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Abstract—In recent years, speech emotion recognition tech-
nology is of great significance in industrial applications such as
call centers, social robots and health care. The combination of
speech recognition and speech emotion recognition can improve
the feedback efficiency and the quality of service. Thus, the
speech emotion recognition has been attracted much attention in
both industry and academic. Since emotions existing in an entire
utterance may have varied probabilities, speech emotion is likely
to be ambiguous, which poses great challenges to recognition
tasks. However, previous studies commonly assigned a single-
label or multi-label to each utterance in certain. Therefore, their
algorithms result in low accuracies because of the inappropriate
representation. Inspired by the optimally interacting theory, we
address the ambiguous speech emotions by proposing a novel
multi-classifier interactive learning (MCIL) method. In MCIL,
multiple different classifiers first mimic several individuals,
who have inconsistent cognitions of ambiguous emotions, and
construct new ambiguous labels (the emotion probability distri-
bution). Then, they are retrained with the new labels to interact
with their cognitions. This procedure enables each classifier to
learn better representations of ambiguous data from others, and
further improves the recognition ability. The experiments on
three benchmark corpora (MAS, IEMOCAP, and FAU-AIBO)
demonstrate that MCIL does not only improve each classifier’s
performance, but also raises their recognition consistency from
moderate to substantial.

Index Terms—Speech emotion recognition, Interactive learn-
ing, Multi-classifier approach.

I. INTRODUCTION

W ITH the rapid development of Artificial Intelligence,
the technology of speech emotion recognition (SER)

is becoming deeply involved into a wide bank of industrial
applications, e.g. call center, health care, social robot, to name
a few. The previous research reported that, in the daily com-
munication of human-being, language accounts for 45%, of
which text accounting for only 7% while emotional expression
accounting for 38%. Thus, emotion plays an important role in
human communications. A high-quality SER does not only
make human machine interaction more naturally, but also
improve the efficiency and effectiveness of industrial services.
For instance, NTT DoCoMo enables the intelligent customer
service system to detect whether customers express a negative
emotion. If yes, the phone call will be switched to the human
service. Sony AIBO pet robot is able to recognize a few
speech emotions, and adjusts its personality and interactive
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Fig. 1: Feature visualization of five emotions learned by VGG
(a) before and (b) after employing our MCIL on Mandarin
Affective Speech corpus. Clearly, MCIL enables VGG to learn
a better representation of ambiguous data.

behavior according to the owner’s emotion. In addition, SER
technology is being applied in tutorial systems to improve
social interaction abilities of children with autism spectrum
disorders.

However, the performance of current SER technologies
remains suboptimal due to the ambiguity of emotions. The
psychology study [1] demonstrated that speech emotions were
somewhat ambiguous, which was also confirmed by the re-
search using a statistical model [2]. From the perspective
of machine learning, we found the classification boundaries
between emotion categories are not clear as well, as shown in
Fig.1.a. Nevertheless, the conventional studies [3, 4] often as-
sumed that emotions could be distinguishable, hence, assigned
a precise/single label to each of them, which may not represent
speech emotions very well. Commonly, they resulted in low
accuracies.

Recently, a few studies tried to model the emotion ambiguity
in their methods. For example, Fayek et al. [5] designed
a soft-target label. Lotfian et al. [6] considered multiple
emotions in one utterance as a multi-task problem. Ando et
al. [7] used multi-label to represent the emotion ambiguity.
Multi-label means each sample is assigned to a set of target
labels, in which every label is certain, but emotions existing
in utterances usually have varied probabilities. In addition,
due to all these methods heavily relying on the statistics
of experts’ voting, they have limited generalization to be
applied to the databases without voting information, such as
Mandarin Affective Speech (MAS) dataset. More interesting,
we have observed that SER methods performed inconsistently
on these emotional categories [7, 8]. The possible reason is that
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these methods are good at learning features of some specific
emotions respectively. To our best knowledge, there is no one
approach that can integrate the strengths of these methods into
one.

When faced with this complicated issue of inconsistent
recognition of ambiguous data, human beings have a wise
strategy against it. Bahrami et al. [9] found that interpersonal
communication can improve a person’s ability to disambiguate
uncertain information, which is called the optimally interacting
theory. Motivated by Bahrami’s theory, we present a multi-
classifier interactive learning (MCIL) method to address am-
biguous data. Our goal is to identify an alternative that auto-
matically constructs ambiguous labels (i.e. emotion probability
distribution) instead of precise labels to ambiguous emotion
data. In MCIL, multiple classifiers are firstly trained on a
portion of ambiguous data using precise labels. Subsequently,
they are used to vote for the other ambiguous data. Thus,
the statistics of voting are used to construct ambiguous labels
for retraining. Finally, these classifiers are retrained with
ambiguous labels to interact and learn better information of
ambiguous data, as shown in Fig.1.b, which mimics human
interaction strategy.

Unlike previous methods, MCIL integrates varied informa-
tion learned by different classifiers. It does not only improve
the performance of each classifier, but also results in more con-
sistent recognition results among multiple classifiers. More-
over, the classifiers in MCIL are firstly trained by the precise
labels given by the database, then construct the ambiguous
labels. This strategy enhances the generalization ability of
MCIL, and make it also work on the databases without the
information of experts’ voting.

Extensive experiments demonstrate that our proposed MCIL
outperforms the state-of-the-art methods on three benchmarks,
i.e. 3.1% on MAS, 2.0% on IEMOCAP, and 1.58% on FAU-
AIBO. The main contributions of this work are following:
• We propose multi-classifier interactive learning (MCIL),

which uses multiple different classifiers to mimic human
interacting behavior to address the ambiguous speech
emotion recognition. MCIL can integrate varied informa-
tion learned by different classifiers.

• MCIL firstly trains each classifier using precise labels
given by the database, and then constructs the ambiguous
labels. Thus, MCIL has a better generalization ability.

• Experimental results demonstrate that our proposed
method raises both the performance and consistency
among multiple classifiers.

II. RELATED WORK

A. Deep Learning Approachs in SER

Since the first publication of the successful use of a con-
volutional neural network (CNN) for learning feature repre-
sentations from speech signals [10], several researchers have
followed this trend to use deep neural networks to auto-
matically learn feature representation [11]. Cummins et al.
[12] proposed a CNNs based method, that used a pre-trained
AlexNet to extract deep spectrum features and used an SVM
for classification. Li et al. [13] used two different convolution

cores to extract temporal domain features and frequency
domain features, then two different kinds of features were
concatenated and fed to convolutional layers, and attention
pooling was used in the last layer to increase accuracy. Wu et
al. [14] proposed to extract features with CNN, then combined
a capsule network and a gated recurrent unit to address the
classification task. Dai et al. [8] combined Cross-Entropy loss
and center loss to enhance the discriminating power of their
proposed approach. All these methods use precise labels as
the ground truth.

Unlike the above methods, a few recent studies suggested
that the precise labels could not well represent the ambiguity
of speech emotions, and then attempted to address this issue.
Lotfian et al. [6] proposed a multi-task learning framework
by specifying secondary emotions in addition to the dominant
emotion, but was lack of other minor emotions. To solve this
problem, soft-target label was presented by Ando et al. [15],
which described the reference intensities of the target category.
However, it assumed that all emotions existed in an utterance,
and then estimated their proportions. This strategy made soft-
target learning and computation complicated. To simplify the
problem, Ando et al. [7] proposed multi-label learning to
represent all emotions that existed in utterance, instead of the
emotion distribution. We can see all the above methods cannot
represent the ambiguity well. Moreover, these methods heavily
depend on the statistics of experts’ voting, thus, limits their
generalization ability. On the contrast, MCIL can be applied
on all types of datasets.

B. Multi-Classifier Approaches

To achieve a robust performance on complicated problems,
many studies tried to mimic the collective decision-making
behavior of human, such as ensemble learning [16], co-training
[17], and tri-training [18].

Ensemble learning was designed to combine the decisions
from diverse classifiers to improve the overall performance.
The underlying idea is that even if one classifier gets a wrong
prediction, other classifiers are still able to correct the error
to maintain the performance (i.e. bagging [19], boosting [20]
and stacking [21]). However, there is no interaction between
classifiers, which indicates that classifiers cannot improve their
individual performance through the ensemble learning process.

Instead, co-training and tri-training, two typical semi-
supervised algorithms, improve the performance of each clas-
sifier by interacting data among classifiers. In co-training
algorithm, firstly, two classifiers are trained on a labeled
dataset with two different views. Afterwards, two classifiers
swap the samples according to their high confident predictions
during semi-supervised procedure, in which these samples
are treated as the new training data. Inspired by co-training,
tri-training was proposed to train three classifiers on three
training subsets, which are obtained by bootstrap sampling
from labeled datasets. In semi-supervised procedure, each new
sample is predicted by two classifiers. If the predicted labels
are identical, this sample will be marked as the training data
for the third classifier with this label. Due to above mechanism,
one can see that only the discriminating data are involved in
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Fig. 2: An overview of our proposed MCIL framework for SER. In precise label learning, multiple classifiers simulate
inconsistent cognition on precisely labeled D1. And then they are retrained by the new ambiguous labels on D2. After
both stages, the models are tested on the dataset D3. The output of interactive learning is a probability distribution, which
more accurately represents ambiguous emotion data, and is more consistent among these classifiers.

training and interacted, but those ambiguous data usually are
excluded in the training process.

In contrast, MCIL improves the performance of classifiers
by interacting their decisions, specifically, constructing the
ambiguous label distribution as the new data label. It brings
two merits: 1) a better representation of ambiguous data; 2)
all data are included in the training procedure.

III. MATHEMATICALLY ANALYZING THE EFFECTIVENESS
OF OPTIMAL INTERACTIVE THEORY

The optimal interactive theory [9] says that multiple in-
dividuals can come to an optimal joint decision by sharing
information with each other. It has been proved by several
psychological experiments that individuals with similar cog-
nition abilities can perform better in an interactive process.
Here, we try to mathematically analyze the effectiveness of
the theory.

In above experiments, psychologists constructed a psycho-
metric curve (a cumulative Gaussian function1) according to
each participant that plots the cognition performance, P , of
each individual against the clarity of the data, ∆c, in the
task, as shown in Fig. 3. The curve is also determined by
the participant’s cognition ability, σ, and data clarity bias,
b. The σ is the variance of the psychometric curve, hence,
denotes the participant’s ability of making the right decision.
The smaller σ is, a better cognition performance achieves.
The b denotes the clarity of the data when the individual’s
cognition accuracy rises the fastest. A smaller b indicates that
the individual is more sensitive to the data with a lower clarity,
thus, can make a better decision. Analogously, in machine
learning, the performance of a classifier on ambiguous data
could be also represented as a cumulative Gaussian function.
The accuracy of each classifier, P , is determined by the
classification capability of the classifier, σ, the clarity of the
data, ∆c, and the data clarity bias b,

1According to the central limit theorem, when the size of samples is large
enough, the distribution of these samples tends to a Gaussian distribution.
Therefore, many common phenomena can be represented by a Gaussian
distribution or a cumulative Gaussian distribution.

P (∆c) = H(
∆c+ b

σ
), (1)

where,

H (z) =

∫ z

−∞

dt

(2π)
1/2

exp
[
−t2/2

]
. (2)

Given two different classifiers C1 and C2, Figure 3 shows
that their classification accuracies rise with the increase of
clarity of the data, ∆c. However, due to different classification
capabilities, their accuracies increase with different rates. It
should be noted that the maximum slope S of the curve
indicates the sensitivity of the classifier to the change of clarity
of data. A larger S indicates a smaller variance, which means
a better classification performance. S can be obtained by
taking partial derivative of ∆c over P (∆c), which is inversely
proportional to the variance of curve, σ,

S =
1√

2πσ2
. (3)

Additional psychological studies [22, 23] have shown that
multiple participants will lead to a new psychometric curve
after interactive learning, as the red curve shown in Fig. 3.
To prove it, we define a joint performance, P joint, after
interactive learning among multiple classifiers according to the
psychological model in [24],

P joint(∆c) = H(
∆c+ bjoint

σjoint
), (4)

where,

bjoint =

n∑
i=1

wibi, σ2joint

=

n∑
i=1

w2
i σ

2
i , (5)

where, the weight is defined as

wi =

∏n
j=1 σ

2
j

σ2
i

∑n
j=1(

∏n
k=1 σ

2
k

σ2
j

)
. (6)

Taken the partial derivative of ∆c over P joint (∆c), Sjoint

can be approximated by
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Fig. 3: The psychometric curves of participants (classifiers).
The x axis indicates the clarity of the data, ∆c, and the y axis
indicates the cognition accuracy P of the participants (classi-
fiers). The C1 and C2 denote the curves of classifiers without
interactive learning. The Cjoint is the joint decision curve after
interactive learning, which shows a better performance on the
ambiguous data.

Sjoint ≈

√√√√ n∑
i=1

S2
i . (7)

According to the inequality relation, we have

Sjoint ≥ max(Si), i = 1, · · · , n. (8)

This result is consistent to the red curve in Fig. 3. It can
be concluded that the sensitivity, Sjoint, of the classifier has
been enhanced by interactive learning.

Moreover, according to Eq. 5 and Eq. 6, the variance σ2joint

after interactive learning can be written as

σ2joint

=

∏n
i=1 σ

2
i∑n

i=1(
∏n

j=1 σ
2
j

σ2
i

)
(9)

To evaluate the σ2joint

, we subtract arbitrary k-th σ2
k that

does not take interactive learning.

σ2joint

− σ2
k =

∏n
i=1 σ

2
i∑n

i=1(
∏n

j=1 σ
2
j

σ2
i

)
− σ2

k

=

∏n
i=1 σ

2
i − σ2

k

∑n
i=1(

∏n
j=1 σ

2
j

σ2
i

)∑n
i=1(

∏n
j=1 σ

2
j

σ2
i

)

≤ 0,

(10)

then, we have

σ2joint

≤ min(σ2
k), k = 1, · · · , n. (11)

This result also proves the classification capability of classi-
fiers can be improved through interactive learning on the task
of recognizing the ambiguous data.

The above analysis shows the effectiveness of interactive
learning. It indicates that classifiers could simulate the inter-
action process between human beings. Therefore, the question
becomes how to implement interactive learning for multiple
classifiers. We then propose the MCIL algorithm.

IV. THE PROPOSED METHOD

In this section, we first describe the problem formulation of
emotion ambiguity. Subsequently, the idea of constructing am-
biguous labels is explained. Finally, the function of interactive
learning is detailed. Figure 2 shows our framework.

A. Problem Formulation

In past studies, the precise labels were commonly used in
SER task, which were mostly defined as Y ∈ {0, 1, 2, 3, 4} to
denote angry, happy, neutral, panic, and sadness. However, far
from the optimal situation, there are always some ambiguous
data between emotions in the real world. Therefore, it is not
always feasible to use precise labels to represent these data.

To solve this issue, we begin designing ambiguous labels
for emotion, which are defined as follows:

Ỹx = (yax, y
h
x , y

n
x , y

p
x, y

s
x|yax + yhx + ynx + ypx + ysx = 1), (12)

where, yax, y
h
x , y

n
x , y

p
x, y

s
x ∈ [0, 1] represent the probability that

the ambiguous degree of emotion x belongs to angry, happy,
neutral, panic, and sadness category, respectively. Therefore,
Ỹx indicates that a sample is suggested to be in a category
with a higher probability label.

In practice, ambiguous distribution (yax, y
h
x , y

n
x , y

p
x, y

s
x) is

usually unknown and difficult to obtain. Ideally, we can invite
N participants to manually annotate a precise label for these
emotional data. Thus, an ambiguous label can be obtained by
their voting:

(
vax
N
,
vhx
N
,
vnx
N
,
vpx
N
,
vsx
N

), (13)

where v represents the number of votes for each category on
the sample x. However, this is time-consuming and requires
a large workload. Therefore, we present a novel idea of
using multiple classifiers to simulate different individual’s
inconsistent cognition to vote for these samples.

B. The Construction of Ambiguous Labels

In optimally interacting theory, individuals are able to get a
better solution to a complicated problem by communicating
with others. To mimic this process, we employ N neural
networks {Neti} with different architectures for training and
testing on emotional speech datasets to construct ambiguous
labels for interactive communication.

To this end, we design three datasets D1, D2, and D3,
respectively. D1 contains the samples with precise labels,
which are less ambiguous and used to train N classifiers in the
precise label learning stage. D3 consists of ambiguous samples
and is employed to evaluate the performance of interactive
learning. D2 includes a large number of samples that are
unlabeled, and is applied to ambiguous label construction and
subsequent retraining.

First, as shown in the left section of Fig.2, all classifiers
are trained on D1 for precise label learning. Here, we use the
Cross-Entropy to optimize the {Neti}, which is defined as
follows,
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LossCE =

m∑
j=1

n∑
i=1

−yjilog(ŷji)−(1−yji)log(1− ŷji), (14)

where n denotes the number of emotions, m denotes the
number of the samples, yji denotes the ground truth, and ŷji
represents the output of Neti.

Since each Neti has a different architecture, the learned
representation is different from that of the others. Furthermore,
each category of ambiguous emotion brings uncertain knowl-
edge to each Neti. Thus inconsistent cognition among human
beings can be mimicked.

Consequently, the well-trained {Neti} are used to classify
the unlabeled data in D2. Then, the classification results of N
networks obtained from each sample, are counted by voting
and normalized to be ambiguous labels.

The label of a sample x is denoted as Ỹx =
(yax, y

h
x , y

n
x , y

p
x, y

s
x), which represents the probability that x

belongs to each category. As the results from the different
knowledges of N networks, no manual annotation is required.
Meanwhile, we regard the constructed labels as the results of
communication among these networks.

C. Interactive Learning

At this moment, the data in D2 have their new ambiguous
labels Ỹx, which contain slightly different information from
precise labels. Afterwards, we are able to retrain {Net∗i } on
D2 to minimize the gap between the predicted label and the
label Ỹx given by {Neti}, as shown in the middle section of
Fig.2. We call this interactive learning.

Since ambiguous labels are a probability distribution, we
select KL divergence to represent them. Therefore, {Net∗i }
are optimized by KL loss during the retraining stage, which
is defined below,

LossKL =

m∑
j

Ỹj log
Ỹj

Ŷj
, (15)

where Ŷ denotes the predicted label, Ỹ denotes the ambiguous
label given by {Neti}, and m denotes the number of samples.

This procedure mimics how human beings learn new knowl-
edge by communicating with others. Similarly, each {Net∗i }
also learns more comprehensive information of data from other
networks. Other studies use precise labels for recognition,
in other words, each sample belongs to only one emotional
category in their methods. In contrast with them, our output
is a distribution that may span more than one category. In
order to be consistent with other studies, we choose the
highest probability in the distribution as final output category
as illustrated in the right section of Fig.2.

Since the conclusion of Bahrami’s paper [9] pointed that
“The general consensus from extensive earlier work on col-
lective decision-making is that groups rarely outperform their
best members”, we follow the consensus and choose the best
classifier of MCIL to make the final decision.

V. EXPERIMENTAL SETTING

A. Database

To evaluate MCIL, we conduct the performance test on three
benchmark databases.
Mandarin Affective Speech (MAS). Since Chinese culture
and emotional expression are conservative, which cause Chi-
nese pronunciation and intonation to be mild, the features of
data in Chinese corpora are somewhat ambiguous. The speak-
ers expressed 5 different emotions including angry, happy,
neutral, panic and sadness to act the utterance. Speakers read
the same sentence three times repeatedly and 20 sentences in
total for each emotion.
Interactive Emotional Dyadic Motion Capture (IEMO-
CAP). IEMOCAP corpus [25] was a commonly used English
corpus for SER. Following [26, 27], we used both improvised
and scripted data, and chose angry, happy, neutral, sadness
and excited as the basic emotions. With reference to [8, 25],
we merged happy and excited as happy since they are close
in the activation and valence domain.
FAU-AIBO Emotion Corpus (FAU-AIBO). FAU-AIBO is a
corpus of German children communicating with Sony’s AIBO
pet robot [28]. The corpus can be divided into 2 or 5 emotional
categories. To verify the robustness of MCIL, we chose the 2-
emotion, which are NEG(active): states with negative valence
(angry, torchy, reprimand, emphatic) and IDL(e): all other
states. The details of three corpora are summarized in Table I.

TABLE I: A brief overview of the MAS, IEMOCAP and FAU-
AIBO corpora.

Corpora Language Utterance Subjects Emotion
MAS Chinese 20400 68 (23 female) 5
IEMOCAP English 5531 10 (5 female) 4
FAU-AIBO German 18216 51(30 female) 2

B. Evaluation Metrics

The following two metrics are employed to evaluate the
effectiveness of MCIL on speech emotion recognition:
Classification accuracy. We evaluated the performance of
each classifier with respect to recognition accuracy tested on
D3.
Consistency among multiple classifiers. Due to the different
classifier architectures and ambiguous data, the recognition
results of {Neti} and {Net∗i } should not be consistent. One of
the purposes of interactive learning is to improve classification
consistency among all classifiers. Thus, a Kappa value was
used to evaluate the consistency of classifiers:

K =
P − P e
1− P e

, (16)

where,

P =
1

d

d∑
i=1

Pi, P e =

c∑
j=1

P 2
j , (17)

Pi =
1

n(n− 1)

c∑
j=1

(v2ij − n), Pj =

∑d
i=1 vij
d ∗ n

, (18)
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where, d denotes the number of test samples, n denotes the
number of classifiers, c denotes the number of categories,
{vij |i = 1, · · · , d; j = 1, · · · , c} denotes the number of votes
for the sample i is classified as category j, Pi denotes the
consistency for each sample i, and Pj denotes the consistency
for each category.

C. Implementation Details

The five classifiers in the proposed framework were the 34-
layer ResNet [29], 121-layer DenseNet [30], SqueezeNet [31],
11-layer VGG [32], and AlexNet [33]. For DenseNet, ResNet,
AlexNet, and VGG, according to the number of categories in
FAU-AIBO, IEMOCAP, and MAS, the last fully-connected
layer was adjusted to two, four, and five outputs, respectively.
For SqueezeNet, the output dimension of the final convolution
layer was reduced to two, four, and five, respectively. For each
classifier, we adjusted the number of layers to avoid over-
fitting.

The training procedure of all classifiers was implemented
using PyTorch on an NVIDIA 2080Ti GPU, and all five
Neti were pre-trained. The corpora were divided into three
groups as shown in Table II. D1, which contained samples
with precise labels that are less ambiguous than those in
the other groups, was used to train Neti in the precise
label learning stage. To avoid over-fitting, we expand D1 by
horizontally flipping the samples as data augmentation. D2,
which contained unlabeled samples, was used to construct the
ambiguous label and retrain the five Net∗i . Finally, D3, which
contained labeled but more ambiguous samples, was used to
evaluate the performance of classifiers.
Precise label learning: To train these five Neti for precise
labels, we applied 5-fold cross-validation on D1. Since ran-
dom cropping or resizing may influence the recognition of
spectrograms, all samples were used with the original size
in this work. During training, the parameters of the first few
layers were fixed, and the subsequent layers were optimized.
The objective function was Cross-Entropy loss. These models
were trained using Adam with a batch size of 16, and the
learning rate decaying exponentially from 10−4 to 10−8. After
training, five Neti were tested on D3, and their results were
used as the baseline.
Interactive learning: First, five trained Neti classified the
unlabeled samples in D2. Their results constructed the am-
biguous label Ỹx for each sample x. Then, these Net∗i were
retrained on D2 using the new label Ỹ . The classifiers were
optimized by minimizing the new objective function KL-loss.
We fixed the first few layers of each classifier and retrained
them with a batch size of 16, weight decay of 0.0005, and
learning rate decaying exponentially from 10−4 to 10−8 across
50 epochs. The retraining was stopped when no change of KL-
loss value.

TABLE II: The sizes of training and testing datasets.

Corpora D1 D2 D3

MAS 6000 13400 1000
IEMOCAP 1710 3421 400
FAU-AIBO 5375 10750 2091

VI. EXPERIMENTAL RESULTS ANALYSIS

A. Ablation studies: the efficiency of 3, 5, and 7 classifiers in
MCIL

To analyze the influence of the number of the classifiers
used in MCIL, we further evaluate the using of 3, 5, and 7
classifiers on IEMOCAP that is widely used. The results are
listed in table V.

As shown in the table, using 5 classifiers to train MCIL
achieves the best results. When we increase the number of
classifiers from 3 to 5, we can observe clear improvements
from 2.75% to 6.75% for all classifiers. Moreover, four of
five classifiers (i.e ResNet, VGG, SqueezeNet, and DenseNet)
obtain the best performance. The reason behind could be
that 5 classifiers bring more diversities of the classifiers with
inconsistent cognition than 3 classifiers. This leads to a better
representation of ambiguous data, and further improve the
consistency and accuracy of all classifiers. However, this does
not mean increasing the number of classifier will always get a
better results. As we can see, 7-classifer does not outperform
5-classifier. The explanation might be that the two additional
have lower performances than that of other classifiers in
baseline. They weaken the cognitive ability of the entire group
of all classifiers, thus, lead to the decreasement of the overall
accuracy.

B. The effectiveness of the MCIL method

To evaluate the performance of our proposal, we first test
the five classifiers for ambiguous emotion recognition with and
without interactive learning. Table III lists their performance
changes on D3 of MAS and IEMOCAP.

As we can see, on both corpora, the overall accuracy
of five Net∗i are entirely improved. Firstly, we analyze the
performance on the most ambiguous emotion categories angry
and happy in Mandarin, which obtain the lower performance
among five emotions. Although, VGG obtains 53.5% and
41.5% accuracies of angry and happy when trained with the
precise label, respectively, MCIL introduces the remarkable
improvements of 5.5% and 5%. The five Net∗i all lead
to performance improvement on ambiguous emotion angry.
Secondly, we see that the neutral emotion achieves the
highest accuracy among all emotion categories. ResNet and
SqueezeNet can obtain 10.5% and 8.5% improvement on the
neutral emotion, respectively. The overall accuracy of VGG
rises remarkably by 5.8%, and DenseNet increases from 60.4%
to 62.2% as well.

Meanwhile, the results from the IEMOCAP corpus are
similar to the MAS. The overall accuracy of ResNet achieves
a remarkable 6.8% increase, and AlexNet rises from 58.5% to
64.0%. DenseNet, VGG, and SqueezeNet obtain 3.5%, 3.0%,
and 3.0% improvements, respectively.

Table IV lists the performance of FAU-AIBO. Since FAU-
AIBO is severely unbalanced, specifically, IDL is much bigger
than NEG in terms of both total sample size and clear sample
size, all classifiers perform better on IDL. After interactive
learning, we can observe all five networks are improved on
both categories. Particularly, the accuracy of SqueezeNet rises
8.4% on IDL, and rises 13.97% on NEG, and finally results
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TABLE III: The accuracies of five classifiers with and without the interactive learning on MAS (grey background) and
IEMOCAP (white background).

Angry Happy Neutral Panic Sadness Overall
Methods Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL

DenseNet 57.0% 61.5% 48.5% 52.5% 73.0% 78.5% 57.5% 59.5% 66.0% 59.0% 60.4% 62.2%
71.0% 64.0% 49.0% 52.0% 73.0% 74.0% 61.0% 78.0% 63.5% 67.0%

ResNet 58.0% 61.5% 43.5% 47.0% 68.5% 79.0% 55.5% 62.5% 59.0% 57.0% 56.9% 61.4%
64.0% 69.0% 51.0% 50.0% 60.0% 71.0% 67.0% 79.0% 60.5% 67.3%

VGG 53.5% 59.0% 41.5% 46.5% 70.5% 77.5% 48.5% 57.0% 58.5% 61.5% 54.5% 60.3%
63.0% 63.0% 59.0% 50.0% 62.0% 73.0% 69.0% 78.0% 63.0% 66.0%

AlexNet 54.0% 59.0% 43.0% 43.0% 70.5% 77.0% 52.5% 60.5% 63.0% 53.5% 56.6% 58.6%
55.0% 58.0% 57.0% 55.0% 58.0% 66.0% 64.0% 77.0% 58.5% 64.0%

SqueezeNet 55.0% 59.5% 46.5% 43.5% 65.5% 74.0% 56.5% 64.5% 58.0% 59.0% 56.3% 60.1%
63.0% 63.0% 59.0% 57.0% 68.0% 69.0% 66.0% 81.0% 64.0% 67.0%

in a 10.63% improvement. Other classifiers also achieve an
improvement from 0.37% to 10.66%. For more details, please
refer to supplementary material.

The above results suggest that, even though ambiguous
labels are constructed by five classifiers’ voting, they can better
represent the ambiguous data. Interactive learning endows
each Net∗i ability to transfer more useful and comprehensive
information of ambiguous data to other networks.

C. Confusion matrix

We further evaluate the performance of MCIL on each
emotion category in MAS and IEMOCAP. Table VI and
table VII list the confusion matrix of DenseNet with and
without the interactive learning.

On MAS, four emotion categories have improvement after
interactive learning. As we can see, on most ambiguous
emotion categories angry and happy in Mandarin, there is a
1.5% decrease of misclassifying from happy to angry. And the
most unique emotion neutral achieves the highest accuracy
78.5% among all emotion categories. We can also observe
a 5.5% accuracy increase on neutral when using interactive
learning. Finally, sadness is the only emotion category that
decreases in accuracy. We have discovered that during the
stage of ambiguous labels construction, some ambiguous
labels that should belong to sadness are more inclined to
neutral. Consequently, this causes a decrease in the accuracy
of sadness.

On IEMOCAP, the performances of three of the four
emotion categories are improved. Specifically, 3.0% and 1.0%
accuracy increases on happy and neutral can be observed
after using interactive learning. Different from the MAS, the
sadness achieves a remarkably 17% increase from 61.0% to

TABLE IV: The accuracies of five classifiers with and without
interactive learning on FAU-AIBO.

IDL NEG Overall
Methods Baseline MCIL Baseline MCIL Baseline MCIL
DenseNet 76.11% 77.48% 46.24% 48.00% 63.94% 65.47%
ResNet 74.25% 77.08% 45.54% 48.36% 62.55% 65.38%
VGG 74.41% 75.87% 48.94% 49.53% 64.04% 65.14%
AlexNet 76.51% 76.59% 45.49% 46.24% 63.86% 64.23%
SqueezeNet 60.45% 68.85% 39.79% 53.76% 52.03% 62.70%

TABLE V: The performance of 3, 5, and 7 classifiers on
IEMOCAP.

Baseline 3-classifier 5-classifier 7-classifier

ReseNet 60.50% 67.00% 67.25% 67.25%
VGG 63.25% 65.20% 66.00% 65.00%
SqueezeNet 64.00% 65.75% 67.00% 64.25%
DenseNet 63.50% 67.00% 65.00%
AlexNet 58.50% 64.00% 64.25%
MobileNet 61.50% 63.75%
Inception 60.20% 60.75%

78.0%, which is also the highest accuracy 78.0% among all
emotion categories. The only exceptional emotion category
that decreases 7.0% in accuracy is happy. We can also observe
that there is a 5.0% misclassification increase from angry to
happy.

D. Comparison of visualized feature representations

To gain insight into MCIL, we extended the effectiveness
examination at the feature representation level. Each emotion
category in D3 of MAS database was visualized by t-SNE in
Fig. 1 using the learned feature representations of VGG net
with and without employing MCIL.

Figure 1.a denotes the feature representations trained with
only precise label learning, treated as a baseline. Figure 1.b
denotes the feature representations with interactive learning.
There exist clearly less overlaps between categories in Fig. 1.b
compared with Fig. 1.a. This illustrates that VGG net obtains a
stronger separability on ambiguous emotions after employing
MCIL. To have a quantitative comparison, we compute the
normalized inner-class distances of feature representations
with and without employing MCIL. The result shows the
distance decreases from 0.663 of baseline to 0.638 of MCIL,
which means that the feature representations of MCIL are
more compact and consistent.

E. Comparison with state-of-the-art

We compared MCIL with the state-of-the-art of SER meth-
ods (i.e. Cummins et al. [12], Li et al. [13], Wu et al.
[14], Dai et al. [8] and Ando et al. [7]) to evaluate the
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TABLE VI: Confusion matrix of DenseNet on MAS with and without interactive learning.

Angry Happy Neutral Panic Sadness
Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL

Angry 57.00% 61.50% 21.00% 21.00% 6.00% 4.50% 13.50% 11.50% 2.50% 1.50%
Happy 17.00% 15.50% 48.50% 52.50% 8.50% 10.00% 15.50% 17.50% 10.50% 4.50%
Neutral 4.00% 5.50% 4.50% 4.00% 73.00% 78.50% 1.50% 1.00% 17.00% 11.00%
Panic 8.50% 7.50% 17.00% 20.00% 5.50% 6.00% 57.50% 59.50% 11.50% 7.00%
Sadness 2.00% 1.50% 0.50% 0.50% 22.50% 29.50% 9.00% 9.50% 66.00% 59.00%

TABLE VII: Confusion matrix of DenseNet on IEMOCAP with and without interactive learning.

Emotion Angry Happy Neutral Sadness
Baseline MCIL Baseline MCIL Baseline MCIL Baseline MCIL

Angry 71.00% 64.00% 12.00% 17.00% 15.00% 16.00% 2.00% 3.00%
Happy 15.00% 12.00% 49.00% 52.00% 30.00% 32.00% 6.00% 4.00%
Neutral 3.00% 1.00% 18.00% 14.00% 73.00% 74.00% 6.00% 11.00%
Sadness 2.00% 2.00% 17.00% 9.00% 20.00% 11.00% 61.00% 78.00%

effectiveness. Since datasets in those methods are different
from ours, to make a fair comparison, we retrain these methods
on D1 using their own hyperparameters and learning rates.
The final averaged test result is obtained by 5-fold cross-
validation. In addition, we implemented tri-training [18] be-
cause it also employs more than one classifier to improve the
performance. To verify the conclusion of Bahrami’s paper [9],
the majority voting of five {Net∗i } is used to embody the
collective decision-making result. Please note that we choose
the DenseNet trained by MCIL, which is the best classifier,
to compare with other methods. The results are listed in
Table VIII.

On the MAS corpus, MCIL achieves 62.2% accuracy, which
outperforms the other six methods from 3.1% to 14.7%. On the
IEMOCAP corpus, MCIL also achieves a superior accuracy,
outperforms other methods from 2.0% to 11.7%. On the FAU-
AIBO corpus, MCIL surpasses others from 1.58% to 4.16%.
The improvement on FAU-AIBO is lower than the ones on the
other two databases. The reason is that FAU-AIBO has two
categories, which is simpler than multiple categories in MAS
and IEMOCAP. This result demonstrates that MCIL is better
at handling more complicated ambiguous data.

As Ando’s method [7] required the statistic of experts’
voting to construct the multi-label, it can be only applied to
IEMOCAP corpus. MAS does not include the voting informa-
tion, and experts voted each word instead of the utterance in
FAU-AIBO.

Interestingly, tri-training reaches a good result on FAU-
AIBO but performs worst on MAS and IEMOCAP. The
possible reason might be the number of emotion categories.

TABLE VIII: The comparison with state-of-the-art methods

Overall Accuracy

MAS IEMOCAP FAU-AIBO
Cumins 47.50% 55.30% 61.31%
Li 53.80% 57.80% 63.80%
Wu 52.00% 57.00% 61.39%
Dai 57.20% 56.30% 63.89%
Ando 53.67%
Tri-training 33.40% 42.03% 62.41%
Majority voting 59.10% 65.00% 62.20%
MCIL 62.20% 67.00% 65.47%

The votes of three classifiers are not sufficient for the databases
with more than two categories. Moreover, tri-training selects
more discriminating data and ignore the ambiguous samples
during classifiers interacting. Therefore, they perform worse
than MCIL.

As for majority voting result, it achieves 59.10% and
65.00% accuracy on MAS and IEMOCAP, which only per-
forms slightly worse than MCIL. And on FAU-AIBO, it
performs the third worst of all the method. This result verifies
the conclusion in Bahrami’s paper, “groups rarely outperform
their best members”.

F. Comparison with state-of-the-arts on each emotion

To evaluate the performance of MCIL and the state-of-the-
arts on each emotions, we further investigate the accuracy of
those methods on MAS, IEMOCAP, and FAU-AIBO, which
are listed in table IX, table X and table XI, respectively. As
we can observe, these methods perform quite differently on
different emotions.

TABLE IX: The comparison with state-of-the-art methods on
MAS.

Angry Happy Neutral Panic Sadness Overall

Cumins 47.00% 39.00% 59.00% 37.50% 54.50% 47.50%
Li 82.50% 17.00% 66.50% 37.50% 65.50% 53.80%
Wu 50.50% 40.00% 62.00% 43.00% 64.50% 52.00%
Dai 44.50% 41.50% 70.50% 66.50% 63.00% 57.20%
Tri-training 26.00% 10.00% 63.00% 28.50% 39.50% 33.40%
Majority voting 60.00% 47.00% 79.00% 58.50% 51.00% 59.10%
MCIL 61.50% 52.50% 78.50% 59.50% 59.00% 62.20%

TABLE X: The comparison with state-of-the-art methods on
IEMOCAP.

Angry Happy Neutral Sadness Overall

Cumins 46.00% 52.00% 62.00% 61.00% 55.30%
Li 78.00% 10.00% 67.00% 76.00% 57.80%
Wu 61.00% 46.00% 57.00% 64.00% 57.00%
Dai 63.00% 47.00% 54.00% 61.00% 56.30%
Ando 46.00% 58.00% 53.00% 56.00% 53.67%
Tri-training 45.00% 24.00% 39.00% 71.00% 42.03%
Majority voting 59.00% 53.00% 68.00% 80.00% 65.00%
MCIL 64.00% 52.00% 74.00% 78.00% 67.00%
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TABLE XI: The comparison with state-of-the-art methods on
FAU-AIBO.

IDL NEG Overall

Cumins 75.87% 40.14% 61.31%
Li 78.93% 41.78% 63.80%
Wu 69.22% 50.00% 61.39%
Dai 91.12% 24.30% 63.89%
Tri-training 73.28% 46.60% 62.41%
Majority voting 76.51% 47.89% 62.20%
MCIL 77.48% 48.00% 65.47%

As shown in table IX, on MAS, MCIL is much better than
the other five competing methods on the accuracy of the most
ambiguous category happy. It shows from 5.5% to 42.5%
improvement than the state-of-the-art, which demonstrates the
effectiveness of interactive learning for ambiguous emotion
recognition. As for the less-ambiguous emotion category neu-
tral,majority voting obtains the best performance, the reason
behind this is that all five classifiers performs good and more
consistent on neutral. And our MCIL achieves the second best
accuracy, which obtains at least an 8.0% improvement, and is
only 0.5% worse than the majority voting result. On the angry
and panic categories, MCIL still ranks at the second, out-
performs other four methods. Although, Li’s method reaches
a remarkable high accuracy on angry, but has rather low
accuracy on happy and panic. In the category of sadness, three
methods outperform us only from 4.0% to 6.5%. Moreover,
MCIL method achieves 62.2% overall accuracy which is a
considerable rise from 3.1% to 14.8% compared with the other
five methods.

On IEMOCAP, as shown in table X, MCIL achieves better
performance on two of the four emotion categories: neutral
and sadness. On neutral, our method demonstrates a 7.0% to
35.0% raise compared with other methods. A similar trend
can be found on sadness. As for happy and angry, MCIL
also obtains the second best performance. Again, Li’s method
performs very good on angry, but the worst on happy. For
overall accuracy, our MCIL also obtains the considerable
increases from 2.0% to 24.97% compared with the state-of-
the-arts.

Table XI shows that these methods perform differently on
different emotions on the Fau-AIBO corpus. For example,
Dai’s method performs better on IDL, but the worst on NEG.
Wu’s approach performs better on NEG, but achieves the
worst accuracy on IDL. Both of them indicate that their
methods work well for only specific emotions. Contrasts with
those methods, the accuracies of two categoris of our MCIL
are more balanced. Our method achieves 77.48% on IDL,
which is the third best, and 48.0% on NEG, which is the
second best. Meanwhile, MCIL gains best overall accuracy,
and outperforms other methods from 4.16% to 1.58%.

G. Consistency evaluation

The optimally interacting theory also indicates that inter-
personal communication can improve cognition consistency
among different people. Therefore, we evaluated the classi-
fication consistency among five Neti and Net∗i using the

Fig. 4: The Fleiss Kappa K values of multiple classifiers with
and without interactive learning (p<0.0001).

Fleiss Kappa (K) value on three corpora. Figure 4 illustrates
the difference between the K values with and without using
interactive learning. As we can see, the K value of {Neti}
trained by the precise labels achieves only 0.5088, 0.5245,
and 0.3554 respectively. This is because D3 mainly contains
ambiguous samples, which confuse the five Neti in coming
to an agreement. It also shows that K rises by 0.15, 0.19, and
0.25 on {Net∗i } after interactive learning, and the consistency
has generally been improved from moderate agreement to
substantial agreement.

VII. CONCLUSION

In this study, we have addressed the issue of ambiguous
SER system by presenting a novel multi-classifier interaction
learning (MCIL) method. The MCIL consisted of two novel
components: ambiguous label construction and interactive
learning. Multi-classifiers were applied to construct ambiguous
labels of emotion, which can better represent ambiguous
emotion. The interactive learning, which used the KL diver-
gence, was found to be a more feasible strategy for objective
measurement. The effectiveness of MCIL was evaluated on
three benchmarks: MAS, IEMOCAP, and FAU-AIBO. The
experiments show MCIL outperforms state-of-the-art methods
on both recognition accuracy and consistency of classification.
Both achievements indicated that interactive learning is an
effective method for recognizing ambiguous data. Our future
study is going to investigate how to improve the robustness of
ambiguous label construction.
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