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Abstract—Cross-lingual speech adaptation aims to solve the
problem of leveraging multiple rich-resource languages to build
models for a low-resource target language. Since the low-resource
language has limited training data, speech recognition models can
easily overfit. Adapter is a versatile module that can be plugged
into Transformer for parameter-efficient learning. In this paper,
we propose to use adapters for parameter-efficient cross-lingual
speech adaptation. Based on our previous MetaAdapter that
implicitly leverages adapters, we propose a novel algorithm called
SimAdapter for explicitly learning knowledge from adapters.
Our algorithms can be easily integrated into the Transformer
structure. MetaAdapter leverages meta-learning to transfer the
general knowledge from training data to the test language.
SimAdapter aims to learn the similarities between the source and
target languages during fine-tuning using the adapters. We con-
duct extensive experiments on five-low-resource languages in the
Common Voice dataset. Results demonstrate that MetaAdapter
and SimAdapter can reduce WER by 2.98% and 2.55% with only
2.5% and 15.5% of trainable parameters compared to the strong
full-model fine-tuning baseline. Moreover, we show that these two
novel algorithms can be integrated for better performance with
up to 3.55% relative WER reduction.

Index Terms—speech recognition, cross-lingual adaptation,
meta-learning, parameter-efficiency

I. INTRODUCTION

UTOMATIC speech recognition (ASR) based on end-
to-end (E2E) models has made remarkable progress by
training on large-scale data [1]], [2]. We can use a single
E2E ASR system for a large number of languages [3], [4]]
without complicated language-specific processing. Neverthe-
less, a well-known limitation of E2E ASR methods is that
they require a considerable amount of training data to achieve
superior performances among various domains [5] and lan-
guages [6]]. Therefore, it remains a challenge for E2E ASR
models to achieve good performance for most of the low-
resource languages among about 7,000 languages in the world.
Some research has indicated that the performances of low-
resource languages benefit from transferring the common
knowledge from rich-resource languages in ASR [7]]. For
instance, as shown in Fig. given Romanian as a low-
resource target language, cross-lingual ASR aims to build
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Fig. 1. Illustration of the cross-lingual speech recognition task. Given three
rich-resource languages as source languages (Italian, Welsh, and Russian),
how to learn the transferable knowledge from them to build cross-lingual
ASR models for the target language Romanian?

models by leveraging the available rich-resource languages
such as Italian, Welsh, and Russian as source languages.
Knowledge transfer can be achieved in three avenues: (1)
pre-training on the rich-resource languages and then fine-
tuning on the low-resource tasks [3], [8]]; (2) performing multi-
task training using all languages [9]l; and (3) learning the
general common knowledge and then rapidly adapting to the
low-resource languages using meta-learning [[10]. A possible
explanation is that different languages intrinsically share some
beneficial information like speaker, environment and linguistic
information. In this paper, we mainly focus on the fine-tuning
methods.

Due to the limited training data in low-resource lan-
guages, direct re-training makes the model easily overfit.
These problems make the transfer-based methods ineffi-
cient [11]], [12]]. Recently, the adapter module was proposed
for parameter-efficient fine-tuning in multilingual or cross-
lingual settings [11]-[[13], which can mitigate overfitting.
Adapter is an add-on module to the encoder and decoder
layers in Transformer mainly composed of layer normalization
and fully-connected layers. During fine-tuning, we can freeze
the backbones of the pre-trained models and only train the
adapters which have a small number of task-specific parame-
ters. Pfeiffer et al. [|14]] studied the fusion of adapters in natural
language processing where they linearly combine the outputs
of multiple adapters for target classification task adaptation.
However, it remains unexplored to investigate the performance
of multiple adapters on cross-lingual ASR tasks.

In our previous work [11], we proposed MetaAdapter to
learn general and transferable speech representations using
model-agnostic meta-learning (MAML) [15] and achieved
promising results on extremely low-resource languages. How-
ever, it is unclear whether MetaAdapter can handle the non-
extreme cases where there are moderate training data. More-
over, MetaAdapter relies on meta-learning to implicitly learn
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from source languages, which makes no assumptions on the
relationship between source and target languages that may
weaken its interpretability. Therefore, in this paper, we com-
prehensively investigate the potential of leveraging multiple
source adapters in cross-lingual speech recognition. Based on
our analysis on MetaAdapter, we propose a novel algorithm:
SimAdapter, to learn the similarity between the source and
target languages using the attention mechanism. Our key
motivation is that different languages in the world are sharing
similarities based on their similar geological characteristics
or evolution [16]—[18]. Therefore, it is feasible to explicitly
model such similarities in the ASR models.

Both of the two algorithms are parameter-efficient and thus
can prevent the overfitting problem. To our best knowledge,
there is no existing research that tries to model the cross-
lingual ASR tasks by studying their relationship using meta-
learning and transfer learning-based adapters. In addition, the
MetaAdapter and SimAdapter are compatible, thus can be
integrated for better performance.

Our contributions can be summarized as follows:

« We comprehensively analyze our previously proposed
MetaAdapter and propose a novel algorithm for cross-
lingual low-resource ASR: SimAdapter.

o Experiments on five low-resource languages demon-
strated a relative WER improvement of 2.98% with
MetaAdapter and 2.55% with SimAdapter using only
2.5% and 15.5% trainable parameters compared with the
strong full-model fine-tuning baseline, respectively.

o These two algorithms can be integrated to achieve better
performance with up to 3.55% relative improvement.

This paper is substantially an extended version of our previ-
ously published paper [[11] at ICASSP 2021. Compared to the
previous version, we make heavy extensions as follows: (1) We
propose a parallel new algorithm called SimAdapter for cross-
lingual ASR. (2) We investigate the difference and integration
between the MetaAdapter and SimAdapter algorithms. (3) We
conduct extensive experiments on cross-lingual ASR datasets
to validate the effectiveness of these algorithms.

The structure of this paper is as follows. In Section [II]
we review the related work to multilingual, cross-lingual
ASR and adapters. Section |llI| introduces our main ideas.
Section[[V]and Section[V]introduce the details of MetaAdapter
and SimAdapter algorithms, and their integration. Section
presents experimental design details and Section reports
our experimental results and analysis. Finally, in Section
we conclude this paper and present some future work.

II. RELATED WORKS
A. Multilingual and Cross-lingual Speech Recognition

Multilingual E2E ASR is getting increasing attention over
the years to handle multiple languages with a single model.
Watanabe et al. [19] proposed a language-independent archi-
tecture based on hybrid CTC-attention structure [20] with
augmented vocabulary for character-based E2E ASR and joint
language identification. Toshniwal et al. [21]] found that mul-
tilingual training leads to a significant relative improvement
of recognition performance and the results can be further

boosted by conditioning the model on a language identifier.
Some attempts take a step towards realizing language-universal
ASR. Li et al. [22] proposed to replace the characters with
the Unicode bytes as the output. Datta et al. [23|] unified
different writing systems through a many-to-one transliteration
transducer. Recently, large-scale multilingual ASR systems
have been investigated [3[], [4], [8], [12], [24]. [3]] proposed
jointly training on 16,000 hours of speech data of 51 languages
with up to 1 billion parameters. Inspired by [19], Hou et
al. presented LID-42 [4], a large-scale multilingual acoustic
Transformer model trained on 11 mixed corpora of 42 lan-
guages.

Cho et al. [25] validated the effectiveness of cross-lingual
transfer learning for improving ASR performance. And this ad-
vantage can be further revealed by large-scale pre-training [3]],
[8]. For example, LID-42 can achieve a relative WER re-
duction of up to 28.1% on low-resource languages by cross-
lingual transfer [4]. Yi et al. [26] introduced an adversarial
learning objective to learn language-agnostic features. They
appended a language discriminator after the shared encoder
to distinguish which language the bottleneck features belong
to. The objective of the discriminator is to correctly identify
the language while the adversarial objective of the encoder is
to fool the discriminator. The adversarial training process is
realized with the use of the gradient reversal layer (GRL) [27].
Adams et al. [[8]] performed experiments to analyze the impacts
of language similarity, context-independent phoneme CTC
objective and the aforementioned language-adversarial classi-
fication objective during multilingual pre-training to encourage
language-agnostic features for better cross-lingual adaptation.

Other than learning the language-agnostic features, the
optimization-based meta-learning approaches [15], [28] that
aim to find a proper initialization for rapid adaptation have
also been explored for cross-lingual ASR [I1]. Hsu et
al. [[10] proposed to apply the model-agnostic meta-learning
(MAML) [15]] as the pre-training method and achieved sig-
nificant improvement over the conventional multilingual pre-
training baseline. Xiao et al. [29] proposed the Adversarial
Meta Sampling framework by introducing a policy network
(task sampler) to dynamically sample languages based on their
task difficulty. The ASR model is trained to minimize the loss
while the task sampler learns to choose the most difficult
languages that can maximize the loss. As a consequence,
the learned initialization has a more balanced distance to all
languages and shows a good generalization capacity in low-
resource speech tasks.

B. Adapters

Due to the large quantity of parameters contained in the
Transformer-based models [4], [30]-[32], recent literature pro-
posed the Adapter structure [33]], [34] for parameter-efficient
adaptation of pre-trained Transformers [30], [35] on various
downstream tasks including language understanding [36] and
neural machine translation (NMT) [35], etc. Adapter is a
versatile module that can be plugged into the Transformer
blocks. The general philosophy for adapter-based fine-tuning
is to freeze the parameters 6, of the Transformer backbone and
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only tune the parameters 6, of the adapter. Compared to fine-
tuning the whole Transformer model, fine-tuning the adapters
is significantly efficient with acceptable performance loss [33].
Therefore, adapters have been adopted as a fine-tuning tech-
nique in few-shot domain adaptation for NMT [37] and unsu-
pervised cross-lingual transfer [[38]] or domain adaptation [39]
of large-scale pre-trained language models like BERT [30]
and XLM [40]. Li et al. [41] proposed a hypernetwork that
could generate parameters of task-specific adapters from task
descriptions to enable zero-shot learning [42]. More recently,
[14] introduced AdapterFusion to fuse adapters trained on
different tasks to share the knowledge. The difference between
our work and theirs is that we focus on the cross-lingual
sequence-to-sequence ASR task while they experiment on text
classification based on BERT [30].

Some researchers have proposed to apply the Adapters to
the E2E ASR tasks. In [12], Kannan et al. proposes to use the
adapters to handle the data imbalance problem for large-scale
multilingual ASR. After obtaining the model trained on the
union of data from all languages, they trained the language-
dependent adapters on each of the languages again so that
the multilingual backbone shares information across languages
while the adapters could allow for per-language specialization.
Winata et al. [13] extends this idea by further introducing a
common adapter for all languages to learn language-agnostic
information in the multilingual data. On the other hand, Hou
et al. [[11] investigates the possibility of applying adapters
to cross-lingual ASR under the assumption that a large-
scale pre-trained multilingual model [4]] should have contained
adequate general acoustic and linguistic knowledge and could
be adapted to any unseen target language with moderate
feature adaptation. Furthermore, they proposed to pre-train the
adapters with meta-learning to obtain the MetaAdapter that
provides a proper initialization for fast adaptation.

SimAdapter is similar to Mixture of Expert (MoE) [43].
MoE is often used to scale up the model size while retaining
the computing efficiency. Therefore, there are often many
experts and the expert outputs are often “sparsely activated”
by using routing layers. In practice, only top-k experts are
selected where £k = 1 or 2. Also, MoE is trained on large-
scale data along with the whole model where the experts
acquire specific knowledge by themselves while each adapter
component in our SimAdapter is “taught”, and the SimAdapter
is applied to parameter-efficient adaptation to low-resource
languages. However, we believe that some idea behind MoE
is helpful to us. For example, as we observe that SimAdapter
could distract its attention when the number of languages
increases. We could also apply a similar routing mechanism to
our SimAdapter. We will leave this for our future exploration.

III. EXPLOITING ADAPTERS FOR CROSS-LINGUAL ASR
A. Problem Definition

The goal of cross-lingual speech recognition is to transfer
the knowledge from the existing languages to the new lan-
guage. Formally speaking, given N rich-resource languages
{5, S2, - Sn}, cross-lingual ASR aims at adapting the pre-
trained model to an unseen target low-resource language L.
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Fig. 2. Illustration of the MetaAdapter and SimAdapter module injected in
the Speech-Transformer. Note that the residual connection between the feed-
forward layer and layer normalization only applies to the SimAdapter.

Each language S; is composed of the speech-text pairs and
we typically use X and y to denote them, respectively, i.e.,
Si = {Xj,y, };V:il, where NN; is the total number of training
data. Also note that the target language is low-resource com-
pared to the training languages, i.e., Np < N;,V1 < ¢ < N.

B. Overview

In this paper, we comprehensively investigate the potential
of adapters to achieve parameter-efficient cross-lingual speech
recognition. On the one hand, the parameters of the adapters
are the only trainable parameters in the model with the
rest parameters frozen, which remains parameter-efficient; on
the other hand, the adapters module can also help reduce
overfitting on the low-resource cross-lingual data.

To exploit adapters for cross-lingual ASR, it is important
to study the relationship between different languages. In this
paper, we comprehensively analyze the MetaAdapter as well as
the newly proposed SimAdapter algorithms that learn and ex-
ploit the inter-language relationships to improve cross-lingual
ASR. Generally speaking, the MetaAdapter is based on the
meta-learning algorithm to extract general latent knowledge
from existing training tasks and then adapt the knowledge to
the target task. On the other hand, the SimAdapter algorithm is
to directly explore the similarity between the source and target
languages and then exploit such similarity to dynamically fuse
the useful knowledge to the target language. Finally, we show
that these two algorithms are not independent, but can be
integrated for better performance. As shown in Fig. our
MetaAdapter and SimAdapter can be easily plugged into the
Transformer backbone for implementation.

C. Backbone: Super Multilingual Transformer ASR Model

The super language-independent 42-lingual ASR model
(LID-42) is proposed by Hou et al. in [4]]. LID-42 is based
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on the big Speech-Transformer [44]] and joint CTC-attention
structure [20]. We elaborate the model details below.

As model inputs, LID-42 accepts the 83-dimensional acous-
tic features (filter banks with pitch) computed with 10 ms
frame shift and 25 ms frame length. The acoustic features are
firstly subsampled by a factor of 4 by 2 convolution layers
with kernel size 3 and stride 2. The resulted features have
a receptive field of 100 milliseconds for each frame. Then
the following encoder layers process the subsampled features
by self-attention and feed-forward as illustrated in [35]]. Apart
from self-attention and feed-forward, the decoder layers fur-
ther accept the encoder outputs and perform cross-attention.

For the CTC-attention hybrid structure, an auxiliary CTC
task [43] is introduced for encoder outputs in order to encour-
age the monotonic alignment and accelerate the convergence
speed [20]. In training, a weighted sum of the sequence-to-
sequence attention loss Lapr and the CTC loss Lopc is
employed:

Lasr = (1 —AN)Larr + ALcrc, (D

where )\ denotes the weight of the CTC module.

Similarly, during decoding, the CTC module outputs are
used to re-score the beam search results of the Transformer
decoder on-the-fly:

Y =arg r}lgg}((l — A) log Parr(Y|X) + Aog Pere (Y] X),
2)
where X are the 83-dimensional acoustic features (filter banks
with pitch), ) denotes the set of the decoding hypotheses.

As model outputs, a shared vocabulary including charac-
ters/subwords and language tokens (e.g., <en>, <fr>) of 42
languages is adopted to realize language-independent training
and recognizing. Furthermore, a language token is inserted to
the beginning of each training label as an auxiliary language
identification target. The model is trained to firstly identify the
language before recognizing the speech contents. It is worth
noting that we focus on monolingual transfer in this work.
Therefore, language-specific heads are used and the language
identification objective is dropped during fine-tuning.

LID-42 is trained on around 5000-hour labeled speech data
mixing 11 corpora covering 42 languages and has revealed a
strong performance on cross-lingual transfer learning tasks as
shown in previous works [4], [[11].

f
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A

Fig. 3. Architecture of the adapter module.

D. Adapters

As shown in Fig. a commonly-used adapter structure
includes layer normalization, a down-projection layer, a non-
linear activation function, and an up-projection layer. There is
also a residual connection that allows the adapter to keep the
original representation unchanged. Thus, the adapter function
is formulated as:

a' = Adapter(z') = z' + W, ReLU (W} (LN (z'))), (3)

where z' represents the outputs of layer [, LN denotes layer
normalization. W,,, W, are weight parameters for up projec-
tion and down projection.

We will introduce these two algorithms and their integration
in next sections.

IV. METAADAPTER

In this section, we introduce MetaAdapter in detail.
MetaAdapter is inspired by the idea of meta-learning [46]]
for fast adaptation to the new target tasks. In our pre-
vious work [11]], we investigated two meta-learning algo-
rithms: Model-Agnostic Meta-Learning (MAML) [15] and
Reptile [28]]. We found that MAML is more robust to the
overfitting problem brought by the variance of adaptation data
size and pre-training epochs. Therefore, we adopt the MAML
as our meta-training algorithm in this work.

However, it is expensive to perform meta-learning directly
on the full Speech-Transformer model since the model has
heavy parameters that could easily overfit the low-resource
target data. To resolve this issue, MetaAdapter utilizes the
adapters to significantly reduce the adaptation parameters by
learning aiming a proper initialization for faster adaptation.

A. Architecture

The process of MetaAdapter is illustrated in Fig.
Given a pre-trained backbone speech-Transformer ASR model,
MetaAdapter is composed of two phases: (i) meta-train the
MetaAdapter on a bunch of source tasks; (ii) fine-tune the
pre-trained adapter on unseen target tasks.

Target

Romanian

A
_./ Adaptation

Russian

- ] \

Welsh

Source v
Source
Italian

Source
Fig. 4. Tllustration of MetaAdapter.

To use meta-learning, we view different languages as dif-
ferent tasks. We split the parameters of MetaAdapter into
two types: the backbone parameters 6, (i.e., vanilla Trans-
former) and the parameters of all adapters 6,. Thus, given
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N different source languages {57, 52, -, Sn}, we pre-train
the MetaAdapter module fy, to obtain good initialization
parameters 6, that could generalize for fast adaptation given
any unseen target language. Meanwhile, parameters of the pre-
trained backbone 6, are frozen during both the pre-training and
the fine-tuning.

B. Training MetaAdapter

In each pre-training episode, two subsets are randomly
sampled from each source training language S;, namely meta-
training set S!" and meta-validation set S?, i.e., S{" NS =
(). One episode is composed of two iterations: an inner iteration
and an outer iteration. In the inner iteration, MAML updates
the adapter parameters 6, by performing one or more gradient
descent on S!". For notation simplicity, the updated parameter
for language S; using the inner gradient descent iteration is:

0a,i = 0o — €VLgr (fo,) “)

where L is the ASR loss function as introduced in section [II=C]
and e is the fast adaptation learning rate. In the outer iteration,
the adapter parameters are then optimized to improve the
performance of fp: =~ with respect to 6, across all the meta-
validation sets S}’“Z. The meta-optimization objective of the
outer iteration is:

Lgvai (for, ;) = Lgvar (f@a—ev(gaLSf:T‘(fea)) - &)

We optimize the meta-optimization objective through gra-
dient descent as:

6, =0, — MZN: Vo.Lsper (for,)

i=1

(6)

where p is the meta step size.

After pre-training, the MetaAdapter should obtain a proper
initialization for any unseen target language(s). The complete
training procedure of the MetaAdapter is presented in Algo. [T}

Algorithm 1 Learning algorithm of the MetaAdapter

Input: Rich-resource languages {Si, -, Sn}, low-resource
task L.

1: Train language-specific heads on source languages S;.

2: Initialize the MetaAdapter.

3: while meta-learning not done do

4:  Optimizing the MetaAdapter using Eq. (6).

5: end while

6: Train the target head on target language L.

7. Fine-tune the MetaAdapter using ASR loss Eq. (1).

8: return Cross-lingual ASR model.

V. SIMADAPTER

We propose SimAdapter to improve the adapter-based cross-
lingual adaptation as well as the model interpretability by
explicitly leveraging the knowledge of the source languages
from the adapter modules. Here, ‘Sim’ refers to similarity.

SimAdapter is inspired by existing research on language
and speech origins [16[]-[18], which implies that different

Output

[
Zprenorm

/ SimAdapter
Ly

I Ly
Ly-1

Attention scores

a, ALy_y a

Adapter [ Adapter ] [ Adapter ]
k (L) (Ly-s)
T 4

(Ly)
A
z

Fig. 5. Illustration of the SimAdapter module. The language-specific features
ar, of different languages Ly € {L1,Ls,...,Ly} are attended by the
language-agnostic features z to extract better features for the target language.

languages in the world are sharing similarities based on their
similar geological characteristics or cultural developments.
Thus, it is feasible to leverage the knowledge of multilingual
adapters for new target languages.

A. Architecture

SimAdapter is a parameter-efficient algorithm that learns
the similarities between existing language-specific adapters
and the target low-resource language based on the attention
mechanism [35]. Similar to the adapters, SimAdapter can
also be easily integrated with existing pre-trained models and
adapters.

The detailed composition of the SimAdapter is shown in
Fig. B] By taking the language-agnostic representations from
the backbone model as the query, and the language-specific
outputs from multiple adapters as the keys and values, the
final output for SimAdapter over attention are computed as
(For notation simplicity, we omit the layer index [ below):

N
SimAdapter(z,as, s,....5y}) = Z Attn(z, as,)-(as, Wv)
1=1

)
where SimAdapter(-) and Attn(-) denotes the SimAdapter
and attention operations, respectively. Specifically, the atten-
tion operation is computed as:

.
Attn(z,a) = Softmax((ZVVQ)(aVVK))7 (3)

T

where 7 is the temperature coefficient, W, W, Wy are
attention matrices. Note that while W, W g are initialized
randomly, Wy, is initialized with a diagonal of ones and the
rest of the matrix with small weights (le — 6) to retain the
adapter representations. Furthermore, a regularization term is
introduced to avoid drastic feature changes:

Lrog =Y ((Iv)iy — (Wr)iy)?,

2%

€))
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where Iy is the identity matrix with the same size as Wy, .

In our cross-lingual setting, the SimAdapter module is
expected to utilize language-specific knowledge from existing
language adapters.

B. Fusion Guide Loss

Although SimAdapter aims to benefit from the similar
knowledge of other languages, we believe that the most crucial
information is stored in the adapter of the target language.
However, since the weights of source and target adapters
are initialized equally, SimAdapter often distracts its attention
significantly from the target language during adaptation and
generally does not perform well in our experiments. To allevi-
ate this problem, we propose a fusion guide loss to encourage
the model to focus on the corresponding adapters for the
similarity learning. Specifically, for each language fusion layer
f, we average the cross entropy of adapter attention scores
among all K time steps and S samples. The layer-wise guide
losses are added up as:

S K
L A——

guide

(10)

s=1k=1

L:guide = ’Cfulde
!

Note that K represents the number of frames in the encoder
and the number of tokens in the decoder side, o}, denotes
the attention score of target language’s Adapter. In this way,
the attention scores are optimized via conventional Empirical
Risk Minimization (ERM) [47].

Y

C. Training SimAdapter

A difference between the previous application of Adapter-
Fusion [14]] and our SimAdapter for cross-lingual ASR is that
a language-specific language head is required to be trained for
the unseen target language. However, training the Adapters
together with the language heads may result in the insufficient
learning of semantic information in the adapters. Therefore,
in this work, we introduced a three-stage training strategy for
SimAdapter-based ASR cross-lingual adaptation.

In the first stage, different from the previous work [11],
SimAdapter trains the language-specific heads for each source
language S; as well as the target language separately. This
step aligns the language heads to the same latent semantic
space of the backbone model. In the second stage, adapters are
trained based on the pre-trained heads to learn the information.
In the third stage, SimAdapter leverages the fusion of source
languages for better adaptation to the target language. Only
the parameters of the SimAdapter are trained in this stage.

By adding the Wy regularization term weighted by n and
the fusion guided loss weighted by ~, the final adaptation
objective is given by:

L= EASR + nﬁreg + ’7£guide~ (12)

The complete training procedure of SimAdapter is presented
in Algorithm [2]

Algorithm 2 Learning algorithm of SimAdapter

Input: Rich-resource languages {57, - -

task L.
1: Train language-specific heads on the source languages S;
and the target language.

: Train Adapters A; on top of language-specific heads.

: Initialize SimAdapter layers.

: while not done do

Optimizing SimAdapter layers using Eq. (12).

: end while

: return Target ASR model.

,Sn}, low-resource

D. Integration of MetaAdapter and SimAdapter

Although MetaAdapter and SimAdapter can both benefit
cross-lingual adaptation by leveraging the knowledge of source
languages, they are designed from different perspectives.
MetaAdapter aims to obtain a proper initialization for fast
adaptation by learning from the source languages, which
can be regarded as a type of latent transfer. On the other
hand, SimAdapter explicitly models the similarities between
source and target languages with the attention mechanism.
Therefore, MetaAdapter is good at handling extremely low-
resource languages, while with more training data SimAdapter
can capture the language similarities more precisely.

Moreover, note that MetaAdapter and SimAdapter are not
independent, but can be integrated into one algorithm, which
we denote as SimAdapter+. We can simply fuse the source
adapters with the target adapter learned by the MetaAdapter
using SimAdapter. This can be seen as a two-stage knowledge
transfer process where we aim to learn general and transferable
knowledge from meta-learning in the first stage; then, we
perform adaptation using the SimAdapter algorithm for fine-
grained knowledge transfer to achieve better performance.

VI. EXPERIMENTAL SETUP
A. Data Set

We adopt the Common Voice 5.1 [48]] corpus for our
experiments. We follow the official data splits for training,
validation and testing. For the SimAdapter, we select five
rich-resource languages as source languages and five low-
resource languages as targets. Note that the source and target
languages are all from European and some of them are spoken
in geographically close regions to empirically analyze if the
language similarities can be revealed by SimAdapter. The
detailed data statistics are shown in TABLE [l

B. Compared Approaches

We consider the following fine-tuning-based approaches as
well as both end-to-end and conventional hybrid models and
trained from random initialization for comparison. To evaluate
the efficiency of different methods, we also list numbers
of trainable parameters in Table [[I} It is shown that our
MetaAdapter and SimAdapter (and SimAdapter+) only use
2.5% and 15% of the training parameters from the full model,
respectively, which are significantly parameter-efficient.
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TABLE I
TRAINING / VALIDATION / TESTING HOURS

Language  Train  Valid Test
Russian (ru)  80.61 11.78  12.61
Welsh (cy) 74.84 4.35 4.25
Source Italian (it) 88.74  19.74  20.85
Basque (eu)  73.26 7.46 7.85
Portuguese (pt)  37.40 5.40 5.85
Romanian (ro) 3.04 0.42 1.66
Czech (cs)  20.66 2.84 3.13
Target Breton (br) 2.84 1.51 1.75
Arabic (ar) 7.87 2.01 2.09
Ukrainian (uk) 17.35 2.30 2.36
TABLE 11

COMPARISON OF NUMBER OF TRAINABLE PARAMETERS.

Method # Trainable Parameters
Hybrid DNN/HMM 14,247K
Full Model 27,235K
Head 77K
Head+(Meta-)Adapter 676K
Head+(Meta-)Adapter+SimAdapter 4,224K

1) Baselines without applying transfer learning:

« DNN/HMM: Standard hybrid DNN/HMM models
are trained with lattice-free MMI [49] criterion
using Kaldi [50]. Specifically, we use 9 layers
TDNN [51] the acoustic model. The acoustic fea-
tures are 100-dimensional i-vector [52] and 40-
dimensional MFCC. 3-gram language model is ap-
plied for decoding. [[]

o Trans.(B): We train a randomly-initialized big
Transformer model of the same size and architecture
as LID-42 from scratch.

o Trans.(S): To mitigate overfitting, we decrease the
feed forward network from 2048 to 1024 so that
the number of model parameters is reduced from
27,235K to 18,664K.

« Head: We keep the backbone model (LID-42) frozen
as feature extractor and train the language-specific
heads on top of it.

2) Fine-tuning based transfer:

o Full-FT: We fine-tune the full model on each target
language individually, leading to 5 separate models.

o Full-FT+L2: We apply L2 regularizations to Full-FT
to avoid overfitting.

o Part-FT: We make only the last 3 decoder layers
trainable and freeze the rest parameters to fine-tune
on the target languages to mitigate overfitting.

3) Adapter based transfer:

o Adapter: We inject and train the vanilla adapters
while keeping the backbone model frozen.

e MetaAdapter: We  inject the  pre-trained
MetaAdapter and train it as the vanilla adapters do.

o SimAdapter: We fuse the adapters of the source
languages with the target language to improve the

'We did not find proper pronunciation dictionary for Breton. Therefore,
only results of the other 4 languages are presented.

performance.
o SimAdapter+: Specifically, we combine the
MetaAdapter and the SimAdapter (namely

SimAdapter+) to evaluate its performance and
verify whether MetaAdapter and SimAdapter are
compatible.

C. Implementation Details

We implement the E2E methods based on the ESPnet [53]]
codebase. The subword-based LID-42 model proposed in [4]]
is used as the backbone model for adaptation. The acoustic
features are extracted following ESPnet. Numbers of Senten-
cePiece [54] subwords are set to 150 and 100 for high- and
low-resource languages, respectively.

We use Adam [55]] as the optimizer. For the full-model fine-
tuning, we follow the same learning rate scheduling strategy
as [35] and warmup the learning rate to 0.2 in the first 10
epochs. The total number of training epochs is 200 for full-
model fine-tuning and SimAdapter, and 100 for the other
methods. Early stopping with patience 10 is adopted except
for the training of source heads and adapters. The source
languages heads and adapters are trained using a batch size
of 1024 and a learning rate of 0.028. The target heads and
adapters are trained using a batch size of 512 and a learning
rate of 0.02. For the SimAdapter, we use a batch size of
128 and a learning rate of 2e — 5. We adopt n = 0.01
for the regularization loss weight and 1.0 as the guide loss
weight . The temperature coefficient 7 is simply set to 1.0.
We train the MetaAdapter for 30 epochs using Adam [55]
with 51 = 0 in the inner training loop and vanilla stochastic
gradient descent (SGD) in the outer loop. The inner adaptation
learning rate and initial meta step size p are 0.028 and 1.0,
respectively. The meta step size linearly annealed to O over the
course of training. The weight of the CTC module X is set to
0.3 throughout the experiments following ESPnet [53]]. Beam
size 10 is employed for joint decoding. Our source code is
available at: https://github.com/jindongwang/transferlearning/
tree/master/code/ASR/Adapter.

D. Evaluation Metrics

In this work, we use word error rate (WER) as our evalua-
tion metric. We average the results on 5 languages to evaluate
the overall performance of different methods by default. To
reflect the performance on target languages according to their
imbalanced test data duration (more test data often represents
more training data), we also compute the weighted average
WERs, which is more friendly to the methods that require
relatively more training data.

VII. EXPERIMENTAL RESULTS

A. Cross-lingual speech recognition

Table [III| shows the main results on cross-lingual ASR. The
first three columns show the non-fine-tuning-based baselines.
First, it can be found that the hybrid DNN/HMM model out-
performs Transformer (big) on 2 out of 4 languages (Romanian
(ro), Arabic (ar)), and these 2 languages are with least training
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TABLE III
WORD ERROR RATES (WER) ON THE CROSS-LINGUAL ASR TASKS

Target DNN/HMM  Trans.(B) Trans.(S) Head | Full-FT  Full-FT+L2 Part-FT | Adapter SimAdapter = MetaAdapter = SimAdapter+
Romanian (ro) 70.14 97.25 94.72 63.98 53.90 52.74 52.92 48.34 47.37 44.59 47.29
Czech (cs) 63.15 48.87 51.68 75.12 34.75 35.80 54.66 37.93 35.86 37.13 34.72
Breton (br) - 97.88 92.05 82.80 61.71 61.75 66.24 58.77 58.19 58.47 59.14
Arabic (ar) 69.31 75.32 74.88 81.70 47.63 50.09 58.49 47.31 47.23 46.82 46.39
Ukrainian (uk) 77.76 64.09 67.89 82.71 45.62 46.45 66.12 50.84 48.73 49.36 47.41
AVG - 76.68 76.24 77.26 48.72 49.37 59.69 48.64 47.48 47.27 46.99
Weighted AVG 72.28 72.50 77.54 46.72 47.50 59.43 47.38 46.08 46.12 45.45

data. The results indicate that the overfitting issue occurs in the TABLE IV

Transformer model. Transformer (S) mitigates the problem to
some extent but it is still far from satisfaction. It could further
be inferred that even hybrid DNN/HMM has the overfitting
problem on the extremely low-resource Romanian language,
since lower WER 1is obtained with the linear head simply
trained on top of the frozen but powerful LID-42 backbone.

On the other hand, from the fine-tuning- and adapter- based
approaches presented on the middle- and right-hand sides, we
can observe that the adapters successfully avoid the overfitting
problem and outperform the Full-FT method on 3 very low-
resource languages (Romanian, Breton, Arabic). Applying L2
regularization and partial fine-tuning both improve the perfor-
mance on Romanian but degrades on the other 4 languages.
It can be also found that the MetaAdapter and SimAdapter
approaches can achieve similar and competitive results on
the 5 target languages. Furthermore, we notice that both
the MetaAdapter and SimAdapter consistently improve the
performance over the adapters and narrow the gap with
Full-FT on the languages with relatively more training data
(Czech and Ukrainian). Meanwhile, the MetaAdapter method
performs better on the extremely low-resource languages (ar,
ro) and has lower average WER, while SimAdapter shows
better results on moderate low-resource languages (br, cs) and
obtains lower weighted average WER. Finally, by combining
the MetaAdapter with SimAdapter, the SimAdapter+ method
surpasses all the other approaches and obtains the best average
performance on the 5 languages, indicating that the two meth-
ods are compatible since they leverage the source information
in different ways. Combining the results from TABLE [l where
SimAdapter+ only uses 15.5% trainable parameters of the
full model, we see that SimAdapter+ is both effective and
parameter-efficient.

B. Ablation Study

1) Impact of different training strategies: We compare the
impact brought by different adapter-training strategies, i.e.,
jointly training the adapter with head and the first two stages
of the training strategy proposed in Section [V-C| The results
are presented in Table It is clear that the proposed two-
stage training strategy can consistently reduce the WERs of
both the adapters and the SimAdapter.

2) Impact of pre-training epochs for MetaAdapter: To
validate the meta-training effects for the MetaAdapter, we
select checkpoints of 5 pre-trained epochs {10, 15, 20, 25, 30}
and fine-tune them following the same setting as explained
in Section We present the results in Fig. [B(a)l It could

COMPARISON OF DIFFERENT ADAPTER TRAINING STRATEGIES.

Target Joint  +SimAdapter = Two-stage  +SimAdapter
o 52.92 53.88 48.34 47.37
cs 39.16 36.79 37.93 35.86
br 65.10 63.37 58.77 58.19
ar 50.53 49.31 47.31 47.23
uk 52.27 48.84 50.84 48.73
Average 52.00 50.44 48.04 47.48
+Weighted  50.35 48.57 47.38 46.08
50.0
s MAML MOL
49.54
S
~49.0

Average WER
Y H B
~ ® ®
bl i bl ;
I
—
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47.0-

Pre-training epochs

Fig. 6. Comparison between MAML and conventional multi-objective learn-
ing (MOL) approach for Adapter pre-training.

be found that the WERs are reduced with more pre-training
epochs, indicating the effectiveness of meta-learning.

For comparison, we also conduct the same experiment
on another adapter pre-trained on source languages using
the conventional multi-objective learning (MOL) method and
visualize the average WERs in Fig. [6] It is clear that with
the more pre-training epochs, the MOL-trained adapter tends
to overfit the source data and performs worse on the target
languages.

3) Analyzing the weight of guide loss for SimAdapter:
We then analyze the impacts of the weight ~ of the pro-
posed guide loss within {0,0.001,0.01,0.1,0.5,0.75, 1.0} for
the SimAdapter. As shown in Fig. [B(b)] the model perfor-
mances on the 5 languages generally get improved with the
increasing of v when v < 0.5. When v > 0.5, the WER
may vary among languages. The best overall performance is
obtained when v = 1. In real applications, the value of
needs to tune on the target dataset.
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Fig. 7. Attention matrices of five low-resource target languages. A row in the figure denotes a language, whose four settings are: (1) without target adapter,
(2) with target adapter but no guide loss (v = 0), (3) with target adapter and guide loss, and (4) SimAdapter+. Column index indicates the Transformer layer
number, where Oth to 11th layers are encoders, 12th to 17th are decoders. Best viewed in color and zoomed in.

4) How much information can be shared across languages:
Although SimAdapter improves the WER results, we do not
know whether and how much it could benefit from other
languages. Therefore, we conduct two experiments to validate
this. Firstly, we examine how much the other languages can
contribute without using the adapters from target languages to

see whether additional gains can be obtained with only source
adapters. TABLE|V|shows the results. It can be found that even
without the target adapter, SimAdapter can still improve the
performance for most of the languages except for Romanian,
indicating the effectiveness of learning language information
from source adapters
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Fig. 8. Analysis of (a) pre-training epochs of MetaAdapter and (b) importance of guide loss in SimAdapter.

TABLE V
WER RESULTS OF SIMADAPTER WITH OR WITHOUT ADAPTER L.
FUSION GUIDE LOSS IS SET TO 0 FOR SIMADAPTER WITH ADAPTER L.

Target Head  w/o Adapter L+  w/ Adapter Lt
o 63.98 67.83 53.62
cs 75.12 55.06 36.55
br 82.80 77.04 60.87
ar 81.70 64.68 48.47
uk 82.71 69.09 51.10
Average 77.26 66.74 50.12
+Weighted ~ 77.54 65.33 48.39

In the second experiment, we train two different SimAdapter
models on Ukrainian by fusing the target-language adapter
and one source-language adapter to analyze the contributions
of different source languages. Specifically, we choose Italian
and Russian as the source languages. Since Russian is more
similar to Ukrainian than Italian, we expect more gains of
SimAdapter trained with the Russian adapter. The results align
with our expectation. We observe that the SimAdapter with
Italian adapter obtains a WER of 48.70, while with the Russian
adapter, the WER is 47.73, indicating that SimAdapter could
transfer more useful knowledge from Russian than Italian to
model the Ukrainian language.

C. Attention Visualization

To further show the relationship between source and target
languages, we visualize the attention maps for each target
language. The attention value reflects their similarities. Fig. [7]
shows the results of three different types of languages: (1)
without target adapter, (2) with target adapter but no guide
loss (v = 0), (3) with target adapter and guide loss, and (4)
with target MetaAdapter and guide loss.

We take the Ukrainian (uk) as an example. Firstly, from
the figure on the left, we can observe a trend that SimAdapter
layers tend to pay more attention to the Russian (ru)’s adapter,
which could be because of the linguistic similarity between
Ukrainian and Russian. However, after introducing the target

adapter, SimAdapter layers obviously turn to focus more
on the target adapter, but there are still diverse attentions
across other languages. By introducing the guide loss, the
SimAdapter layers are forced to pay more attention to the tar-
get adapter and fusing less information from other languages.

We also notice that in the first encoder layer, the attention
distribution seems to be uniform across the source languages.
By analyzing the outputs, we found that the adapters in the
first layer tend to keep the backbone representation unchanged
via the residual connection. The same phenomenon can also
be observed in the Czech (cs) target language. A possible
reason could be that the first layer is to extract general acoustic
features which are language-independent. Since we observe
a similar trend in the first decoder layer (layer 12) that the
attention distributions tend to be more distracted, we thus
assume that adapters in the bottom layers in both the encoder
and decoder are less important for cross-lingual adaptation,
which we conduct experiments in next subsection to analyze
the performance of fusing different adapters.

D. Do all Adapter layers need to be fused?

By observing the attention maps, we notice that for some
layers, the attention seems to focus solely on the target adapter
with a 100% attention score. This phenomenon occurs more
frequently in the higher decoder layers, i.e., 12th to 17th layers
in Fig. m In such cases, the fusion seems not to be necessary.
We doubt whether we can achieve comparable performance
while fusing adapters in part of the layers only. Therefore,
we conduct the ablation experiments by only fusing part of
the layers. The results are presented in TABLE [VI] Although
some languages (e.g., Breton) can retain the performance by
only fusing 2 bottom layers, fusing more layers generally lead
to better performance.

E. Training and inference time

Finally, we compare the average training time of full-
model fine-tuning, MetaAdapter and SimAdapter methods per
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TABLE VI
ABLATION STUDY OF THE ENCODER AND DECODERS

Target Encl-Decl  Encl2-Decl  Encl2-Dec6

ro 48.39 48.25 47.37

cs 37.31 36.30 35.86

br 57.85 59.08 58.19

ar 47.48 47.34 47.23

uk 50.58 48.98 48.73
Average 48.32 47.99 47.48
+Weighted 47.04 46.55 46.08

TABLE VII

AVERAGE TRAINING / INFERENCE TIME.

Training Time (sec.) RTF
Full-FT 0.253 (-) 0.045 (-)
MetaAdapter  0.143 (43.48%) 0.043 (4.06%.)
SimAdapter 0.263 (3.95%71) 0.055 (22.12%71)

iteration as well as their inference real-time factor (RTF) on
the 5 target languages. The RTF metric is used to evaluate
the decoding time cost by computing the ratio of the model
decoding time to the total utterance duration on the test data.
The training and decoding are conducted on 1 GeForce RTX
2080 Ti GPU with batch size 64. The results are shown in
TABLE [VIIl

It could be found that the MetaAdapter module significantly
accelerates the training process while the SimAdapter intro-
duces minor additional time cost compared with full-model
fine-tuning. The RTFs of Full-FT and MetaAdapter are at the
same level. The reason that MetaAdapter has slightly lower
RTF could be due to its shorter average prediction lengths. On
the other hand, the relative RTF increases of 22.12% brought
by SimAdapter is also acceptable.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to exploit MetaAdapter and
SimAdapter for adapter-based cross-lingual speech recogni-
tion. The proposed SimAdapter leverages the attention mech-
anism to learn the similarities between the source and target
languages during fine-tuning using the adapters. We also show
that the two algorithms can be integrated for better per-
formance. Experiments on five low-resource languages from
Common Voice dataset demonstrate the superiority of the two
algorithms. In the future, we plan to extend these algorithms
to other language families and further improve the training and
inference speed of our methods.
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