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Aggregating Frame-Level Information in the
Spectral Domain With Self-Attention for Speaker

Embedding
Youzhi Tu and Man-Wai Mak, Senior Member, IEEE

Abstract—Most pooling methods in state-of-the-art speaker
embedding networks are implemented in the temporal domain.
However, due to the high non-stationarity in the feature maps
produced from the last frame-level layer, it is not advantageous
to use the global statistics (e.g., means and standard deviations)
of the temporal feature maps as aggregated embeddings. This
motivates us to explore stationary spectral representations and
perform aggregation in the spectral domain. In this paper, we
propose attentive short-time spectral pooling (attentive STSP)
from a Fourier perspective to exploit the local stationarity of
the feature maps. In attentive STSP, for each utterance, we
compute the spectral representations through a weighted average
of the windowed segments within each spectrogram by attention
weights and aggregate their lowest spectral components to form
the speaker embedding. Because most of the feature map energy
is concentrated in the low-frequency region of the spectral
domain, attentive STSP facilitates the information aggregation
by retaining the low spectral components only. Attentive STSP is
shown to consistently outperform attentive pooling on VoxCeleb1,
VOiCES19-eval, SRE16-eval, and SRE18-CMN2-eval. This ob-
servation suggests that applying segment-level attention and
leveraging low spectral components can produce discriminative
speaker embeddings.

Index Terms—Speaker verification, speaker embedding, short-
time Fourier transform, self-attention, statistics pooling.

I. INTRODUCTION

SPEAKER embedding plays a vital role in boosting the
performance of speaker verification (SV) systems. Modern

speaker embeddings mostly use deep neural networks (DNNs)
to process frame-level acoustic feature vectors [1]–[4]. For
instance, time delay neural networks (TDNNs), ResNets [5],
DenseNets [6], and Res2Nets [7] have been widely used
to extract the frame-level information in speaker embedding
networks [3], [4], [8], [9]. Compared with the traditional i-
vectors [10], DNN-based speaker embeddings are not only
more speaker discriminative but also more robust to noise,
reverberation, and domain mismatch [11]–[14]. In particular,
the convolutional neural network (CNN) based speaker em-
bedding has become the state-of-the-art due to its outstanding
performance [15], [16].

The current speaker embedding extractors often share a
similar structure: a CNN-based frame-level network, a pooling
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layer, and a fully-connected utterance-level network. Because
the embedding network aims to produce fixed-dimensional
embeddings from variable-length utterances, how to aggre-
gate speaker information from frame-level representations into
utterance-level embeddings is of significant importance.

One common aggregation strategy is to use channel-wise
means and standard deviations of the last frame-level fea-
ture maps as the summarization of the whole utterance [3].
Due to the sharp dimensionality reduction of the frame-level
features, some speaker information will inevitably be lost in
the aggregation process, even though multiple heads [8], [17],
[18] or higher-order statistics [19] are utilized. Another way
to aggregate information is to enhance the mutual information
between the frame-level features and the aggregated embed-
dings. In [20], a mutual information neural estimator (MINE)
was introduced in the pooling layer so that more meaningful
information can be preserved in the aggregated statistics.
However, this method only shows marginal improvement over
those without an MINE.

Besides using a limited number of statistics (e.g., means,
standard deviations, etc.) for aggregation or explicitly regular-
izing the aggregated features for information preservation, we
can perform aggregation from a Fourier perspective. This is
also the objective of this paper.

A. Motivation

In [21], spectral pooling was proposed to replace max
pooling for better information preservation in computer vision.
This method involves three steps: 1) transforming the convolu-
tional features from the spatial domain to the spectral domain
by discrete Fourier transform (DFT), 2) cropping and retaining
the low spectral components, and 3) performing inverse DFT
on the cropped features to transform them back to the spatial
domain. Because most of the spectral energy locates in the
low-frequency region, spectral pooling is able to preserve
most of the feature information by retaining the low spectral
components.

However, because DFT can only be applied to determin-
istic or wide-sense stationary signals, it is not suitable for
non-stationary speech signals [22]. To account for the non-
stationarity of the convolutional feature maps in speaker
embedding networks, short-time spectral pooling (STSP) was
proposed in [23] by replacing DFT with short-time Fourier
transform (STFT) [24]. It was shown in [23] that STSP
is a generalized statistics pooling method. This is because
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from a Fourier perspective, statistics pooling only exploits
the DC (zero-frequency) components in the spectral domain,
whereas STSP incorporates more spectral components besides
the DC ones during aggregation and is able to retain richer
speaker information. The experimental results on VoxCeleb1
also verify that STSP remarkably outperforms the statistics
pooling method.

However, one limitation of STSP is that the brute average
of the spectrograms along the temporal axis ignores the
importance of individual windowed segments when computing
the spectral representations. In other words, all segments in
a specific spectrogram were treated with equal importance.
In practice, however, this is not reasonable because phonetic
information is rarely distributed uniformly across an utterance.
As a result, different segments of an utterance have different
speaker discriminative power. Therefore, it is unlikely that
each segment contributes equally to the discrimination of
speakers.

To address the above limitation of STSP, we propose ap-
plying self-attention [25] on the windowed segments for each
spectrogram while computing the spectral representations.
As a result, the discriminative segments can be emphasized
during aggregation, which contributes to a more discriminative
power for speaker embedding. We call the proposed method
attentive STSP in this paper. Unlike the conventional attention
mechanisms for speaker embedding that perform attention on
temporal frames [8], [17], [18], [26], attentive STSP performs
attention on individual windowed segments. Nevertheless, the
rationale behind attentive STSP is the same as that of the
conventional attentive pooling methods.

The intuition that exploiting the local stationarity in the
convolutional feature maps is beneficial to utterance-level
aggregation can be interpreted from a perspective of stochastic
process. Specifically, if we consider a feature sequence at
the final convolutional layer as a realization of a stationary
stochastic process, its global statistics (e.g., mean, standard
deviation, etc.) will not change with time. However, once the
stationarity assumption is violated, which is common for the
final convolutional feature maps, these global statistics will
become unreliable for summarizing the process. This suggests
that the performance of statistics pooling and its attentive
variants would suffer more severely on long utterances because
of the non-stationarity in the feature sequence. Therefore, the
conventional pooling methods that operate in the temporal
domain can be sensitive to the duration variations in the
evaluation sets. On the other hand, attentive STSP is more
robust to duration variations, attributed to its ability to handle
the local stationarity in the feature maps.

In fact, it has been observed in portfolio optimization that
exploiting only the mean and variance of a non-stationary
sequence is not sufficient. In [27], the authors pointed out
that although the mean-variance optimization (MVO) has long
been an optimal strategy for investment, it presents poor
out-of-sample performance due to the non-stationarity in the
financial time series. To overcome the inherent time-varying
property of the price series, a complex spectral portfolio
method was proposed to model the cyclostationarity of the
time series.

To make the contributions of attentive STSP clear, we
summarized the novel parts of attentive STSP as follows:

1) Compared with spectral pooling in computer vision [21],
attentive STSP has two advantages.

• Attentive STSP uses STFT rather than DFT to
transform the temporal feature maps to the spec-
tral domain. The rationale of applying STFT is
twofold. On the one hand, STFT exploits the
local stationarity instead of the global stationarity
(assumed by DFT) in the feature maps, which
is reasonable for non-stationary speech signals.
Exploring the local stationarity makes attentive
STSP more resilient to the non-stationarity in the
feature maps. On the other hand, with STFT, we
can consider attentive STSP as a generalization of
the conventional statistics pooling, which lays the
foundation of attentive STSP for utterance-level
aggregation. This generalization, however, cannot
be done by applying DFT on the temporal feature
maps.

• Spectral pooling requires an inverse DFT to trans-
form the truncated spectral components back to
the spatial domain. In attentive STSP, however, the
pooling operation is performed completely in the
spectral domain and inverse STFT is not required,
which reduces computation and facilitates the ag-
gregation.

2) Compared with vanilla STSP [23], attentive STSP ap-
plies a self-attention mechanism to highlight the con-
tribution of the discriminative windowed segments in
the pooling operation. The attention mechanism endows
attentive STSP with higher discriminative power, and it
is a new part not covered by [23].

B. Related Work
Various pooling methods have been used for speaker em-

beddings. In [2], the channel-wise mean vectors of frame-
level features were exploited in temporal pooling. In the x-
vector extractor, both the means and the standard deviations
are computed through a statistics pooling layer [3]. Compared
with temporal pooling, statistics pooling shows remarkably
better performance and has become a baseline pooling strategy.
By simultaneously pooling over the features from different
frame-level layers, the authors of [28] increased the number
of aggregated statistics by multiple times. Inspired by the
NetVLAD architecture [29] in computer vision, the authors of
[30] proposed the learnable dictionary encoding (LDE) where
the encoded vectors act like the means of a Gaussian mixture
model (GMM). In [4], a NetVLAD layer was directly applied
for utterance-level aggregation.

Another popular category is the attention-based pooling. For
instance, an attention mechanism was introduced to weight the
temporal frames so that the attended frames can substantially
contribute to speaker discrimination [26]. To increase the
representation capacity of the aggregated embeddings, multi-
head attentive pooling was proposed to attend the convolu-
tional features from multiple perspectives [17]. The authors
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of [18] further extended this multi-head idea and diversified
the attention heads by allowing different resolutions in the
multiple heads. Different from [17] where each head attends
the frame-level features across all channels, the authors of
[31] applied each head to a subset of the channels. By
integrating the attention mechanism and GMM clustering, the
authors of [8] proposed a mixture of attentive pooling from
a probabilistic perspective. Instead of performing attention
across the frames, channel- and context-dependent statistics
pooling [9] extends attention along the channel dimension to
highlight the contribution of individual channels.

In [32], a joint time-frequency pooling was introduced
for utterance-level aggregation. However, because frequency
pooling along the frequency axis uses the same strategy as
temporal pooling, it is different from our proposed method,
where pooling is operated in the Fourier transformed domain
obtained by applying STFT to the temporal feature maps.

This paper is organized as follows. In Section II, we briefly
introduce the architecture of the speaker embedding network
and several existing pooling methods. Section III details the
principle of the proposed attentive STSP and clarifies its rela-
tionship with the previous work. The experimental settings and
results are provided in Section IV and Section V, respectively.
We then give conclusions in Section VI.

II. SPEAKER EMBEDDING

In this paper, we investigate the proposed pooling method
on the modified x-vector architecture. Statistics pooling [3],
multi-head attentive pooling [17], and channel- and context-
dependent statistics pooling [9] are used as the baseline
pooling strategies for utterance-level aggregation.

A. Network Architecture
As illustrated in Table I, the configuration of the speaker

embedding network used in this paper is almost identical to
that of [3]. One difference is that the former uses a nonlinear
dense layer of 256 nodes for utterance-level processing. Each
TDNN layer aggregates several contextual frames from the
previous layer, resulting in a temporal context of 15 acoustic
frames at Layer 3. Another difference is that the additive
margin softmax (AMSoftmax) [33] is used in the output layer.
For each utterance, its speaker embedding vector is the affine
output at Layer 7.

B. Pooling Strategy
1) Statistics Pooling: The default pooling method for x-

vector is statistics pooling. Denote H = {ht}T�1
t=0 2 RC⇥T

as a feature map at the last convolutional layer, where C is
the number of channels in the feature map H and T is the
number of frames. H comprises a sequence of frame-level
vectors fed to the pooling layer. The aggregated representation
z is expressed as

z = (µ,�), (1)

where

µ =
1

T

T�1X

t=0

ht, (2)

TABLE I
ARCHITECTURE OF THE SPEAKER EMBEDDING NETWORK USED IN THIS
WORK. BN REPRESENTS BATCH NORMALIZATION [34]. T DENOTES THE

TOTAL NUMBER OF FRAMES IN AN UTTERANCE AND Nspk IS THE NUMBER
OF TRAINING SPEAKERS.

Layer Layer type Layer context Total
context

Output
dimension

1 TDNN-BN-ReLU [t� 2, t+ 2] 5 512
2 TDNN-BN-ReLU {t� 2, t, t+ 2} 9 512
3 TDNN-BN-ReLU {t� 3, t, t+ 3} 15 512
4 Dense-BN-ReLU {t} 15 512
5 Dense-BN-ReLU {t} 15 1,500
6 Pooling [0, T ) T 3,000
7 Dense-BN [0, T ) T 256
8 AMSoftmax [0, T ) T Nspk

and

� =

vuut 1

T
diag

 
T�1X

t=0

hth
>
t
� µµ>

!
. (3)

In (3), diag(·) means constructing a vector using the diagonal
elements of a square matrix and the square root is operated
element-wise. In short, the aggregated representation z is the
concatenation of channel-wise means and standard deviations
of the feature map.

2) Multi-head Attentive Pooling: In [17], an attention
mechanism with multiple heads was introduced to attend
frame-level features from various perspectives. Let us consider
an H-head attention network with a tanh hidden layer of D

nodes and a linear output layer. The attention weight matrix
A = (at,h) 2 RT⇥H can be computed as

A = Softmax
�
tanh

�
H

>
W1

�
W2

�
, (4)

where W1 2 RC⇥D and W2 2 RD⇥H are trainable weight
matrices and the softmax function is operated column-wise.
For the h-th head (h 2 {1, . . . , H}), the attended mean and
standard deviation vectors are computed as follows:

µh =
T�1X

t=0

at,hht, (5)

and

�h =

vuutdiag

 
T�1X

t=0

at,hhth
>
t
� µhµ>

h

!
. (6)

Finally, we have the aggregated vector as follows:

z = (µ1,�1, . . . ,µH ,�H) . (7)

A major difference between statistics pooling and attentive
pooling is that the latter scales the feature maps by an attention
weight vector {at,h}T�1

t=0 for each head h during the pooling
process (see (5) and (6)). The purpose of the attention weight
vector is to emphasize discriminative frames for information
aggregation. Because multi-head attentive pooling has H

independent attention weight vectors in A, its capacity for
information preservation is larger than that of single-head
attentive pooling.
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3) Channel- and Context-Dependent Statistics Pooling:
Multi-head attentive pooling applies attention weights inde-
pendently on channel-wise feature sequences, assuming that
each channel has equal importance to the discriminative power
of speaker embeddings. In [9], channel- and context-dependent
statistics pooling (CCDSP) was proposed to account for the
contribution of individual channels. To enable the attention
network to take the utterance’s global properties (such as noise
or recording conditions) into consideration, we concatenate ht

in (2) with the global non-weighted mean µ (see (2)) and
standard deviation � (see (3)) along the channel axis, i.e.,
h̃t = [h>

t
,µ>

,�>]>. Then, we compute the attention scores
as

et,c = v>
c
f

⇣
W3h̃t + b

⌘
+ kc, c = 1, . . . , C, (8)

where W3 2 RD
0⇥3C and b 2 RD

0
are the channel indepen-

dent weight matrix and bias vector to be learned, respectively,
and f(·) is a non-linear activation function. vc 2 RD

0
and

kc 2 R are the learned channel-dependent weight vector and
bias of the c-th channel, respectively. et,c is then normalized
along the frame dimension via a softmax function to compute
the channel-dependent attention weights

a
CD
t,c

=
exp (et,c)P

T�1
⌧=0 exp (e⌧,c)

. (9)

Finally, the weighted mean vector µCD =
�
µ
CD
c

 C

c=1
and the

standard deviation vector �CD =
�
�
CD
c

 C

c=1
are concatenated

to form the aggregated embedding, where

µ
CD
c

=
T�1X

t=0

a
CD
t,c

ht,c, (10)

and

�
CD
c

=

vuut
T�1X

t=0

a
CD
t,c

h
2
t,c

� (µCD
c

)2. (11)

C. Additive Margin Softmax Loss

We used additive margin softmax loss [33] to train the
embedding network:

L = � 1

Ntrn

NtrnX

i=1

log
e
s(cos ✓yi�m)

e
s(cos ✓yi�m) +

PNspk

j=1,j 6=yi
es cos ✓j

= � 1

Ntrn

NtrnX

i=1

log
e
s(w̃>

yi
f i�m)

e
s(w̃>

yi
f i�m) +

PNspk

j=1,j 6=yi
e
s w̃>

j f i
,

(12)

where m and s denote the cosine margin and the scaling factor,
respectively. f

i is the affine output of the Dense-BN layer
(Layer 7) in Table I of the i-th training sample, and yi is the
corresponding speaker label. w̃j , which corresponds to the j-
th output node, is the j-th column of the weight matrix fW,
i.e., fW = {w̃j}Nspk

j=1 .

III. ATTENTIVE SHORT-TIME SPECTRAL POOLING

In this section, we propose attentive short-time spectral
pooling (attentive STSP) as an extension of the STSP in
[23]. The principle and the rationale of attentive STSP are
detailed. Its relationships to conventional pooling methods are
explained.

A. Methodology

Fig. 1 (a) shows the process of attentive STSP. Because the
pooling layer sits between the frame-level subnetwork and the
utterance-level subnetwork, spectral analysis is performed on
the output feature maps of the last convolutional layer, not
on the MFCCs or filter-bank features. Given the c-th channel
feature xc = {xc(t)}T�1

t=0 of a convolutional feature map
{xc}Cc=1 2 RC⇥T , its short-time Fourier transform (STFT)
[24] is expressed as follows:

Xc(n, k) =
T�1X

t=0

xc(t)w(t� nS)e�
j2⇡
L kt

, (13)

where w(·) is a window function of length L, S denotes the
sliding step of the window, n indexes the temporal segments
(sliding windows), and k = 0, . . . , L�1 indexes the frequency
components. Note that in this paper, we always make sure that
the STFT length (the length of Fourier transform during STFT)
is equal to the window length L. Equation (13) suggests that
by sliding the window, we may apply multiple STFTs on a
1-D sequence to produce a 2-D spectral feature map with a
temporal index n and a frequency index k for each channel.

It is necessary to compute the spectral representation for
each channel. Rather than brutely average the windowed seg-
ments within the spectrogram |Xc(n, k)|, we apply a weighted
average of these segments by an H-head attention weight
matrix and obtain a spectral sequence for each head as follows:

M
h

c
(k) =

N�1X

n=0

↵
h

n
|Xc(n, k)| , k = 0, . . . , L� 1 (14)

where N = floor((T �L)/S)+1 is the number of windowed
temporal segments, h 2 [1, H] indexes the attention heads,
and ↵h = {↵h

n
}N�1
n=0 denotes the attention weight vector cor-

responding to head h. Similarly, if we attend to the square of
the spectrogram, we obtain the second-order spectral statistics:

P
h

c
(k) =

N�1X

n=0

↵
h

n
|Xc(n, k)|2 , k = 0, . . . , L� 1. (15)

The attention mechanism is shown in Fig. 1(b). Note that
the attention process is operated on the windowed segments
within each spectrogram. We first average the spectrogram for
each channel along the frequency axis to make sure that all
the spectral components within a specific segment share the
same attention weights. The resulting feature map is denoted
as G = {Gc(n)}Cc=1 2 RC⇥N , where

Gc(n) =
1

L

L�1X

k=0

|Xc(n, k)| , n = 0, . . . , N � 1. (16)
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(a)

(b)

Fig. 1. (a) Schematic of attentive short-time spectral pooling. The left part depicts the signal flow within the embedding network, whereas the right part
details the pipeline of attentive STSP. In the green dashed box, the left-most graph in the second row illustrates a temporal feature map extracted from the last
convolutional layer. The bottom-left spectrograms were produced by STFT with length L = 8, and the vertical red boxes on top of the spectrogram denote
spectral arrays to be averaged along the time axis by an attention weight matrix. The actual values of Mh

c and P h
c (only h = 1 is considered here) after

applying (14) and (15) are shown in the middle and the right-most maps in the second row, respectively. The top three plots correspond to the row vectors
with elements xc(t), M1

c (k), and P
1
c (k) in the red boxes, respectively. All the spectral features in the green boxes in the second row are concatenated to

form the final utterance-level statistics (see (18) and (19) for details). (b) Schematic of the attention mechanism used in attentive STSP. The middle feature
map denotes the actual value of G and the node graph illustrates an H-head attention network. The attention weight matrix ASTSP is computed as in (17).

Similar to (4), the attention weight matrix A
STSP = {↵h}H

h=1
is computed as follows:

A
STSP = Softmax

�
tanh

�
G

>
W

STSP
1

�
W

STSP
2

�
, (17)

where W
STSP
1 2 RC⇥D and W

STSP
2 2 RD⇥H are trainable

weight matrices.
During aggregation, we concatenate M

h

c
(0) and the square

roots of the lowest R components of P
h

c
(k) to form the

utterance-level representation of channel c for head h:

z
h

c
=

✓
M

h

c
(0),

q
Ph
c
(0), . . . ,

q
Ph
c
(R� 1)

◆
. (18)

The final utterance-level feature is produced by concatenating
the spectral statistics of all channels and all heads:

z =
�
z
1
1, . . . , z

h

c
, . . . , z

H

C

�
. (19)

B. Rationale and Validity of Attentive STSP
As mentioned in Section I-A, to facilitate the aggregation

process, spectral pooling requires that the energy of the
features should concentrate in the low-frequency region. To
demonstrate that attentive STSP also satisfies this requirement,
we provide empirical evidences by plotting the statistics of
the spectral representations computed from (14) and (15).
The procedure for computing the spectral representations is
as follows:
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Fig. 2. Statistics of Mh
c (k) in (14) and P

h
c (k) in (15) of a randomly selected

channel c with respect to the frequency components k’s under H = 1. Black
diamonds and blue squares denote the means of M

1
c (k) and P

1
c (k) over

24,220 utterances in the VoxCeleb1 development set, respectively. The error
bars represent one standard deviation. The STFT length L for computing
Xc(n, k) in (13) was set to 8. Only the left half of M

1
c (k) and P

1
c (k)

(0  k  4) are plotted due to the symmetry of spectrograms along the
frequency axis.

1) Randomly select 20 utterances from each of the 1,211
speakers in the VoxCeleb1 development set.

2) Extract 40-dimensional filter-bank features from the se-
lected utterances and perform mean normalization with
a sliding window of 3 seconds.

3) Train an embedding system with a single-head attentive
STSP layer (H = 1) using 5,984 speakers from the
Voxceleb2 development set.

4) Extract the feature maps from the last convolutional
layer of the embedding network.

5) Compute the spectral representations M
1
c
(k) and P

1
c
(k)

according to (14) and (15), respectively.
The training procedure of the embedding network is detailed
in Section IV-A.

Fig. 2 shows the statistics of M
1
c
(k) and P

1
c
(k) over

24,220 utterances. We observe that both the M
1
c
(k) and P

1
c
(k)

of a randomly selected channel have most of their energy
concentrated in the low-frequency region. This validates the
feasibility of using attentive STSP for utterance-level aggrega-
tion. Attributed to the desirable statistics of Mh

c
(k) and P

h

c
(k)

in the spectral domain, attentive STSP uses the lowest spectral
components for aggregation.1

The property that most of the energy of the convolutional
features concentrates in the low-frequency part in the spectral
domain also reflects that the frame-level network is a low-
pass filtering system. In [36], Rahaman et al. interpreted the
generalization of DNNs [37], [38] from a Fourier perspective
and revealed a learning bias of DNNs towards low-frequency
functions (spectral bias). Although there is no exact clue that
the low-pass characteristic of the speaker embedding network
is completely attributed to the spectral bias of CNNs, we

1According to Parseval’s theorem [35], the energy of a signal in the
temporal domain is equal to that in the spectral domain.

believe that this bias at least contributes partially to the low-
pass property of the frame-level networks. On the other hand,
in both temporal pooling [2] and statistics pooling [3], global
averaging is used to extract the mean vector of the whole
temporal features. In fact, global averaging can be seen as
mean filtering with a global kernel [39], which is a low-pass
filtering operation. Therefore, the pooling methods in [2] and
[3] have already implicitly exploited the low-pass characteristic
of the CNNs, although they only use the DC components
of the spectral representations. Similar to the vanilla STSP,
the proposed attentive STSP explicitly explores the low-pass
filtering effect and improves these pooling strategies by ac-
counting for more spectral components besides the DC ones.
Thus, attentive STSP preserves more speaker information than
the conventional statistics pooling during aggregation.

Note that for the k-th spectral component (k > 1), because
M

h

c
(k) and P

h

c
(k) are both related to the k-th frequency, the

information in M
h

c
(k) and P

h

c
(k) will be correlated. From

Fig. 2, we observe that P
1
c
(k) decays faster than M

1
c
(k)

and are more energy-concentrated towards the zero frequency.
We hypothesize that using P

h

c
(k) can be more effective than

using M
h

c
(k) alone (see Section V-E for details). Taking

this observation into account and to avoid using repeated
information, we only use

p
Ph
c
(k) (k > 1) in (18) for

aggregation.

C. Relation to Previous Works

Attentive STSP is a generalized STSP in that if we apply
equal attention weights produced from a single-head attention
network on the windowed segments in (14) and (15), i.e., ↵1

n
=

1/N for n 2 [1, N ], attentive STSP reduces to the vanilla
STSP in [23].

Similar to STSP, attentive STSP also generalizes statistics
pooling. Under the condition where single-head attention is
implemented and equal attention weights are applied, if we
set k = 0 and use a rectangular window without any overlap
between successive segments (i.e., S = L) in (14), the DC
component M1

c
(0) = 1

N

P
NL�1
t=0 xc(t) approximates the mean

of xc multiplied by a scaling factor L.2 On the other hand,
setting k = 0 in (15) resembles computing the power of xc.
In the extreme case where S = L = 1, we have P

1
c
(0) =

1
T

P
T�1
t=0 (xc(t))

2. This means that under these conditions,
using the means and standard deviations in statistics pooling
is an analogy to using the DC components (k = 0 in (14) and
(15)) in attentive STSP. Therefore, attentive STSP can be seen
as a generalized statistics pooling method.

Attentive STSP has a close relationship with multi-head
attentive pooling [17] because they both apply an attention
mechanism during aggregation. However, there are two major
differences between these two methods. Firstly, as shown in
(17), attentive STSP performs attention on a series of win-
dowed segments in G, whereas multi-head attentive pooling

2In fact, the DC component should be M
1
c (0) =

1
N |

PNL�1
t=0 xc(t)| under

S = L according to (14). However, in this paper, because each convolutional
layer is followed by an ReLU layer in the speaker embedding network (see
Table I), all the elements of the input feature xc will be non-negative. Thus,
we have M

1
c (0) =

1
N |

PNL�1
t=0 xc(t)| = 1

N

PNL�1
t=0 xc(t) > 0.
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implements an attention network on a sequence of frames as in
(4). Because the spectral components in each segment is (lo-
cally) stationary, segment-level attention can provide attenive
STSP with better robustness against the non-stationarity in the
feature maps than frame-level attention. Secondly, attentive
STSP further preserves the speaker information by retaining
the informative spectral components only. Note that not all the
components in the spectral domain are beneficial for aggre-
gation. Specifically, incorporating high-frequency components
can cause detrimental effect to the speaker embeddings be-
cause these components are very noisy. In contrast, because
multi-head attentive pooling takes all the temporal frames into
account, it always includes all the spectral information during
aggregation (due to the equivalence of information between
the temporal domain and the spectral domain). Therefore,
attentive STSP is advantageous to multi-head attentive pooling
in information distillation.

Note that the windowed segment attention in attentive STSP
is different from the sliding-window attention in [40] and
[41], although both attention mechanisms involve the term
“window.” In particular, the segment-level attention in this
paper is operated on the windowed segments to account for the
local stationarity of the temporal feature maps. The attention
mechanism aims to learn the global relationships across all
of the windowed segments in an utterance. In contrast, the
sliding-window attention takes a series of tokens (equivalent
to frames in speaker verification) as input and only models the
local relationships of the tokens within each sliding window.
The objective is to reduce computation relative to the full
attention [25]. Therefore, these two methods differ completely
in their inputs, operating mechanisms, and objectives.

Interestingly, attentive STSP is also related to the mod-
ulation spectrum of speech [42], [43] because the spectral
representations in attentive STSP and modulation spectrum
are both produced from spectrograms. However, due to the
differences in the input, the way to produce the spectrograms,
and the strategy to compute the spectral representations, at-
tentive STSP differs substantially from modulation spectrum.
First, attentive STSP is operated on the output feature maps
at the last convolutional layer of a speaker embedding net-
work, whereas modulation spectrum takes speech signals as
input. Second, attentive STSP applies STFT to perform time-
frequency transformation, whereas filter-bank analysis is typ-
ically adopted for computing the spectrograms in modulation
spectrum. Third, to compute modulation spectra, handcrafted
bandpass filtering is often applied to the spectrograms, e.g.,
a linear filter is applied to the log-transformed spectrograms
in RASTA processing [44]. In contrast, we compute M

h

c
(k)’s

and P
h

c
(k)’s through a weighted average of the spectrogram

and its square.

IV. EXPERIMENTAL SETUP

Five pooling methods are compared in this paper, i.e., statis-
tics pooling [3], multi-head attentive pooling [17], channel-
and context-dependent statistics pooling [9], STSP [23], and
the proposed attentive STSP. We evaluated the performance of
these pooling methods on the VoxCeleb1 test set (clean) [15],

the VOiCES 2019 evaluation set [45], the SRE16 evaluation
set [46], and the SRE18-CMN2 evaluation set [47].

A. Training of Speaker Embedding Extractor
For the evaluation on VoxCeleb1, only the VoxCeleb2 devel-

opment subset (approximate 2 million utterances from 5,984
speakers) was used for training. Whereas both VoxCeleb1
development and VoxCeleb2 development data were used as
the training set for VOiCES 2019, which amounts to about
2.1 million utterances from 7,185 speakers. We followed the
Kaldi’s VoxCeleb recipe to prepare the training data, i.e.,
using 40-dimensional filter bank features, performing energy-
based voice activity detection, implementing augmentation (by
adding reverberation, noise, music and babble to the original
speech files), applying cepstral mean normalization with a win-
dow of 3 seconds, and filtering out utterances with a duration
less than 4 seconds.3 Totally, we had approximately twice
the number of clean utterances for training the embedding
network.

For both SRE16 and SRE18-CMN2 evaluations, we fol-
lowed the Kaldi’s SRE16 recipe to prepare the training data.4
Instead of using the 40-dimensional filter bank features, 23-
dimensional MFCCs were used for training. The training set
consists of SRE04–10, Mixer 6, Switchboard Cellular, and
Switchboard 2 (all phases). Totally, we had 238,618 utterances
from 5,402 speakers in the training set.

We used the architecture in Table I to implement the
statistics pooling baseline. For systems that use multi-head
attentive pooling, we used an attention network with 500 tanh
hidden nodes and H linear output nodes, where H is the
number of attention heads (see (7)). We used D

0 = 256
in CCDSP (see 8) and the non-linearity is tanh. For STSP,
we used a rectangular window function with length L = 8
and S = L. The attention network in attentive STSP follows
the structure of multi-head attentive pooling and uses various
window functions with length L ranging from 4 to 16. The
step size S of each windowed segment varies from L/4 to L.

The additive margin softmax loss [33] was used for training.
The additive margin m and the scaling factor s in (12) were
set to 0.25 and 30, respectively. The mini-batch size was set
to 128 for all evaluation tasks. There are around 2,337 mini-
batches in one epoch for VoxCeleb1 and VOiCES 2019, and
4,220 mini-batches for SRE16 and SRE18-CMN2. Each mini-
batch was created by randomly selecting speech chunks of
2–4s from the training data. We used a stochastic gradient
descent (SGD) optimizer with a momentum of 0.9. The initial
learning rate was 0.02 and it was linearly increased to 0.05 at
Epoch 20. After that, it was decayed by half at Epochs 50, 80
and 95, respectively. Totally, the networks were trained for 100
epochs. Once training was completed, the speaker embedding
was extracted from the affine output at Layer 7 in Table I.

B. PLDA Training
We used a Gaussian PLDA backend [48] for all evaluations.

For VoxCeleb1, the PLDA model was trained on the speaker

3https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2.
4https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2.
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embeddings extracted from the clean utterances in the training
set for the embedding network. For VOiCES 2019, we trained
the backend on the concatenated speech with the same video
session and used utterances augmented with reverberation and
noise. The PLDA training data for both SRE16 and SRE18-
CMN2 were the embedding network’s training set excluding
the Switchboard part. Before PLDA training, the speaker
embeddings were projected onto a 200-dimensional space by
LDA for VoxCeleb1 and 150-dimensional space for VOiCES
2019, SRE16, and SRE18-CMN2, followed by whitening and
length normalization. The LDA projection matrix was trained
on the same dataset as for training the PLDA models. For
VOiCES 2019, SRE16 and SRE18-CMN2, we also applied
adaptive score normalization [49]. The cohort for VOiCES
2019 was selected from the longest two utterances of each
speaker in the PLDA training data; whereas for SRE16 and
SRE18-CMN2, the cohort was the respective unlabeled devel-
opment set.

V. RESULTS AND DISCUSSIONS

A. Performance on Various Evaluations

The performance was evaluated in terms of equal error rate
(EER) and minimum detection cost function (minDCF) with
Ptarget = 0.01. Table II shows the performance of different
systems on VoxCeleb1 (clean), VOiCES19-eval, SRE16-eval,
and SRE18-CMN2-eval. We can observe that all the pooling
methods outperform the statistics pooling baseline. For atten-
tive pooling, STSP and attentive STSP, we have the following
analyses.

1) Multi-head attentive pooling: For all evaluation tasks,
attentive pooling (Rows 2–5) achieves the best performance
when the number of heads H was set to 2. When H further
increases to 4, attentive pooling exhibits performance degrada-
tion, especially on SRE16 and SRE18-CMN2. Among many
possibilities, the performance degradation can be caused by an
increased number of non-stationary attention weight vectors
produced by the attention network.

Take VoxCeleb1 for example, as shown in the first row of
Fig. 3(a), the feature sequence ({hc,t}T�1

t=0 in (5)) presents a
high non-stationarity along the temporal axis. To fit the drastic
variations of the sequence, the attention network is trained to
produce attention weights of large variations, as evident by
the second row of Fig. 3(a). However, due to the substantial
variations within the weight vectors, it is difficult for the
attention network to generalize well on unseen utterances.
Therefore, the non-stationarity of the attention weights could
remarkably affect the performance of attentive pooling. On
the other hand, a larger H does not necessarily indicate a
larger degree of diversity in the attended feature sequences.
For example, as shown in the third row of Fig. 3(a), the
attended frames by Head 1 largely overlap those by Head 0.
On the contrary, increasing the number of attention heads may
introduce a larger degree of non-stationarity in the attention
weights, causing poorer generalization to unseen data.

For SRE16-eval and SRE18-CMN2-eval, because the ut-
terances in the evaluation sets are much longer than those

in VoxCeleb1,5 the degree of non-stationarity in the attention
weights will be larger than that of the VoxCeleb1 test set. Thus,
the performance degradation on SRE is severer than that on
VoxCeleb1 and VOiCES 2019.

2) Channel- and Context-Dependent Statistics Pooling:
We evaluated the performance of CCDSP with and without
the global context vector (µ and �, see Section II-B3).
As observed in Rows 6–7, including the global statistics in
CCDSP does not make a remarkable difference in perfor-
mance. Although CCDSP achieves comparable performance
with attentive pooling and outperforms the statistics pooling
baseline, it cannot compete with STSP and attentive STSP on
VOiCES 2019 and SREs.

3) STSP: From Rows 8–10 of Table II, we see that STSP
achieves a consistent improvement in performance when the
retained number of low-frequency components R in P

h

c
(k)’s

is increased from 1 to 3. However, further including the 4-
th component will slightly degrade the performance, as can
be seen in Row 11. This may be because there are more
noises in the higher-frequency components. As demonstrated
in [23], the magnitude of the spectral components Pc(k)’s in
STSP approaches 0 when k becomes large. This suggests that
we can hardly learn useful information from these vanishing
components. Instead, the high frequency components can bring
unwanted noise to the network during learning.

Comparing Rows 8–11 and Rows 2–5, we observe that
STSP achieves similar performance as that of attentive pooling
on VoxCeleb1 and VOiCES19-eval, but STSP remarkably
outperforms attentive pooling on both the SRE evaluations.
In fact, although both attentive pooling and STSP aim at
preserving speaker information during aggregation, they fulfill
the task from different perspectives. Specifically, attentive
pooling emphasizes on discriminative temporal frames to en-
hance the information in the aggregated embeddings, whereas
STSP emphasizes discriminative spectral components. Due
to the duality of Fourier transform, the information in the
temporal domain is equal to that in the spectral domain. This
suggests that there should be little difference between attentive
pooling and STSP, as can be verified by the comparison on
VoxCeleb1. However, for long utterances, because of the high
non-stationarity in the convolutional features (as analyzed in
Section V-A1), it can be difficult to extract discriminative
information in the temporal domain. In contrast, the spectral
components in STSP are smoother, making STSP more robust
against the non-stationary feature maps, especially for long
utterances as in the SRE evaluations. Therefore, STSP can
achieve larger performance gain over attentive pooling on both
SRE tasks.

4) Attentive STSP: As shown in Rows 12–17 of Table II,
the best performance of attentive STSP is achieved under R =
2 and H = 1. Compared with attentive pooling (Rows 2–5), a
major advantage of attentive STSP is that because the attention
mechanism is operated on the windowed segments instead of
the frames, the produced attention weight vectors are much
smoother than those by attentive pooling. This can be seen by

5The enrollment utterances of SRE16-eval and SRE18-CMN2-eval are
approximate 60 seconds and the test utterances are 10–60s [46], [47], whereas
the average duration of VoxCeleb1 is 8.2 seconds [15].
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TABLE II
PERFORMANCE ON VOXCELEB1, VOICES19-EVAL, SRE16-EVAL, AND SRE18-CMN2-EVAL. CCDSP REFERS TO CHANNEL- AND

CONTEXT-DEPENDENT STATISTICS POOLING (SEE SECTION II-B3). RECTANGULAR WINDOW FUNCTIONS WERE USED FOR STSP AND ATTENTIVE STSP
UNDER L = S = 8. H DENOTES THE NUMBER OF HEADS IN MULTI-HEAD ATTENTIVE POOLING (SEE (7)) AND ATTENTIVE STSP (SEE (19)), AND R IS

THE NUMBER OF THE LOWEST SECOND-ORDER SPECTRAL COMPONENTS IN STSP AND ATTENTIVE STSP (SEE (15).

VoxCeleb1 VOiCES19-eval SRE16-eval SRE18-CMN2-eval
Row Pooling method EER minDCF EER minDCF EER minDCF EER minDCF

1 Statistics pooling 2.08 0.225 5.78 0.498 8.07 0.499 7.63 0.475

2 Multi-head attentive pooling (H=1) 1.97 0.224 5.69 0.472 8.11 0.480 7.32 0.467
3 Multi-head attentive pooling (H=2) 1.89 0.206 5.41 0.454 7.61 0.472 6.89 0.454
4 Multi-head attentive pooling (H=3) 1.86 0.219 5.53 0.461 8.02 0.475 6.90 0.457
5 Multi-head attentive pooling (H=4) 2.04 0.228 5.61 0.467 8.39 0.484 7.41 0.469

6 CCDSP w/o context 1.92 0.209 5.51 0.450 7.78 0.475 7.11 0.458
7 CCDSP w/ context 1.88 0.211 5.46 0.441 7.69 0.479 7.02 0.457

8 Vanilla STSP (R=1) 2.12 0.229 5.66 0.467 7.11 0.474 6.79 0.465
9 Vanilla STSP (R=2) 1.92 0.210 5.44 0.448 7.07 0.468 6.68 0.457

10 Vanilla STSP (R=3) 1.87 0.213 5.30 0.443 6.77 0.460 6.65 0.443
11 Vanilla STSP (R=4) 1.89 0.226 5.52 0.461 6.90 0.473 6.75 0.451

12 Attentive STSP (R=1, H=1) 1.89 0.211 5.40 0.453 6.65 0.469 6.32 0.453
13 Attentive STSP (R=2, H=1) 1.76 0.193 5.03 0.396 6.30 0.441 6.22 0.434
14 Attentive STSP (R=3, H=1) 1.81 0.195 5.13 0.415 6.40 0.450 6.20 0.437
15 Attentive STSP (R=4, H=1) 1.83 0.220 5.28 0.455 6.47 0.451 6.24 0.445

16 Attentive STSP (R=2, H=2) 1.89 0.207 5.34 0.444 6.50 0.458 6.39 0.441
17 Attentive STSP (R=2, H=3) 1.96 0.238 5.63 0.461 6.76 0.467 6.57 0.448

(a) (b)

Fig. 3. Illustration of the mechanism in (a) multi-head attentive pooling and (b) attentive STSP under H=2. We used a rectangular window function for
attentive STSP under L = S = 8. Both the embedding networks were trained on the Voxceleb2 development data (see Section IV-A). For multi-head attentive
pooling, the feature sequence ({hc,t}T�1

t=0 in (5)) in the first row corresponds to an utterance randomly selected from the VoxCeleb1 development set. For
attentive STSP, the feature sequence is a random row vector in G of (16). Note that the unit in the horizontal axis is the frame index t in (5) and (13).

comparing the second rows of Fig. 3(a) and Fig. 3(b). In fact,
it is natural to obtain smoother attention weights by segment-
level attention because the coarse-grained attention mechanism
has taken the local stationarity in the feature sequences into
account. After all, exploiting the local stationarity in the frame-
level features is a fundamental difference between the STSP-
based pooling and the spectral pooling in [21]. On the other
hand, as explained in Section V-A3, performing aggregation on
long utterances in the spectral domain is superior to that in the
temporal domain. Because of the segment-level attention and
the spectral aggregation, attentive STSP obtains substantially
better performance than attentive pooling, especially on the

SRE16 and SRE18-CMN2.
Compared with STSP, the extra attention mechanism in

attentive STSP can emphasize discriminative segments for in-
formation aggregation, leading to more discriminative speaker
embeddings. This is why attentive STSP outperforms STSP on
all the evaluation tasks, which verifies the motivation of this
paper. An interesting observation is that different from STSP
which achieves the best performance under R = 3, attentive
STSP performs the best when R = 2. This indicates that the
spectral energy of attentive STSP are more concentrated at the
low-frequency region than the STSP, which further facilitates
the aggregation process.
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We also investigated the effect of the number of heads H

on the performance of attentive pooling. Comparing Row 13
and Rows 16–17 in Table II, we see that increasing H does
not offer any performance improvement on all evaluations.
As illustrated in the third row of Fig. 3(b), the sequences
after a two-head attention operation are almost the same. This
suggests that more attention heads do not necessarily create
richer diversity of the attended features. Instead, a larger H can
introduce noises to the pooling operation because of the non-
stationarity in the attention weights, as in attentive pooling in
Section V-A1. If not stated otherwise, in the rest of the paper,
we only used a single-head attention network for attentive
STSP, i.e., H = 1.

B. Impact of Window Functions
In (13), a window function is applied to each temporal

segment before performing DFT. To investigate the effect
of the window function on performance, we implemented
attentive STSP with the rectangular window, the Hanning
window, and the Hamming window [50]. The performance
is compared under L = S = 8 and R = 2.

As shown in Fig. 4(a) and Fig. 4(b), there is no significant
difference in the performance of the three windows. We have
also tried other configurations by varying R and L, but the
results are almost the same. These suggest that attentive STSP
is not sensitive to the window function.

C. Impact of STFT Length
In Section III-A, we used STFT to exploit the local sta-

tionarity of temporal features for aggregation. Although each
frame at the output of the last convolutional layer (Layer 5
in Table I) contains the information of 15 speech frames,
we cannot guarantee that the CNN’s outputs are locally
stationary. Because it is difficult to quantify the degree of local
stationarity in the convolutional feature maps, we varied the
STFT length L to investigate its influence on the performance
of STSP. In the following experiments, the step size S of the
window function is equal to L.

As shown in Figs. 5(a)–5(h), attentive STSP consistently
achieves the best performance when L = 8 on all evalua-
tion tasks. When L further increases to 16, the performance
degrades in most cases, especially on SRE16-eval and SRE18-
CMN2-eval. We hypothesize that the performance degradation
is caused by the violation of the local stationarity required by
STFT. When the STFT length approaches 16, the local sta-
tionarity of STFT may not hold and thus it would be difficult
to obtain effective local information. Another disadvantage of
using L = 16 is that because there are more spectral compo-
nents in the frequency domain than those under L = 8, we
need a larger R to include sufficient speaker information in the
aggregated embeddings. This is not favorable for aggregation.
Therefore we did not account for the case where L is larger
than 16.

Interestingly, the best results under L = 4 are comparable
with those under L = 8 for VoxCeleb1, VOiCES19-eval, and
SRE18-CMN2-eval. However, on SRE16-eval, the setting of
L = 8 remarkably outperforms the case of L = 4. Although

(a) (b)

Fig. 4. (a) EER and (b) minDCF of attentive STSP on VoxCeleb1, VOiCES19-
eval, SRE16-eval, and SRE18-CMN2-eval with respective to various window
functions under L = S = 8, R = 2, and H = 1.

the local stationarity is largely satisfied under L = 4, there
are insufficient components to hold speaker information in the
spectral domain. Note that when L = 4, we can only have
3 spectral components in P

h

c
(k) because of the symmetry in

STFT spectrograms.
From the above analysis, the configuration of L = 8 makes

a compromise between the local stationarity and the spectral
resolution. This is the reason we used L = 8 in Section V-A
and Section V-B.

D. Impact of Step Size
The step size S of windowed segments determines the

degree of overlapping between successive segments and the
number of segments in a temporal feature sequence. Because
these factors can affect the results of STFT, which in turn
affects the performance of STSP. To investigate the impact of
step size on performance, we fixed the STFT length to 8 and
varied S under R = 2.

As shown in Fig. 6(a) and Fig. 6(b), the step size does not
have a substantial impact on the performance of attentive STSP
across all the evaluations. This means that attentive STSP is
not sensitive to the step size of the sliding window. However,
given fixed L, because a larger S results in a smaller number
of windowed segments for a fixed-length feature sequence, the
subsequent computational load of the spectral representations
will be reduced. Therefore, it is favorable to use S = L in
attentive STSP to reduce the computational cost. This is the
reason why we used S = L in the former sections.

E. Effect of Mh

c
(k) and P

h

c
(k)

M
h

c
(k) in (14) and P

h

c
(k) in (15) denote the weighted

average of the magnitude and energy of the spectrogram along
the temporal axis, respectively. A noteworthy observation
is that, as shown in Fig. 2, P

h

c
(k)’s contain more energy

in the low frequency components than M
h

c
(k)’s do.6 This

phenomenon can also be observed from the rightmost two
plots in the middle row of Fig. 1(a), where the number of
salient components of Ph

c
(k) is smaller than that of Mh

c
(k) for

all channels. Based on the observation from both figures, we
may ask a question: Is P

h

c
(k) more effective than M

h

c
(k) for

attentive STSP due to its more energy-concentrated property?

6The magnitude of P
h
c (k)’s presents a faster attenuation to zero than

M
h
c (k)’s.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Performance of attentive STSP on (a) and (e) VoxCeleb1, (b) and (f) VOiCES19-eval, (c) and (g) SRE16-eval, and (d) and (h) SRE18-CMN2-eval
with various STFT lengths under the setting H = 1 and L = S, where L and S are the STFT length and the step size of the sliding window, respectively.
The black dashed line indicates the best result in the individual subfigure.

TABLE III
COMPARISON OF ATTENTIVE STSP (ROWS 1–4) AND ITS MODIFIED VERSION (ROWS 5–9) WITH RESPECTIVE TO THE PERFORMANCE ON VOXCELEB1,
VOICES19-EVAL, SRE16-EVAL, AND SRE18-CMN2-EVAL. R IS THE NUMBER OF THE LOWEST SECOND-ORDER SPECTRAL COMPONENTS (Ph

c (k)) IN
(15). THE NUMBER OF ATTENTION HEADS WAS SET TO H = 1.

VoxCeleb1 VOiCES19-eval SRE16-eval SRE18-CMN2-eval
Row Pooling method EER minDCF EER minDCF EER minDCF EER minDCF

1 Attentive STSP (R=1) 1.89 0.211 5.40 0.453 6.65 0.469 6.32 0.453
2 Attentive STSP (R=2) 1.76 0.193 5.03 0.396 6.30 0.441 6.22 0.434
3 Attentive STSP (R=3) 1.81 0.195 5.13 0.415 6.40 0.450 6.20 0.437
4 Attentive STSP (R=4) 1.83 0.220 5.28 0.455 6.47 0.451 6.24 0.445

5 Attentive STSP w/ only Mc(0) (R=0) 2.46 0.274 6.00 0.478 8.47 0.523 8.17 0.528
6 Attentive STSP w/o Mc(0) (R=1) 1.87 0.201 5.38 0.462 6.54 0.472 6.40 0.458
7 Attentive STSP w/o Mc(0) (R=2) 1.84 0.176 5.27 0.432 6.35 0.455 6.16 0.441
8 Attentive STSP w/o Mc(0) (R=3) 1.88 0.187 5.33 0.417 6.42 0.458 6.23 0.438
9 Attentive STSP w/o Mc(0) (R=4) 1.87 0.194 5.37 0.434 6.51 0.461 6.27 0.442

(a) (b)

Fig. 6. (a) EER and (b) minDCF of attentive STSP on VoxCeleb1, VOiCES19-
eval, SRE16-eval, and SRE18-CMN2-eval with respective to the step sizes of
the sliding window under L = 8, R = 2, and H = 1.

To answer the above question, we modified the procedure
of attentive STSP in Section III-A slightly by either excluding
M

h

c
(0) or only including M

h

c
(0) in (18) and (19). The results

of the modification are shown in Rows 5–9 of Table III.
Comparing Rows 1–4 and Rows 6–9, we observe that the
attentive STSP without M

h

c
(0) obtains comparable results

with the standard attentive STSP consistently across all the

evaluations under various R’s. This observation suggests that
once P

h

c
(k)’s are used in the aggregation process, Mh

c
(0) does

not offer any effective performance gain. This argument can
be further demonstrated by the comparison between Row 5
and Row 6. For example, when M

h

c
(0)’s are used alone as

the aggregated statistics, the performance of attentive STSP
degrades substantially, as can be seen in Row 5. In contrast,
using P

h

c
(0)’s alone (Row 6) remarkably outperforms that

using M
h

c
(0)’s alone (Row 5) across all the evaluations.

Therefore, using P
h

c
(0) alone is much more effective than

using M
h

c
(0) only for aggregation.

However, as verified in Section III-C, attentive STSP is a
generalized statistics pooling method in that using the DC
components of the spectral representations is an analogy to
using the means and standard deviations in statistics pooling.
Therefore, to make attentive STSP complete and compatible
with the historical statistics pooling method, we still keep
M

h

c
(0) in attentive STSP.



13

TABLE IV
PERFORMANCE OF VARIOUS POOLING METHODS ON TRUNCATED TEST UTTERANCES. STATS AND MHAP REFER TO STATISTICS POOLING AND

MULTI-HEAD ATTENTIVE POOLING (H=2), RESPECTIVELY. Full MEANS THAT WE USED THE ORIGINAL DURATION OF THE TEST UTTERANCES WITHOUT
TRUNCATION. THE medium DURATION DENOTES 5S FOR VOXCELEB1 AND VOICES19, AND 20S FOR SRE16 AND SRE18-CMN2. SIMILARLY, THE

short DURATION REPRESENTS 2S FOR VOXCELEB1 AND VOICES19, AND 5S FOR BOTH SRES.

VoxCeleb1 VOiCES19-eval SRE16-eval SRE18-CMN2-eval
Row Test Utt. Dur. Pooling method EER minDCF EER minDCF EER minDCF EER minDCF

1

Full

Stats 2.08 0.225 5.78 0.498 8.07 0.499 7.63 0.475
2 MHAP 1.89 0.206 5.41 0.454 7.61 0.472 6.89 0.454
3 CCDSP 1.88 0.211 5.46 0.441 7.69 0.479 7.02 0.457
4 STSP 1.87 0.213 5.30 0.443 6.77 0.460 6.65 0.443
5 Att-STSP 1.76 0.193 5.03 0.396 6.30 0.441 6.22 0.434

6

Medium

Stats 2.35 0.264 8.59 0.697 9.52 0.580 9.21 0.571
7 MHAP 2.27 0.265 8.36 0.642 9.27 0.563 8.74 0.554
8 CCDSP 2.38 0.267 8.28 0.680 9.37 0.571 8.79 0.561
9 STSP 2.19 0.251 8.23 0.653 8.55 0.557 8.45 0.542

10 Att-STSP 2.17 0.242 8.04 0.614 8.25 0.545 8.33 0.544

11

Short

Stats 5.81 0.564 13.80 0.902 16.33 0.760 14.48 0.777
12 MHAP 5.72 0.542 13.67 0.861 16.01 0.755 14.53 0.769
13 CCDSP 5.78 0.548 13.69 0.862 20.52 0.828 15.70 0.834
14 STSP 5.63 0.538 13.46 0.858 15.82 0.745 13.60 0.768
15 Att-STSP 5.65 0.535 13.44 0.843 15.75 0.742 13.79 0.765

F. Effect of Test Utterance Duration

From Table II, we observe that compared with the baseline,
the performance improvement of attentive STSP on SREs
is much larger than that on VoxCeleb1 and VOiCES 2019.
This observation suggests that attentive STSP can be more
effective on long utterances (SREs) than on short ones (Vox-
eleb1 and VOiCES 2019). To investigate whether the superior
performance gain of attentive STSP is related to the utterance
duration or the dataset, we compared the performance of
various pooling methods by truncating the test utterances.

In the experiments, we kept the duration of the enrollment
utterances unchanged on all datasets. For VoxCeleb1 and
VOiCES 2019, we randomly truncated the test utterances into
2s and 5s; whereas the test utterances are truncated to 5s and
20s for SRE16 and SRE18-CMN2. Note that if the duration of
the original utterances is less than the target duration, we used
the full-length utterances. The results are shown in Table IV.
For each setting, the performance is an average of 5 runs.

From Table IV, we observe that the performance of all pool-
ing methods degrades severely when the test utterances were
truncated. Generally, attentive STSP outperforms the other
pooling strategies consistently across different test durations.
The performance improvement of attentive pooling, CCDSP,
STSP, and attentive STSP with respective to statistics pooling
is shown in Fig. 7. We observe that the performance gain
of attentive STSP becomes larger when the test utterances
are longer. Besides, the performance improvement of attentive
STSP consistently exceeds that of the other pooling methods.
For example, in SRE16, when the duration of test utterances
increases from short (5s) to medium (20s), the EER improve-
ment (EERStats � EERAtt�STSP) increases from 0.58% to
1.27%. This observation suggests that attentive STSP favors
long utterances and that attentive STSP is more resilient to the
duration variations in the test utterances.

G. Relationship Between Attention Weights and Phonemes

An interesting observation from Fig. 3 is that the attention
weight vectors could indicate which frames or windowed
segments in a feature map are discriminative. With the help
of a speech recognizer, we can conduct a statistical analysis
on the relationship between the attention weights and the
phonemes.

For each speaker in the Voxceleb1 development set, we
randomly selected 20 utterances, which amount to 24,220
utterances in the analysis. We followed the Kaldi’s Librispeech
recipe7 and used the available pre-trained speech recognizer8

to produce the phoneme posteriors. 39 phonemes (excluding
SIL and SPN) in the ARPAbet encoding were considered.
For each frame, a phoneme posterior vector was produced
and the phoneme with the highest value was considered the
recognized phoneme. Also, we extracted the attention weights
in attentive pooling and attentive STSP after the training of the
embedding extractors (see Section IV-A). Attention weights of
individual frames were averaged according to the recognized
phonemes. The relationship between the attention weights and
the phonemes is shown in Fig. 8. We observe that the attention
weights of attentive pooling and attentive STSP exhibit a
similar trend with respect to the phonemes. In particular, both
pooling methods emphasize the phonemes IH, OW, Z, S, and
T. However, there are also phonemes for which the emphasis
of the two methods is different. For example, attentive STSP
pays more attention to UW, V, W, IY, and N than attentive
pooling. This analysis suggests that when phoneme labels are
available, better discriminative embeddings can be obtained by
highlighting the discriminative phonemes such as OW, IH, S,
Z, N, T, etc.

7https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
8http://kaldi-asr.org/models/m13
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(a)

(b)

Fig. 7. Improvement in (a) EER and (b) minDCF with respective to statistics pooling. MHAP: multi-head attentive pooling; CCDSP: channel- and context-
dependent statistics pooling; STSP: short-time spectral pooling; Att-STSP: attentive short-time spectral pooling (proposed).

Fig. 8. Relationship between the attention weights and the phonemes on VoxCeleb1 development data. The attention weights (illustrated in the vertical axis)
were normalized across the phonemes.

VI. CONCLUSIONS

In this paper, we proposed a novel attentive STSP for
speaker embedding from a Fourier perspective. Attentive STSP
exploits two levels of information enhancement strategies
during the aggregation process: 1) applying self-attention
on the windowed segments of STFT to emphasize on the
discriminative information and 2) retaining the low-frequency
components in the spectral domain to eliminate the effect of

the noisy high-frequency information. Evaluation results on
VoxCeleb1, VOiCES19-eval, SRE16-eval, and SRE18-CMN2-
eval show that attentive STSP consistently outperforms multi-
head attentive pooling and the vanilla STSP, suggesting that
it is beneficial to apply segment-level attention and perform
aggregation in the spectral domain for SV.
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