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Abstract—Metric learning approaches have widely expanded to
the training of Speaker Verification (SV) systems based on Deep
Neural Networks (DNNs), by using a loss function more consistent
with the evaluation process than the traditional identification
losses. However, these methods do not consider the performance
measure and can involve high computational cost, for example,
the need for a careful pair or triplet data selection. This paper
proposes the approximated Detection Cost Function (aDCF) loss,
which is a loss function based on the measure of the decision
errors in SV systems, namely the False Rejection Rate (FRR)
and the False Acceptance Rate (FAR). With aDCF loss as the
training objective function, the end-to-end system learns how to
minimize decision errors. Furthermore, we replace the typical
linear layer as the last layer of DNN by a cosine distance layer,
which reduces the difference between the metric in the training
process and the metric during evaluation. aDCF loss function
was evaluated in RSR2015-Part I and RSR2015-Part II datasets
for text-dependent speaker verification. The system trained with
aDCF loss outperforms all the state-of-the-art functions employed
in this paper in both parts of the database.

Index Terms—Speaker Verification, Loss Functions, Metric
Learning, aDCF, Cross-Entropy, aAUC, Triplet loss

I. INTRODUCTION

W ITH the arrival of the modern artificial intelligence
approaches, the automatic recognition of speakers has

emerged as one of the most demanded tasks by technological
applications. Typically, speaker recognition can be categorized
into two modes of operation: speaker identification (SI), and
speaker verification (SV). The former consists of assigning
a speech sample to a specific speaker identity, in which all
the identities are predefined in the training set, while the
goal of the latter is to determine whether two speech samples
belong to a claimed identity or not. Furthermore, SV systems
can be divided into text-independent and text-dependent. In
text-independent SV systems, there are no restrictions on the
lexicon content, while text-dependent SV systems require the
same constraints on the uttered phrase.

The development of SV systems has been an important task
during the last decade since the growing interest of related
applications such as virtual assistants, home automation, voice
authentication systems, among others. SV systems are trained
to take a binary decision based on a decision threshold
(Ω): acceptance or rejection [1]. Thus, this kind of systems
produces two types of decision errors which are depicted
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Fig. 1. Decision errors based on the decision threshold (Ω) for SV systems.
Different possible cases depending on the amount of each type of error. (a)
Case where FAR is equal to FRR. (b) The number of FR are greater than FA.
(c) Greater number of FA than FR.

in Fig.1. The False Acceptance (FA) is referred to when an
impostor speaker is incorrectly accepted (Type I error), and the
False Rejection (FR) is related to the incorrect rejection of a
true speaker (Type II error) [2] [3]. The system performance
is obtained by combining the ratio of these two errors, which
are defined by the number of times of each one occurs in
relation to the number of legitimate or impostor speakers [4].
The selection of the threshold, Ω, is what relates the system to
the operating point of interest in terms of the application, and
there are three kind of different cases. Firstly, when FAR =
FRR as in Fig.1(a), we are in presence of the Equal Error
Rate (EER). This is an operating point frequently used as
a measure of the discrimination capability of the system for
many applications [5]. However, the EER may not be the best
option for some applications, so there are alternative operating
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points [6]. For example, if Ω is set to a high value, the number
of false alarms can be decreased even though a greater number
of false rejections may occur [7]. Thus, for systems where the
cost of accepting an impostor is high, the threshold is chosen
such that FRR > FAR as in Fig.1(b). On the other hand,
if the application of the system requires a lower number of
false rejections, Ω will be set lower, but this involves that
the number of impostor speakers accepted increases, so in
this case, FRR < FAR as in Fig.1(c). Therefore, due to the
relevance of the decision errors in the verification process, we
propose the approximated Detection Cost Function (aDCF)
[8] loss function. This function is based on the measure of
these decision errors of SV systems and allows the systems
based on deep neural networks (DNN) to be trained directly
to optimize a metric focused on the goal task.

Many state-of-the-art SV systems based on DNN [9] [10]
follow a typical framework to project the utterances into a low
dimensional space. This framework has three key components:
a feature acoustic extraction followed by a network front-end,
an average pooling mechanism which produces embeddings to
represent the whole utterance, and a loss function to train the
full system [11] [12]. However, the SV system itself is usually
trained using a loss function without encouraging the discrim-
inative learning of features and neither considering the actual
operating point. Therefore, when the system provides the
performance measure of the whole SV process, this training
procedure provokes the system under-performance. Recently,
metric learning functions at training have been alternatively
used to handle this issue [13] [14]. The main purpose of metric
learning algorithms consists of bringing similar samples closer,
while different samples are pushed apart from each other using
a specific loss function. Thus, these approaches aim to learn a
more discriminative embedding space. However, this kind of
metric learning loss functions requires careful sample prepa-
ration, which usually involves a high computational cost. To
address this problem, recent research efforts have been focused
on redesigning the traditional classification loss functions to
improve the discrimination ability with the same motivation
that we developed aDCF loss function [8]. Unlike previous
approaches, aDCF loss function keeps the low computational
cost of the traditional classification loss functions, while the
system is trained with a metric focused on the goal task to
increase the discrimination ability.

In this paper, we study the effects of using aDCF loss
function combined with a cosine layer as last layer in the
DNN architecture instead of a linear layer to train the system.
This metric was inspired by the Detection Cost Function
(DCF) [15] [16] used by the National Institute of Standards
and Technology (NIST) during the Speaker Recognition Eval-
uations (SRE). This aDCF loss function was proposed to
replace the classical Cross-Entropy (CE) loss function [11]
[17] [18]. Unlike recent classification or metric learning loss
functions [19] [13] [20], aDCF has the ability to adapt the
parameters to modify the optimal threshold and the balance
between type I and type II errors to meet the requirements
of a concrete system application. The ability to manage the
scores distributions in function of the operating point is a
useful skill to provide for this type of end-to-end systems

with. Finally, we show how aDCF loss function outperforms
the reference systems based on alternative loss functions.
Although the proposed method can be used for text-dependent
and text-independent SV systems, for the sake of clarity,
we present here experimental results on a text-dependent
verification task using the well-know RSR2015 dataset. In [8],
we presented a preliminary study of aDCF loss function, but
we did not perform an analysis of the different parameters,
and the experimental results shown were limited. For this
reason, in this work, we have addressed an extensive analysis
of this function and the main contributions are summarized as
follows:

• We explore the effects of training SV systems giving
different relevance to both types of errors depending on
the application.

• We analyze the behaviour of using a complementary loss
function in combination with CE loss or aDCF loss to
improve the discriminative power.

• We compare the performance of aDCF loss function
against some of the state-of-the-art loss functions.

This paper is laid out as follows. Section 2 presents a
review of existing loss functions. The aDCF loss function
is presented in Section 3. Section 4 shows the SV system
description, followed by the experimental setup in Section 5.
Finally, Section 6 discusses obtained results and Section 7
concludes the paper.

II. LOSS FUNCTIONS

Training loss functions play an important role in SV systems
based on DNNs, since an effective loss function can improve
the discriminative power of the learned features. The selection
of which loss function should be used depending on the
task is also relevant. Loss functions can be grouped into two
categories:

• Identification or classification loss functions: which are
used in classification tasks where all the testing identi-
ties are predefined in the training set, and features are
expected to be separable. In this category, the current
extended function is CE loss with softmax output units
[11] [17] [18] combined with Ring loss [21] or Center
loss [22], and its variants such as angular softmax loss (A-
Softmax) [19] or additive angular margin loss (ArcFace)
[23].

• Verification or metric learning loss functions: which are
designed to improve the discrimination power with a
pairwise- or triplet-based training and a similarity metric,
which leads a supervised embedding learning in triplet
neural network [13] [14], contrastive loss [24], partial
AUC loss (pAUC) [25] or NeuralPLDA [26]. Previously
[27] [28], we proposed an alternative back-end which
combines the triplet loss philosophy with the optimization
of the AUC as the loss function (aAUC) [29] [30] [31].

Both groups of loss functions have several variants. In
this section, we focus on a detailed explanation of the most
extended function from each group. We also describe our
previous proposed function aAUC [27].
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A. Cross-Entropy Loss

The traditional and most common identification loss func-
tion is CE loss [17] [11] [18]. Due to its simplicity, excellent
performance and probabilistic interpretation, this function has
been widely applied for multi-class classification. CE loss can
be written as,

LCE = −
m∑
i

yi · log(ŷi), (1)

where yi is the ground truth class label with i ∈ {1, ...,m} and
m is the number of samples, and ŷi is the predicted probability
extracted from the output of the last fully connected layer.

When a DNN is trained using this loss function, it learns
how to separate the features as far away as possible from the
decision boundary, which is the goal for a classification task.
Nevertheless, deeply learned embeddings are not explicitly
encouraged to enlarge the inter-class distance and reduce the
intra-class variations, which is not suitable for SV systems.
Since they require separable and also discriminative embed-
dings for the speaker verification task.

B. CE Loss combined with Ring Loss

To solve the previous drawbacks with CE loss and si-
multaneously keep the same efficiency during training, other
approaches have been proposed with encouraging results. CE
loss learns to separate embeddings of different classes, but this
loss function does not address the intra-class compactness. In
order to mitigate the effects of the lack of feature discrimi-
nation power, Ring loss [21] was proposed to apply a convex
norm constraint over the primary loss to normalize the features
and bring compactness to them. Using this complementary
function, the system is trained to learn the feature norm close
to the unit circle. This contributes to reduce the intra-class
variability, while the features can increase their discrimination
by using different angles to represent data. Ring loss is
formulated as,

LR =
λ

2m

m∑
i=1

(||xi||2 −R), (2)

where R is the target norm value, usually 1, λ is the loss
weight, xi is the input sample of the penultimate layer with
i ∈ {1, ...,m} and m is the number of samples. Thus, the joint
loss to minimize with this approach is defined as,

L = LCE + LR. (3)

C. Angular Softmax Loss

Another alternative has become a reference approach to
substitute the traditional softmax loss by redesigning softmax
function introducing an angular margin to encourage a larger
variance among classes. This loss function is called Angular
Softmax or A-Softmax loss [32], which enables the neural
networks to learn angular discriminative features. The loss
function is defined as follows:

LANG = − 1
m

∑m
i log

exp (||xi||ψ(θyi,i))

exp (||xi||ψ(θyi,i))+

N∑
j ̸=yi

exp (||xi||cos(θyi,j))
, (4)

where ψ(θyi,i) is the angle function which is a monotonic
function and is defined ψ(θyi,i) = (−1)kcos(mθyi,i) − 2k,
with θyi,i ∈ [kπm ,

(k+1)π
m ], k ∈ [0,m− 1], and m is an integer

to control the angular margin.
A-Softmax loss has been proved as an effective method to

improve some recognition systems. However, it is difficult to
train with this function since it is sensitive to the values of the
parameters.

D. Triplet Loss

Motivated by improving the discriminative power of the
features extracted from the network, the metric learning ap-
proaches or verification loss functions were introduced in the
training process of DNNs. One of the most widely verification
loss function for metric learning is Triplet loss function [13].
To use this kind of loss function, a triplet neural network
structure is applied where three examples are selected to create
a negative pair and a positive pair of samples. They are defined
as an example from a specific identity called anchor (e), a
positive sample of the same identity of the anchor (e+), and
a negative sample from a different identity (e−). Once the
triplet selection process is made, the neural network is trained
to enforce a larger similarity metric in the anchor-positive pair
than in the anchor-negative pair as Fig.2 depicts. The Triplet
loss is defined as,

LTR =

m+∑
i=1

m−∑
j=1

||(sθ(p+i )||2 − ||sθ(p−j )||2 + τ, (5)

where sθ(p+i ) is the similarity metric of each pair of anchor-
positive embeddings where p+i = (e, e+i ) with i ∈ {1, ...,m+}
and m+ is the total number of positive examples, sθ(p−j ) in-
dicates the metric of each pair of anchor-negative embeddings
where p−j = (e, e−j ) with i ∈ {1, ...,m−} and m− is the total
number of negative examples, and τ is the minimum margin
between those similarities.

Fig. 2. Triplet loss learning process.

E. aAUC Loss

Metric learning loss functions aim to improve the gen-
eralization ability of the systems since they learn how to
discriminate better for verification problems. However, these
functions are designed without considering the measure of
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the performance used in the verification process. To make the
training process more consistent with the evaluation procedure,
in [27], we proposed to optimize directly the Area Under the
Curve (AUC) as loss function using the triplet philosophy.
AUC measures how much the model is capable of distinguish-
ing between all the pairs of examples. This way, it provides a
well-suited loss function that measures the performance of the
whole system independently of the operating point. Therefore,
AUC is a proper measure to make the training procedure
consistent with the evaluation process. In order to enable the
backpropagation of the gradients during the training process,
we presented an effective differentiable approximation of AUC
function (aAUC). Thus, given a set of network parameters
θ, the aAUC loss function can be defined using a sigmoid
function as,

aAUC(θ) =
1

m+m−

m+∑
i=1

m−∑
j=1

σα(sθ(p
+
i )− sθ(p

−
j )), (6)

where sθ(p+i ) is the similarity metric of each pair of anchor-
positive embeddings, sθ(p−j ) indicates the metric of each
pair of anchor-negative embeddings, and σα() is the sigmoid
function, expressed as,

σα(s) =
1

1 + exp(−α · s)
, (7)

where α is an adjustable parameter set using development data.
With this expression, the optimization process leads the score
of the anchor-positive pair to be greater than the score of the
negative pair.

Metric learning approaches have shown to be very effec-
tive techniques to improve the discrimination ability of SV
systems. Especially this loss function based on the AUC SV
metric, which is optimized in the learning framework to im-
prove the system performance. However, these techniques with
pairs or triplets have some drawbacks as slow convergence or
instability. Traditionally, to solve these problems, sample min-
ing strategies have been applied to select the most informative
pairs to create the triplets [13]. This process improves the
performance, but it also involves a high computational cost
which slows down excessively the training process.

III. aDCF LOSS FUNCTION

Motivated by the idea of taking advantage of the efficiency
and speed of training using multi-class classification loss
functions and, at the same time, the improvement achieved
with verification loss functions as previous aAUC loss, we
proposed the approximated Detection Cost Function (aDCF)
[8]. This function is inspired by DCF [15] [16], which is one
of the main performance measures in the evaluation process
for SV tasks. Using aDCF loss function to train the systems,
the network learns how to minimize this evaluation metric and
find the optimal threshold for the specific application. In order
to carry out this function, we had to develop an effective and
differentiable expression for the original DCF metric.

aDCF loss function is composed of a weighted sum of
the batch level estimate of the probability of misses or FRR
(Pmiss) and the probability of false alarm or FAR (Pfa).

Pmiss is defined by the average number of times the scores of
target speakers Ntar are smaller than the decision threshold
(Ω), so the system cannot effectively detect, and a miss is
produced. While Pfa is determined by the average number of
times the scores of non-target speakers Nnon are greater than
Ω, so a false alarm is produced. These two kinds of errors
are graphically depicted in Fig.1 for each application case.
Therefore, as a function of the network parameters θ, Pfa and
Pmiss can be written as,

Pfa(θ,Ω) =

∑
yi∈ynon

1(sθ(xi, yi) > Ω)

Nnon
, (8)

Pmiss(θ,Ω) =

∑
yi∈ytar

1(sθ(xi, yi) < Ω)

Ntar
, (9)

where Ntar is the number of target speakers, Nnon is the
number of non-target speakers, 1() is equal to ‘1’ whenever
the score sθ(xi, yi) meets the condition with respect to Ω, and
‘0’ otherwise. The score sθ(xi, yi) is obtained from the last
layer of the neural network where xi is the input sample with
i ∈ {1, ...,m} and m is the number of samples, yi is the class
label. Equations (8) and (9) can be rewritten using unit step
function u() as,

Pfa(θ,Ω) =

∑
yi∈ynon

u(sθ(xi, yi)− Ω)

Nnon
, (10)

Pmiss(θ,Ω) =

∑
yi∈ytar

u(Ω− sθ(xi, yi))

Ntar
. (11)

However, the expressions (10) and (11) for the probabilities
are not differentiable, so we replace unit step function u()
by a sigmoid of the difference to make an approximation
of the binary counter which enables the backpropagation of
gradients:

P̂fa(θ,Ω) =

∑
yi∈ynon

σα(sθ(xi, yi)− Ω)

Nnon
, (12)

P̂miss(θ,Ω) =

∑
yi∈ytar

σα(Ω− sθ(xi, yi))

Ntar
. (13)

Thus, using these expressions, we can now propose to
minimize the following approximated loss function defined as,

aDCF (θ,Ω) = γ · P̂fa(θ,Ω) + β · P̂miss(θ,Ω), (14)

where γ and β are configurable parameters that provide more
cost relevance to one of the terms over the other. The effect
of the values of these parameters with respect to the system
application will be studied in the experimental section. For
instance, some system applications provide more relevance
when a target speaker is not detected, while other applications
needs to decrease the number of non-target speakers that
the system accepts. Note that Ω will be optimized as part
of the system parameters. Moreover, to employ this function
efficiently, we have adopted an implementation which follows
the same training philosophy of the multi-class architectures
with DNNs as we detail below.
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Fig. 3. Interpretation of the last layer of the neural network as a matrix of
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A. Relationship between aDCF and CE Loss

To perform the multi-class classification task using DNNs,
a widely adopted and efficient approach consists of training
the system with CE loss combined with a softmax function.
Thus, CE loss can be written as,

LCE = − 1

m

m∑
i

log
exp (sθ(xi, yi))
N∑
j

exp (sθ(xi, j))

, (15)

where xi is the input sample with i ∈ {1, ...,m} and m is the
number of samples, yi is the class label, N is the total number
of classes, and sθ(xi, j) is obtained from the last layer of the
DNN. Usually, the last layer is defined as a linear layer and
the score for each class sθ(xi, yi) is obtained as,

sθ(xi, yi) =WT
yi · xi + byi , (16)

where xi is the input of the last linear layer, WT
yi is the row

of the matrix of weights which contains the layer parameters
of the speaker class yi, and byi is the bias term. Although
in this work, we will remove the bias term to simulate score
evaluations as the output of the last layer. The interpretation
of the output of this layer as scores is possible since each
vector of the matrix of weights used in the last layer can
be interpreted as a model for each trained identity as Fig.3
depicts.

+
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+ + +
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Learning

Fig. 4. aDCF learning process using a sigmoid function trained with target
and non-target examples.

Despite its accuracy at the training process, CE loss is
designed to maximize the posterior probability of the correct

class in a multi-class classifier. Thus, this function is appropri-
ate for classification tasks where the goal is to determine the
identity of each sample in a known set of identities. However,
in verification tasks, the main goal consists of detecting if two
utterances belong to the same identity or not, so we need to
measure the degree of separation and similarity. Therefore,
the use of a sigmoid function as a binary classifier in aDCF
loss function is more consistent with the speaker verification
task and the evaluation process, since this strategy allows
to construct one-versus-all comparison with multiple binary
classifiers while the training efficiency is maintained. As in
architecture with CE loss, the key to keep the efficiency
for training the system with aDCF loss is the chance to
interpret the matrix of weights as a representation of each
trained speaker and obtain scores to optimize the system
during the training progresses with it. Using this approach,
the neural network is trained with positive samples versus
negative samples to learn how to separate them with aDCF
loss function based on the sigmoid function, see the example
in Fig.4.

B. Efficient implementation

To develop this process efficiently, the training is made
using subsets of samples, since standard neural network op-
timization operates with small batches of samples. When the
network is trained with a batch size B, the number of Ntar
and Nnon that will be taken into account in expression (14)
to calculate the gradients will be B, and B(N − 1), where
N is the total number of speakers. Thus, as we can see in
Fig.3, the target and non-target scores used in (12) and (13)
are obtained using the ground truth labels and comparing with
the model for each trained identity which is stored in the
matrix of weights. Therefore, these assumptions allow us to
obtain a similar efficiency and convergence speed to the most
common approaches to multi-class classification as CE during
the training process.

C. Cosine Distance Layer

Previous works [33] [34] [35] have remarked the fact that
there is a gap between the metric used during training (16) and
the cosine metric used in the evaluation. Also, these works
have shown the relevance of the normalization of features
and weights to provide significant performance improvements.
Therefore, in this work, we have also analyzed the use of a
cosine layer instead of a linear layer as the last layer in the
neural network to obtain this score as,

sθ(xi, yi) =
WT
yi · xi∥∥WT
yi

∥∥ · ∥xi∥
, (17)

where ∥xi∥ is the normalized input signal to the last linear
layer, and

∥∥WT
yi

∥∥ is the normalized layer parameters of the
speaker class yi. As we will show, the use of the cosine layer
combined with aDCF loss function achieves better results.

IV. SPEAKER VERIFICATION SYSTEM

Recent SV systems based on DNNs are trained for multi-
class classification with a global average reduction mechanism
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Fig. 5. Two architectures used to create the SV system. Type A is trained with two different loss functions, and in the case of Cross-Entropy loss, it is also
used as pre-training for the other architecture. Type B is trained to optimize the back-end net for Triplet and aAUC loss.

which is applied to produce an embedding that represents each
utterance. Once the system is trained, the verification process
is performed through a back-end, either Probabilistic Linear
Discriminant Analysis (PLDA) [36] [37], or a similarity metric
[38] are predominant choices. Finally, verification results are
rectified through score normalization (snorm) [39] and cali-
brated in order to choose an optimal threshold for detection.
This last step ensures optimal performance for the operating
point of the application.

In text-dependent tasks, this approach does not always work
efficiently [9], because it dismisses the order of the phonetic
information of the utterance to detect the correct speaker and
phrase. In previous works [27] [40], we addressed this problem
by replacing the average pooling mechanism by an alignment
method as a new layer into the DNN architecture. This strategy
keeps and encodes the temporal structure of the uttered phrase
in a supervector. Fig.5 depicts the system structure employed
for experiments, and each part of this system is described
below.

A. Front-end

To address the issue of maintaining the temporal structure,
we developed the front-end network of our system using
Convolution layers of one dimension (1D convolution). These
layers allow us to encode feature dynamics in the temporal
dimension to add context information, and also, to combine all
channels at each layer. This mechanism can be shown equiv-
alent to TDNN layers. Furthermore, we employ the Bayesian
Dark Knowledge [41] approach to model the uncertainty in the
parameters during the training process. Using this approach,
two copies of the network are trained simultaneously. The
teacher network has to predict augmented unseen data, and
the student network captures the variability in the predictions
produced by the teacher network and encodes this uncertainty
in the model, which produces a more robust system. Finally,
the student network is used to extract the embeddings for the

text-dependent task [42]. In [42], we showed how the use of
this approach to train neural networks improves the system
performance around 20%. Input to the front-end network are
the acoustic features composed of the Mel-Frequency Cepstral
Coefficients (MFCC) [43] [44] with their first and second
derivatives.

B. Pooling
In many SV systems, the pooling process is made with a

global average pooling mechanism which provides a fixed-
length representation, also known as embedding. However,
we introduced an alternative pooling mechanism based on a
frame-to-components alignment process, which allows us to
keep the order of the phonetic information of each phrase. In
this work, the alignment mechanism used is a Gaussian Mix-
ture Model (GMM) combined with a Maximum A Posteriori
(MAP) adaptation [45].

C. Back-end
Front-end and pooling sections of the network are shared in

both architectures employed. Nevertheless, the back-end part
is different to make the verification process. Architecture Type
A showed in Fig.5 combines the front-end and pooling with a
cosine or linear layer and CE Loss, A-Softmax or aDCF loss to
train the system. After the training process, verification scores
are obtained applying a cosine similarity over embeddings.

On the other side, the architecture type B depicted in Fig.5
represents a trainable back-end with Triplet loss or aAUC loss
as the objective function. As initialization for this architecture
to avoid the convergence issues, a pre-trained model from the
architecture type A with CE loss is employed.

V. EXPERIMENTAL SETUP

A. Data
For the experimental results, we have employed the

RSR2015 text-dependent speaker verification dataset [46].
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TABLE I
EXPERIMENTAL RESULTS ON RSR2015-PARTI [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN AND ACTUAL COSTS (minDCF,actDCF).

THESE RESULTS WERE OBTAINED BY SWEEPING OF THE PARAMETER VALUES IN ADCF LOSS FUNCTION WITH NORMALIZATION (SNORM).

aDCF Parameters Female Male Female+Male
γ β α EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF

0.15 0.85 1 1.22 0.328 0.646 1.19 0.279 0.611 1.21 0.312 0.322
10 0.57 0.164 0.199 0.76 0.179 0.180 0.70 0.204 0.210
20 0.45 0.086 0.163 0.52 0.132 0.134 0.52 0.137 0.148
30 0.34 0.096 0.293 0.57 0.110 0.119 0.51 0.139 0.141
40 0.43 0.095 0.117 0.57 0.119 0.121 0.55 0.124 0.132

0.25 0.75 1 1.18 0.300 0.772 0.90 0.245 0.248 1.04 0.272 0.516
10 0.51 0.153 0.163 0.70 0.170 0.174 0.62 0.180 0.189
20 0.44 0.085 0.118 0.67 0.140 0.141 0.60 0.133 0.133
30 0.38 0.085 0.088 0.61 0.122 0.124 0.55 0.128 0.146
40 0.43 0.094 0.210 0.62 0.116 0.133 0.59 0.126 0.206

0.50 0.50 1 1.15 0.311 0.587 0.91 0.267 0.270 1.05 0.300 0.330
10 0.51 0.115 0.186 0.64 0.132 0.135 0.63 0.146 0.163
20 0.35 0.093 0.093 0.54 0.129 0.143 0.51 0.119 0.128
30 0.39 0.088 0.111 0.64 0.118 0.121 0.58 0.128 0.130
40 0.36 0.072 0.104 0.63 0.120 0.138 0.56 0.115 0.123

0.75 0.25 1 3.81 0.723 0.984 6.83 0.797 1.000 6.59 0.797 0.999
10 0.42 0.093 0.119 0.56 0.154 0.214 0.58 0.145 0.154
20 0.44 0.094 0.097 0.56 0.125 0.158 0.55 0.131 0.134
30 0.36 0.078 0.158 0.59 0.115 0.118 0.55 0.123 0.140
40 0.33 0.068 0.084 0.55 0.116 0.150 0.50 0.117 0.119

0.85 0.15 1 4.69 0.709 0.986 7.14 0.794 0.874 6.79 0.781 0.999
10 2.32 0.393 0.420 6.65 0.687 0.699 4.25 0.525 0.684
20 0.34 0.071 0.073 0.88 0.187 0.445 0.68 0.157 0.159
30 0.32 0.078 0.096 0.61 0.128 0.226 0.54 0.132 0.135
40 0.38 0.077 0.080 0.59 0.125 0.225 0.57 0.118 0.120

This dataset comprises recordings from 157 male and 143 fe-
male, and 9 sessions for each speaker pronouncing 30 different
phrases. Furthermore, this data is divided into three speaker
subsets: background (bkg), development (dev) and evaluation
(eval). In this work, we develop our experiments with Part
I which contains 30 phonetically pass-phrases, and Part II
which is based on 30 short control commands which have
strong overlap of lexical content. These two parts have three
subsets: background (bkg), development (dev), and evaluation
(eval). In this paper, we employ the bkg (97 speakers, 47
female/50 male) for training and dev data (97 speakers, 47
female/50 male) for normalization and calibration. The eval
set is used for enrollment and trial evaluation. This dataset
has three evaluation conditions, but in this work, we have
only evaluated the most challenging and employed in the text-
dependent SV, which is the Impostor-Correct case. In this
condition, non-target speakers pronounce the same phrase as
the target speakers.

B. System configuration

In our experiments, we have used 20 dimension MFCCs
stacked with their first and second order derivatives as input to
train the alignment mechanism and as input to the DNN. Fur-
thermore, a 64 component GMM has been trained per phrase
using the bkg partition. From these models, the alignment
information is extracted to use it in the alignment mechanism
of each of the DNN architectures, since one model is trained
for each different phrase. Furthermore, in this work, we
have found effective the application of a phrase- and gender-
dependent score normalization to conclude the system. We use

a symmetric normalization, denoted snorm [39]. Afterwards,
a calibration step is performed using linear logistic regression
with the Bosaris toolkit [47].

VI. RESULTS

In this work, several sets of experiments have been devel-
oped with Part I and Part II. First, a set of experiments was
carried out to study the behaviour of the system while different
parameter values in aDCF loss function are swept. After that,
we have analyzed the use of a complementary loss to improve
the discrimination ability in combination with CE loss and
aDCF loss with the second set of experiments. In the last
set of experiments, we have evaluated the system employing
some of the most extended state-of-the-art loss functions to
compare the performance with our aDCF loss. Moreover, it
should be noted that there are systems in the state-of-the-
art for the RSR2015 dataset with relevant results, similar to
those presented below. Nevertheless, such systems are based
on traditional models such as Hidden Markov Models (HMMs)
[46] [48] or neural network architectures focused on two
different streams for speaker and utterance information [49]
[50].

To evaluate the results of these experiments, we have
measured the performance using EER [51] [52], NIST 2010
minimum and actual Detection Cost Function (minDCF, act-
DCF) [53].

A. aDCF Parameters α, γ, β

In this section, we analyze the system performance when we
sweep aDCF loss parameters which are the terms of the cost



8

TABLE II
EXPERIMENTAL RESULTS ON RSR2015-PARTII [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN AND ACTUAL COSTS (minDCF,actDCF).

THESE RESULTS WERE OBTAINED BY SWEEPING OF THE PARAMETER VALUES IN ADCF LOSS FUNCTION WITH NORMALIZATION (SNORM).

aDCF Parameters Female Male Female+Male
γ β α EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF

0.15 0.85 1 5.22 0.746 0.839 12.05 0.817 1.000 8.93 0.786 1.000
10 3.24 0.588 0.602 7.17 0.721 0.771 5.42 0.666 0.744
20 2.66 0.478 0.491 6.93 0.671 0.770 5.41 0.588 0.685
30 2.59 0.434 0.446 4.54 0.615 0.626 3.75 0.537 0.543
40 2.83 0.456 0.463 4.39 0.588 0.688 3.76 0.530 0.539

0.25 0.75 1 4.18 0.719 0.755 6.56 0.741 0.921 5.51 0.733 0.771
10 2.84 0.502 0.541 4.96 0.624 0.626 4.10 0.566 0.570
20 2.82 0.443 0.481 4.15 0.576 0.609 3.60 0.521 0.523
30 2.67 0.428 0.446 4.08 0.583 0.587 3.50 0.514 0.516
40 2.70 0.460 0.463 4.20 0.611 0.705 3.62 0.543 0.545

0.50 0.50 1 4.13 0.648 0.658 5.24 0.725 0.727 4.75 0.693 0.701
10 2.76 0.489 0.518 4.08 0.606 0.628 3.51 0.551 0.575
20 2.47 0.424 0.467 4.10 0.568 0.570 3.42 0.506 0.515
30 2.54 0.425 0.432 4.21 0.596 0.598 3.54 0.518 0.528
40 3.83 0.446 0.452 4.21 0.576 0.593 4.03 0.519 0.522

0.75 0.25 1 19.55 0.983 1.000 22.32 0.988 1.000 21.91 0.971 1.000
10 2.84 0.486 0.529 4.95 0.633 0.645 4.05 0.566 0.613
20 2.61 0.443 0.467 4.18 0.579 0.598 3.64 0.527 0.530
30 2.57 0.437 0.448 4.17 0.568 0.570 3.56 0.514 0.520
40 2.65 0.422 0.432 4.15 0.609 0.619 3.58 0.526 0.531

0.85 0.15 1 23.47 0.964 1.000 26.11 0.988 1.000 25.16 0.977 1.000
10 18.08 0.940 0.995 21.69 0.974 1.000 20.14 0.968 1.000
20 4.36 0.604 0.955 7.93 0.755 0.759 6.88 0.693 0.756
30 3.29 0.475 0.680 5.92 0.697 0.705 4.99 0.595 0.653
40 2.95 0.458 0.466 5.77 0.658 0.674 4.75 0.567 0.572

relevance (γ, β) and the adjustable parameter in the sigmoid
function (α).

Table I shows EER, minDCF and actDCF results with Part
I for different configurations of parameter values. As we can
observe, in most of the experiments, the use of a greater value
for α parameter improves results since α value modifies the
slope of the sigmoid function. Thus, a greater value involves
the sigmoid is closer to the unit step, which is used to define
the exact DCF function. Furthermore, we observe that results
are even better when we give more relevance to the probability
of false alarms (Pfa) during the training with the cost term γ.
However, we have noted that if this value is too extreme (upper
0.90-0.10), there are some convergence problems during the
training process, and results are more sensitive to the variation
of α value.

In addition to the previous table, Fig.6 depicts Detec-
tion Error Trade-off (DET) curves [54] which represents the
relationship between Pfa (FAR) and Pmiss (FRR). These
curves show the best result for each configuration of the cost
parameters. Note that these representations demonstrate the
best results for each configuration of γ and β, and although the
results are too similar, we decide to use as reference system
the configuration with better behaviour in all the operating
points which corresponds to γ = 0.75, β = 0.25 and α = 40.

Results obtained for RSR2015-Part II are shown in Table
II and Fig.7. In this set of experiments, phrases are shorter
and have overlapped lexical content, so it is more challenging
than Part I and the general performance is worst. In this
case, we observe that when the cost terms are balanced, with
an intermediate value of α is enough to achieve the best
performance.
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Fig. 6. DET curves for female+male results on RSR2015-Part I varying the
parameter values of aDCF loss function γ and β, and using the best α value
in each case.

For illustrative purposes, we have included Fig.8 to depict
the evolution of aDCF with different α values against the
exact DCF function during training. This figure shows that
the differentiable approximation of the DCF function is getting
close to the real function while the training progresses. Note
that this evolution supports the fact that aDCF is an effective
approximation of the real DCF.

B. Last Layer and Ring Loss Study

A second set of experiments was carried out to observe the
system performance when a complementary loss as Ring loss
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TABLE III
EXPERIMENTAL RESULTS ON RSR2015-PARTI [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN AND ACTUAL COSTS (minDCF,actDCF).

THESE RESULTS WERE OBTAINED TO ANALYZE THE BEHAVIOUR USING A COMPLEMENTARY LOSS WITH NORMALIZATION (SNORM).

Architecture Female Male Female+Male
Layer Loss Ring EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF
Linear CE yes 0.47 0.114 0.149 0.83 0.177 0.189 0.72 0.159 0.165

no 0.86 0.240 0.255 1.00 0.243 0.258 0.96 0.259 0.269
Cosine yes 0.73 0.217 0.243 1.51 0.337 0.379 1.21 0.289 0.296

no 0.92 0.282 0.375 0.91 0.245 0.288 0.94 0.264 0.314
Linear aDCF yes 1.39 0.320 0.764 2.23 0.487 0.939 2.09 0.420 0.768

no 1.77 0.430 0.684 2.32 0.455 0.998 2.08 0.447 0.953
Cosine yes 0.34 0.085 0.140 0.68 0.129 0.137 0.60 0.125 0.145

no 0.33 0.068 0.084 0.55 0.116 0.150 0.50 0.117 0.119

TABLE IV
EXPERIMENTAL RESULTS ON RSR2015-PARTII [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN AND ACTUAL COSTS (minDCF,actDCF).

THESE RESULTS WERE OBTAINED TO ANALYZE THE BEHAVIOUR USING A COMPLEMENTARY LOSS WITH NORMALIZATION (SNORM).

Architecture Female Male Female+Male
Layer Loss Ring EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF
Linear CE yes 3.31 0.550 0.563 5.45 0.690 0.833 4.58 0.627 0.645

no 3.20 0.569 0.608 5.03 0.689 0.969 4.25 0.639 0.717
Cosine yes 4.14 0.663 0.773 8.76 0.804 0.872 6.71 0.745 0.771

no 3.68 0.641 0.647 5.24 0.719 0.732 4.55 0.689 0.718
Linear aDCF yes 8.69 0.823 0.832 12.57 0.883 0.890 10.97 0.857 0.874

no 10.92 0.901 0.976 9.51 0.841 1.000 10.94 0.882 1.000
Cosine yes 3.47 0.512 0.536 5.15 0.638 0.788 4.43 0.580 0.633

no 2.47 0.424 0.467 4.10 0.568 0.570 3.42 0.506 0.515
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Fig. 7. DET curves for female+male results on RSR2015-Part II varying the
parameter values of aDCF loss function γ and β, and using the best α value
in each case.

is added to CE loss or aDCF loss. Results of these experiments
in Part I (Table III) demonstrate that our aDCF loss function
does not need a complementary loss function to improve the
discrimination ability, while CE loss needs it. Furthermore,
when we employ aDCF loss function to train the system, the
use of a cosine layer as last layer is the most suitable option
since this cosine metric used during the training process is
the same metric that evaluation employs to obtain the final
verification scores. Thus, we can see better results when the
training process used is a pipeline more similar to the final
verification process.
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Fig. 8. Evolution training aDCF with different α values and exact DCF.

When these experiments are carried out for Part II, we
observe in Table IV that the effect of using a complementary
loss and a cosine layer instead a linear layer follows a similar
trend as results of Part I. However, we have checked that the
CE loss without Ring loss with this set of data provides similar
results to the ones with Ring loss. The difficult in this set of
data may cause that the system can not bring together correctly
some features from the same identity even though Ring Loss is
applied and for this reason, results are not so clearly improved
when applying this complementary function.

C. Comparison with State-of-the-Art Loss Functions

In the last set of experiments, we have made a comparison
among the best configurations of aDCF loss for Part I and Part
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TABLE V
EXPERIMENTAL RESULTS ON RSR2015-PARTI [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN COSTS (DCF10). THESE RESULTS WERE

OBTAINED TO COMPARE THE DIFFERENT LOSS FUNCTIONS WITH NORMALIZATION (SNORM).

Architecture Female Male Female+Male
Loss Type EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF

CE+RL A 0.47 0.114 0.149 0.83 0.177 0.189 0.72 0.159 0.165
Trloss B 0.78 0.161 0.559 0.96 0.174 0.319 0.88 0.173 0.261
aAUC B 0.47 0.103 0.142 0.74 0.157 0.170 0.64 0.137 0.157

A-Softmax A 0.68 0.156 0.263 0.70 0.163 0.187 0.70 0.178 0.187
aDCF A 0.33 0.068 0.084 0.55 0.116 0.150 0.50 0.117 0.119

TABLE VI
EXPERIMENTAL RESULTS ON RSR2015-PARTII [46] EVAL SUBSET, SHOWING EER% AND NIST 2010 MIN COSTS (DCF10). THESE RESULTS WERE

OBTAINED TO COMPARE THE DIFFERENT LOSS FUNCTIONS WITH NORMALIZATION (SNORM).

Architecture Female Male Female+Male
Loss Type EER% minDCF actDCF EER% minDCF actDCF EER% minDCF actDCF

CE+RL A 3.31 0.550 0.563 5.45 0.690 0.833 4.58 0.627 0.645
Trloss B 3.75 0.542 0.603 5.53 0.621 0.655 4.66 0.583 0.603
aAUC B 2.76 0.503 0.527 4.62 0.601 0.760 4.25 0.579 0.704

A-Softmax A 2.79 0.511 0.575 4.01 0.655 0.666 3.51 0.589 0.610
aDCF A 2.47 0.424 0.467 4.10 0.568 0.570 3.42 0.506 0.515
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Fig. 9. DET curves for female+male results on RSR2015-Part I using different
loss functions.

II and some of the most extended loss functions in the state-of-
the-art which are CE loss combined with Ring loss (CE+RL),
Triplet loss (Trloss), aAUC loss, and A-Softmax. In Table V,
we show the results of these experiments with Part I. We
can observe that architecture type A trained using aDCF loss
function achieves the best results. Especially relevant is the
improvement at comparing with CE loss and A-Softmax, since
both have been trained using the most comparable strategy
with architecture type A, which allows us to keep the same
efficiency for the training process. In terms of relative im-
provement, EER% and minDCF values have improved 30.6%
and 26.4% with respect to CE loss, and 28.6% and 34.3% with
respect to A-Softmax. This improvement is remarkable given
that the models involved have the same number of parameters
and the inference time is not increased.

Moreover, we have also added Fig.9 with corresponding

DET curves. These curves show results for female+male
experiments. These representations demonstrate that the best
system performance for all operating points is obtained for
architecture type A trained with aDCF. On the other hand,
note that in the literature A-Softmax was proposed as a better
approach to replace the CE loss, but in this case, the system
trained using the CE loss combined with Ring loss achieves a
better overall performance.
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Fig. 10. DET curves for female+male results on RSR2015-Part II using
different loss functions.

Results for these experiments using Part II are shown in
Table VI and Fig.10. As in the experiments with Part I, the
system trained with aDCF has the best results with a relative
improvement in EER% and minDCF of 25.3% and 19.3%
with respect to CE loss, and 2.6% and 14.1% compared to A-
Softmax. In addition, it should be noted that the DET curves
show that the system trained with aDCF loss obtains the best
behaviour for low FAR operating points, while when FRR is
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low, the behaviour is similar to the system trained with A-
Softmax.

D. Impact of the score normalization

In this section, we analyze the results without score nor-
malization and calibration. To carry out this study, we only
compare the same type of architectures: architecture typeA.
Table VII obtained EER and minDCF results for systems with
and without snorm. For systems with snorm, aDCF achieves
the best performance in both Parts I and II. For systems
without snorm at Part I, aDCF and A-Softmax present similar
results without using score normalization. While the relative
improvement in both metrics with respect to CE loss is higher
than 50%. However, for the rows corresponding to Part II,
A-Softmax outperforms aDCF. In the following, we further
analyze the results without snorm by checking the performance
at each phrase.

TABLE VII
RESULTS IN TERMS OF EER% AND NIST 2010 MIN COSTS (DCF10) FOR
RSR2015-PARTI AND PARTII [46] EVAL SUBSET (FEMALE AND MALE)

WITH AND WITHOUT NORMALIZATION (SNORM).

Architecture Without SNORM With SNORM
Dataset Loss Type EER% minDCF EER% minDCF

CE+RL A 1.87 0.373 0.72 0.159
RSR-Part I A-Softmax A 0.85 0.171 0.70 0.178

aDCF A 0.82 0.174 0.50 0.117
CE+RL A 9.64 0.964 4.58 0.627

RSR-Part II A-Softmax A 5.16 0.800 3.51 0.589
aDCF A 6.56 0.876 3.42 0.506

Table VIII shows the average improvement of aDCF against
CE+RL/A-Softmax in terms of minDCF for results without
normalization. Positive values indicate that aDCF obtains
better performance regarding the other loss. This time we
evaluated the phrases individually. Note that, at the phrase
level, the system with an aDCF loss achieved the best perfor-
mance for both parts of the dataset I and II. To explain this
result, note that we trained a model by phrase, so with aDCF
loss, the model learns to obtain the best score distributions for
each phrase. Thus, when we separately evaluate the phrases,
obtained scores have one optimal threshold by each. However,
at joining together all scores (as in table VI), there is a single
threshold for all of them. The application of a single decision
threshold is non-optimal for all the phrases and this causes the
drop in performance observed in Table VII.

TABLE VIII
AVERAGE IMPROVEMENT OF ADCF VS. CE+RL/A-SOFTMAX WITHOUT

NORMALIZATION (SNORM) IN TERMS OF NIST 2010 MIN COSTS (DCF10)
BY PHRASE ON RSR2015-PARTI AND PARTII [46] EVAL SUBSET.

minDCF(%Improv.)
RSR-Part I RSR-Part II

aDCF vs CE+RL 9.39 14.85
aDCF vs A-Softmax 13.41 7.36

VII. CONCLUSION

In this paper, we have made a wide analysis of the use
of a metric learning approach based on aDCF loss function.

This function is an approximated measurement of the decision
errors FAR and FRR in SV systems which allows end-to-
end systems to optimize a metric used in the final verification
process. To employ this loss function, we have used an effi-
cient implementation which follows the philosophy of existing
multi-class loss functions and allows us to take advantage of
the interpretation of the matrix of weights of the last layer to
obtain directly the scores as the training progress.

Experiments to evaluate the effectiveness of our approach
are carried out in RSR2015-Part I and Part II text-dependent
speaker verification database. Results obtained studying the
swept of aDCF loss parameters have shown great performance
in both datasets, and also that in function of the part of
the database, the best parameter configuration is different.
Furthermore, we have checked the improvement achieved
when aDCF loss function is combined with a cosine distance
layer as last layer in DNN instead of the usual linear layer.
It has been also observed that aDCF loss does not need the
use of a complementary loss to improve the discrimination
ability, while CE loss improves considerably with it. Finally,
we compared results obtained using aDCF loss with some of
the state-of-the-art approaches, and aDCF loss outperforms all
of them with relative improvements upper 10% in the EER and
DCF metrics.
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