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Abstract—Constructing an embedding space for musical in-
strument sounds that can meaningfully represent new and un-
seen instruments is important for downstream music generation
tasks such as multi-instrument synthesis and timbre transfer. The
framework of Automatic Speaker Verification (ASV) provides us
with architectures and evaluation methodologies for verifying the
identities of unseen speakers, and these can be repurposed for the
task of learning and evaluating a musical instrument sound embed-
ding space that can support unseen instruments. Borrowing from
state-of-the-art ASV techniques, we construct a musical instrument
recognition model that uses a SincNet front-end, a ResNet archi-
tecture, and an angular softmax objective function. Experiments
on the NSynth and RWC datasets show our model’s effectiveness
in terms of equal error rate (EER) for unseen instruments, and
ablation studies show the importance of data augmentation and
the angular softmax objective. Experiments also show the benefit
of using a CQT-based filterbank for initializing SincNet over a
Mel filterbank initialization. Further complementary analysis of
the learned embedding space is conducted with t-SNE visualiza-
tions and probing classification tasks, which show that including
instrument family labels as a multi-task learning target can help to
regularize the embedding space and incorporate useful structure,
and that meaningful information such as playing style, which was
not included during training, is contained in the embeddings of
unseen instruments.

Index Terms—Musical instrument embeddings, speaker
recognition, automatic speaker verification, deep learning.

I. INTRODUCTION

MULTI-INSTRUMENT audio synthesis including timbre-
style transfer is an actively-researched audio generation

task in which we disentangle instrument timbre and music
content, control and manipulate the timbre, and generate high-
fidelity natural-sounding audio signals. Inputs may be either
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audio signals of a different instrument or discrete representa-
tions such as MIDI. Several models for the former audio-based
timbre transfer have been proposed [1]–[6]. There have also been
attempts to generate audio from discrete representations, such
as [7] and [8].

An important component in these kinds of multi-instrument
audio synthesis is the representation used for instrument types. A
very simple representation can be one-hot vectors corresponding
to instruments included in a training dataset. But this does not
provide us the freedom to use unseen or new instruments that are
not included in the training dataset. Another approach is to use a
large database that includes monophonic sounds of many differ-
ent types of instruments and obtain instrument embeddings or
latent vectors through a neural encoder [5]. This neural encoder
is typically simpler than ones used in various music retrieval
tasks such as audio identification [9], audio matching [10],
version identification [11], and Jukebox embeddings [12] in
terms of neural architectures. On the other hand, there are also
problems specific to the instrument encoder used for multi-
instrument audio synthesis. For instance, since the embedding
or latent vectors corresponding to unseen or new instruments
may be specified at inference time, it is critical to design a
neural encoder that provides appropriate representations even
for such unseen instruments and to evaluate the appropriateness
of the instrument embedding vectors obtained from audio of the
unseen instruments.

How can we perform such evaluation and analysis of in-
strument embedding vectors obtained from audio of unseen
instruments? In this paper, we propose to adopt evaluation
frameworks used in the Automatic Speaker Verification (ASV)
field to answer this scientific question. Speaker verification is
a task where a claimed speaker identity of an input speech
sample is judged to be the same as or different from its template
obtained during a registration process called “enrollment.” In
modern speaker verification systems using neural networks,
the templates are typically embedding vectors obtained from
a neural speaker encoder, and its distance to the embedding
of the input speech is measured to decide whether the input
speech’s ID is the same as that of the enrolled speech data.
Speakers to be verified are normally unseen and their data is not
included in the training dataset for the speaker encoder. Hence,
we can hypothesize that this evaluation manner and metric used
in the speaker verification task is suitable for evaluating the
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instrument embedding vectors obtained from audio of unseen
instruments. Performance is normally measured using Equal
Error Rate (EER) and/or Decision Cost Function (DCF) [13].
For instrument embeddings, the former, EER, is an appropriate
choice since DCF is a metric specific to biometric applications
where we need to consider multiple different use scenarios with
different tradeoffs of security and convenience. When we have
multiple speaker encoders, their EER differences can be further
analyzed through a statistical significance test on EERs [14].
Speaker embedding vectors can also be analyzed via shallow
probing tasks [15]. Using these evaluation frameworks for ASV,
it would be possible to assess multiple instrument encoders
without audio generation and analyze their tendencies.

As described earlier, a database for training the instrument
encoder is typically one including monophonic sounds of many
different types of instruments and therefore, thanks to similar-
ities of the task and audio signals, we can also utilize speaker
recognition models directly. Therefore, in addition to the eval-
uation methodologies, we introduce several advanced neural
architectures that are frequently used for ASV. More specifically,
we introduced SincNet [16] for feature extraction from raw
waveforms, ResNet [17] as the main body, learnable dictionary
encoding (LDE) [18] for aggregation of audio signals of vary-
ing lengths, and angular softmax [19] for class discriminative
training. All of these have been reported to perform well on
multiple ASV benchmark datasets [16], [19]–[21] and they are
expected to make our evaluation and analysis of the instrument
embedding vectors obtained from unseen instruments meaning-
ful. Instrument encoders using various combinations of these
techniques are trained on two popular monophonic instrument
databases, NSynth [22] and RWC [23], and they are used to
extract embedding vectors of unseen instruments.

This paper is structured as follows. Section II overviews multi-
instrument audio synthesis and musical instrument recognition.
Section III describes evaluation frameworks for embedding
vectors of unseen vectors including statistical significance tests.
Section IV describes the neural network architectures. Section V
shows experimental conditions and results, and our findings are
summarized in Section VII.

II. RELATED WORK

In this section, we review the background of this paper in the
following fields: multi-instrument audio synthesis and musical
instrument recognition.

A. Multi-Instrument Audio Synthesis

Multi-instrument audio synthesis involves generating an in-
strument performance with the timbre of various target instru-
ments given the pitch, dynamics, and other factors. From the
perspective of input, there are generally two paradigms for multi-
instrument audio synthesis: audio input and symbolic input. The
former one is also known as timbre transfer. To transfer the
timbre of the input audio, many generative models are condi-
tioned with the timbre or relevant hidden features, which are
extracted in an unsupervised manner, to generate target audio.
Engel et al. adopted WaveNet-style Autoencoders [1] in [22] and

Generative Adversarial Networks (GAN) [24] in [3] to capture
the timbre of the target instrument and to apply the target timbre
through time to generate audio in an autoregressive or parallel
sampling method. Similarly, DDSP [4] extracted hidden features
z with the encoder and synthesised high-fidelity audio by the
decoder in combination with a harmonic oscillator and filter. In
the application of timbre transfer, DDSP successfully transferred
timbre between the singing voice and violin.

Different from the studies mentioned above, using a symbolic
MIDI-derived input representation instead of audio input, Kim
et al. proposed Mel2Mel [5]: a MIDI piano roll and ad-hoc
instrument embedding, learned with a FiLM layer from one-hot
instrument labels, are given to generate a Mel spectrum, followed
by a WaveNet-based synthesizer to generate the audio of the
target instrument. PerformanceNet [7] uses an architecture made
up of U-net and multi-band convolution blocks to convert MIDI
piano rolls into acoustic features, which are then converted
into waveforms using the Griffin-Lim algorithm. In [8], the
text-to-speech synthesis architecture Tacotron2 [25] and the
Neural Source-Filter waveform model [26] were adapted to
accept polyphonic MIDI piano roll input and trained on piano
performance data with aligned MIDI transcriptions to synthesize
piano music. The MIDI representation can also be used to train
models to compose new songs in the symbolic domain, and then
synthesize them as waveforms, as in [27], [28].

B. Musical Instrument Recognition and Relevant Topics

A great number of previous studies have focused on in-
strument recognition from single notes and solo recordings
of pieces. Fuhrmann [29] comprehensively reviewed various
machine learning based musical instrument recognition methods
on the eve of deep learning’s surge. Readers may refer to [29]
for details of conventional musical instrument approaches.

In recent years, deep neural networks (DNN) have generally
dominated the field of musical instrument recognition. Taenzer
et al. [30] explored the influence of different data pre-processing
and augmentation methods on the generalization ability of CNNs
in western classical instrument family recognition tasks. Simi-
larly, Ramires et al. [31] applied various audio effects to musical
instrument sound to evaluate the robustness of an instrument
classification model and boost its performance. With the help
of data augmentation, their proposed method obtained an F1
score of 74.73 on the NSynth database, while the F1 score of the
baseline without augmentation was 73.78. Recently, Zeghidour
et al. [32] devised a new kind of learnable front-end (LEAF)
for audio classification. LEAF achieves an F1 score of 72.0 on
the NSynth database, demonstrating its capability in musical
instrument recognition. Concurrent to our work, [33] pretrained
an advanced backbone model on a subset of AudioSet [34] and
fine-tuned it on specific databases for downstream tasks. How-
ever, for the musical instrument recognition task, the randomly
initialized model slightly outperforms their proposed pretrained
model.

In addition to monophonic musical instrument recognition,
recognizing musical instruments in the polyphonic scenario has
also attracted interest from many researchers. Huang et al. [35]
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regarded polyphonic instrument recognition as a multi-class
prediction for each frame. Han et al. [36] used a sliding window
to predict instrument categories and aggregated the window-
level results to predict the predominant instrument in multi-
instrument audio.

III. EVALUATION OF INSTRUMENT EMBEDDING VECTORS

OBTAINED FROM AUDIO OF UNSEEN INSTRUMENTS

A. Procedures to Evaluate the Embedding Vectors Obtained
From Audio of Unseen Instruments

For the evaluation of instrument embedding vectors obtained
from audio of unseen instruments, typical evaluation metrics for
identification tasks such as Micro F1-score, Macro F1-score,
and confusion metrics cannot be used. We need to rely on
other evaluation procedures and metrics. Here we describe an
evaluation methodology using EERs as a proxy for assessing
representations of the instrument embedding vectors obtained
from audio of unseen instruments.

First, an evaluation set is assumed to contain audio files of
unseen instruments, and samples are further divided into two
sets. Using a trained instrument encoder, the first set is used for
extracting embedding vectors for enrollment, and the second set
is used for measuring similarity to the embedding vector of the
same unseen instrument, and dissimilarity to embedding vectors
of other unseen instruments included in the test set. The final
performance is assessed by computing EERs. EER is a common
evaluation metric for verification tasks. The value of EER indi-
cates the point at which the proportion of false acceptances is
equal to the proportion of false rejections. The lower the EER
value, the more dissimilar and discriminative the embedding
representation for an instrument is compared to other unseen
instruments. When a sufficiently large number of instruments
are included in the test set, this metric indicates whether an
instrument encoder can extract appropriate representations for
unseen instruments.

B. Statistical Significance Analysis

When we compare EERs of different systems, it is also critical
to check the statistical significance of the differences. For the
open-set case of verifying instrument categories, a pair-wise
statistical significance analysis of EERs can be conducted using
the methodology proposed in [14].

For a pair of models (A,B) in the comparison, a z value is
computed using

z =
2|EERA − EERB |√

[EERA(1−EERA)+EERB(1−EERB)]
Ntarget+Nnon-target

NtargetNnon-target

,

(1)
whereNtarget andNnon-target denote the number of evaluated target
and non-target instrument trials, respectively. The z value is then
compared with a threshold value Zα/2 decided by a significance
level (e.g. α = 0.05) with Holm-Bonferroni correction. If z ≥
Zα/2, a difference betweenA andB is supported as a statistically
significant one.

Fig. 1. Architecture of proposed musical instrument recognition model in-
spired by speaker recognition.

IV. MUSICAL INSTRUMENT RECOGNITION MODEL INSPIRED

BY SPEAKER RECOGNITION

As described earlier, we utilize popular speaker recognition
technologies and their combinations for bench-marking per-
formance on extracting representations of unseen instruments.
Since a monophonic sound database is used, their system designs
are similar to the original ASV ones, but we need to properly
consider differences between speech and music signals. Here we
describe how we amend the ASV technologies to cope with these
differences. The overall architecture of the system is shown in
Fig. 1.

A. Front-End

The front-end transforms input audio into frame-level acous-
tic features. This may be done using spectral features like Mel-
spectrogram and constant-Q transform (CQT) coefficients. Al-
ternatively, learnable front-ends such as SincNet, RawNet [37],
and LEAF [32] may be used to extract features from a waveform
directly through neural networks. Here we describe how we
amend SincNet, a popular ASV front-end, for extracting better
features from the music signal.

The front-end based on SincNet is implemented with a one-
dimensional convolutional network whose kernel of each chan-
nel is regarded as a bandpass finite impulse response (FIR) filter.
In the frequency domain, a bandpass filter for frequency f is
generally defined as the difference of two low-pass filters:

G (f, f1, f2) = rect

(
f

2f2

)
− rect

(
f

2f1

)
, (2)

where rect(·) denotes a rectangular function in the frequency
domain. We transfer a filter function into the time domain with an
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inverse Fourier transform to accommodate the waveform input.
The filter function for a waveform sample n in the time domain
is given by:

g (n, f1, f2) = 2f2sinc (2πf2n)− 2f1sinc (2πf1n) , (3)

in which the sinc function is defined as sinc(x) = sin(x)/x. As
can be seen from the equations, there are only two trainable
parameters per filter band, f1 and f2, indicating the cutoff
frequencies for the start and the end, and thus, the parameter
size of the front-end can be significantly smaller than other
fully-trained convolutional feature extractors [36].

In the original SincNet paper, the initial cutoff frequencies f1
and f2 were set to those of the Mel filterbank [16]. To handle
music signals better, we adopt the concept of a scale used in the
CQT transform and initialize learnable band-pass filters based
on the musical scale. For instance, when we allocate one band-
pass filter for each of the 128 MIDI note frequencies [8], the
corresponding f1 and f2 of the k-th filter are its two neighboring
MIDI frequencies, which means f1 = 2((k−1)−69)/12 × 440 and
f2 = 2((k+1)−69)/12 × 440, respectively. Those frequencies are
further updated through back-propagation during the training
phase.

B. Encoding and Temporal Aggregation

The next step is to extract high-level features by down-
sampling and transforming the output of the front-end and
aggregating the frame-level features into a fixed-length em-
bedding. Time delay neural network [38], Residual Network
(ResNet) [17], and Squeeze and excitation network [39] are
frequently chosen for encoding, and statistical temporal pool-
ing [38], attentive temporal pooling [40] and LDE pooling [18]
are dominant approaches for temporal aggregation. In our bench-
mark experiment, we employ ResNet34, a type of ResNet with
34 layers that is commonly used in speaker verification [41], for
encoding. Since this ResNet34 module is a standard architecture,
we briefly overview the temporal aggregation process only here.

Since ResNet outputs a sequence of frame-level representa-
tions, it is important to transfer the sequential representation
R = {r1, r2, . . ., rT } of length T into a global time-invariant
representation E = {e1, e2, . . ., eN} where N is a fixed num-
ber regardless of the length of the input audio signals. This
vector E can be used as an instrument embedding vector in
multi-instrument audio synthesis. There are several popular
techniques for temporal aggregation. Statistical temporal pool-
ing [38] conducts this process by computing the mean and
standard deviation of the sequential representations. Attentive
temporal pooling [40] additionally adopts self-attention to select
important segments before computing the statistics.

In this paper, we employ the LDE method [18]. Unlike tempo-
ral pooling, which implicitly assumes a uni-modal distribution,
LDE adopts a clustering process and computes posterior prob-
abilities of a fixed number of orderless learnable clusters via
softmax. Each element of the fixed length E vector is repre-
sented as a product of the posterior and averaged residual vector
of each cluster. The collection of the learned cluster centers
is a “dictionary,” and each learned cluster center is expected

TABLE I
OVERVIEW OF TWO MUSICAL INSTRUMENT DATABASES USED

to represent characteristics of different regions in the sequence
such as onset and overshoot regions, which is expected to help
musical instrument recognition [42].

C. Objective Function and Output Layers

The fixed-length vector E is used to predict the instrument
category included in the training database based on the softmax,
and backpropgation is conducted to update all LDE, ResNet34
and SincNet parameters. However, this does not guarantee
that different instruments in the same instrument family have
relatively similar embedding vectors since the network may
try to predict the instrument types without considering their
instrument family. Therefore, as Fig. 1 shows, we also introduce
instrument-family prediction as an additional regularization task
to constrain the embedding space and make it more intuitive.

Moreover, we adopt angular softmax (A-softmax), a discrim-
inative variant of softmax that explicitly considers and enlarges
the angular margin between classes. This has obtained high per-
formance recently in face recognition and speaker recognition
tasks [19], [43].

V. ASV BENCHMARKING TECHNIQUES FOR VERIFICATION OF

UNSEEN MUSICAL INSTRUMENTS

A. Data

The NSynth dataset [22] and the RWC musical instrument
dataset [23], two well-known databases in music processing,
are used in this paper. An overview of the datasets is shown in
Table I.

In the NSynth Database [22], individual notes are played by
various instruments at different pitches and velocities, which
makes it an appropriate choice for constructing a comprehen-
sive latent space of musical instrument sounds. The NSynth
dataset provides pre-defined training, validation, and evaluation
database partitions. Instrument-family categories in the valida-
tion and testing sets all exist in the training set, while individual
instruments in the training set have no overlap with those in
the validation and testing sets. Thus, from the perspective of
instrument-family classification, the categories in validation
and testing sets are all seen; however, from the perspective of
instrument classification, the categories in the validation and
testing sets are all unseen, and hence the task of predicting these
instruments is not identification but verification.



SHI et al.: USE OF SPEAKER RECOGNITION APPROACHES FOR LEARNING AND EVALUATING EMBEDDING REPRESENTATIONS 371

As for the RWC database, each sample of a musical instrument
includes a continuous performance of all notes in the pitch
range of the instrument. Since there are no pre-defined database
partitions, we adopted a similar partition method to NSynth. We
selected a number of different variations of musical instruments
to form validation and testing sets such that the instrument
family categories in the validation and testing sets are all seen,
but instrumental variations in the validation and testing sets are
all unseen. Instrument variations are different combinations of
instrument manufacturer and performer.

B. Experimental Conditions

We first study how well the proposed instrument recognition
model performs. More specifically, we show the verification
results of the unseen instruments and instrument variations
included in test sets of the NSynth and RWC datasets and analyze
whether the ASV techniques described earlier can improve
verification of the unseen instruments or not.

1) DNN Training: All systems in our experiments relied on
ResNet34. The input to the system was 3- to 5-second segments
of musical instrument performances. We initialized the front-end
with either the Mel filterbank or the CQT filterbank. The number
of filters for the CQT filterbank was set to 122 since one filter
was allocated per MIDI note. This filterbank can cover at least
the second harmonics of the highest pitch (F#7) of the RWC
database, and the cut-off frequency of the highest filterbank is
close to the Nyquist frequency for the NSynth database. For
the Mel filterbank, we consider both the case of using the same
number of filters as the CQT one and 80 filters, which is the
standard setting frequently used in speaker recognition. In the
training stage, the low frequency f1 and the frequency band
|f1 − f2| are the two trainable parameters of each channel in
the front-end. Considering the covered frequency range and
frequency resolution, the minimum values of the low frequency
and frequency band of each channel were set to 5 Hz and
5 Hz, respectively, so that the generated representation was
interpretable in terms of frequency. For the LDE, we set the
number of dictionary clusters C = 32 and the dimension of the
embedding vector E is N = 512. The angular margin used for
A-softmax is set to 2.

We trained the models with the Adam optimizer for 30 epochs
to reach a point of convergence. Specifically, the models were
trained with a scheduler to dynamically adjust the value of the
learning rate – the learning rate linearly increased in the first
8000 steps followed by an exponential decrease. We run training
for each model three times with the random seed 10k+1 on the
k−th run, as the churn resulting from initialization, data prepro-
cessing, and other random processes affects the consistency of
models, which has been demonstrated in several recent works
of literature from various fields [44]–[46]. Multiple runs with
assigned seeds ensures reproducibility and increases the stability
of the experiments. Experimental results of each condition are
presented by the mean and standard deviation values of the
three runs in Tables II and III. On the NSynth dataset, all
systems were trained from scratch with different random seed

TABLE II
ABLATION STUDY ON THE TRAINING CONFIGURATIONS. WE EXCLUDED ONE

OF THE COMPONENTS (DATA AUGMENTATION, REGULARIZATION BASED ON

INSTRUMENT FAMILY PREDICTION AND A-SOFTMAX) FROM A BASE SYSTEM

THAT USES DATA AUGMENTATION, SINCNET INITIALIZED BASED ON CQT
FILTERS, LDE AND RESNET34

TABLE III
VERIFICATION RESULTS OF UNSEEN INSTRUMENTS WITH DIFFERENT

FRONT-END FEATURES. ALL SYSTEMS USE DATA AUGMENTATION, RESNET34,
LDE AND A-SOFTMAX

values three times1. Since the RWC dataset is smaller than the
NSynth dataset, all three models trained on the NSynth dataset
with different random seed values were fine-tuned on the RWC
dataset. Due to the difference in categories between the two
datasets, we replaced the dual output layer of the pre-trained
models with randomly-initialized new output weights. During
the fine-tuning phase, all model parameters including the front
end, encoder network, and pooling and output layers were
updated.

2) Data Augmentation: In many recognition tasks including
speaker recognition, data augmentation is often useful for im-
proving the robustness of predictive models. Augmentation is
done by adding varying degrees and types of noise, increasing
or slowing down the speed of the audio, or other modifications.
However, for the task in this paper, the aforementioned methods
are likely to change the characteristics of a musical instrument
sound and provide incorrect information for model optimization.
We therefore adopted a straightforward yet efficacious method to
create new samples by trimming the silences of samples2 in the
NSynth dataset and then randomly concatenating samples from
the same musical instrument. Both individual and concatenated
continuous notes were equally mixed during training in order to
eliminate the domain gap between them.

3) EER Calculation: For computing the EERs3, we first
chose five audio samples per instrument as enrollment data
and computed the averaged instrument embedding vector per
instrument. Then, from a pool of randomly selected samples with

1Source code for our experiments is available at https://github.com/Alexuan/
musical_instrument_embedding

2In the NSynth dataset, since the individual note sounds of many instruments
do not last for the entire four seconds, there were a large number of silent
segments on the ends of the input samples.

3We computed EERs with pyBOSARIS available at https://gitlab.eurecom.
fr/nautsch/pybosaris

https://github.com/Alexuan/musical_instrument_embedding
https://github.com/Alexuan/musical_instrument_embedding
https://gitlab.eurecom.fr/nautsch/pybosaris
https://gitlab.eurecom.fr/nautsch/pybosaris
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20 samples from the target instrument and 20 samples from non-
target instrument categories, we chose one sample, computed its
embedding vector, calculated its cosine distance to the average
enrollment embedding vector of the target instrument, repeated
this process for all samples in the pool, and computed scores
required for computing EERs.

C. Experimental Results

To evaluate the generalization performance and the robust-
ness of the ASV techniques described earlier, we conducted
all experiments on both the NSynth and the RWC databases
which contain different sets of unseen musical instruments
or instrumental variations as the test sets. Since the number
of all combinations of experimental settings is too large, we
divided comparisons into two parts. In the first part, we focus
on the training manner of the neural network and compare and
evaluate the impacts of data augmentation, regularization based
on instrument family prediction and A-softmax using the same
network architecture and same features. In the second part, we
focus on front-end factors such as frequency scales and number
of filters and compare different features using the same network
architecture and same training manner.

Table II shows the first ablation study on the training manner
of the neural network. We excluded one of the components
(data augmentation, regularization based on instrument family
prediction and A-softmax) from a base system that uses data
augmentation, SincNet initialized based on CQT filters, LDE
and ResNet34 and trained each variant three times with different
random seeds. Fig. 2 shows statistical significance test results
on EERs. Since we have three models trained with different
random seeds for each condition, we analyzed both significant
differences for models within each condition and significant
differences between models in different conditions.

From the table, we first see that the base system has reasonable
performance. Its EERs are only 3.74% and 1.03% on the NSynth
and RWC datasets, respectively. But, as expected, we also see
that its performance depends on the weight initialization and
its random seed values used since EER differences for three
models within the base condition are all statistically significant
(p < 0.0001) on both the NSynth and RWC datasets. Next, we
see that data augmentation and A-softmax have an important role
since averaged EERs become worse – from 2.39% to 4.90%
and to 3.52%, respectively. Their EER degradations are all
statistically significant (p < 0.0001) for any model pairs of the
base condition and base without data augmentation, and also any
model pairs of the base condition and base without A-softmax,
on both the NSynth and RWC datasets.

Further, we also see that the condition without regularization
based on instrument family prediction has slightly better EER
results than the base condition. They are statistically better for 8
out of 9 model pairs on the NSynth dataset and 2 out of 9 model
pairs on the RWC dataset. Since the instrument family prediction
acts as a kind of regularization, this is a natural consequence,
but, on the other hand, it is expected that the embedding space

Fig. 2. Statistical significance test on EERs for training strategy experiments
given α = 0.05 with Holm-Bonferroni correction. Blue shade represents sig-
nificant difference, while white data points indicate (A,B) models were not
statistically different. Four systems were tested on the NSynth Database for
statistical significance, with each system having three entries with three different
random seeds.

becomes less intuitive in terms of the instrument family category.
This will be investigated further in the next section.

Table III shows verification results using different front-end
features. All systems use the same ResNet34 network with data
augmentation, LDE and A-softmax. We analyzed three factors
related to SincNet based front-end feature extraction and they
are a) initial frequency scales used for the filterbanks, b) updat-
ing of cutoff frequencies of the filterbanks, and c) number of
filters.

We see that a system that uses SincNet initialized based on
CQT filters is good on average. But there is no strong clear
pattern on the NSynth dataset and this is also underpinned by
the statistical significance test results in Fig. 3(a) in which there
are many model pairs where differences are not statistically
significant on the NSynth dataset. But, interestingly, we can
see that all systems using the CQT filters work well on the
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Fig. 3. Statistical significance test on EERs for front-end feature experiments
given α = 0.05 with Holm-Bonferroni correction. Blue shade represents sig-
nificance difference, while white data points indicate (A,B) models were not
statistically different. Six systems were tested on the NSynth Database for
statistical significance, with each system having three entries with three different
random seeds.

RWC dataset, and all pairs of CQT-based models and Mel-based
models have statistically-significant differences (p < 0.0001) as
we can see from Fig. 3(b). This interesting tendency will be
investigated further in the next section.

VI. COMPLEMENTARY EVALUATION THROUGH ANALYSIS OF

ENCODED INFORMATION

A. Motivation

Through the experiment in the previous section, we demon-
strated that EER-based evaluation is useful for finding a suitable
architecture and training techniques for acquiring appropriate
embeddings of unseen instruments. However, it is not possible
to evaluate all perspectives with EER alone. For instance, it is
expected that adding instrument-family prediction to the objec-
tive function has the effect of bringing the embedding vectors of
instruments in the same category closer together, but this cannot

Fig. 4. t-SNE based visualization of embedding vectors of multiple unseen
NSynth instruments having the same pitch.

be measured via EER and hence complementary assessments
need to be conducted.

Fig. 4 shows t-SNE based visualizations of embedding vectors
obtained from the instrument encoders trained with and without
the additional instrument-family regularization term. Each point
represents a sample from a different instrument having the same
pitch value. From Fig. 4(b), we can visually confirm that, for
instance, the embedding vectors of instruments in the string,
reed, and brass families are all located closer together compared
to its counterpart (a).

In addition to visual inspection, building shallow classifiers
using the embedding vectors is also expected to provide us
with complementary insights into the vectors objectively. For
example, shallow classifiers using embedding vectors derived
from the instrument encoder trained using instrument-family
category prediction as the regularization would be expected
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to have better prediction performance of the instrument-family
label.4

Thus, we devised a series of experiments to probe the encoded
information with regard to the available metadata. Inspired
by [15] presented by Raj et al., we trained simple shallow
classifiers using the embeddings to predict the different types
of metadata labels included in the NSynth and RWC datasets,
respectively, on the basis of the premise that if information
about these labels is present in the embeddings, then learning
a classifier should be possible. The shallow classifiers used in
these probing tasks were multilayer perceptron (MLP), Support
Vector Machine (SVM), and Decision Tree (DT), and they were
trained using a machine learning toolkit, scikit-learn.5 Since
the amount of training data used for the shallow classifiers
was small, and since the relationship between the embeddings
and metadata was not clear, we investigated the classification
performance over different types of classifiers. Note that we used
two databases for our experiments, but not all types of metadata
existed in both databases. Therefore, some of the probing tasks
were implemented using only one of the databases.

B. Details of Shallow Classifiers

For the shallow classifiers, we adjusted their configurations
as follows. For MLPs, considering the relationship between
degree of freedom and number of data points, we set the hid-
den size of MLP to 300 and 100 for the NSynth and RWC
datasets, respectively. For the SVM models, we used a radial
basis function kernel and searched for a proper regularization
parameter C by model selection. The search range of C was set
to [10−3, 103] with a log scale. Taking into account that there
are many hyper-parameters for DTs, such as maximum depth,
minimum number of leaf nodes, and criterion, we leveraged grid
search to select a group of proper hyper-parameters. For other
adjustable parameters of MLP, SVM, and DT, we used default
configurations of scikit-learn.

For training the shallow classifiers for probing tasks, it is
necessary to have an additional training set separate from the one
used for training the embedding model. To do this, the original
test sets of the NSynth and RWC datasets were divided into three
disjoint subsets with a ratio of 8:1:1, respectively, and they were
used as the training, validation, and new test sets for the probing
tasks.

C. Metadata Labels Used for Probing Tasks

We used the following discrete metadata labels available for
the NSynth dataset and RWC dataset below in addition to the
instrument-family category:

1) Source (3 classes)

4In fact, we ran the instrument-family probing task on embeddings extracted
from the model trained with and without instrument-family regularization.
We observed that a decision tree classifier is able to achieve 7.4% relative
improvement at this task on NSynth and 5.5% on the RWC Database by using
the instrument-family regularized embeddings, indicating that instrument family
information is made more prominent and therefore accessible to the weaker
classifiers by using the multi-task learning.

5https://scikit-learn.org/stable/index.html

2) Pitch (10 classes)6

3) Velocity (5 classes)
4) Dynamics (3 classes)
5) Playing Style (20, 7, and 18 classes)
For instrument-family, source, pitch, velocity, and dynamics,

instrument-independent classifiers were trained. For playing
style, we chose instruments from the same instrument family
that usually share similar playing styles (e.g., spiccato, tremolo,
and pizzicato of the string family) and trained a classifier per
instrument family. We trained playing-style classifiers for three
instrument families: strings (bowed), woodwinds, and brass.
There are 20 playing-style classes in strings (bowed), 7 classes
in woodwinds, and 18 classes in brass, respectively. For more
details of the metadata labels, please see [22], [23].

D. Experimental Results

We can use instrument embedding vectors obtained from any
instrument encoder for the probing tasks, but, in this paper
we selected two variants using different SincNet initializations
based on Mel or CQT filters. This is because these two variants
show inconsistent results on the NSynth dataset and all systems
using the CQT filters worked better on the RWC dataset as shown
in Table III of Section V, and we are interested in finding out
the potential reasons.

We evaluate classifier performance using Micro and Macro
F1-scores. The F1-score is the harmonic mean of precision
and recall. The Micro F1-score, also known as accuracy, is a
basic measurement that calculates the ratio of correctly predicted
samples to the total number of samples. Both the NSynth and
RWC datasets have a class imbalance, where the number of
samples among different instrument families is quite different.
We therefore computed the Macro F1-score as well, which
sums the F1-Scores for each class without weighting them. This
penalizes poor performance on minority classes.

Figs. 5(a) and (b) show the Micro F1-score results of the
probing tasks using embeddings extracted from the two systems
using different SincNet initializations. Since the numbers of
output classes for the individual probing tasks were different
from each other, we cannot compare the raw results across
probing tasks directly. Therefore, Tables IV (a) and (b) show
the results for the relative improvements in the F1 scores of
individual shallow classifiers compared with majority voting,
that is I =

F1classifier−F1majority

F1majority
.

From the figure and table, we can first see that the embedding
vectors are rich representations that can be used to predict all
types of metadata labels better than majority voting, although the
encoder was trained using the instrument and instrument-family
categories only.

Moreover, interestingly, from the comparison of the results of
the two types of embeddings, we can see that shallow classifiers
using embeddings extracted from the encoder using SincNet
initialization based on the CQT filters had larger relative im-
provements for the playing style prediction tasks. For instance,

6To make comparisons with other metadata labels fair, we quantized them per
octave.
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Fig. 5. Prediction results using embeddings extracted from two systems using different SincNet initializations. “IF” and “PS” are abbreviations for “Instrument
Family” and “Playing Style,” respectively.

TABLE IV
RELATIVE IMPROVEMENTS IN F1 SCORES COMPARED WITH MAJORITY VOTING. RELATIVE IMPROVEMENT FOR EACH CLASSIFIER WAS COMPUTED AS

I =
F1classifier−F1majority

F1majority

relative improvement value of MLP trained on the embeddings
extracted from the encoder using SincNet initialization based
on the CQT filters is 2.31 whereas that based on the Mel filters
is 0.80 in terms of Micro F1. We can see the same tendency in
woodwinds and brass. It seems that the use of the CQT filterbank
helped to encode information relevant to the playing style, even
though these labels are not used during the training phase of
the instrument encoder. Therefore, we can conclude that the
instrument embedding vector is enriched with the playing style
information specific to the instrument family and this resulted
in reduced EERs of unknown instrument variations on the RWC
database.

VII. CONCLUSION

We have used ASV techniques to construct and evaluate a
musical instrument embedding space capable of meaningfully
representing unseen instruments and instrumental variations. We
explored different training strategies for the embedding model
and found through ablation experiments that data augmentation
and use of angular softmax were important components that
helped to improve EER for the verification of unseen instru-
ments. We also found that using a CQT-based front-end gave
further improvements over a Mel filterbank based one, and that
we could obtain EER values of less than 3% on average. We also
studied the structure and content of the learned embedding space
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using t-SNE visualizations and probing tasks. We found that
including instrument family labels as a multi-task learning target
helped to regularize the embedding space and incorporate struc-
ture pertaining to instrument family, which also made instrument
family information more available to the downstream probing
task. The probing experiments also showed that playing style
information is also contained in the embeddings and the CQT
filterbank helps to encode this information, even though labels
for this information were not explicitly available at training
time.

In future work, we will continue to experiment with the con-
figurations of the embedding model to determine whether more
adjustments can be made to the parameters and components to
better model musical sounds as opposed to speech, and to further
improve representation of unseen instruments. For instance, we
may adjust the number of LDE dictionaries, the angular softmax
margin, or the type of ResNet. There are also many further
interesting directions for analysis of what different components
of the model learns, such as what kind of information each of
the LDE dictionaries contains. More importantly we plan to use
these embeddings for downstream music synthesis tasks such
as multi-instrument synthesis and timbre transfer, and to use
these tasks to further evaluate and analyze embeddings of unseen
instruments.
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