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Abstract—Speech feature extraction is critical for ASR systems.
Such successful features as MFCC and PLP use filterbank tech-
niques to model log-scaled speech perception but fail to model the
adaptation of human speech perception by hearing experiences.
Infant perception that is adapted by hearing speech without text
may cause permanent brain state modifications (engrams) that
serve as a physical fundamental basis for lifetime speech perception
formation. This realization motivates us to propose to model such
an unsupervised adaptation process, where adaptation denotes
perception that is affected or changed by the history of experiences,
with the Dirichlet Process Gaussian Mixture Model (DPGMM) and
the DPGMM-RNN hybrid model to extract perceptual features
to improve ASR. Our proposed features extend MFCC features
with posteriorgrams extracted from the DPGMM algorithm or
the DPGMM-RNN hybrid model. Our analysis shows that the
DPGMM and DPGMM-RNN model perplexities agree with infant
auditory perplexity to support that the proposed features are per-
ceptual. Our ASR results verify the effectiveness of the proposed
unsupervised features in such tasks as LVCSR on WSJ and ASR
on noisy low-resource telephone conversations, compared with the
supervised bottleneck features from Kaldi in ASR performance.

Index Terms—DPGMM, Zerospeech, unsupervised phoneme
discovery, infant speech perception, low-resource ASR, engrams.

I. INTRODUCTION

S PEECH feature extraction can affect ASR performance.
Such features as Mel-Frequency Cepstrum Coefficients

(MFCC) [1] and Perceptual Linear Prediction (PLP) [2] work
well in ASR systems using mel-scaled and bark-spaced filter-
banks [1], [2] that mimic log-scaled speech perception.

However, speech perception is changed by hearing experi-
ences. Such features as MFCC or PLP, widely used in ASR

Manuscript received July 25, 2021; revised November 28, 2021 and January
9, 2022; accepted January 9, 2022. Date of publication February 10, 2022; date
of current version March 3, 2022. This work was supported in part by JSPS
KAKENHI under Grants JP21H05054 and JP21H03467. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Tan Lee. (Corresponding author: Sakriani Sakti.)

Bin Wu is with the Nara Institute of Science and Technology, Ikoma 630-0192,
Japan (e-mail: wu.bin.vq9@is.naist.jp).

Satoshi Nakamura is with the Nara Institute of Science and Technology, Ikoma
630-0192, Japan and also with the RIKEN Center for Advanced Intelligence
Project (AIP), Ikoma 630-0192, Japan (e-mail: s-nakamura@is.naist.jp).

Sakriani Sakti is with the Japan Advanced Institute of Science and Technology,
Nomi 923-1292, Japan, also with the Nara Institute of Science and Technology,
Ikoma 630-0192, Japan, and also with the RIKEN Center for Advanced Intelli-
gence Project (AIP), Ikoma 630-0192, Japan (e-mail: ssakti@jaist.ac.jp).

Jinsong Zhang is with the Beijing Language and Culture University, Beijing
100083, China (e-mail: jinsong.zhang@blcu.edu.cn).

Digital Object Identifier 10.1109/TASLP.2022.3150220

applications, fail to model the perceptual change due to the
past speech learning experiences. Infant perception is changed
by listening to speech without text. We propose to model this
unsupervised process for feature extraction to improve ASR.

The rest of our introduction is arranged as follows. The first
two subsections describe the motivation of our work by argu-
ing that an infant’s unsupervised learning experiences change
speech perception by causing the permanent brain state mod-
ifications that served as a physical fundamental basis for the
lifetime speech perception formation process; this realization
motivates us to model such an unsupervised process to improve
ASR. The remaining subsections discuss the computational
models that are suitable to such an unsupervised learning process
of infants in practical and interpretable perspectives and use the
features from these models to improve ASR.

A. Experiences Engraved on Cortex Cells to Affect Perception

Experiences change perception. For example, infants in dif-
ferent countries who are born with similar auditory organs can
differentiate phoneme contrasts across languages; their percep-
tion is changed to bias their mother tongue after they have more
listening experiences [3]. When Japanese infants hear Japanese
speech more often from their parents and their surrounding
people, they may adapt their perception to become less sensitive
to and finally become completely unable to discriminate the
phoneme contrast of /l/ and /r/, because this discrimination
does not help them differentiate Japanese meanings. In contrast,
American infants can discriminate /l/ and /r/ after a year. This
empirically adapted perception has long effects in later life as
adults.

Empirical adaptation can happen at the organic level. Expe-
riences can leave “a permanent record ...written or engraved on
the irritable substance” [4], and “past occurrences in the history
of the organism as part of the causes of the present response” [5].
The term “permanent record” is coined as a “mnemic trace” or
an “engram” by the evolutionary biologist Richard Semon [4],
[5], who first introduced the concept to the scientific community.

Engram research of mnemic phenomena has recently become
an exciting topic in neural science [6]. We intuitively know
that if infants play with fire and get badly burned, the painful
experience might make them feel fear whenever they see a fire in
their lifetime. The key question is whether one can find evidence
to support that such experiences actually cause organic changes,
especially permanent brain changes. Several generations failed
for about ten decades until “engram renaissance” [7] started
from the early 21th century, sparked by the development of
molecular and circuit tools that probe and precisely manipulate
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Fig. 1. Lifetime speech perception formation process. One initializes speech perception by auditory organs after birth, adapts it based on hearing speech without
text in the early infant period, and adapts it again by learning experiences that connect speech with text from stages of late infant to adult. Perception shaped in infant
period (highlighted by red rectangle) through unsupervised experiences has long-lasting effects on later life. This paper concentrates on utilizing computational
models of unsupervised empirical adaptation in infant period to extract perceptual features to improve ASR.

brain functions. Neural scientists recently verified the existence
of engram cells by tagging the brain cells of mice with stable
activations after exposing them to fearful experiences [8]. The
tagged cells can be physically manipulated to make mice re-
call experiences without stimuli [9], disrupt brain records as if
such experiences never happened [10], or even implant “fake”
memories of non-existing experiences [11], [12]. The endurance
of engram changes was verified by measuring the strength of
engram cell connections [13], [14].

Neurosurgery studies on patients provide evidence for the
neuronal records of engrams. In the Harvey Lecture of 1936,
the neurosurgeon Wilder Penfield reported that electrical stimu-
lation on the temporal cortex caused a patient to re-live a fright-
ening childhood episode, which was repeated in her dreams,
and she finally freed herself from dream attacks after portions
of her right temporal lobe were removed. In the Ferrier Lec-
ture of 1946, Penfield reviewed 190 neurosurgery operations.
He determined that stimulation on the temporal lobe created
“experiential hallucinations” (the dream-like states) that caused
patients to become frightened and cry out. He discovered that
stimulation on the temporal lobe created instant “perceptual
illusions” that caused patients to alter perceptual interpretations
of present experiences [15].

In the early 20th century, in the section of “The Definition
of Perception” of the book of The Analysis of Mind, Bertrand
Russell defined the perception of objects as appearances of
objects that “give rise to mnemic phenomena; they are them-
selves affected by mnemic phenomena” [5]. Russell borrowed
the concepts of mnemic phenomena and engrams from Semon.
He elaborated the essence of perception in the tradition of
Locke [16] and Hume [17], philosophers who in the 17th and
18th centuries argued that such mind-objects as perception come
from experiences.

After defining perception in the book, Russell gave the follow-
ing example that described how current perceptions are affected
by past experiences that were engraved in engrams, which are
the permanent neuronal records:

For example, the effect of a spoken sentence upon the hearer depends
upon whether the hearer knows the language or not, which is a
question of past experience...connected with mnemic phenomena...

The engravement of experiences in the brain (the mnemic
phenomena that affect perception) of Russell’s seminal idea
of perception is verified by contemporary neural science that
argues that engram cells in the cortex can be 1) activated by
learning experiences, 2) physically or chemically modified by
learning experiences, and 3) reactivated by subsequent stimuli

that represent learning experiences to cause further physical or
chemical modifications [6].

In other words, perception starts from experiences and is
adapted (changed or affected) by experiences. Speech perception
can be adapted by frequent exposure to particular sounds [18];
such adaptations include selective adaptation [19] that lasts for
minutes, lexicon adaptation [20] for hours or days (after stimuli
of minutes), and language learning adaptation for months or
years [21].

B. Infant Learning Experiences to Establish Lifetime
Perception

Speech perception is adapted through language learning ex-
periences (Fig. 1). The lifetime speech perception formation
process has been initialized at birth. Before exposure to any
empirical speech data, such auditory organs as the cochlea are
preliminarily sensitive to the range of frequencies within human
speech and insensitive to higher frequencies [22].

The primary stage of language learning starts when an infant’s
“psychological urge” [21] emerges. This urge incentivizes the
infants to get what they want or to satisfy a persistent curiosity.
They satisfy this desire when they communicate with their
parents by unconsciously acquiring spoken language tools and
learning to segment and find units inside the speech.

An infant’s brain is also “physiologically plastic” [21] for
adapting and engraving the neuronal records of word-sounds,
concepts, and their connections by frequently listening to the
elementary speech from his or her parents that contains funda-
mental segment units for describing life situations. A neuronal
record is formed by the passage of electrical potentials through
the nerve cells and over their connecting fibers to alter the states
of the engram cells and their nerve branches and synapses that
are waiting to be reactivated or reinforced when similar speech
stimuli occur. The formation of such neuronal records allows
speech unit retrieval during the process of language learning.
Any dysfunction in shaping the neuronal records of speech—the
destruction of the “formation of engrams of words” [23]—may
cause perception impairment [24], including deafness, aphasia
(word-blindness), or agnosia to speech sensory impressions
or their association with other mental images. The reinforced
engraving of neuronal records can hardly be erased after the first
decade of an infant’s life; the inevitable decrease of neuronal
plasticity increases the difficulty of adding new long-lasting
neuronal records in later life [21].

After the primary stage, an infant enters the second stage of
language learning called the vocabulary spurt [25] that starts
roughly from the second half of the second year. Since toddlers
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generally can’t read or write until about the age of four [21],
their speech perception is affected by neuronal records encoding
the knowledge accumulated by unsupervised speech learning
experiences.

The early infant period of unsupervised empirical adaptation
by speech has long-lasting effects in the formation of perception
that is further shaped by supervised empirical adaptation when a
child eventually learns to write and to build connections between
speech and text [25].

Modeling the speech perception formation process (Fig. 1)
to extract the perceptual features that are related to language
learning experiences can improve ASR performance. To model
the physiological prior extraction that mimics the log-scaled
function of the cochlea, we can extract spectrum features such as
MFCC [1] and PLP [2] features; to model the supervised empir-
ical adaptation that learns from speech and text, we can extract
supervised features such as bottleneck features (BNF) [26] or
language embeddings [27]. However, modeling unsupervised
empirical adaptation in the infant period has been less explored
for ASR applications (highlighted in red rectangle in Fig. 1), es-
pecially for Large Vocabulary Continuous Speech Recognition
(LVCSR) or low-resource ASR.

C. Modeling Unsupervised Empirical Adaptation by DPGMM
for ASR

If we believe that speech perception adaptation through ex-
perience is an accumulated process from the infant to the adult
periods, where each stage might leave organically permanent
records, then adaptation in the infant period should have foun-
dational importance in shaping speech perception and language
learning. The ASR should improve when we apply the knowl-
edge from the models of unsupervised empirical adaptation of
the infant period.

We propose to use the Dirichlet Process Gaussian Mixture
Model (DPGMM) [28] to model the unsupervised empirical
adaptation to improve ASR for practical and interpretable rea-
sons. DPGMM retained the state-of-the-art performances in
the ABX discrimination test at the Zerospeech challenges of
2015, 2017, and 2019 [29]–[31]. These Zerospeech challenges
aimed to find features strong at identifying and discriminating
phonemes from speech without text and compared features
that included acoustic features of MFCC or PLP [32], neural
network features from autoencoder [33], ABnet [34], and VQ-
VAE [35], parametric clustering features from GMM [35] and
K-means [35], [36], and nonparametric clustering features from
DPGMM trained with Gibbs sampling [29], [30] and variational
inference [37], [38]. DPGMM also worked in spoken term
detection [39], but it was rarely applied in ASR, especially in
LVCSR [40] or low-resource ASR that we will tackle in this
paper.

The DPGMM is interpretable as a graphical model [28] that
represents conditional dependencies between random variables
that 1) show such statistical descriptions as means, variances,
and amounts of each potential phoneme-like cluster and 2) show
the generative process by unsupervisedly adapting these descrip-
tive parameters to dynamically fit empirical speech data 3) with
possible flexible hierarchical extensions [41] that contain more
sophisticated explainable linguistic factors, including lexicon or
grammar priors [42].

Empowered by its interpretability, in cognitive science, Feld-
man et al. used DPGMM with a lexicon prior as a computational

model to simulate the unsupervised speech learning process of
an infant. The simulation illustrated the possible feedback from
word segmentation learning that influences phoneme category
learning. Such phenomenon challenged and compensated for the
traditional view of the sequential language acquisition of infants
from phoneme to word without emphasizing the interaction be-
tween the two learning processes [42]. The interactive learning
process illustrated by DPGMM was further verified by Feldman
et al. to show consistency with infant auditory experiments
that demonstrated how word-level information affects the infant
perception of phonetic contrasts [43].

This stream of literature aims to use model simulation to illus-
trate infant distributional learning [44], [45] during phoneme cat-
egory acquisition and to provide evidence for mechanisms [42],
[44] to explain the developmental changes [3], [42], [46] in infant
categorical perception. The related research used computational
models of unimodal, bimodal, GMM, and DPGMM with rich
information from the descriptive statistics of modals (simulating
linguistic categories) and flexible extensions to integrate more
knowledge such as lexicons. Maye et al. used the unimodal or
bimodal frequency distribution [44] to demonstrate an infant’s
sensitivity to the statistical distribution of speech sounds. Boerl
and Kuhl et al. used GMM with the EM algorithm [45] to
illustrate that infants can learn more easily and accurately with
infant-directed speech than adult speech. McMurray et al. used
a GMM with gradient descent [46] to introduce the continuous
development trajectories of the infant distributional learning
of phoneme categories. Feldman et al. used a non-parametric
Bayesian approach of DPGMM to study feedback mechanisms
from word learning to phoneme learning [42]. Feldman’s finding
of the interactive learning process of the infants using DPGMM
is well referenced by cognitive science, psychology, and infant
language acquisition.

D. Modeling Unsupervised Empirical Adaptation by
DPGMM-RNN Hybrid Models for ASR

However, DPGMM fails to model the temporal order of
speech features [47], because the Dirichlet Process (DP) of
DPGMM is theoretically infinitely exchangeable, meaning that
the joint distribution of DPGMM does not depend on the order
of data if they are infinite [48]. The weak framewise temporal
modeling increases the model sensitivity to local trivial random
acoustic details. Such sensitivity makes DPGMM clustering
uncertain for assigning clusters to frames and creates small,
random cluster segments inside a phoneme. This is DPGMM’s
“fragmentation problem” [49].

In unsupervised phoneme discovery, DPGMM tends to suffers
from a fragmentation problem when the model encounters the
frames from such acoustically complex phonemes as a fricative
with noise-like high frequencies or a vowel with rapid formant
transitions [49], [50]. DPGMM tends to generate more clusters
than the number of phonemes in any human language [30], [50]
when it struggles to discriminate between complex phonemes
with higher resolution.

We propose to use the DPGMM-RNN hybrid model [49],
which enhances DPGMM, to model unsupervised empirical
adaptation to improve ASR. The DPGMM-RNN hybrid model
1) improves temporal modeling and 2) relieves fragmentation
problems of DPGMM with RNN to relearn the connection be-
tween acoustic features and DPGMM cluster labels or posterior



904 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 2. Proposed feature extension by concatenating an MFCC feature with
a DPGMM posteriorgram (from the DPGMM clustering algorithm) or with
an RNN posteriorgram (from the DPGMM-RNN hybrid model) in feature
extraction for ASR. A posteriorgram is a vector whosek-th dimension represents
the probability that an observed frame belongs to the k-th cluster.

vectors by listening to feature chunks instead of concentrating
on trivial details at the frame level like DPGMM.

In unsupervised phoneme discovery, the DPGMM-RNN hy-
brid model enhances temporal modeling to improve its capturing
of such important acoustic cues as the formant transitions that
occur within diphthongs, the coarticulation effects from adjacent
phonemes, and the suprasegmental factors over phonemes. The
DPGMM-RNN hybrid model relieved the fragmentation prob-
lem and decreased the fragmental level measured by the condi-
tional perplexity [51] and the v-measure [52]. It also reduced
the number of clusters of DPGMM [49] and overperformed
DPGMM in unsupervised phoneme discovery on datasets from
Zerospeech 2019 with an ABX discrimination test at a moderate
bitrate [49].

Inspired by the relation between engram and perception,
we use DPGMM and DPGMM-RNN hybrid model to extract
perceptual features. The engrams that encode past speech expe-
riences can transform sensations into perception, where Rus-
sell [5] defined the sensations as the parts inside perception
without influence from the past experiences. For example, by
retrieving the language knowledge from the learning experiences
that are stored at the engram, we transform our sensation of
the sound to our perception of the speech. Our computational
model parameters that encode past empirical speech data (after
adapting parameters to fit the data) can transform the present
sensational features into the perceptual features, where the sen-
sational features include MFCC that has a log-scale auditory
property.

In summary, we propose to use DPGMM and the DPGMM-
RNN hybrid model to model the unsupervised empirical adap-
tation and extract perceptual features to improve ASR (Fig. 1),
where these perceptual features extend MFCC features with
DPGMM or DPGMM-RNN posteriorgrams by concatenation
(Fig. 2).

The rest of this article is arranged as follows:
1) We verify the effectiveness of our proposed features with

the ASR system on the English corpora of TIMIT [53] and
WSJ [54] (a widely used dataset for LVCSR) and on the
low-resource corpora of Mboshi [55] and Javanese [56]

Algorithm 1: Gibbs sampling for DPGMM (Fig. 3) given
hyperparameters α and β and observed data x.

Randomly initialize cluster indicator z = z1, . . ., zn
for Iteration iter = 1, 2, . . . do

Sample π′ ∼ p(π|z, α) by (1),
π1, . . . , πK , π∗

K+1|z, α ∼ Dir(n1, n2, . . . , nK , α)
Sample μ,′ Σ′ ∼ p(μ,Σ|z, β, x) by Eq. (2),
μk,Σk|z, β, x ∼ NIW(μ

(k)
0 , λ(k),Σ

(k)
0 , ν(k))

Sample z′i ∼ p(zi|π,′ μ,′ Σ,′ xi) by Eq. (4),
zi|π, μ,Σ, xi ∼ πkp(xi|μk,Σk)/p(xi)
Update z = (z1,

′ . . ., z′n).
end for

(a telephone conversation dataset that roughly contains a
three-hour training set with hundreds of speakers from dif-
ferent dialect regions talking under noisy environments).

2) We compare the ASR performance of unsupervised
DPGMM features from our proposal with the supervised
bottleneck features (BNF) from Kaldi [57].

3) In the discussion section, we scrutinize that the DPGMM
and DPGMM-RNN model perplexities agree with in-
fant perceptual perplexity from auditory experiments.
Our analysis provides evidence to support our hypothesis
that our proposed features reflect unsupervised perception
adaptation at an early infant period.

4) In the discussion section, we further compare the phoneme
categorization of the models with that of infants. Our anal-
ysis is based on our idea that for a model representation that
categorizes phonemes well, the entropy of the representa-
tion of a phoneme should be small and the relative entropy
of the representations of different phonemes should be
large.

II. METHOD

A. Feature Extensions by Concatenating MFCC Features With
DPGMM or RNN Posteriorgrams for ASR

We propose to extend the MFCC features with DPGMM pos-
teriorgrams or DPGMM-RNN posteriorgrams by concatenation
(Fig. 2) to improve ASR, where

1) the MFCC features represent acoustic features,
2) the DPGMM generates DPGMM posteriorgrams after

adaptation of DPGMM parameters with MFCC features,
3) the DPGMM-RNN hybrid model generates DPGMM-

RNN posteriorgrams (or RNN posteriorgrams for short)
after adaptation of the RNN parameters to connect the
MFCC chunk with the DPGMM cluster or posteriorgram,

4) and the posteriorgram is a posterior probability vector
whose k-th dimension represents the probability that the
observed data belong to the k-th cluster.

We integrated the proposed feature extension (with a
DPGMM posteriorgram or an RNN posteriorgram) into the fea-
ture extraction to improve the ASR system (Fig. 2). In the follow-
ing subsections, we introduce the DPGMM and DPGMM-RNN
hybrid model for generating posteriorgrams.
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Fig. 3. Graphical model of Dirichlet Process Gaussian Mixture Model
(DPGMM) generates parameters of weights (π = π1, . . . , πk, . . .), means, and
variances ((μ,Σ) = (μ1,Σ1), . . . , (μk,Σk), . . .) of Gaussians from stick-
breaking process (with concentration parameter α) and normal-inverse-Wishart
distribution (with parameter β = (μ0, λ,Σ0, ν)) respectively; it generates hid-
den indicator variable Zi = k according to weights; it generates each frame of
speech feature Xi (of data X = X1, . . . ,Xn) by one Gaussian with mean μk

and variance Σk indicated by hidden variable Zi = k. Rectangular box, with
(Zi,Xi) inside, is a simplified notation of all n data points (features) with their
indicator hidden variables ((Z1,X1), . . . , (Zi,Xi), . . . , (Zn,Xn)).

B. DPGMM Clustering Algorithm

1) DPGMM’s Definition as a Graphical Model: We
treat DPGMM as an infinite GMM with density p(xi) =∑∞

k=1 πkp(xi|μk,Σk) (alternatively with an auxiliary hidden
variable, p(xi) =

∑∞
k=1 p(Zi = k)p(xi|Zi = k)). DPGMM is

defined as a graphical model (Fig. 3) with the following gener-
ative process.
� It generates mixture weights {πk}∞k=1 from a stick-

breaking process [58] with concentration parameter α;
� it generates means and variances {μk,Σk}∞k=1 from

normal-inverse-Wishart (NIW) distribution with a belief of
mean μ0, a belief of variance Σ0, a belief-strength of mean
λ, and a belief-strength of variance ν; the NIW distribution
has the parameter β = (μ0, λ,Σ0, ν);

� it generates a hidden variable Zi = k by mixture weights
{πk}∞k=1; the hidden variable indicates that the i-th data
point is generated by k-th Gaussian;

� it generates each data point Xi by the Gaussian with mean
μk and variance Σk indicated by the hidden variable Zi =
k.

We summarize this generative procedure for the graphical
model of DPGMM(α,NIW(μ0, λ,Σ0, ν)) and describe the
dependency relations among the random variables of the model
in Fig. 3.

2) DPGMM Training by Gibbs Sampling: Given model
DPGMM(α,NIW(μ0, λ,Σ0, ν)), data {xi}ni=1, and any indi-
cator initialization, we get posteriorgram p(zi|xi) by iteratively
inferring from the Gibbs sampling (Algorithm 1) with the fol-
lowing steps until convergence.

First, we update the mixture weights by sampling from a
Dirichlet distribution:

π1, . . . , πK , π∗
K+1|z, α ∼ Dir(n1, n2, . . . , nK , α) (1)

where K is the number of clusters of the currently observed data,
π∗
K+1 =

∑∞
k=K+1 πk is the sum of the weights for the future

possible clusters, and nk =
∑n

i=1 δ(zi = k) is the number of
data points in cluster k, counted by hidden indicator variables
z = z1, . . . , zn.

Fig. 4. Three steps for constructing DPGMM-RNN hybrid model. The RNN
target can be a DPGMM cluster label for unsupervised phoneme discovery or a
DPGMM posterior vector for unsupervised feature extraction.

Second, we update the mean and variance for each Gaussian
cluster k by sampling a normal-inverse-Wishart distribution [59]
after observing data x:

μk,Σk|z, β, x ∼ NIW(μ
(k)
0 , λ(k),Σ

(k)
0 , ν(k)) , (2)

where μ
(k)
0 , λ(k), Σ(k)

0 , and ν(k) are the updated parameters for
the k-th cluster after seeing the data [59]:

μ
(k)
0 =

λ

λ + nk
· μ0 +

nk

λ + nk
· x̄k

λ(k) = λ + nk

ν(k) = ν + nk

Σ
(k)
0 = Σ0 + Sk +

λnk

λ + nk
(x̄k − μ0)(x̄k − μ0)

T

with

x̄k =
1

nk

n∑

i=1,zi=k

xi;Sk =

n∑

i=1,zi=k

(xi − x̄k)(xi − x̄k)
T .

(3)

Third, we update the hidden variables by sampling the poste-
rior distribution:

p(zi = k|π, μ,Σ, xi) =
πkp(xi|μk,Σk)

p(xi)
∝ πkp(xi|μk,Σk) .

(4)

C. DPGMM-RNN Hybrid Model

The DPGMM-RNN hybrid model uses RNN to refine the
DPGMM clusters or posteriorgrams in the following three steps
(Fig. 4):
� DPGMM clustering: we apply the DPGMM clustering

algorithm to get a cluster label (or a posterior vector) for
each feature frame.

� RNN training: we train the RNN model by mapping from
a feature segment to the DPGMM cluster label (or the
DPGMM posterior vector) of the last frame of that segment.
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� RNN reconstruction: we use RNN to get the posterior
vector framewisely by inputting the speech segment. The
dimension of the maximum probability in the posterior
vector is chosen as the output cluster label.

The RNN target can be cluster labels or posterior vectors.
We usually use clusters as the target if the goal is to find
discrete segments for unsupervised phoneme discovery. We use
posteriorgrams as the target in this paper because the goal is to
find continuous features.

D. Conditional Perplexity and KL Divergence

We analyze the fragmental level of the generated representa-
tions from the DPGMM or DPGMM-RNN hybrid model with
the conditional perplexity of cluster given phoneme [49] that
reflects the average number of cluster types corresponding to
one phoneme type. We define the conditional perplexity by
the exponential of the conditional entropy [51] of the cluster
representation (C) given the phoneme truth (T ) with base 2.

ppl(C|T ) = 2H(C|T ) , (5)

H(C|T ) =
∑

t

p(t)H(C|T = t)

= −
∑

t

p(t)
∑

c

p(c|t) · logp(c|t)

= −
∑

t

nt

n

∑

c

nct

nt
· log nct

nt
, (6)

where n is the number of frames, nt is the number of frames of
phoneme truth t, and nct is the number of frames annotated as
phoneme t and clustered as cluster c.

We analyze the discriminability (D) between the representa-
tions of a phoneme pair (t1 and t2) by the KL divergence between
the conditional distributions of cluster representation (C) given
the phoneme. We compute the conditional distributions using
the relative frequencies of the clusters.

D(t1, t2) = KL(P (C = c|T = t1)||P (C = c|T = t2))

=
∑

c

p(c|t1)log p(c|t1)
p(c|t2) , (7)

III. DATASET AND EXPERIMENT SETUP

A. Datasets and Their Divisions

1) TIMIT: We analyzed the models on the TIMIT corpus [53]
of English read speech because it includes reliable and detailed
phoneme annotations. We followed the official division [53] of
a training set of 3.14 hours, a development set, and a complete
test set of 1344 utterances.

2) WSJ: We checked the LVCSR performance on the WSJ
corpus [54] of the English speech. We followed the official
division [54] of the training datasets of WSJ SI-84 of 15.08
hours and WSJ SI-284 of 81.25 hours, an identical development
dataset called dev93, and an identical evaluation dataset called
eval92.

3) Mboshi: We further experimented on a low-resource
African read corpus of Mboshi [55] that is spoken in Congo
Brazzaville and Diaspora. It has a writing system developed
by missionaries without standardized orthography. The Mboshi
text mainly comes from the Bible. The corpus extracted all the

TABLE I
STATISTICS OF LOW-RESOURCE MBOSHI READ SPEECH DATASETS [55] OF

THREE SPEAKERS

spoken sentences from a Mboshi-French dictionary [60] and a
fieldwork-oriented Bouquiaux and Thomas’s corpus [61].

The Mboshi dataset [56] officially contains training and
development sets. We divided the original training set into a
development set of 200 utterances and a training set of remaining
utterances and treated the original development set as a test
set. The development set took the first few utterances (Table I)
of each speaker with the roughly same ratio of utterances per
speaker in the original training dataset that contains sorted
utterances according to utterance ids. We computed the durations
after trimming the head and tail silences (Section III-B2). Table I
summarizes the statistics of the Mboshi dataset.

4) Javanese: We attempted some challenging experiments
on a low-resource Indonesia telephone conversational corpus of
Javanese [56] that represents its Central, Western, and Eastern
dialect regions. These telephone calls were recorded by hundreds
of speakers from 16 to 65 years old of roughly equal genders
using different models of mobile phones (e.g., Nokia, Sony)
by different networks (e.g., Smartfren, XL) or using landlines in
various environments, including cars, offices, streets, and public
places.

We divided the Javanese dataset based on the utterance order
in demographics.tsv, which is a documentation file that accom-
panied the data release [56] that contains the information of the
utterances grouped by speakers, in the following steps:
� The dataset with 6720 utterances was decreased to 3749

utterances after removing those that contained tokens of
<X>, including <non-speech> and <int> (interrupt),
and it was further decreased to 3157 utterances after re-
moving the utterances that only contained one token.

� We then divided the 3157 utterances with the first 200
utterances as a development set, the second 200 utterances
as a test set, and the remaining 2757 utterances as a training
set.

� To ensure that the divisions contained no speaker overlap,
we adjusted the 217, 194, and 2746 utterances as develop-
ment, test, and training sets by the utterance order of the
records (grouped by speakers) in demographics.tsv.

� To ensure that no text overlap exists in the division be-
tween the test set and the training or development sets,
we removed the utterances from the test set whose texts
occurred in the training or development sets. Finally, we
got 217, 155, and 2746 utterances as development, test, and
training sets for our experiments.

We computed the durations after trimming the head and tail
silences (Section III-B2). Table II summarizes the statistics of
the Javanese dataset.

B. Feature Extraction

1) Acoustic Feature Extraction: We followed Kaldi [57] us-
ing a 39-dimensional MFCC+Δ+ΔΔ (25-ms frame size and 10-
ms frame shift) with mean and variance normalization (CMVN)
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TABLE II
STATISTICS OF LOW-RESOURCE JAVANESE TELEPHONE DATASETS [56]. THE

3-HOUR CONVERSATIONAL DATASET WAS RECORDED BY HUNDREDS OF

SPEAKERS FROM DIFFERENT DIALECT REGIONS USING DIFFERENT MOBILE

DEVICES UNDER VARIOUS NOISY BACKGROUNDS, WHERE THE DESIGNED

DIVISION WAS NON-OVERLAPPING IN SPEAKERS OR SENTENCES BETWEEN

TEST SET AND TRAINING OR DEVELOPMENT SET

as the acoustic feature for TIMIT and a 40-dimensional MFCC
of high resolution with CMVN as the acoustic feature for WSJ.
We used the identical feature setup as TIMIT for the Mboshi
and Javanese corpora that have similar data amount as TIMIT.

2) VAD for Low-Resource Corpora: We found utterances in
Mboshi and Javanese have long head and tail silences (some-
times over five seconds), with which our encoder-decoder at-
tentional ASR struggled. We did energy-based Voice Activity
Detection (VAD) for both corpora.

For the Mboshi corpus, since we found that the officially
provided alignments of silences from a light-weight ASR
toolkit [62] failed to precisely perform VAD, we trimmed the
head and tail silence segments whose maximum absolute am-
plitudes were smaller than the threshold of 0.1.

For the Javanese corpus, the VAD with a fixed amplitude
threshold failed because the complex recording devices and
environments made utterances whose sounds were weaker than
the noisy silences of other utterances. We dealt with the problem
by a simple method called dynamical VAD that halved the initial
threshold of 0.1 several times until the trimmed audio had more
than 100 samples for each utterance.

3) DPGMM and RNN Posteriorgram Extraction: We ex-
tracted the DPGMM posteriorgrams with a basic implemen-
tation that strictly followed the steps described in the method
section without any optimizations or approximations. In our
practice, we found a simple implementation with Numpy with-
out GPU optimization, with several hundred lines of codes,
provided an acceptable speed for our experiments.

Instead of independently applying the DPGMM algorithm
on the test set, we froze the DPGMM parameters adapted
by the training sets and used these fixed parameters to gen-
erate DPGMM posteriorgrams for the development and test
sets.

The training process for DPGMM used the same parameter
setup as previous works [30], [49], [63]. We set the concentration
parameter to 1, the mean and variance of the priors to the
global mean and global variance of the MFCC features, and the
belief-strengths of the mean and the variance to 1 and D + 2,
where D is the dimension of MFCC. We obtained clusters and
posteriorgrams after 1500 sampling iterations.

We extracted RNN posteriorgrams from the DPGMM-RNN
hybrid model [49] and fed the RNN with the MFCC feature
chunk of a center frame binding with eight left and eight
right adjacent frames, the optimal size of context according
to earlier work [49]. The RNN mapped the feature chunk to
the posteriorgram of the center frame. We used an RNN of
a 5-layer BiLSTMs [49] whose input layer size matched the
MFCC dimension, whose output layer size matched the number
of DPGMM clusters, and whose hidden layer size was 512. We

implemented RNN using Pytorch. We trained RNN to minimize
the loss function of the mean square error (MSE) between the
softmax layer outputs and the DPGMM posteriorgrams using
20 epochs with a learning rate of 0.001 and a batch size of
256.

4) BNF Feature Extraction: We compared our proposed un-
supervised DPGMM features with supervised BNF features
from Kaldi. The BNF feature extraction requires reliable align-
ments of the starting and ending times of each phoneme to work
well. We obtained the ASR alignments and extracted the BNF
features of WSJ and TIMIT with the official Kaldi scripts (run.sh
and run_bnf.sh) without modification except for changing the
paths to datasets; we believe the default settings of the BNF script
were well tested and tuned. We obtained the alignments and
extracted the BNF features of Mboshi and Javanese following
the Kaldi scripts of TIMIT because these datasets have similar
amounts of data.

The Kaldi toolkit extracted the BNF features by training a
5-hidden-layer neural network with 1024 hidden dimensions
and 42 bottleneck dimensions to map each frame of the MFCC
feature concatenated with four left frames and four right frames
to alignments generated by a system pipeline of monophone
training, triphone training, LDA transformation, MLLT trans-
formation, and speaker adaptive training (SAT) [57].

5) VQCPC Feature Extraction: We compared our proposed
unsupervised DPGMM features with the unsupervised VQCPC
feature. The VQCPC model attained the top result for ABX error
rate at Zerospeech 2020 [66]. The VQCPC model had a slightly
better ABX error rate with a lower bitrate compared with the
DPGMM [31] on the same Zerospeech English test dataset.

We used the open-source code of VQCPC from an identical
model structure [66] to extract the VQCPC feature from the
same MFCC feature with which we extracted DPGMM-based
features. The only modification of the default parameters is to
close the subsampling before the encode layer by setting the
stride of CNN from 2 to 1 and the kernel size of CNN from
4 to 3 so that we could obtain the same number of frames of
the output VQCPC features as the input MFCC features. We
extracted the VQCPC feature from the model of the last training
epoch of the default setup.

The VQCPC model encodes the input feature with a convo-
lutional layer and four linear layers using ReLU activations and
layer normalizations, followed by a linear bottleneck layer of 64
dimensions (to extract the feature) and a vector quantization
layer of 512 codes. Finally, an LSTM layer summarizes the
encoded discrete representation into a context vector, with which
the model is trained to discriminate future codes from negative
examples drawn from other utterances.

C. ASR System

We used Pytorch to implement an attentional encoder-decoder
ASR system [64] from scratch that includes an encoder of a
three-layer LSTM, an attention of a Multi-Layer Perceptron
(MLP), and a decoder of a one-layer LSTM. The detailed
structure is summarized in Table III.

The ASR system maps sequences of speech features to se-
quences of characters. We processed the provided transcriptions
into the characters following an earlier work [64] with a character
set that includes a, b, c,..., z, <space >, <comma>, <period >,
<apostrophe>,<unk>,<sos>, and<eos> (where< sos> and
<eos> denote start-of-sentence and end-of-sentence tokens) for
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Fig. 5. Phoneme recognition (red rectangles) and fragmentation problem (black circles) of posteriorgrams. Utterance “Fat showed in loose rolls beneath the
shirt” with id FADG0_SI1909 from TIMIT test set shows posteriorgrams from DPGMM clustering algorithm (DPGMM posteriorgram) and DPGMM-RNN hybrid
model [49] (RNN posteriorgram). Top layer is spectrogram followed by phoneme layer, DPGMM, and RNN posteriorgram layers. Red rectangles show DPGMM
posteriorgram discovered phoneme segments to improve phoneme recognition; black circles show RNN posteriorgram relieved fragmental problem (uncertainty
in cluster assignment) of DPGMM posteriorgram.

TABLE III
ARCHITECTURE OF ATTENTIONAL ENCODER-DECODER ASR SYSTEM. A → B

DENOTES NEXT LAYER OF LAYER A IS LAYER B. PBILSTM DENOTES A

PYRAMID BIDIRECTIONAL LSTM [64]; FC STANDS FOR A FULL-CONNECTED

LAYER; EMBED DENOTES AN EMBEDDING LAYER. MODULE-N DENOTES

MODULE WITH N HIDDEN UNITS (E.G., FC-512 DENOTES A FULLY

CONNECTED LAYER WITH 512 HIDDEN UNITS). CONTEXTUAL FC-256 IS A

FULLY CONNECTED LAYER FED WITH CURRENT EMBEDDING CONCATENATED

WITH EXPECTED CONTEXTUAL VECTOR FROM ATTENTION. AT EACH TIME

STEP, THE DECODER, PROPOSED BY LUONG [65], IS FED WITH A

CONCATENATED FEATURE OF OUTPUT OF DECODER PRE-NET AND OUTPUT OF

DECODER FROM PREVIOUS STEP. ENCODER INPUT IS ACOUSTIC FEATURES;
INPUT OF DECODER PRE-NET IS CHARACTERS. PBILSTM USES DROPOUT AT

EACH LAYER

WSJ, TIMIT, and Javanese, and with a character set that includes
the additional UTF-8 characters of á, é, í, ó, ú, ε, έ, ω, and ώ for
Mboshi.

The setups of the ASR include a dropout probability of 0.05,
a label smoothing ratio of 0.05, a learning rate of 0.001 (which
halved whenever the training loss successively increases for
more than three epochs), and a beam size of 10.

All ASR results reported in this paper are from this ASR sys-
tem without any pronunciation dictionaries or language models
in the decoding process. We evaluated the ASR results on the test
sets of four datasets following the splits of training, development,
and test sets described in the dataset section.

We used the transformer-based ASR from ESPnet with a
language model on WSJ SI-284 for LVCSR. We used the iden-
tical python environment and the transformer structure follow-
ing the configuration files of “train_pytorch_transformer.yaml”
and “decode_pytorch_transformer.yaml” in ESPnet. The
transformer-based ASR, described by the “RESULTS.md” file,

used the joint CTC training with a weight of 0.3 to CTC loss.
The decoding process used a language model trained from
about 65,000 words and a beam size of 10. The input layer of
the transformer’s encoder used a 2D convolutional layer. The
transformer structure includes 12 hidden encoder layers with
2048 units in each layer, 6 hidden decoder layers with 2048
units in each layer, and 4-headed attention with 256 units.

IV. RESULT

A. Discriminative Posteriorgram and Fragmentation Problem

We concatenated the MFCC features with the posteriorgrams
from the DPGMM clustering algorithm or the DPGMM-RNN
hybrid model. We describe the characteristics of these posteri-
orgrams using an utterance from the TIMIT test set.

Fig. 5 shows that the DPGMM posteriorgram discovered
those phonemes with stable acoustics (see the red rectangles).
However, it suffers from fragmentation problems from complex
acoustics (see the black circles). The fragmentation problems
represent the uncertainty of the DPGMM algorithm when judg-
ing the cluster assignment to each frame.

Fig. 5 also shows that the RNN posteriorgram can relieve
the fragmental problems from the DPGMM posteriorgram on
such phonemes with complex acoustics as fricatives that contain
noise-like high-frequency components (see the black circles)
and that the RNN posteriorgram discovered more phonemes.

B. Fragmentation Problem and ASR Error

We analyzed the potential relations between the fragmentation
characteristics and the ASR performance of the proposed fea-
tures. We measured the ASR performance by counting the ASR
phoneme errors of the TIMIT test set by comparing the annotated
references with the recognized hypotheses; the references and
hypotheses were aligned to have the same length by sclite [57]
for each utterance. We analyzed the decrease of the phoneme
errors by the categories of distinctive features (rather than dele-
tion, insertion, and substitution categories). For example, the
number of phoneme errors of the distinctive features of the
stops is the number of stop consonants in the test set whose
ASR alignments mismatch the underground annotations; the
decrease of the phoneme errors of the stops from the MFCC
features to their concatenation with the DPGMM posteriorgrams
(MFCC_vs_MFCC+DPGMM in Fig. 6) is the difference of
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Fig. 6. Fragmental levels and ASR improvements of distinctive features
on TIMIT test set. Upper subfigure (a) conditional perplexity of cluster
given phonemes [49] that shows fragmental level of posteriorgrams from
DGPMM algorithm (DPGMM posteriorgram) and DPGMM-RNN hybrid
model [49] (RNN posteriorgram) for each distinctive feature. Lower subfigure
(b) decrease number of phoneme errors that shows ASR improvements from
MFCC acoustic features to their concatenations with DPGMM posteriorgrams
(MFCC_vs_MFCC+DPGMM) and from MFCC features to their concatenations
with RNN posteriorgram (MFCC_vs_MFCC+RNN) for each distinctive feature;
we also added results of bottleneck features (BNF) from Kaldi default scripts.
Red rectangles with arrows show tendency between decrease of fragmental
level and improvement of ASR performance among distinctive features. stop_v
denotes voiced stop; stop_u denotes unvoiced stop. Ins denotes insertion errors of
ASR that inserts symbols not in reference phonemes. Closure includes silences
and short pauses.

the number of phoneme errors of the stops before and after
concatenation, which indicates an ASR improvement of the
proposed feature compared to the MFCC feature.

The ASR improvement, indicated by the decreased number of
ASR errors, is induced by the proposed feature extension with
DPGMM or RNN posteriorgrams characterized by the severity
of their fragmentation problems. We measured the fragmental
level of the posteriorgrams by the conditional perplexity of the
clusters given phonemes [49] that reflects the average number
of DPGMM or RNN clusters per phoneme.

Feature extensions with the posteriorgrams of different frag-
mental levels change the phoneme error distribution of the ASR
system. Fig. 6 shows the following results.
� Unvoiced consonants, less fragmental than voiced ones,

tend to have more ASR improvement.
� From Fig. 6, we observe an exception where an

unvoiced stop, “stop_u,” is more fragmental than a
voiced stop, “stop_v”; here, the unvoiced stop has better
ASR performance than the voiced stop. An unvoiced
stop usually has a longer and more obvious aspiration
subsegment compared with a voiced stop, which makes the
unvoiced stop more segmental with higher perplexity. Such

an aspiration subsegment can serve as a landmark [67]
of an unvoiced stop to make it easier for the ASR to
identify.

� Vowels from back to front that are less fragmental tend to
have more ASR improvement when their first and second
formants become less compacted and easier to differenti-
ate.

� The RNN posteriorgram relieves the fragmental problem
of the DPGMM posteriorgram [49] (Fig. 5), indicated
by decrease of fragmental level measured by conditional
perplexity for each distinctive feature (Fig. 6(a)). The con-
catenation of the MFCC feature with the RNN posterior-
gram (MFCC+RNN) tends to achieve more ASR improve-
ment than concatenation with the DPGMM posteriorgram
(MFCC+DPGMM) (Fig. 6(b)).

� The MFCC feature extension with the RNN posterior-
gram (MFCC+RNN), compared with the DPGMM pos-
teriorgram (MFCC+DPGMM), tends to have more ASR
improvement on such complex acoustics as fricatives
containing noisy, high-frequency components, diphthongs
with complex formant structures, or closures with various
silences (sometimes with background noises) and short
pauses (Figs. 6(b) and 5).

� Unsupervised DPGMM based features (MFCC+DPGMM
and MFCC+RNN) work well at silences (closure).
The RNN context enhancements (MFCC+RNN and
MFCC+RNN+BNF) help remove insertion errors. The un-
supervised features compensate for the supervised features
(MFCC+BNF vs. MFCC+RNN+BNF) in ASR.

C. Evaluation by Large Vocabulary Continuous ASR

Our preliminary analysis on the TIMIT corpus show that our
proposed feature extension improved the simple ASR of read
speech. The improvement on the simple ASR drove us to explore
the performance of our proposed features on a more challenging
LVCSR task on the WSJ corpus of the WSJ SI-284 set (an 80-
hour training set) and the WSJ SI-84 set (a 15-hour training set).

In our experiments, we obtained 99 DPGMM clusters with
99-dimensional DPGMM posteriorgrams. We first attempted
to directly feed the DPGMM or RNN posteriorgrams into
the ASR system because the DPGMM posteriorgrams effec-
tively discriminated the phonemes on several Zerospeech chal-
lenges [70]–[72], and the DPGMM-RNN hybrid model outper-
formed the DPGMM clustering algorithm at discriminating and
identifying phonemes [49]. Table V shows that the RNN poste-
riorgram (RNN) worked better than the DPGMM posteriorgram
(DPGMM) in ASR, but neither reached the ASR performance
of MFCC.

We further attempt to concatenate the MFCC features with the
DPGMM or RNN posteriorgrams. Although the posteriorgrams
strengthened the discrimination capability on acoustically stable
phonemes, they suffer from fragmentation problems on acous-
tically complex phonemes (Fig. 5) that can be compensated by
MFCC features. Table V shows that the concatenated features
(MFCC+DPGMM or MFCC+RNN) got fewer ASR errors than
the MFCC features (MFCC); the concatenated features con-
verged faster and retained the improvement of the character
accuracy of the development set during the training process
better than the MFCC features [40].

Table V shows that the feature extension with the RNN
posteriorgram (MFCC+RNN) achieved a lower CER than that
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TABLE IV
MAPPING FROM DISTINCTIVE FEATURE (ARTICULATORY FEATURE) TO

PHONEMES. WE REPRESENT PHONEMES AS 39 TIMIT PHONEMIC SYMBOLS

USED BY THE KALDI RECIPE. WE ALSO INCLUDED INTERNATIONAL PHONETIC

ALPHABET (IPA) CHARACTERS OF TIMIT PHONEME SYMBOLS. HERE,
‘STOP_U’ DENOTES AN UNVOICED STOP, ‘STOP_V’ DENOTES A VOICED STOP,
AND ‘�(Z )’ MEANS � AND Z ARE REPRESENTED AS THE IDENTICAL TIMIT

PHONEMIC SYMBOL (‘SH’)

TABLE V
LVCSR PERFORMANCE ON WSJ. WE COMPARED MFCC FEATURES, DPGMM
POSTERIORGRAMS, RNN POSTERIORGRAMS, AND THEIR CONCATENATIONS ON

OUR ATTENTIONAL ENCODER-DECODER ASR SYSTEM, ALONG WITH TWO

BASELINES [68], [69], BY CHARACTER ERROR RATES (CERS) WITHOUT

PRONUNCIATION DICTIONARIES OR LANGUAGE MODELS IN DECODING

PROCESS. WE TRAINED THE ASR MODEL ON THE WSJ SPEECH CORPUS [54]
WITH THE TRAINING SET OF WSJ SI-84 (ABOUT 15 HOURS) OR WSJ SI-284

(ABOUT 80 HOURS), CHOSE THE BEST MODEL ON THE DEVELOPMENT SET OF

DEV93, AND EVALUATED THE BEST MODEL ON THE TEST SET OF EVAL92 TO

GET THE CER RESULTS. BOTH BASELINES USED MEL-SCALE FILTERBANK

COEFFICIENTS (MEL) THAT ARE FREQUENCY-DOMAIN EQUIVALENT FORMS OF

MFCC FEATURES. THE WERS WERE CONSISTENT WITH THE CERS. ON OUR

ENCODER-DECODER ASR WITHOUT A LANGUAGE MODEL, OUR PROPOSED

FEATURE CONCATENATION ACHIEVED A 15.25% IN WER ON WSJ SI-284 SET,
COMPARED WITH A PREVIOUS REPORT OF 18.2% [68]

with the DPGMM posteriorgram (MFCC+DPGMM); both of
the proposed feature extensions outperformed the MFCC feature
(MFCC). The WERs were consistent with CERs; our proposed
feature extension (MFCC+RNN) achieved a WER of 15.3%,
compared with 18.2% in a previous work [68], on the WSJ
SI-284 set with an encoder-decoder ASR without a language
model.

We used the transformer-based ASR from ESPnet with a
language model (as described in Section III-C of ASR system)
for our experiments. We obtained CER (WER) of 3.1% (6.4%),
2.7% (5.7%), and 2.4% (5.4%) for the MFCC feature (MFCC)
and the proposed features (MFCC+DPGMM and MFCC+RNN)
on WSJ SI-284.

We observed that the absolute ASR improvement, from
the MFCC feature (MFCC) to its DPGMM feature extension
(MFCC+DPGMM), on the WSJ SI-284 set is smaller than that

Fig. 7. ASR tendency with less data. Upper subfigure: ASR improvement
from MFCC feature to concatenation of MFCC feature and DPGMM pos-
teriorgram (MFCC_vs_MFCC+DPGMM). Lower subfigure: ASR improve-
ment from DPGMM posteriorgram (MFCC+DPGMM) to RNN posteriorgram
(MFCC+RNN). We built ASR models with training sets of the first N utterances
of the WSJ SI-284 set, an identical development set of dev93, and an identical
test set of eval92, where the first 37318 utterances are the WSJ SI-284 set and
the first 7138 utterances are the WSJ SI-84 set. The CERs of ASR trained with
first 3000 utterances exceed 80% (not shown in figures) and that of first 4000
utterances were about 40%.

on the WSJ SI-84 set (0.9% and 1.75% respectively in Table V).
We explored the relation between the absolute ASR improve-
ment and the amount of data. We trained the ASR system by
the first N utterances of the WSJ SI-284 training set to examine
the change of the absolute ASR improvement when N became
smaller, until the data amount was too small to support ASR
(Fig. 7).

Fig. 7(a) shows that extending the MFCC feature with
the DPGMM posteriorgram (MFCC_vs_MFCC+DPGMM) im-
proved the ASR performance more with less data. Fig. 7(b)
shows that enhancing the DPGMM posteriorgram with the RNN
posteriorgram (MFCC+DPGMM_vs_MFCC+RNN) improved
the ASR performance more with less data.

When we examined whether proposed features are promis-
ing for low-resource ASR with small datasets, we found that
absolute CER improvements are 0.9% and 1.75% and relative
CER improvements are 13.7% and 10.54% for the datasets
of WSJ SI-284 and WSJ SI-84 from the proposed features
(MFCC+DPGMM) to the MFCC features (MFCC). The abso-
lute and relative ASR improvements of (1.75%, 2.11%, 3.07%,
7.25%) and (10.54%, 11.26%, 11.29%, 16.38%) are consistent
in their tendency to increase when trained with small datasets
of less than 15 hours, including WSJ SI-84 as well as the first
6000, 5000, and 4000 utterances of WSJ SI-284.

D. Evaluation by Low-Resource Read and Telephone ASR

Our LVCSR results on WSJ show that the proposed feature
extensions are more effective with less data. This finding sug-
gests a potential of our proposed features for a low-resource ASR
when low-resource languages lack a well-studied written form
with limited speech data that have annotations transcribed by
expert linguists mainly from fieldwork (e.g., Mboshi) or when
the low-resource languages have limited annotated data (e.g.,
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TABLE VI
ASR PERFORMANCE ON LOW-RESOURCE CORPORA. FEATURE EXTRACTION

AND ASR SYSTEM OF THREE CORPORA SHARED IDENTICAL SCRIPTS WITH

IDENTICAL PARAMETER SETUPS

Javanese). We verified the effectiveness of our proposed features
on the low-resource ASR.

We treated TIMIT as a simulation of a low-resource dataset
because it has a small amount of data close to the other two
low-resource datasets. The Mboshi read speech dataset has been
well recorded, annotated, and checked by linguists. The Mboshi
is officially divided into the training and development sets that
contain three overlapped speakers. Table VI shows that the ASR
on Mboshi outperformed TIMIT.

The Javanese telephone conversation dataset is challenging
for low-resource ASR. Some utterances were weak and hard to
hear clearly; some were recorded under loud background noises;
the annotation of the Javanese dataset was relatively difficult and
noisy. The dataset division did not overlap between speakers or
sentences. Table VI shows lower ASR performance on Javanese
than TIMIT or Mboshi.

Table VI shows that the feature extensions by the DPGMM or
RNN posteriorgrams (MFCC+DPGMM or MFCC+RNN) had
better ASR performances than MFCC features (MFCC).

Table VI further shows that the RNN posteriorgram extension
(MFCC+RNN) improved over the DPGMM posteriorgram ex-
tension (MFCC+DPGMM) and more improvement on Javanese
than on Mboshi and TIMIT. The noisy Javanese corpus made
DPGMM relatively unstable. The RNN posteriorgrams with
RNN contextual enhancement stabilized the DPGMM posterior-
grams and made them more robust on noisy Javanese compared
to Mboshi and TIMIT.

We compared our DPGMM-based features with the unsuper-
vised features of the VQCPC feature and a K-Means one-hot fea-
ture on the Javanese low-resource ASR. The VQCPC-extended
feature (MFCC+VQCPC) attained a CER (WER) of 50.12%
(64.07%), compared to 51.68% (64.75%) by the DPGMM-
extended feature (MFCC+DGPMM) and 48.19% (61.37%) by
the RNN-extended feature (DPGMM+RNN). The DPGMM
model was found to suffer from the fragmental problem due
to the noisy spontaneous Javanese speech. The VQCPC model
without a Gaussian model constraint has a better generalization
power than DPGMM, meanwhile it brings the risk of learn-
ing the noise into the feature. The K-means one-hot feature
(MFCC+K-Means) gained a CER (WER) of 53.07% (68.30%).
Our proposed RNN feature performed better than the VQCPC
and K-means features for low-resource ASR.

The RNN of our DPGMM-RNN hybrid model used five hid-
den layers with a size of 512, resulting in a high computational
cost that makes RNN difficult to use. Therefore, we reduced
the number of parameters of RNN by decreasing the number
of hidden layers, using 5, 4, and 3, and decreasing the size of
the hidden layers using 512 and 256. We found that the CER
(WER) of the RNN feature (MFCC+RNN) ranged from 48.19%
(61.37%) to 50.13% (64.41%) compared to the DPGMM feature
(MFCC+DPGMM, 51.68% (64.75%)).

The results reveal that reducing the number of RNN parame-
ters slightly degrades the ASR performance of the RNN feature.
Nevertheless, with a smaller parameter size (a 3-layer RNN; 256
hidden states in each layer), we can still achieve a better CER
(WER), at 49.36% (62.64%), than that of the DPGMM feature.

A comparison of the RNN feature (MFCC+RNN) and
DPGMM feature (MFCC+DPGMM) using the same ASR would
not be fair because the extra parameters of RNN from the
DPGMM-RNN hybrid model can contribute to ASR improve-
ment. We increased the parameters of the ASR encoder of the
DPGMM feature for a fairer comparison. We increased the
number of layers to 3, 4, and 5 and increased the size of layers to
256 and 512. We found the performance of the DPGMM feature
(MFCC+DPGMM) achieved a higher CER (WER), ranging
from 48.76% (61.96%) to 50.13% (64.41%) compared to the
DPGMM feature (MFCC+DPGMM) at 51.68% (64.75%) and
the RNN feature (MFCC+RNN) at 48.19% (61.37%) when the
encoder becomes larger.

Increasing the number of parameters of the ASR encoder
makes the DPGMM feature perform better. But the performance
of the RNN feature is better than the best performance of the
DPGMM feature with a parameter-increased ASR. We consider
that a whole system includes the feature-extraction model and
the ASR system. Following the ASR parameter increment strat-
egy for the DPGMM feature, when the parameter numbers of
the whole systems for the RNN feature and the DPGMM feature
are similar, the RNN feature also has a better ASR performance
than the DPGMM feature.

E. Comparison and Combination With Supervised BNF in ASR

Both supervised BNF [26] and unsupervised DPGMM-RNN
features [49] help increase the ability of acoustic features to
discriminate phonemes. It would be more persuasive to show
the effectiveness of our proposed unsupervised DPGMM-RNN
features by comparison with the widely-used supervised BNF
features with a reliable implementation. The BNF feature needs
accurate alignments to work well; Kaldi [57] is state-of-art for
this purpose.

Compared with the BNF features with dense representations
(similar values in every dimension) whose segment bound-
aries are affected by the given ASR alignments, the DPGMM
or DPGMM-RNN posteriorgrams with sparse representations
(compressing information in a few dimensions) have phoneme
discriminability affected by the fitness of the MFCC acoustic
distributions to Gaussian mixture assumptions. The sparseness
of the posteriorgrams removes the redundancies for phoneme
discrimination between acoustic stable segments; the overcom-
pression with information loss of the posteriorgrams causes in-
stabilities for segment judgment on acoustic complex phonemes,
such as noisy fricatives.

In other words, the alignment-based BNF features and the
Gaussian-based DPGMM-RNN features capture different dis-
crimination information dependent on the supervised ASR align-
ments and the unsupervised Gaussian fitness. The two types
of features improve different perspectives of the ASR and can
compensate for each other. Table VII shows that ASR achieved
better performance on the concatenation of MFCC, RNN, and
BNF (MFCC+RNN+BNF) than the concatenation of MFCC and
BNF (MFCC+BNF) for all the corpora.

Table VII shows that the combination of MFCC, RNN,
and BNF features (MFCC+RNN+BNF) worked best on
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TABLE VII
ASR PERFORMANCE OF UNSUPERVISED AND SUPERVISED FEATURES. WE

COMPARED UNSUPERVISED FEATURE EXTENSION WITH RNN
POSTERIORGRAMS [49] (MFCC+RNN) WITH SUPERVISED FEATURE

EXTENSION WITH BNF FEATURES [26] (MFCC+BNF). FOR WSJ AND TIMIT,
WE USED KALDI’S [57] OFFICIAL SCRIPTS WITHOUT MODIFICATION FOR ASR

ALIGNMENT AND BNF EXTRACTION; FOR JAVANESE AND MBOSHI, WE

FOLLOWED THE KALDI SCRIPTS OF TIMIT. THE FOLLOWING TABLE INCLUDES

ASR RESULTS OF THE CONCATENATED FEATURES BY MFCC, RNN, AND BNF
(MFCC+RNN+BNF). THE ABBREVIATIONS OF THE RECORDING DEVICES OF

TEL, MOB, AND MIC DENOTE TELEPHONES, MOBILES, AND MICROPHONES.
THE WSJ CORPUS CONTAINS SPONTANEOUS DICTATION FROM JOURNALISTS

WSJ and Javanese. In both cases, supervised BNF fea-
tures (MFCC+BNF) overperformed unsupervised DPGMM-
RNN features (MFCC+RNN). Because the BNF features
(MFCC+BNF) from a neural network were supervised by huge-
data-guided reliable ASR alignments on WSJ and were su-
pervised by noise-resistant annotated training text on Javanese
compared with DPGMM-RNN features (MFCC+RNN) that are
sensitive to noise and have no text supervision.

Table VII also shows that a combination of MFCC and RNN
posteriorgram (MFCC+RNN) achieved the best performance
for Mboshi and TIMIT. In both datasets, the small amount of
data, just several hours, caused difficulties in learning reliable
alignments and training a neural network to extract BNF. Several
factors make the performances of features extracted from the
BNF and RNN models different. First, both BNF and RNN
models have five hidden layers, where the hidden size of RNN
is 512 and that of BNF is 1024. BNF and RNN have a similar
number of parameters. Second, the target for RNN training is
99 types of DPGMM clusters, while that for BNF training is
1896 types of HMM states. For small datasets of only a few
hours, the training set may have insufficient samples to capture
the complex distribution of a test set with many target types.
Third, an RNN that uses a recurrent structure can better capture
the temporal information than the feed-forward neural network
used in Kaldi’s implementation of BNF. The data condition of
the read speech of Mboshi and TIMIT is clean enough to reflect
the Gaussian-distributed nature of the MFCC features to extract
reliable DPGMM-RNN features.

We compared the results of our RNN-based ASR with the
results of the transformer-based ASR without LM on WSJ
SI-284 from the “RESULTS.md” file of ESPnet. We found
the following results: 1) The MEL feature (with CER (WER)
of 5.57% (15.49%)) performed better than the MFCC feature
on our current baseline RNN-based ASR. The proposed fea-
ture (MFCC+RNN) is better than the MEL feature. 2) Our
current RNN-based ASR (with fewer parameters) performed
better than the transformer-based ASR of the base model (“Base
Model” with CER (WER) of 5.7% (15.5%)) from ESPnet us-
ing the MEL feature. 3) Our current RNN-based ASR using
the MFCC+RNN+BNF feature could perform better than a
transformer-based ASR of the large model (“Big Model” with

Fig. 8. Relation between DPGMM model perplexity on TIMIT corpus and
infant perceptual perplexity by auditory experiments. Circled numbers denote
degrees of perplexity, including DPGMM and DPGMM-RNN model perplexity
vertically and infant perceptual perplexity horizontally. An infant-perceivable
line is arbitrarily set to divide distinctive features that are easy (green) or hard
(red) for infants to discriminate within the first year. We include a result of the
GMM algorithm (GMM) from sklearn by setting the number of clusters to be
identical to that of the DPGMM for comparison with the proposed DPGMM-
based features (DPGMM and RNN).

CER (WER) of 5.3% (14.0%))) using the MEL feature with the
current state-of-the-art (SOTA) transformer structure of ESPnet
(without the method of averaging of the ASR models of the last
ten epochs).

V. DISCUSSION

A. Linking DPGMM Computational Perplexity, Infant
Perceptual Perplexity, and ASR Error

One slippery, fundamental question is whether such computa-
tional features as DPGMM (or DPGMM-RNN) features can be
called ‘perceptual’ and can match human categorical perception,
especially infant perception that is both not fully developed [73]
and different from adult perception [3]. That is, can we show
evidence that DPGMM categorizes speech well where infants
perceive well and that DPGMM categorizes speech poorly where
infants perceive poorly. Our DPGMM analysis by conditional
perplexity on TIMIT (Fig. 8) shed light on this question.

We define DPGMM perplexity of phonemes as conditional
perplexity of DPGMM clusters given the phonemes [49]; we
define the DPGMM perplexity of a distinctive feature as the
DPGMM perplexity of phonemes with that distinctive feature.

Our analysis on the conditional perplexity on TIMIT (Fig. 8)
shows the following associations between DPGMM computa-
tional perplexity and infant perceptual perplexity on phonemes.
The DPGMM (or DPGMM-RNN) perplexity of the consonant
stops is relatively low among all the distinctive features. There
exists extensive literature about infant perception of stops. Eimas
et al. found that 1- and 4-month-old infants can perceptually
categorize the stop consonants (/b/ and /p/) [74]. Bertoncini
et al. further found that 4- to 5-day-old neonates can discriminate
the stops of consonants /b, d, g/ in an environment of a vowel /a/
or /i/ [75]. Stops are among the easiest and the earliest distinctive
features perceived by infants.
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The DPGMM perplexity of vowels is higher than consonants,
and voiced consonants are higher than unvoiced ones. Trehub
et al. examined infant vowel discrimination (/i/ vs. /u/ and /a/
vs. /i/) but could not determine whether infants can discriminate
vowels categorically, as they did for stop consonants [76]. Their
work inspired Swoboda et al. to start the very first systematic
study, and they found that 8-week-olds discriminate vowels (/i/
vs. /I/) in a continuous as opposed to a categorical manner [77].

The DPGMM perplexity of fricatives is high among the con-
sonants. Fricatives /f/ and /θ/ are fragmental with high perplexity
and are frequently observed in individual utterance examples
(Fig. 5) of DPGMM clustering [49]. Eimas et al. found that
6- and 12-month-olds cannot discriminate /fa/ and /θa/; only
12-month-olds can discriminate /fi/ and /θi/ [78]. The contrast
of /f/ and /θ/ is difficult for toddlers as well. Eilers and Oiler
reported on 2-year-olds [79]; Abbs and Minifie reported on
preschool children from 3- to 5-year-olds [80].

The DPGMM perplexity becomes higher from front vowels
to back vowels. Swoboda et al. showed that 8-week-olds cannot
categorize front vowels [77]. The accurate discrimination of
vowels by school-age children, in the phonemic environment
of /r/, is ranked roughly from front to back [81].

The DPGMM-RNN perplexity is smaller than the DPGMM
perplexity in semivowels, diphthongs, and nasals, because
DPGMM does not involve temporal order modeling [48], and the
DPGMM-RNN hybrid model involves temporal order modeling
that may help capture such important temporal cues as formant
transitions. Jusczyk et al. found that 2-month-olds discriminated
semivowels (/w/ and /y/) based on formant transition differ-
ences [82]. Byrne et al. found that 3- and 6-month-olds can
discriminate interphonemeic transitions inside a diphthong [83].
Nasals (/ma/ and /na/) can be distinguished by formant transi-
tions [78], [84].

Our further analysis (Fig. 6(b)) suggests a potential causal
relation between DPGMM computational perplexity and
DPGMM ASR performance. We found some positive
association between lower perplexity and higher ASR
performance of the distinctive features. We also observed
a contradictory tendency between “stop_u” and “stop_v”.
Fragmental level or conditional perplexity is not the only factor
that affects or relates to ASR performance. For example, the
landmark of a phoneme, which can sometimes be segmental,
also contributes to improving the ASR accuracy of the phoneme.

B. Linking Perplexity, Discriminability, and Categorization

If a model can distinguish two phonemes, the distance be-
tween model representations of the phonemes should be large.
We attempt to quantify such model discriminability by the KL
divergence (also called KL distance or relative entropy).

For example, when the phoneme /k/ is assigned with clusters
of “1,2,3” and /g/ is assigned with “11,12,13,” the model can
distinguish two phonemes. The cluster distributions of /k/ and
/g/ do not overlap, indicating a huge KL divergence between
the cluster distributions. Accordingly, excellent model discrim-
inability is quantified by the huge KL divergence.

We define the model discriminability of the phoneme pair
of /k/ and /g/ as the KL divergence between the conditional
distribution of the model clusters given /k/ and the conditional
distribution of model clusters given /g/. We define the model
discriminability of the distinctive feature of a voiced stop as the
average KL divergence of the phoneme pairs of /b/-/d/, /b/-/g/,

Fig. 9. Relation between the model discriminability and the infant discrim-
inability of phonemes. We measured the model discriminability by the KL
divergence (also called the KL distance or the relative entropy). The high
discriminability corresponds to the large KL divergence. We define the KL
divergence of a phoneme pair as the KL divergence between the conditional
distribution of model clusters given the first phoneme and the conditional
distribution of model clusters given the second phoneme. We define the KL
divergence of a distinctive feature as the average KL divergence of all phoneme
pairs that have the feature. We compute the conditional distributions by relative
frequencies of the clusters.

and /d/-/g/. Furthermore, we explored the relationship between
model discriminability and infant discriminability (Fig. 9).

We obtained the following observations from Fig. 9. The
phonemes belonging to the semivowels, stops, and diphthongs
that are distinguishable by infants have high KL divergence. The
phonemes belonging to the fricatives and vowels that are not
easily distinguishable by infants have low KL divergence. The
discriminability of the DPGMM-RNN hybrid model is better
than those of GMM and DPGMM.

Now we discuss the relationships among the perplexity, dis-
criminability, and categorization (Fig. 10). Conditional perplex-
ity describes the variability within a phoneme class. When a
phoneme class corresponds to less fragmental cluster repre-
sentations and fewer types of cluster segments, the conditional
perplexity of the cluster distribution is small. KL divergence
describes the variability between the phoneme classes. When
two phonemes have little overlap in cluster distributions, the KL
divergence between the cluster distributions is high. The model
representation can achieve the phoneme categorization through
low within-phoneme variability and high between-phoneme
variability with low conditional perplexity and high KL diver-
gence of the cluster distributions of phonemes.

In other words, a model categorizes phonemes well when
the entropy (logarithm of perplexity) of the cluster distribution
of a phoneme is low and the relative entropy (KL divergence)
between cluster distributions of different phonemes is large.

VI. CONCLUSION

We used the DPGMM algorithm and the DPGMM-RNN
hybrid model to model the unsupervised empirical adaptation to
extract perceptual features to improve ASR. We found that our
proposed unsupervised DPGMM and DPGMM-RNN features
achieved better performance than MFCC features on the LVCSR
and the low-resource conversational ASR.
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Fig. 10. Examples of cluster distributions of phoneme pairs that show the rela-
tions among conditional perplexity, KL divergence, and phoneme categorization.
Conditional perplexity measures the uncertainty of the conditional distribution
of the cluster given the phoneme. Low perplexity indicates that the distribution
is concentrated on a few clusters. High perplexity indicates that the distribution
is uniform over various clusters. The KL divergence measures the similarity
between the conditional distributions. Distributions with small overlap have high
KL divergence. The model categorizes the phonemes when the model cluster
representations have low conditional perplexity and high KL divergence, where
the representations show low variability within a phoneme and high variability
across the phonemes. We compute the conditional distributions by the relative
frequencies of the DPGMM clusters.

We compared our proposed unsupervised DPGMM-RNN
features with the supervised bottleneck features from Kaldi;
the ASR results demonstrate that 1) unsupervised features out-
performed supervised features on small and clean datasets; 2)
unsupervised features compensated for the supervised features
on huge or noisy data datasets.

Our analysis on TIMIT that discloses the relation between
the DPGMM computational perplexity and the infant perceptual
perplexity provides evidence to support our declaration that the
proposed features reflect the infant perception, whose phonemic
categorizations are not fully developed.

The analysis on TIMIT also supports our arguments that 1)
the DPGMM and DPGMM-RNN hybrid model with adapted
parameters that encode empirical speech data, same as the en-
grams that encode the knowledge learned from the experience of
hearing speech, can transform sensational features into percep-
tual features; 2) we can improve the ASR performance using the
perceptual features of our proposed DPGMM or DPGMM-RNN
features compared to the sensational features of MFCC that fail
to model the influence from the past experiences.
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