reverberation conditions, i.e., Tgp,
whereas the STOI scores were reduced under all reverberation
conditions in the considered scenarios. A possible reason is that
the objective function used in this dereverberation model is the
MSE, which has a higher positive correlation with PESQ than
with STOI. The rounding-like approximation, which maintains
the MSE loss while quantizing the model in training, results in
lower performance degradation in PESQ than in STOL

E. Integration of STOI Metric Into Objective Function

The results in Table III and I'V indicate that the improvement
of enhanced speech in the STOI metric compared with that
in PESQ is unclear. Moreover, the reductions (yielded by the
original single-precision floating point FCN model and proposed
SEOFP-NET) in STOI exceed the reductions in PESQ. The
main reason is similar to the explanation provided regarding
the previous experiment. The MSE objective function used for
training the speech denoising and dereverberation models has a
high positive correlation with PESQ; however, the loss function
is not sufficient for the STOI metric. Thus, in this experiment, the
STOImetric is integrated into the objective function of denoising
models. A framework similar to that used in [66] was employed.

Table V summarizes the PESQ and STOI scores in the de-
noising systems using STOI as the objective function in the
original single-precision floating-point FCN model and the pro-
posed SEOFP-NET. Compared with the FCN scores listed in
Table III, the denoising systems with STOI as the objective
function achieved higher improvements in the STOI scores.
Consider the improvement under the —6 dB SNR condition as
an example (i.e., second row, —6 dB of FCN in Tables III and
V). The Baseline-S and SEOFP-NET-S models improved by
0.0852 and 0.0759 in the STOI metric, respectively, whereas the
baseline and SEOFP-NET models only improved by 0.0389 and
0.0290, respectively. In addition, the score reductions (from the
baseline model to the SEOFP model) in STOI are smaller than
the score reductions in PESQ. For example, in quantizing the
parameters, the reduction in the PESQ score was 5.40% (from
2.0439 to 1.9335); however, the reduction in the STOI score
was only 2.50% (from 0.7862 to 0.7665). These results confirm

OF MILLISECONDS
Noisy Baseline-S SEOFP-NET-S
SNR(dB) | PESQ  STOI | PESQ STOI PESQ STOI ‘ Inference | Speed Up
12232 05094 | 1.3891  0.5946 | 1.3803  0.5853 Model Metric | Average Time (ms) Ratio
-6 - - +0.1659  +0.0852 | +0.1571  +0.0759
- - - - -0.63%  -1.56% Bascline | Lo | 21435 78.711 -
1.6218 0.6592 | 1.8280 0.7537 | L7511  0.7272 BLSTM STOI 0.7529
0 - - +0.2062  +0.0945 | +0.1293  +0.0680 SEOFP | PESQ | 2.1124 66,000 L1925
2 0161 0 7596 2 2%49 0 8_675 ;‘121130757 6355421? NET STol 071522 . .
6 - - +0.2488  +0.0679 | +0.0971  +0.0418 Baseline | LEoQ | 20642 110.691 -
) ) i - 670%  -3.01% FCN1o STOI 0.7547
24394 09005 | 2.6937 09288 | 24893  0.9122 SEOFP | PESQ | 2.0758 91.308 1912x
12 - - +0.2543  +0.0283 | +0.0499 +0.0117 NET STOI 0.7328 ' '
- . - - 7.59%  -1.79%
1.8251 0.7172 | 2.0439  0.7862 | 1.9335  0.7665 Baseline I;Iii)? égzii 134.035 -
Ave. - - +0.2188  +0.0690 | +0.1084  +0.0494 FCN12 :
) ) ) - 5.40%  -2.50% SEOFP | PESQ | 2.1074 110.700 211
NET STOI 0.7326

that the STOI optimization is considerably related to achieving
speech intelligibility improvement and suggest that applying
SEOFP-NET with STOI as the objective function decreases the
score reduction in the STOI metric.

F. Acceleration by Replacing Floating-Point Multipliers With
Integer Adders for Floating-Point Multiplications

To evaluate the improvement in the inference time, the pro-
cedures of the BLSTM and FCN models are simulated using C
language on a personal computer with an Intel(R) Core(TM)
i7-6700 3.40-GHz CPU. The clock function in the time.h
library was also used to evaluate the inference time for speech
denoising. In addition, another 12-layer FCN model was created
for comparison. Similar to the previous FCN models, the model
has 12 convolutional layers with zero padding for the size to be
the same as the input. Each of the first 11 layers consists of 30
size 55 filters, and the last layer has only one size 55 filter.

Table VI summarizes the average online inference times
and speedup ratios for BLSTM, FCN,(, and FCN;5 using the
baseline models and the proposed SEOFP-NETs. The inference
times for noisy testing data with an average of 1.3 hours (i.e.,
1200 testing utterances) are given in units of millisecond. The
results in the table indicate that the inference times are signifi-
cantly reduced by SEOFP-NET. The acceleration rates of infer-
ence time are 1.192x (from 78.711 to 66.020), 1.212x (from
110.691 to 91.308), and 1.211x (from 134.035 to 110.709)
for the BLSTM, FCN;(, and FCN9, respectively. That is, the
inference time of DNN-based speech denoising systems can
simply be accelerated by the proposed SEOFP-NET strategy
without expensive and complicated hardware accelerators.

The results in Table VI further indicate that although FCNj 5
SEOFP-NET has two more convolutional layers than the FCN
baseline model, their inference times are virtually the same.
More specifically, the average inference time of FCN;, SEOFP-
NET is approximately 110.691 ms (per second of the testing
utterance); this approximates the 110.709-ms average inference
time of the FCN;( baseline model. However, for the perfor-
mance metrics, FCNj2 SEOFP-NET outperforms the FCN(
baseline model in PESQ and has a STOI score similar to that
of the latter. The result suggests that instead of training the
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TABLE VII
NUMBER OF PARAMETERS AND THE MODEL SIZES OF THE BLSTM AND FCN USING THE BASELINE SINGLE-PRECISION MODELS, SEOFP-NETS WITH ONLY
FRACTION-QUANTIZATION, AND SEOFP-NETS WITH BOTH FRACTION- AND EXPONENT-QUANTIZATION ALGORITHMS. THE MODEL SIZES ARE IN UNITS OF
KILOBYTES (KB). THE COMPRESSION RATIOS ARE ALSO LISTED IN THE TABLE

BLSTM Compression Ratio FCN Compression Ratio
Number of parameters 2,877,929 - 450,301 -
Size of the baseline models with single-precision floating-point (KB) 11,242 - 1,759 -
Size of the SEOFP-NETs with Fraction-Quantization (KB) 3,162 -71.873% 495 -71.859%
Size of the SEOFP-NETs with Fraction-Exponent-Quantization (KB) 2,108 -81.249% 385 -78.113%
Number of parameters of SEOFP FCN model with parameter pruning ) 337,725 -83.570%
Size of SEOFP FCN model with parameter pruning (KB) 289

Speech A

W

Ans: Same or Different?

Fig. 10. The environment of the JND user study experiment. For each pair
of utterances in the 100-pair A/B Test, the participant listened to two enhanced
speech signals and then answer in SAME or DIFF. The response time was
recorded to determine the availability of the response.

Speech B

b

o

DNN-based speech denoising system with fewer layers, training
the SEOFP-NET with more layers can improve performance
without increasing the online inference time.

G. Further Model Compression by Exponent Quantization
Algorithm and Existing Parameter Pruning Strategy

Table VII lists the number of parameters and model sizes
of the BLSTM and FCN using the original single-precision
models, SEOFP-NETs with only the fraction quantization,
SEOFP-NETs with both fraction and exponent quantization
algorithms, and the combination of SEOFP and parameter prun-
ing. The sizes of all models are in kilobytes (kB). The compres-
sion ratios, which represent the size reduction percentages from
the baseline models to the SEOFP-NETsS, are also listed in the
table and calculated by the following equation:

Sseorp — SB

55 x 100%  (6)

Compression ratio =

where Sgporp and Sp represent the sizes of baseline models
and SEOFP-NETSs, respectively.

From the table, the sizes of models with the proposed fraction
quantization algorithm compared with those of the baseline
models are evidently compressed. The sizes of the SEOFP-NETs
with fraction quantization compared with those of the baseline
BLSTM and FCN models were reduced to 71.873% (from
11,242 t0 3,162) and 71.859% (from 1,759 to 495), respectively.
These compression ratios may be attributed to the redundant
fraction bits in the single-precision floating-point parameters.
To further compress the model sizes, the proposed exponent
quantization algorithm was applied to the trained BLSTM-based
and FCN-based speech denoising systems, as mentioned in
Section III-D. First, the maximum M AX and minimum min
exponent values in logs of each model were determined. After
the exponent quantization, the value set { M AX, min, width}

of each model were obtained, i.e., {0, —23, 5} for the BLSTM-
based denoising model, respectively, and {10, —26, 6} for the
FCN-based denoising model, respectively. The quantized mod-
els were also generated by the exponent quantization algorithm.
As indicated in the table, the sizes of the SEOFP-NETs with the
fraction and exponent quantization algorithms compared with
those of the SEOFP-NETs with only the fraction quantization
were further compressed.

Compared with the sizes of the baseline models, those of the
SEOFP-NETs were reduced by approximately 80.249% (from
11,242 to 2,108) and 78.113% (from 1,759 to 385) for the
BLSTM and FCN, respectively. In other words, the model sizes
of SEOFP-NETs are only one-fifth of the sizes of the baseline
models. Further, the compression ratios may be attributed to
the narrow value distribution of all parameter exponents. In
addition, to verify that the proposed SEOFP strategy can co-
operate with other efficiency strategies to achieve a synergy
effect, we combine our quantization strategy with an existing
parameter pruning strategy proposed by [80], [81], as shown in
Table VII. From the table, the number of parameters in the FCN
model reduced from 445,301 to 337,725. The model remaining
model size is only 16.43% (from 1,759 to 289 KB). It is also
noted that the integration of parameter pruning obtained similar
enhancement performances in terms of PESQ and STOI. The
result is encouraging for combination of different efficiency
methodologies finding the compression limitation of speech
enhancement without performance degradation.

H. Just Noticeable Difference

Finally, the JND is employed as the metric for the user study.
The JND is the minimum amount of change that can produce a
noticeable variation in sensory experience (e.g., sight, hearing,
and tactile sense) [56]-[58]. In the human hearing system, the
JND is used to measure the difference among similar speech
signals (acoustics or sounds). Accordingly, the JND is an appro-
priate metric for evaluating the difference between the enhanced
speech signals yielded by the baseline model and that of the
proposed SEOFP-NET. The environment of this JND user study
experiment is shown in Fig. 10. In this experiment, six denoising
SEOFP-NETSs with six different bit widths (i.e., 32, 26, 20, 14,
10, and 9) for the parameters presented in Section IV-B are
employed. For the A/B test for 20 participants, 100 pairs of
speech signals were prepared; each participant was requested
to listen to the same 100 pairs of speech signals. For each pair,
one speech was the utterance enhanced by the baseline model,
and the other was enhanced by one of the six SEOFP-NETs.
Note that if the speech is enhanced by the SEOFP-NET with a
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Engine  White  Baby
Cry

(c) amounts of DIFF responses under different conditions

Statistic box plots of the response times and the amounts of DIFF responses of the 20 participants in the 100-pair enhanced utterances A/B Test. (a) the

amount of DIFF responses; (b) the average response times of total 100 pairs and the pairs of DIFF responses are in units of milliseconds; (c) the amount of DIFF
responses under the SEOFP-NETs with 6 different bit-widths, 4 different SNR levels, and 3 different noise types.

32-bit width, these two speech signals will be the same because
the SEOFP-NET with a 32-bit width is exactly the same as the
baseline model. Moreover, both speech signals are under the
same SNR condition. After listening to these pairs of speech
signals, each participant had to determine whether the speech
signals were the same or different by giving the answers SAM E
or DIF'F, respectively. The response time for the determining
the similarity or difference between the two enhanced speech
signals was recorded.

Fig. 11 illustrates the statistical boxplots of the average re-
sponse times and the amount of time for the 20 participants
to reach a DIFF response to the A/B test on the 100 pairs of
enhanced utterances; these response times are in milliseconds,
as shown in Fig. 11(b). From Fig. 11(a) and 11(b), the average
time of the 100 responses is 746.36 ms. This short response
time indicates that the JND statistic may be applied. In addition,
the average quantity of DIFF responses is only 8.75 out of the
100 pairs of enhanced utterances (as shown in Fig. 11(a)), and
the average time of DIFF responses is 915.09 ms. These results
have two important implications. First, although reductions in
the scores of the standardized objective evaluation metrics (i.e.,
PESQ and STOI) are observed, as summarized in Tables III,
in most pairs of utterances, the two enhanced speech signals
sound similar to the listeners. Second, the longer average time
of DIFF responses than the average response time of the 100
pairs indicated that the listeners were unable to effortlessly
differentiate between the enhanced speech signals from the
baseline model and the proposed SEOFP-NETs although they
ultimately made the DIFF decision.

To further probe into the scenarios of DIFF responses, the
number of DIFF responses under different conditions are cat-
egorized into three groups, as shown in Fig. 11(c). The first
group consisted of SEOFP-NETs with six different bit widths;
the second group had four different SNR levels (-6, 0, 6, and
12); and the last group had three different noise types (engine,
white, and baby cry). From the figure, the 8.75 DIFF responses
are observed to be evenly distributed among the six different
bit widths of the SEOFP-NETs even though the interquartile
ranges are slightly different among these models. However, note
that the 32-bit model has an average of 1.15 DIFF responses
although the A/B enhanced speech signals are actually the same.
These erroneous evaluations indicate that the participants were
extremely unsure in making the DIFF decisions.

For the different SNR levels, 12 dB is observed to receive
the most quantity of DIFF responses, whereas —6 dB had the

least quantity among the 100 pairs of enhanced speech signals.
A possible reason for this result is that the distortions of the
baseline model and SEOFP-NETs are different. The original
noisy speech signals with high SNRs inherently have high
quality and intelligibility. However, the distortion of enhanced
noisy speech signals with high SNRs is more evident than the
distortion of enhanced noisy speech signals with low SNRs.
Moreover, the various models may cause different distortions
while enhancing the noisy speech signals; consequently, the
differentiation made by the participants between the two speech
signals is based on different distortions. For the different noise
types, the average quantity of DIFF responses to the engine
noise is 3.1; this approximates 3.2, which is the average quantity
of DIFF responses to the white noise. In contrast, the Baby Cry
noise received the least quantity of DIFF responses among the
100 pairs of enhanced speech signals. These results indicate
that a pair of enhanced speech signals with stationary noise
can be more facilely differentiated by listeners than a pair with
non-stationary noise.

V. CONCLUSION

In this paper, a novel SEOFP-NET strategy is proposed to
compress the model size and accelerate the inference time for
speech enhancement tasks of regression in speech signal pro-
cessing. In the offline training phase, SEOFP-NET compresses
model sizes by quantizing the fraction bits of single-precision
floating-point parameters. Before the online inference, all pa-
rameters are slightly adjusted to accelerate the inference time
by replacing the floating-point multiplier logic circuit with an
integer-adder logic circuit. The results show that the SEOFP-
NET models compared with the baseline models can be sig-
nificantly compressed by 71.859% to 81.249% and accelerated
between 1.192x and 1.212x with respect to the inference time.
In the meantime, the enhancement performances achieved by
SEOFP-NET are similar to that of the baseline models. The
results also verify that SEOFP-NET can cooperate with other
efficiency strategies to achieve a synergy effect. Moreover, the
JND user study indicates that the listeners cannot facilely dif-
ferentiate between the enhanced speech signals from the base-
line models and SEOFP-NETSs. The promising results suggest
that the DNN-based speech enhancement algorithms with the
SEOFP-NET technique can be suitably applied to lightweight
embedded devices.
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