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Abstract—Numerous studies have investigated the effective-
ness of audio-visual multimodal learning for speech enhancement
(AVSE) tasks, seeking a solution that uses visual data as auxiliary
and complementary input to reduce the noise of noisy speech sig-
nals. Recently, we proposed a lite audio-visual speech enhancement
(LAVSE) algorithm for a car-driving scenario. Compared to con-
ventional AVSE systems, LAVSE requires less online computation
and to some extent solves the user privacy problem on facial data.
In this study, we extend LAVSE to improve its ability to address
three practical issues often encountered in implementing AVSE
systems, namely, the additional cost of processing visual data,
audio-visual asynchronization, and low-quality visual data. The
proposed system is termed improved LAVSE (iLAVSE), which uses
a convolutional recurrent neural network architecture as the core
AVSE model. We evaluate iLAVSE on the Taiwan Mandarin speech
with video dataset. Experimental results confirm that compared to
conventional AVSE systems, iLAVSE can effectively overcome the
aforementioned three practical issues and can improve enhance-
ment performance. The results also confirm that iLAVSE is suitable
for real-world scenarios, where high-quality audio-visual sensors
may not always be available.

Index Terms—Asynchronous multimodal learning, audio-visual,
data compression, low-quality data, speech enhancement.

I. INTRODUCTION

S PEECH is the most natural and convenient means for
human-human and human-machine communications. In re-

cent years, various speech-related applications have been devel-
oped and have facilitated our daily lives. For most of these appli-
cations, however, the performance may be affected by acoustic
distortions, which may lower the quality of the input speech.
These acoustic distortions may come from different sources,
such as recording sensors, background noise, and reverberations.
To alleviate the distortion issue, many approaches have been
proposed, and speech enhancement (SE) is one of them. The goal
of SE is to enhance low-quality speech signals to improve quality
and intelligibility. SE systems have been widely used as front-
end processes in automatic speech recognition (ASR) [1]–[3],
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speaker recognition [4], speech coding [5], hearing aids [6]–[8],
and cochlear implants [9], [10] to improve the performance of
target tasks.

Traditional SE methods are generally designed based on the
properties of speech and noise signals. A class of approaches
estimates the statistics of speech and noise signals to design a
gain/filter function, which is then used to suppress the noise
components in noisy speech. Notable examples belonging to
this class include the Wiener filter [11], [12] and its exten-
sions [13], such as the minimum mean square error spectral
estimator [14], [15], maximum a posteriori spectral amplitude
estimator [16], [17], and maximum likelihood spectral amplitude
estimator [18], [19]. Another class of approaches considers the
temporal properties or data distributions of speech and noise
signals. Notable examples include harmonic models [20], lin-
ear prediction models [21], [22], hidden Markov models [23],
singular value decomposition [24], and Karhunen-Loeve trans-
form [25]. In recent years, numerous machine-learning-based SE
methods have been proposed. These approaches generally learn
a model from training data in a data-driven manner. Then, the
trained model is used to convert the noisy speech signals into
the clean speech signals. Notable machine-learning-based SE
methods include compressive sensing [26], sparse coding [27],
[28], non-negative matrix factorization [29], and robust principal
component analysis [30], [31].

More recently, deep learning (DL) has became a popular and
effective machine learning algorithm [32]–[34] and has brought
significant progress in the SE field [35]–[43]. Based on the deep
structure, an effective representation of the noisy input signal can
be extracted and used to reconstruct a clean signal [44]–[50].
Various DL-based model structures, including deep denoising
autoencoders [51], [52], fully connected neural networks [53]–
[55], convolutional neural networks (CNNs) [56], [57], recur-
rent neural networks (RNNs), and long short-term memory
(LSTM) [58]–[63], have been used as the core model of an
SE system and have been proven to provide better performance
than traditional statistical and machine-learning methods. An-
other well-known advantage of DL models is that they can
flexibly fuse data from different domains [64], [65]. Recently,
researchers have tried to incorporate text [66], bone-conducted
signals [67], and visual cues [68]–[73] into speech applications
as auxiliary and complementary information to achieve better
performance. Among them, visual cues are the most common
and intuitive because most devices can capture audio and vi-
sual data simultaneously. Numerous audio-visual SE (AVSE)
systems have been proposed and confirmed to be effective [74]–
[77]. In our previous work, a lite AVSE (LAVSE) approach was
proposed to handle the immense visual data and potential privacy
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issues [78]. The LAVSE system uses an autoencoder (AE)-based
compression network along with a latent feature quantization
unit [79], [80] to successfully reduce the size of visual data. In
practical applications, after data preprocessing, only the latent
visual features extracted by the encoder of the AE are used in
the processing pipeline. Since the decoder of the AE does not
need to be used or disclosed, the original image is difficult to
reconstruct from the visual features, and the privacy issue can
be solved to a certain extent.

In this study, we intend to further explore three practical
issues that are often encountered when implementing AVSE
systems in real-world scenarios; they are: (1) the additional cost
of processing visual data (usually much higher than the cost of
processing audio data), (2) audio-visual asynchronization, and
(3) low-quality visual data.

In the AVSE task, the requirement of additional visual data
inevitably causes additional costs, such as computing power or
memory, and visual sensors. Therefore, we need to minimize
such additional costs by designing compact visual features
and ensure that the system performs well under low-quality
visual input. We extend the LAVSE system to an improved
LAVSE (iLAVSE) system, which is formed by a multimodal
convolutional RNN (CRNN) architecture in which the recurrent
part is realized by implementing an LSTM layer. The audio
data are provided as input directly to the SE model, while the
visual input is first processed by a three-unit data compression
module CRQ (C for color channel, R for resolution, and Q for bit
quantization) and a pre-trained AE module. In CRQ, we adopt
three data compression units: reducing the number of channels,
reducing the resolution, and reducing the number of bits. The
AE is formed by a deep convolutional architecture and can
extract meaningful and compact representations, which are then
quantized and used as input of the CRNN AVSE model. Based
on the visual data compression CRQ module and AE module,
the size of visual input is significantly reduced, and the privacy
issue can be further addressed in iLAVSE because the original
image is even more difficult to reconstruct from the visual input.

Audio-visual asynchronization is a common issue that may
arise from low-quality audio-visual sensors. To handle this
problem, two approaches are generally applied. One approach
is to use the correlation between audio and video signals to
estimate the mapping between them. For example, McAllister
et al. correlated the face parameters such as mouth position to
Fast Fourier Transform of the input audio signal [81]. In [82], a
multilayer feedforward neural network was designed to receive
mel-frequency cepstral coefficients as the input and predict the
viseme as the output. The other approach is to find out the
time difference within the asynchronous audio-visual data. For
example, based on pre-defined visual features such as bottleneck
features, Marcharet et al. used a deep-neural-network-based
classifier to determine a time offset [83]. Chung and Zisserman
proposed a two-stream structure to detect the lip-sync error and
adjust the time offset [84]. Halperin et al. dynamically stretched
and compressed the audio signal to tackle the alignment prob-
lem [85]. Rather than using DL-based model structures, we
propose to handle this issue based on a data augmentation
scheme.

The problem of low-quality visual data also includes the
failure of the sensor to capture the visual signal. Galatas et al.
evaluated the performance of audio-visual speech recognition
in the presence of visual noise, such as frame drops, random
Gaussian noise, and block noise [86]. Stewart et al. evaluated the
impact of MPEG-4 video compression and camera jitter on the
robustness of an audio-visual speech recognition system [87].
In this study, a practical example is the use of an AVSE system
in a car-driving scenario. When the car passes through a tunnel,
the visual information disappears due to the insufficient light.
We solve this problem through a zero-out training scheme,
which replaces the latent visual features of certain training data
segments with zeros.

The proposed iLAVSE system was evaluated on the Taiwan
Mandarin speech with video (TMSV) dataset1 [78] and new
recorded testing videos in a real-world car-driving scenario.
Based on the special design of model architecture and data
augmentation, iLAVSE can effectively overcome the above three
issues and provide more robust SE performance than LAVSE and
several related SE methods.

The remainder of this paper is organized as follows. Section II
reviews related work on AVSE systems and data quantization
techniques. Section III introduces the proposed iLAVSE system.
Section IV presents our experimental setup and results. Finally,
Section V provides the concluding remarks.

II. RELATED WORK

A. AVSE

In this section, we review several existing AVSE systems.
In [88], a fully connected network was used to jointly process
audio and visual inputs to perform SE. Since the fully connected
architecture cannot effectively process visual information, the
AVSE system in [88] is only slightly better than its audio-only
SE counterpart. In order to further improve the performance,
a multimodal deep CNN SE (termed AVDCNN) system [74]
was subsequently proposed. As shown in Fig. 1 (ISTFT de-
notes inverse short time Fourier transform; FC denotes fully
connected layers; Conv denotes convolutional layers; Pool de-
notes max-pooling layers), the AVDCNN system consists of
several convolutional layers to process audio and visual data.
Experimental results show that compared with the audio-only
deep CNN system, the AVDCNN system can effectively improve
the SE performance. Later, Gabbay et al. proposed another
AVSE model, whose architecture is similar to AVDCNN, but
the visual part is not reconstructed in the output layer [89].
The reconstruction of the visual output in AVDCNN can guide
the SE model to actually learn some useful information from
the visual input, such as silence or some consonants, rather
than some random information. According to our experience,
the AVDCNN model with visual output performed better than
the AVDCNN model without visual output. In the meantime,
a looking-to-listen system was proposed, which uses estimated
complex masks to reconstruct enhanced spectral features [90].
In [91], a variational AE model was used as the basis model

1https://bio-asplab.citi.sinica.edu.tw/Opensource.html#TMSV
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Fig. 1. AVDCNN system [74].

Fig. 2. Single-precision floating-point format.

to build the AVSE system. The authors also investigated the
possibility of using a strong pre-trained model for visual feature
extraction and performing SE in an unsupervised manner.

Unlike audio-only SE systems, the above-mentioned AVSE
systems require additional visual input, which causes additional
hardware and computational costs. In addition, the use of facial
or lip images may cause privacy issues. The LAVSE system [78]
has been proposed to deal with these two issues by effectively
reducing the size of visual input and user identifiability. It uses
an AE to extract meaningful and compact representations of
visual data as the input of the SE model to reduce compu-
tational costs and appropriately solve the privacy problem in
facial information. The AE in the LAVSE system is pre-trained.
In [78], it has been shown that the AE-pre-trained framework
is better than the AE-co-trained framework. In addition, the
combined loss of the AE-co-trained framework consists of three
losses: (1) the audio loss, (2) the visual compressed feature loss,
and (3) the visual image loss. It takes time and computational
cost to determine the best weights of these three losses in the
AE-co-trained framework through an exhaustive search. The
training process of the AE-pre-trained framework is relatively
easy because there are only two losses. Moreover, in the the
AE-pre-trained framework, since the AE is pre-trained in an
unsupervised learning manner, it can be trained on a richer
unimodal dataset.

B. Data Quantization

Quantization is a simple and effective way to reduce the size
of data. Fig. 2 shows the data format of single-precision floating-
point in IEEE 754 [92]. There are 32 base-2 bits, including 1 sign

bit, 8 exponential bits, and 23 mantissa bits. The decimal value
of a single-precision floating-point representation is calculated
as

value10 = (−1)S × 2(Exp10−bias) ×Man10,

S = s0,

Exp2 = e1e2e3e4e5e6e7e8,

Exp10 =
8∑

i=1

ei × 2(8−i),

Man2 = m9m10. . .m31,

Man10 =

31∑

i=9

mi × 2(8−i), (1)

where the subscripts 2 and 10 of value, Exp, and Man de-
note base-2 and base-10, respectively. The sign bit determines
whether the value represented is positive (S = 0) or negative
(S = 1). The exponential bits represent a 2’s complement, which
can store negative values with a bias of 127 (27 − 1). The
mantissa bits are the significant figures. The decimal value of
the 32-bit representation in Fig. 2 is 0.20314788.

Obviously, the representation range of values is determined
by the exponential term, and the mantissa term accounts for the
precision part. Therefore, quantizing the mantissa bits does not
change the range, but only reduces the precision of the original
value. Based on this property, an exponent-only floating-point
quantized neural network (EOFP-QNN) has been proposed to
reduce the mantissa bits of the SE model parameters in [80].
Experimental results have confirmed that by moderately reduc-
ing the mantissa bits, the size of the model parameters can be
reduced while the overall SE capability can be improved. In this
study, we followed the same idea, keeping only the sign and
exponent bits, and removing all mantissa bits to perform visual
data compression.

III. PROPOSED ILAVSE SYSTEM

As mentioned earlier, this study investigates three practical
issues: (1) the additional cost of processing visual data, (2)
audio-visual data asynchronization, and (3) low-quality visual
data. We propose three approaches to address these issues re-
spectively: (1) visual data compression, (2) compensation on
audio-visual asynchronization, and (3) zero-out training. By
integrating the above three approaches with the CRNN AVSE
architecture, the proposed iLAVSE can perform SE well even
under unfavorable testing conditions. In this section, we first
present the overall system of iLAVSE. Then, we describe the
three issues and our solutions.

A. iLAVSE System

The proposed iLAVSE system is demonstrated in Fig. 3. As
shown in the figure, the iLAVSE system includes three stages:
a data preprocessing stage, a CRNN-based AVSE stage, and a
data reconstruction stage.
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Fig. 3. Proposed iLAVSE system.

We have implemented three data compression functions in
iLAVSE, which are outlined in green blocks in Fig. 3. CRQ
is a three-unit data compression module used to compress the
visual image data. As shown in Fig. 4, the CRQ module consists
of Colimg, Resimg, and Quaimg, denoting color channel re-
duction, resolution reduction, and bit quantization, respectively.
Qualatent stands for the bit quantization of the latent feature
extracted by EncoderAE, the encoder part of a pre-trained AE.
The AE is trained by using the CRQ processed lip images as the
input and the grayscale low-resolution images (cf. Fig. 4) of the
original lip images as the output in a frame-wise manner.

In the data preprocessing stage, the waveform of the noisy
data is transformed into log1p2 spectral features (X) by using
the short time Fourier transform (STFT), while the visual image
data (I) are compressed and transformed into latent features (Z)
by the CRQ module and EncoderAE. The functions of CRQ and
EncoderAE are as follows,

CRQ(Ii,n) = Quaimg(Resimg(Colimg(Ii,n))),

Zi,n = EncoderAE(CRQ(Ii,n)), (2)

where i ∈ {1, . . .,K} denotes the i-th training utterance, and
K is the number of the training utterances; n ∈ {L, . . ., F − L}
denotes the n-th sample frame, L is the size of the concatenated
frames for a context window, and F is the number of frames of
the i-th utterance.

In the CRNN AVSE stage, the audio spectral features X pass
through an audio net composed of convolutional and pooling
layers to extract the audio latent features (A), and the Quala-
tent unit, which will be described in Section III-B1b, further

2Note that we choose the log1p feature [93] because its projecting range can
avoid some minimum values in the data. If we take 10−6 for example and if log
is applied, the projected value is −6; but if log1p is applied, the projected value
is 0. This characteristic enables the log1p feature to be easily normalized and
trained.

quantizes the visual input Z to V as

Ai,n = Conva4(Conva3(Poola2(Conva1(Xi,n−L:n+L)))),

Vi,n = Qualatent(Zi,n).
(3)

The audio latent features A and the quantized visual latent
features V are concatenated as AV , which is then sent into the
fusion net and turned into F . Then, the fused features F are
decoded into the audio spectral features (Ŷ ) and the visual latent
features (Ẑ) respectively through a linear layer. The process is
formulated as

AVi,n = [AT
i,n;V

T
i,n−L:n+L]

T ,

Fi,n = FC2(LSTM1(AVi,n)),

Ŷi,n = FCa3(Fi,n),

Ẑi,n = FCv3(Fi,n). (4)

During testing, the audio spectral features (Ŷ ) (with the phase
of the noisy speech) are reconstructed into the speech waveform
using the inverse STFT in the data reconstruction stage.

B. Three Practical Issues and Proposed Solutions

1) Visual Data Compression: For AVSE systems, the main
goal is to use visual data as an auxiliary input to retrieve the clean
speech signals from the distorted speech signals. However, the
size of visual data is generally much larger than that of audio
data, which may cause unfavorable hardware and computational
costs when implementing the AVSE system. Our previous work
has proven that visual data may not require very high precision,
and the original image sequence can be replaced by meaningful
and compact representations extracted by an AE [78]. In this
study, we further explore directly reducing the size of visual data
by the CRQ compression module. The AE is directly applied to
the compressed image sequence to extract a compact representa-
tion. The extracted representation is then further compressed by
Qualatent and sent to the CRNN-based AVSE stage in iLAVSE.

1) Visual Feature Extraction by a CNN-Based AE: As
mentioned earlier, iLAVSE uses the three visual data com-
pression units in the CRQ module, namely Colimg, Resimg,
and Quaimg, to perform color channel reduction, resolution
reduction, and bit quantization, respectively. The size of the
original image sequence can be notably reduced by the three
units. The compressed visual data is then passed to EncoderAE,
and the latent representation is used as the visual representation.
As shown in Fig. 5, we use a 2D-convolution-layer-only AE
to process the CRQ processed visual input. For a given CRQ
processed visual input, the AE is pre-trained to reconstruct the
grayscale low-resolution image (cf. Fig. 4) of the original lip
image.

Generally, captured images are saved in RGB (three chan-
nels) or grayscale (one channel) format. Therefore, to make the
iLAVSE system applicable to different scenarios, we consider
both RGB and grayscale visual inputs to train the AE model. As
a result, this AE model can reconstruct both RGB and grayscale
images.
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Fig. 4. Proposed CRQ module.

Fig. 5. AE model for visual input data compression.

Furthermore, we use images with different resolutions to train
the AE model. Since the lip images are about 100 to 250 pixels
square, we designed three settings to reduce the resolution—64,
32, and 16 (pixels square). When using a resolution of 64, for
example, the original image at sizes of 100 to 250 pixels square
is resized to 64 pixels square.

For data quantization, we first quantize the values of an
input image by removing the mantissa bits in the floating-point
representation. To train the AE, we place the quantized and orig-
inal images at the input and output, respectively. In real-world
applications, the AE model can reconstruct the original visual
data from the quantized version. That is to say, the color channel
and size of the input and output are the same, but the number of
bits is different.

1) Latent Feature Compression: After extracting the latent
feature by passing the compressed images to the AE, Qualatent
in Fig. 3 can further reduce the number of bits of each latent
feature element. The quantized visual latent features are then
used in the CRNN AVSE stage. Fig. 6 shows the visual latent
features before and after the Qualatent module. In real-world
applications, the EncoderAE module and Qualatent unit can be
installed in a low-quality visual sensor, thereby improving the
online computing efficiency and greatly reducing the transmis-
sion costs.

To further confirm that the quantized latent representation
can be used to replace the original latent representation, we
plotted the distributions of the latent representations before and
after applying bit quantization in Fig. 7. The lighter green bins
represent the feature before Qualatent is applied, and the darker
green bins represent the feature after Qualatent is applied. We

Fig. 6. Original and quantized visual latent features. (a) 32-bit AE features.
(b) EOFP 3-bit AE features.

Fig. 7. Distributions of visual features before and after applying Qua latent.

can see that the darker green bins cover the range of the lighter
green bins well, indicating that we can use the quantized latent
feature to replace the original latent feature.

2) Compensation of Audio-Visual Asynchronization: Multi-
modal data asynchronization is a common issue in multimodal
learning. We also encountered this problem when implementing
the AVSE system. The ideal situation is that the audio and visual
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Fig. 8. Synchronous and asynchronous audio and visual data. (a) Syn-
chronous. (b) Asynchronous.

Fig. 9. Low-quality visual data. (a) Low-quality lip images. (b) Low-quality
latent features.

data are precisely synchronized in time. Otherwise, the auxiliary
visual information may not be helpful or may even worsen the SE
performance. Fig. 8 shows the synchronous and asynchronous
situations of audio and visual data. Owing to audio-visual asyn-
chronization, the video frames are not aligned with the speech
well. In this study, we propose a data augmentation approach
to alleviate this audio-visual asynchronization issue. The main
idea is to artificially simulate various asynchronous audio-visual
data to train the AVSE systems.

3) Zero-Out Training: Because visual data are regarded as an
auxiliary input to the AVSE systems, a necessary requirement is
that low-quality visual conditions will not degrade the SE perfor-
mance. In use with poor lighting conditions, such as in a tunnel
or at a night market, the quality of video frames may be poor. In
Fig. 9(a), which shows an example, where a segment of frames
(in the middle region) has very poor quality. Using the entire
video frames directly may degrade the AVSE performance. To
overcome this problem, we intend to let iLAVSE dynamically
decide whether video data should be used. More specifically,
when the quality of a segment of image frames is poor (which
can be determined using an additional light sensor or according
to the result of lip detection), iLAVSE can directly discard the
visual information by replacing the visual latent features of
low-quality frames with zeros, as shown in Fig. 9(b). In order
to make iLAVSE have the ability to process audio information
alone, in the training phase, we prepare training data by replacing
the visual latent features of the visual frames of certain segments
with zeros. In this way, when the video quality is low, iLAVSE
can perform SE based on audio input only, without considering
visual information.

Note that this study only considers low-quality situations that
occur in consecutive frame segments, not in sporadic frames;
this situation is common in car-driving scenarios. We believe
that the proposed zero-out training method is suitable for other
low-quality visual data scenarios, because it is a common idea
to set the visual input to zeros when the video quality is poor.
In the future, we will conduct experiments to verify this idea in
other real-world scenarios. In addition, the focus of this study
is to verify whether the proposed iLAVSE system can function

well even when some visual data are discarded. The criterion
that can best determine whether visual information should be
discarded will be our future work.

IV. EXPERIMENTS

This section presents the experimental setup and results.
Two standardized evaluation metrics were used to evaluate
the SE performance: perceptual evaluation of speech quality
(PESQ) [94] and short-time objective intelligibility measure
(STOI) [95]. PESQ was developed to evaluate the quality of
processed speech. The score ranges from −0.5 to 4.5. A higher
PESQ score indicates that the enhanced speech has better speech
quality. STOI was designed to evaluate the speech intelligibility.
The score typically ranges from 0 to 1. A higher STOI value
indicates better speech intelligibility.

Two audio-only baseline SE systems were implemented for
comparison. Their model architectures are illustrated in Fig. 10.
Fig. 10(a) is a system with the visual part in the iLAVSE system
deleted, and Fig. 10(b) is a system with a dual-path audio model.
The additional audio net in Fig. 10(b) is to increase the number of
model parameters to be the same as in the iLAVSE model. This
system tests whether additional improvements can be achieved
by simply increasing the number of model parameters.

The loss function for training iLAVSE is based on the mean
square error computed from both the audio and visual parts,

Lossa =
1

KF

K∑

i=1

F∑

n=1

||Ŷi,n − Yi,n||2,

Lossv =
1

KF

K∑

i=1

F∑

n=1

||Ẑi,n − Zi,n||2,

Loss = Lossa + µ× Lossv, (5)

where µ is empirically determined as 10−3. For training the two
audio-only SE systems, Lossa is used.

In this study, all the SE models were implemented using the
PyTorch [96] library. The optimizer is Adam [97] with a learning
rate of 5× 10−5. The training batch size was set to 32.

A. Experimental Setup

In this section, the details of the dataset and the implementa-
tion steps of iLAVSE and other SE systems are introduced.

1) Dataset: We evaluated the proposed system on the TMSV
dataset.3 The dataset contains video recordings of 18 native
speakers (13 males and 5 females), each speaking 320 utterances
of Mandarin sentences, with the script of the Taiwan Mandarin
hearing in noise test [98]. Each sentence has 10 Chinese char-
acters, and the length of each utterance is approximately 2–4
seconds. The utterances were recorded in a recording studio
with sufficient light, and the speakers were filmed from the front
view. The video was recorded at a resolution of 1920 pixels ×
1080 pixels at 50 frames per second. The audio was recorded at
a sampling rate of 48 kHz.

3https://bio-asplab.citi.sinica.edu.tw/Opensource.html#TMSV
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Fig. 10. Architectures of two audio-only SE systems. (a) Audio-only SE.
(b) Dual-path-audio-only SE.

In this study, considering gender balance, we decided not to
use all 18 speakers from TMSV. We selected the video files
from 8 speakers (4 males and 4 females) to form the training
set. For each speaker, among the 320 utterances, the 1-st to the
200-th utterances were selected. The utterances were artificially
corrupted by 100 types of noise [99] at 5 different signal-to-noise
ratio (SNR) levels, from −12 dB to 12 dB with a step of
6 dB. This process yielded about 600 hours of noisy utterances.
Considering that 600 hours of training data would take too much
training time, we randomly sampled 12,000 noisy utterances
as a 9-hour training set. The 201-st to 320-th video recordings
of 2 other speakers (1 male and 1 female) were used to form
the testing set. Six types of noise were selected, which are
common in car-driving scenarios, including baby cry, engine

TABLE I
AVERAGE PESQ AND STOI SCORES OF THE TWO AUDIO-ONLY SE SYSTEMS

AND THE AVSE SYSTEMS OVER SNRS OF −1, −4, −7 AND −10 DB

noise, background talkers, music, pink noise, and street noise.
We artificially generated noisy utterances by contaminating the
clean testing speech with these 6 types of noise at 4 low SNR
levels, including −1, −4, −7, and −10 dB, which are around
the SNR levels mentioned in [100]. This process produced
5,760 testing noisy utterances for a total of about 4 hours. The
speakers, speech contents, noise types, and SNR levels were all
mismatched in the training and testing sets.

2) Audio and Visual Feature Extraction: The recorded
speech signals were downsampled to 16 kHz and mixed into
monaural waveforms. The speech waveforms were converted
into spectrograms with STFT. The window size of STFT was
512, corresponding to 32 milliseconds. The hop length was 320,
so the interval between each frame was 20 milliseconds. The au-
dio data was formatted at 50 frames per second and was aligned
with the video data. For each speech frame, the log1p magnitude
spectrum [93] was extracted, and the value was normalized
to zero mean and unit standard deviation. The normalization
process was conducted at the utterance level; that is, the mean
and standard deviation vectors were calculated on all frames of
an utterance. The length of the context window was 5, i.e., ±2
frames were concatenated to the central frame. Accordingly, the
dimension of the final frame-based audio feature vector was 257
× 5.

For each frame in the video, the contour of the lips was de-
tected using a 68-point facial landmark detector with Dlib [101],
and the RGB channels were retained. The extracted lip images
were approximately 100 pixels square to 250 pixels square. The
AE was trained on the lip images in the training set. The latent
representation (2048-dimensional) of AE were used as the visual
input to the CRNN-based AVSE stage. Same as the audio feature,
±2 frames were concatenated to the central frame. Therefore,
the dimension of the frame-based visual feature vector was 2048
× 5.

B. Experimental Result

1) AVSE vs. Audio-Only SE: The two audio-only SE systems
shown in Fig. 10 were used as the baselines. The results of
the audio-only SE (denoted as AOSE) and dual-path audio-only
SE (denoted as AOSE(DP)) systems are shown in Table I. As
mentioned earlier, AOSE(DP) has a similar number of model
parameters to LAVSE. From the results in Table I, we note that
AOSE and AOSE(DP) yield similar performance in terms of
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TABLE II
PERFORMANCE OF ILAVSE USING LIP IMAGES WITH REDUCED CHANNEL

NUMBERS AND RESOLUTIONS, R: {RGB} AND G: {GRAY}

The underlined scores are the same as those of LAVSE in
Table I because the iLAVSE with the {RGB, 64} setup is
equivalent to LAVSE.

PESQ and STOI. The result suggests that the additional path with
extra parameters cannot provide improvements for the audio-
only SE system in this task. Table I also lists the results of the pro-
posed iLAVSE and two existing AVSE systems, namely AVD-
CNN [74] and LAVSE [78]. LAVSE(AE) denotes the LAVSE
system with AE, while LAVSE(AE+EOFP4bits) denotes the
LAVSE system with both AE and the latent feature quantization
unit Qualatent for 4 bits of EOFP. The proposed CRQ module can
also be regarded as a coding method that can reduce user iden-
tifiability in the image domain. The iLAVSE system with CRQ
but without AE is denoted as iLAVSE(CRQ), while the iLAVSE
system with CRQ and AE is denoted as iLAVSE(CRQ+AE). In
addition, iLAVSE(CRQ+AE+EOFP3bits) stands for the system
including CRQ, AE, and Qualatent for 3 bits of EOFP. The
results show that the systems with compression modules of CRQ
and AE and the quantization unit Qualatent can maintain SE per-
formance comparable to LAVSE(AE). Compared to AOSE and
AOSE(DP), all the AVSE systems yield higher PESQ and STOI
scores, confirming the effectiveness of incorporating visual data
into the SE system.

2) Visual Data Compression: In this set of experiments, we
examined the ability of iLAVSE to incorporate compressed
visual data. As shown in Fig. 3, the visual data preprocessing
is carried out by a CRQ module, which implements three units:
Colimg, Resimg, and Quaimg. Then, after the latent representa-
tion is extracted by EncoderAE, Qualatent further quantizes the
bits of the latent representation. In other words, there are four
units that perform visual data reduction. We represent the entire
reduction process as {Colimg, Resimg, Quaimg, Qualatent} =
{A, B, C, D}, where A is either RGB or GRAY (for grayscale),
B denotes the image resolution, C indicates the image data
quantization, and D stands for the latent feature quantization.

We evaluated iLAVSE with different types of compressed
visual data. The results are listed in Table II. From the table,
we first see that iLAVSE outperforms AOSE(DP) in terms of
PESQ and STOI with different compressed visual data. More-
over, compared to LAVSE (the underlined scores), we note that
iLAVSE can still achieve comparable performance even though
the resolution of the visual data has been notably reduced. For
example, the {GRAY, 16} case in Table II strikes a good balance
between the data compression ratio of 48 ((3÷ 1)× ((64×
64)÷ (16× 16))) and the PESQ and STOI scores. Therefore,
we decided to use {GRAY, 16} as a representative setup in the
following discussion.

Fig. 11. AE lip images in 5 bits (1 sign bit and 4 exponential bits). (a) {RGB,
16, 5bits(i)} input. (b) {RGB, 16, 5bits(i)} output. (c) {GRAY, 16, 5bits(i)} input.
(d) {GRAY, 16, 5bits(i)} output.

TABLE III
PERFORMANCE OF ILAVSE WITH OR WITHOUT IMAGE QUANTIZATION (THE

ORIGINAL IMAGE IS WITH 32 BITS), R: {RGB, 64} AND G: {GRAY, 16}

The underlined scores are the same as those of LAVSE in
Table I.

Next, we investigated quantized images. The input and output
(reconstructed) images in RGB and GRAY are shown in the left
and right columns in Fig. 11, respectively. The original 32-bit
images were reduced to 5-bit images (1 sign bit and 4 exponential
bits). From the figures, we observe that the AE can reconstruct
the quantized image well. We also evaluated iLAVSE with the
quantized images. The results are shown in Table III. The PESQ
and STOI scores reveal that when the numerical precision of the
input image is reduced to 5 bits (1 sign bit and 4 exponential
bits), iLAVSE still maintains satisfactory performance. When
the number of bits is further reduced, the PESQ and STOI scores
both decrease notably. Compared to LAVSE that uses raw visual
data, the overall compression ratio Rcomp of the CRQ module
from {RGB, 64, 32bits(i)} to {GRAY, 16, 5bits(i)} is 307.2 times,
which is calculated as follows,

Rcomp = Rcolor ×Rres ×RQua,

Rcolor =
3

1
,

Rres =
642

162
,

RQua =
32

5
,

Rcomp =
3

1
× 642

162
× 32

5
= 307.2. (6)
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TABLE IV
PERFORMANCE OF ILAVSE WITH OR WITHOUT LATENT QUANTIZATION, R:

{RGB, 64, 32BITS(I)} AND G: {GRAY, 16, 5BITS(I)} (1 SIGN BIT + 4
EXPONENTIAL BITS)

3) Latent Feature Quantization: In this set of experiments,
we investigated the impact of the bit quantization in the Quala-
tent unit on the visual latent representation. We intended to
use fewer bits to represent the original 32-bit latent represen-
tation. The compressed representation was used as the visual
feature input of the AVSE model. In Fig. 6(a) and (b), the
latent representations of lip features before and after applying
data quantization (from 32 bits to 3 bits) are depicted. As can
be seen from the figures, the speaker identity cannot be fully
recovered from the encoded features. Since the original images
cannot be reconstructed from the compact latent features without
the matched decoder and inverse EOFP procedure, the user’s
privacy can be protected in the AVSE stage, thereby moderately
addressing the privacy problem.

We further evaluated iLAVSE with latent representation quan-
tization. The number of bits was reduced from 32 to 1, 3, 5, 7
and 9 (1 sign bit and 0, 2, 4, 6, and 8 exponential bits). The
results are listed in Table IV. From the table, we can note that
for different types of visual input, latent representations with
different levels of quantization provide similar performance in
terms of PESQ and STOI. For example, when quantizing the
latent representation to 3 bits, PESQ = 1.410 and STOI = 0.641
under the condition of {GRAY, 16, 5bits(i)}, which are much
better than the performance of AOSE(DP) (PESQ = 1.283 and
STOI = 0.610) and comparable to the performance of LAVSE
(PESQ = 1.374 and STOI = 0.646).

4) Further Analysis: In this set of experiments, we evaluated
the SE systems compared in this study with different SNR levels.
For AVDCNN, we used the original high-quality images as
visual input. For LAVSE, we used the {RGB, 64, 32bits(i),
32bits(l)} setup. For iLAVSE, we used {GRAY, 16, 5bits(i),
3bits(l)}, where (i) and (l) denote the quantization unit applied
to the images and the latent features, respectively. The PESQ
and STOI scores for different SNR levels are shown in Fig. 12,
where the x-axis represents the SNR level. It can be seen from
the figure that all four SE systems have higher PESQ and STOI
scores than the “Noisy” speech. In addition, the iLAVSE system
is always better than the other three SE systems at different SNR
levels in terms of PESQ, and maintains satisfactory performance
in terms of STOI. Through the results of −1 dB and −10 dB,
we can see that visual information becomes more useful for SE
tasks when the SNR decreases.

Fig. 13 details the results of two types of human-voiced noise,
namely baby cry and background talkers. Under these types
of noise, visual information becomes crucial in the SE task.

Fig. 12. Performance of different SE systems at different SNR levels. LAVSE:
{RGB, 64, 32bits(i), 32bits(l)}, iLAVSE: {GRAY, 16, 5bits(i), 3bits(l)}. (a)
PESQ. (b) STOI.

Obviously, the AOSE(DP) method cannot give higher STOI
scores than the “Noisy” speech, while all the AVSE methods out-
perform AOSE(DP). Even with the proposed compression units,
LAVSE and iLAVSE still maintain acceptable performance in
terms of both PESQ and STOI compared to AVDCNN. To further
evaluate the proposed iLAVSE system on human-voiced noises
at more SNR levels, we provide additional experimental results
at mild SNR levels in Table V. The results show that iLAVSE
outperforms the AOSE(DP) baseline at all SNR levels.

We further examined the spectrogram and waveform of
the “Noisy” speech and the enhanced speech provided by
AOSE(DP), LAVSE, and iLAVSE. An example under the con-
dition of street noise at −7 dB is shown in Fig. 14. The spec-
trogram and waveform of the clean speech are also plotted for
comparison. From the figure, we see that iLAVSE can suppress
the noise components in the noisy speech more effectively than
AOSE(DP), and thus confirming the effectiveness of using the
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Fig. 13. Performance of different SE systems on different human-voiced
noises. LAVSE: {RGB, 64, 32bits(i), 32bits(l)}, iLAVSE: {GRAY, 16, 5bits(i),
3bits(l)}. (a) PESQ. (b) STOI.

TABLE V
PERFORMANCE OF AOSE(DP) AND ILAVSE ON DIFFERENT HUMAN-VOICED

NOISES AT DIFFERENT SNR LEVELS

Poor: −10db and −7db, Low: −4 and −1db, Mild: 2db and 5db. iLAVSE:
{GRAY, 16, 5bits(i), 3bits(l)}.

Fig. 14. Waveforms and spectrograms of an example speech utterance under
the condition of street noise at −7 dB. The vertical axis of the waveform
figure represents the normalized amplitude (−0.1 ∼ 0.1), and the vertical axis
of the spectrogram figure represents the frequency (0 k∼8 k Hz). The horizontal
axis is time. The example utterance is 3 seconds long. (a) Clean waveform.
(b) Clean spectrogram. (c) Noisy waveform. (d) Noisy spectrogram.
(e) AOSE(DP) waveform. (f) AOSE(DP) spectrogram. (g) LAVSE waveform.
(h) LAVSE spectrogram. (i) iLAVSE waveform. (j) iLAVSE spectrogram.

visual information. Furthermore, we note that the output plots
of iLAVSE and LAVSE are very similar, which suggests that
iLAVSE can still provide satisfactory performance even with
compressed visual data.

We recorded 10 video clips in a real car-driving scenario,
as demonstrated in Fig. 15, with the background music and
car-driving noise as our real-world testing data. The recording
device was iPhone 12 Pro Max. Since there was no clean refer-
ence available in this set of experiments, we used the speech-to-
reverberation modulation energy ratio (SRMR) [102], a non-
intrusive modulation-spectral-representation-based metric for
speech assessment to evaluate the performance of AOSE(DP)
and iLAVSE. A higher SRMR score indicates better speech
quality. The average SRMR scores and sample processed wave-
forms obtained by AOSE(DP) and iLAVSE for the real-world
videos are shown in Fig. 16(a) and (b), respectively. Fig. 16(a)
shows that the iLAVSE system achieves higher SRMR scores
than the AOSE(DP) system and the original noisy speech. In



CHUANG et al.: IMPROVED LITE AUDIO-VISUAL SPEECH ENHANCEMENT 1355

Fig. 15. Real-world car-driving scenario.

Fig. 16. Average SRMR scores and sample processed waveforms obtained
by AOSE(DP) and iLAVSE for the real-world videos. iLAVSE: {GRAY, 16,
5bits(i), 3bits(l)}. (a) SRMR. (b) Waveforms.

Fig. 16(b), the top, middle, and bottom panels are the wave-
forms of the original noisy speech, AOSE-enhanced speech, and
iLAVSE-enhanced speech, respectively. In the area framed by
the brown box at the end of the speech, there is actually no
speech, only background music. Obviously, the closed lips can
effectively help iLAVSE to remove the background music, but
the AOSE-enhanced speech still retains the background music.

5) Asynchronization Compensation: We simulated the
audio-visual asynchronization condition by offsetting the visual
and audio data streams of each utterance in the time domain. We
designed 5 asynchronization conditions, i.e., 5 specific offset
ranges (OFR): [−1, 1], [−2, 2], [−3, 3], [−4, 4], and [−5, 5]. For
example, for OFR= [−1, 1], the offset range is from−1 to 1. An
offset of −1, 0, or 1 frame (each frame = 20 ms) was randomly
selected (with equal probability) and used to shift the audio
stream, so that the audio-visual asynchronization was −1, 0, or
1. In this way, we prepared 5 sets of training data with different
degrees of audio-visual asynchronization. For the testing set,
we simulated the audio-visual asynchronization condition using
the fixed offsets in [−5, 5]. Therefore, the audio-visual data
contained 11 different degrees of asynchronization.

Fig. 17. PESQ and STOI scores of iLAVSE trained and tested with different
audio-visual asynchronous data. (a) PESQ. (b) STOI.

Because the iLAVSE model was trained with 5 dif-
ferent OFRs, namely [−1, 1], [−2, 2], [−3, 3], [−4,
4], and [−5, 5], we therefore obtained 5 iLAVSE mod-
els, termed iLAVSE(OFR1), iLAVSE(OFR2), iLAVSE(OFR3),
iLAVSE(OFR4), and iLAVSE(OFR5). These 5 models were
then tested on the 11 different offsets (with a fixed offset in
[−5, 5]). The results are shown in Fig. 17. The results of
Noisy, AOSE(DP), and iLAVSE trained without audio-visual
asynchronization (denoted as iLAVSE(OFR0)) are also listed
for comparison.

Please note that, in both figures, the central point (cf. Test
Offset = 0) represents the audio-visual synchronous condition.
A “Test Offset” value away from the central point indicates a
more severe audio-visual asynchronous situation. “Test Offset
= −5” and “Test Offset = 5” are the most severe conditions,
where the audio and visual signals are misaligned for 5 frames
(100 ms) in both cases.
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Fig. 18. PESQ and STOI scores of iLAVSE trained with different LPRs and
tested on specific LP conditions. (a) PESQ. (b) STOI.

From Fig. 17, we can note that when “Test Offset = 0,”
iLAVSE(OFR0) achieves the best performance. This is rea-
sonable because in this case, there is no asynchronous data in
training and testing. When the asynchronization condition be-
comes severe, iLAVSE(OFR5) achieves better performance than
other models. We also note that when the “Test Offset” values
lie in [−3, 3], iLAVSE(OFR5) always outperforms Noisy and
AOSE(DP). The results confirm the effectiveness of including
audio-visual asynchronous data (as augmented training data)
to train the iLAVSE system to overcome the asynchronization
issue.

6) Zero-Out Training: We simulated the low-quality visual
data condition by applying a low-quality percentage range (LPR)
to the visual data. The low-quality percentage (LP) determines
the percentage of missing frames in the visual data, and the LPR
indicates the range of randomly assigned LPs for each batch.
For example, if LPR is set to 10, LP will be randomly selected
from 0% to 10%; if LP is set to 4% for a batch with a length

of 150 frames, a sequence of 6 (150× 4%) frames of the visual
data will be replaced with zeros. In this experiment, we chose
LPRs ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for training,
and set LPs ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} to
test the performance on specific percentages of missing visual
data. The starting point of the missing visual part was randomly
assigned for each batch.

The iLAVSE models trained with the 11 different LPRs are
denoted as iLAVSE(LPRi), where i = 0,..., 10. The training set
of iLAVSE(LPR0) did not contain missing visual data. A larger
value of i in LPRi indicates a more severe low-quality visual
data condition. The results are presented in Fig. 18, where the
x-axis represents the LP value used for testing. The results in
the figure show that without involving low-quality visual data in
training (iLAVSE(LPR0)), the performance drops rapidly when
visual data loss occurs in the testing data. The PESQ and STOI
scores are even worse than those of Noisy and AOSE(DP). On
the other hand, the iLAVSE models trained with low-quality
visual data (even with low LPRs) are robust against all LP
testing conditions. When the LP of the testing data is very high,
the performance of iLAVSE converges to that of AOSE(DP),
which shows that the benefit from visual information becomes
negligible.

V. CONCLUSION

In this paper, we proposed the iLAVSE system, which aims to
address three issues that may be encountered when developing
practical AVSE systems, namely the high cost of processing vi-
sual data, audio-visual asynchronization, and low-quality visual
data. The iLAVSE system includes three stages: data prepro-
cessing, AVSE based on CRNN, and data reconstruction. The
preprocessing stage uses the CRQ module and the AE module
to extract the compact latent representation as the visual input of
the AVSE stage. We used the data augmentation scheme and the
zero-out training approach to solve the problems of audio-visual
asynchronization and low-quality visual data, respectively. At
present, due to the lack of relevant facilities, we cannot test the
proposed model on a real low-resource computing platform. We
can only compare the computing resources required by the new
and old models and perform simulation experiments to verify
our ideas. Our experimental results confirm that iLAVSE can
effectively deal with these three practical issues and provide
better SE performance than AOSE and related AVSE systems.
Therefore, we believe that the proposed iLAVSE system is robust
under adverse conditions and can be appropriately implemented
in real-world applications.

In the present study, we focus on the application of the
iLAVSE system in a car-driving scenario. In such a scenario,
it is more common to encounter poor lighting issues than other
adverse conditions, such as instance occlusion or noisy-image
involvement because a fixed camera can be used to directly
monitor the driver’s face. In other application scenarios, we may
use additional light sensors to signal the iLAVSE system when
to use audio information alone. In the future, we will incorpo-
rate other neural network architectures, objective functions, and
compression techniques [103]–[105] into the proposed system.
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In addition, we will further use the supplementary information
provided by visual data, combined with self-supervised and meta
learning, to improve the applicability of iLAVSE.
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