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Abstract—Complex reasoning aims to draw a correct inference
based on complex rules. As a hallmark of human intelligence, it
involves a degree of explicit reading comprehension, interpre-
tation of logical knowledge and complex rule application. In
this paper, we take a step forward in complex reasoning by
systematically studying the three challenging and domain-general
tasks of the Law School Admission Test (LSAT), including ana-
lytical reasoning, logical reasoning and reading comprehension.
We propose a hybrid reasoning system to integrate these three
tasks and achieve impressive overall performance on the LSAT
tests. The experimental results demonstrate that our system
endows itself a certain complex reasoning ability, especially
the fundamental reading comprehension and challenging logical
reasoning capacities. Further analysis also shows the effectiveness
of combining the pre-trained models with the task-specific rea-
soning module, and integrating symbolic knowledge into discrete
interpretable reasoning steps in complex reasoning. We further
shed a light on the potential future directions, like unsupervised
symbolic knowledge extraction, model interpretability, few-shot
learning and comprehensive benchmark for complex reasoning.

Index Terms—LSAT, complex reasoning, analytical reasoning,
logical reasoning, reading comprehension.

I. INTRODUCTION

OMPLEX reasoning aims to comprehend and analyze the

given information, and apply complex rules to draw cor-
rect inference [1} 2]. As an essential ability for complex prob-
lem solving, it provides tremendous opportunities for many
real-world scenarios, such as mathematical word problems,
negotiation and argument, and medical diagnosis [3, 4,15, 6]]. In
recent years, having a computer pass admission examinations
is a hot AI challenge towards complex reasoning, which
offers an objective and accurate measurement with a certain
difficulty. Fujita et al. [7]] design a system to sit the Japanese
National Center Test for University Admissions. Gaokao, as
the National College Entrance Examination of China, also
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has been widely studied [8} 9]]. Although encouraging results
have been achieved in taking these real high-school exams,
these works study domain-specific and limited complex rea-
soning capabilities. They cover different subjects and each
is separately processed with subject-specific knowledge [10].
For example, the annotated formulas representing physics,
mathematics and biology knowledge are usually assumed
to be provided to solve corresponding problems [7, [11],
while history and geography questions are primarily solved
by retrieving relevant information supplemented by shallow
reasoning to match the answer [[12} [13].

To take a step towards a more challenging and domain-
general complex reasoning ability, we focus on the Law School
Admission Test (LSAT)] which is one of the most difficult
exams covering multiple domains. LSAT is a standardized test
administered for prospective law school candidates worldwide,
which mainly assesses their general complex reasoning skills,
including analytical reasoning, logical reasoning, and reading
comprehension capabilities in general domains. Correspond-
ingly, the LSAT can be categorized into three tasks: (1)
analytical reasoning (AR), measures the ability to analyze a
scenario ruled by a set of constraints, and determine which
option satisfies or conflicts with all the constraints. (2) logical
reasoning (LR), a task that focuses on the logical analysis of
texts and performing logical inference to deduce implications
from asserted ones. (3) reading comprehension (RC), revolves
around the ability to deeply understand long-form materials,
and locate the relevant pieces to distinguishing what is the
case by summarizing or comparing highly abstract concepts,
such as attitudes and principles. Three examples of LSAT tasks
are listed in Figure |1, which are all quite challenging and
involve complex reasoning processes. Therefore, we aim to
systematically explore the progress and challenges of complex
reasoning, and take the real-world LSAT tasks which have
been rarely explored [[14] as a testbed.

Existing methods for complex reasoning can be summarized
into three types, namely, symbolic models, neural models, and
neural-symbolic models [15} [16]. Symbolic models identify
the discrete symbols (like entities and logical functions) as
basic reasoning units, and perform explicit inferences upon
symbolic representations. With controllable and interpretable
reasoning steps, yet they largely depend on expert-defined
rules which are inflexible for different datasets and lack
resilience against data noises [17]. Neural models mimic the
neuron connections in the human brain to learn the semantics

Uhttps://www:lsac:org/Isat/,
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[Example 1 — Analytical Reasoning]
Context:
Seven directors -A, B, C, D, E, F, and G- serves on the

X committee or the Y committee. Constraints

If A serves on X, then B serveson Y. (C-1)

If C serves on X, then D and E serve on Y. (C-2)
F serves on a different committee with G. (C-3)
E serves on a different committee with A. (C-4)
If G serves on X, so does B. (C-5)

Question:

If D and F both serve on the X committee, (C-6)

then which one of the following could be true?
A. A and C both serve on the X committee.
To(C,X)&To(D,Y) confict with C-6
B. A and E both serve on the Y committee.
To(A,Y)&To(E,Y) confict with C-4
C. B and G both serve on the X committee.
To(G,X)&To(F,Y) confict with C-6
D. C and E both serve on the Y committee.
To(C,Y)&To(E,Y) satisfying all constraints
E. G and E both serve on the X committee.
To(G,X)&To(F,Y) confict with C-6

Positions:
(X committee, Y committee)

Participants:
(A,B.C.D.EF,G)

| processing program.

[Example 2 — Logical Reasoning]

If you have no keyboarding skills at all, you will nnkable
to use a computer. And if you are not able to use a computer,
you will not be able to write your essays using a word

symbol v |

Question:

must be true?

A. If you have some keyboarding skills, you will be
able to write your essays using a word processing
program. (a =) not match

B. If you are not able to write your essays using a
word processing program, you have no keyboarding
skills. (=Y — —a) not match

C. If you are able to write your essays using a word
processing program, you have at least some
keyboarding skills. (y = a) match

D. If you are able to use a computer, you will probably
be able to write your essays using a word
processing program. (B —y) not match

E. If you are not able to write your essays using a
word processing program, you are not able to use a
computer. (=y — = B) not match

Logical Symbols:

[Example 3 — Reading Comprehension]
Context:
<P1>Is it necessary for defense lawyers to believe that the clients
they defend are innocent of the charges against them? Some legal
scholars hold that lawyers' sole obligation is to provide the best
defense they are capable of, ... </P1>
<P2> But such a position overlooks the fact that the defense
lawyer's <Mark1>obligation</Mark1> is twofold: to the
defendant, certainly, but no less so to the court and, by extension,
to society. ... whether the client is guilty but the lawyer sincerely
believes the client may well be innocent, the lawyer should of
course try to prove that the client is innocent.</P2>
<P3> The lawyer's obligation to the court and to society also
ultimately benefits the defendant ... Lawyers should not be mere
mouthpieces for a defendant but instead advocates for the rights
of the defendant given the facts of the case. </P3>
Question:
Which one of the following most accurately describes the author’s
attitude toward the twofold obligation introduced in lines 20-23?
A. confident that it enables defense lawyers to balance their
competing responsibilities to the court and to society.
B. certain that it prevents defense lawyers from
representing clients whom they know to be guilty.
C. satisfied that it helps defense lawyers to uncover the
relevant facts of a case

Constraints to Programs:
C-1: IfThen({To(A4,X)},{To(B,Y)})
C-2: IfThen({To(C, X)},{To(D,Y)&To(E,Y)})
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D. pleased that it does not interfere with common defense
strategies used by defense lawyers

E. convinced that it does not represent a conflict of interest
for defense lawyers

Contrapostion ! Relevant Pieces:
The lawyer's obligation to the court and to society also ultimately

benefits the defendant.
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Fig. 1: Three examples of LSAT tasks with the required reasoning processes. For AR, it needs to understand the knowledge
of participants, positions, and constraints, and deduce the legitimate option. For LR, the elementary logical symbols and
expressions need to be identified to logically infer the implicit expression. For RC, it requires locating the relevant pieces by
the positional indicators and abstract the answer. The options in green mean the correct answers of three examples.

of data with continuous vectors and implicitly infer the answer,
which are robust to the ambiguous and noisy data but short
of interpretability. To achieve synergies among the advantages
and circumvent the limitations of symbolism and connection-
ism, neural-symbolic models integrate both symbolic logic and
continuous representation to reason out the answer [18]].

From the above perspectives, we design a hybrid reasoning
system for three LSAT tasks. For AR, we first propose a
symbolic system [[19] which designs rules to identify symbolic
participants and constraints, and deterministically deduce the
legitimate solutions. We then attempt a neural method utilizing
a graph network for modeling constraints between participants.
We also come up with a neural-symbolic model which neurally
parses the textual constraints into programs and discretely
executes the programs to reach the answer. For LR, we propose
a neural-symbolic logic-driven system [20], which employs a
symbolic module to extract logic from the texts and infer the
entailed logic by logical laws, then utilizes a neural module to
encode the inferred logic for answer prediction. For RC, we
propose a neural Transformer-based approach with an external
multi-head attention mechanism [21] and passage positional
information for better understanding the interaction between
context and question.

On the whole, our overall system integrating three tasks
achieves an accuracy of 56.8% on the LSAT exams, which
is comparable to the median for human test taker scores. Our
systems for RC and LR even have a chance to be admitted to
the top 30 and top 58 law schools, respectively. The results
show the effectiveness of our systems for modeling complex
reasoning abilities, notably the fundamental reading compre-

hension and challenging logical reasoning capability. The over-
all illustration of our investigation on LSAT towards complex
reasoning is shown in Figure [2] Through a systematical study
of three LSAT tasks, we not only achieve great performance
on LSAT, but also make some progress towards complex
reasoning. We further investigate the emerging challenges and
inspire potential future directions of complex reasoning. For
example, automatically extracting symbolic knowledge in an
unsupervised manner, few-shot complex reasoning, improv-
ing the interpretability of the neural reasoning system, and
building a comprehensive benchmark, are all essential to be
explored to promote complex reasoning research.

In the rest of the paper, we first list some related work
of complex reasoning and corresponding advanced methods.
We also preliminarily introduce the tasks, baseline models and
datasets of LSAT in § [ll Then we separately introduce the
challenges, detailed methods, experimental results and further
analysis for analytical reasoning, logical reasoning and reading
comprehension tasks in § § [V] and § respectively.
We further summarize our overall performance on LSAT, and
discuss the major challenges and future directions in complex
reasoning in § [VII] We finally draw our conclusion in § [VII]

II. RELATED WORK
A. Taxonomy of Complex Reasoning

To encourage the progress of artificial intelligence systems
towards deeper human-like comprehension and reasoning,
there has been a surge in complex reasoning research in recent



Reasoning Tasks of LSAT

Analytical Reasoning: requires to
analyze a scenario ruled by set of
constraints, and perform deductive
reasoning to draw conclusions

Logical Reasoning: aims to logically
analyze arguments and perform logical
inference to dissect, critically evaluate,
and complete or refute arguments

Reading Comprehension: requires to
understand long-form, complex
materials and precisely distinguishing
what is the correct statement

Methods

Symbolic Model: Analytical
Reasoning Machine (ARM)

Neural Model: Constraint Graph
based Analytical Reasoning (CGAR)
Neural-Symbolic Model: (NSAR)
a neural program parser with a
symbolic execution engine

Neural-Symbolic Model: Logic-
driven Reasoner (LReasoner)
utilizing a logic-driven context
extension framework and data
augmentation algorithm

Neural Model: Position-aware
Dual Multi-head CoAttention
module (P-DUMA) based on pre-
trained language models with
transfer learning from RACE

Results & Difficulties

Achieving an considerable improvement over
the baseline pre-trained model

Modeling multiple constraints and mitigating
error accumulation

Injecting world commonsense knowledge
Augmenting more analytical reasoning data

Can be admitted to the top 58 law schools

Dealing with different logical reasoning types
Identifying logical structure among the text
Directly encoding the symbolic logical
structure for utilization

Can be accepted by the top 30 law school

Designing a long-form sequence encoder
Comparatively reading multiple passages
Improving evidence retrieval and predicting
answers from noised evidence

J

A4

Overall Performance & Positive Findings

» Our overall system achieves an impressive complex reasoning ability,

which is comparable with the median candidate scores on LSAT.
» The combination of the pre-trained models and the task-specific
reasoning modules is effective for complex reasoning.
» Symbolic knowledge plus discrete interpretable reasoning steps is
essential in complex reasoning.

Challenges & Directions in Complex Reasoning

1. Extracting symbolic knowledge in an unsupervised manner

2. Improving the interpretability of neural reasoning systems

3. Few shot complex reasoning with transfer learning and
data synthesis

4. Building a comprehensive benchmark to promote research
in complex reasoning

Fig. 2: The overall illustration of our investigation from LSAT towards complex reasoning.

years. We first investigate existing works on several major
aspects of complex reasoning.

a) Logical Reasoning: An increasing number of tasks
and datasets have been introduced targeting logical reasoning.
Natural Language Inference [22} |23} 124]] aims to determine the
entailment relationship between a hypothesis and a premise,
which requires relatively simple logical reasoning ability at
the sentence level. Several question answering datasets have
been proposed for promoting logical reasoning ability, i.e.,
LogiQA [25], ReClor [14]], which are sourced from public
standardized exams. However, previous methods usually fail
to model the discrete logical inference process explicitly.
This work also dives into logical reasoning, and considers
understanding the elementary logical structure and perform
explicit logical inference to draw a logical conclusion.

b) Commonsense Reasoning: Commonsense reasoning
requires utilizing commonsense knowledge to reason out the
answer, which attracts great concern of the research commu-
nities. Recently many benchmarks have been introduced to as-
sess reasoning capabilities over different commonsense knowl-
edge, such as domain-specific knowledge [26l 27, 28], general
semantic knowledge [29] and inferential knowledge [30].
Current methods, however, are still not robust enough to be
deployed in the open domain and ignore directly modeling
commonsense through symbolic integration [31]. How to
incorporate symbolic commonsense and reason over relevant
knowledge will be substantially explored [32} 33].

¢) Multi-Hop Reasoning: Multi-hop reasoning is another
widely studied complex reasoning task recently [34} |35l 36|
37, which requires reasoning across multiple pieces of sen-
tences or documents to model multi-hop relationships to reach
the answer. Conversational question answering tasks [38 [39]]
also involve multi-hop reasoning over multi-turn utterances.

Constructing correct multi-hop reasoning chains (conversation
flows) has been a key challenge for these tasks, and it is
an essential research direction to effectively model multi-hop
reasoning paths over multiple passages[40, 41].

d) Numerical Reasoning: Numerical reasoning involves
performing discrete arithmetic reasoning over quantities to
solve mathematical word problems[42} |43 44| /45]], which is a
fundamental and challenging task. Previous work translates the
textual math word problem into an expression or an expression
tree and utilizes arithmetic knowledge to solve it [43, 146, 47].
With weak supervision, how to improve the accuracy of
generated expression trees is worth further study [48| 49].

B. Advanced Methods of Complex Reasoning

Advanced methods to solve complex reasoning problems,
no matter what specific reasoning skill is required, can be
summarized as following three types: symbolic models, neural
models and neural-symbolic models [[L3} 16, [17].

a) Symbolic Models: As complex reasoning requires
discrete reasoning operations over reasoning units, most pre-
vious studies for complex reasoning are symbolic expert
systems [50, 51, 152, 53]. They design a set of rules or
templates to identify basic units for reasoning as symbols,
such as the quantities and arithmetic signs for numerical rea-
soning [154} 155} [56]], relevant triples and paths from knowledge
graph for commonsense reasoning [57], etc. They then perform
deterministic and explicit inferences upon discrete elementary
units to predict the answer. The symbolic models provide
sound readability and interpretability. However, it requires
expert knowledge and tremendous human efforts in designing
rules, which makes it inflexible to scale across different
datasets and lack resilience against data noises. Moreover, the



finite and discrete symbolic representations are insufficient to
depict all the intrinsic reasoning structures.

b) Neural Models: Neural models mimic the neuron con-
nections in the human brain [58,|59] and apply neural networks
to implicitly represent the abstracted semantics of input text
and knowledge with continuous vectors, which are robust to
the ambiguous and noisy data [60, 61]. For example, pre-
trained language models have achieved superior performance
on many comprehensive tasks [62, 163, |64]. However, the
decision process of neural models is always a black box,
which makes the prediction lacks explainability and reliability.
Whether the neural models show the reasoning ability or
just capture the data bias to achieve high accuracy is also a
question. Graph neural networks [65, 166] and neural module
networks [67, |68|] are also introduced to partly imitate the
human reasoning process to make up interpretability. However,
these methods still perform an implicit inference to reason out
the answer without a clue as to why and how. Besides, neural
models depend a lot on training data and are computationally
expensive to train, and the performance will sharply decrease
with limited data and resource.

c) Neural-Symbolic Models: To combine the advantages
and circumvent the shortcomings of both symbolic and neural
methods, neural-symbolic models which integrate symbolic
logic and neural representation are widely studied [69, [70}
71,172, [73]. Some work employs a neural module to parse the
language into executable programs [74, 18] and deterministi-
cally executing the programs to find the answer in a symbolic
module. For example, the neural-symbolic models for numeri-
cal reasoning translate the input texts into expressions through
a neural generation model and then discretely execute the ex-
pressions [43) 146} 47]]. Other work first designs rules to extract
the reasoning units and explicitly conduct inference over them
in a symbolic module. They then utilize a neural module to
learn continuous vectors for symbolic representations to deal
with the uncertainty of data [75, [76, 20]. Specifically, for
commonsense and multi-hop reasoning, the symbolic module
can be designed to identify relevant knowledge and multi-hop
reasoning chain, respectively, and then encode them into the
neural module to match the answer [77, [78, [79, [80]. However,
how to generate high-quality programs under weak supervi-
sion and extract symbolic reasoning units in an unsupervised
manner remains an elusive challenge.

C. Examination-based Question Answering

Recent years have witnessed an emerging trend in answering
complex questions collected from human standardized ex-
aminations at a different level of education, which is more
difficult and measurable. The Todai Robot project aims to
create a system that can pass the Japanese National Center
Test for University Admissions [7]. Aristo Challenge focused
on solving the questions of Elementary School Science and
Math Tests which is for 6-11 year olds [81]. A similar project
studying the National College Entrance Examination of China
(Gaokao) also has been launched [8} 9} [12]. These challenges
deal with various subjects, like mathematics, biology, physics,
geography, history, and drive the progress of Al systems

towards complex problem solving and reasoning. However,
these questions rely heavily on domain-specific expressions
and knowledge like formulas in mathematics and physics,
and quotes in Classical Chinese, which ignore the domain-
general complex reasoning ability. Besides, the studies of
these tasks have hit the bottleneck of commonsense-based
reading comprehension and general intelligence, which fail to
be admitted to key universities [82].

RACE dataset [83] is introduced to remove domain re-
strictions by collecting the general English exams for middle
and high school Chinese students. However, around 70% of
questions are in the category of word matching, paraphrasing
or single-sentence reasoning, which are relatively simple.
LogiQA [25] collected from the National Civil Servants
Examination of China and ReClor [14] from the Graduate
Management Admission Tests and Law School Admission
Tests both require deeper logical reasoning. In this paper, we
not only examine the logical reasoning capability of LSAT, but
also challenging analytical reasoning and complicated reading
comprehension abilities to systematically explore complex
reasoning.

III. PRELIMINARIES
A. Task Definition

The LSAT problems are formulated as a multiple-choice
question answering task, which is described as follows. Given
a context ¢, a question q together with five candidate options
0 = 01, 02,03, 04, 05, only one option is need to be predicted
as the most plausible answer o,.

B. Baseline Model

Pre-trained Transformer-based language models, i.e., BERT
[62], RoBERTa [63] and ALBERT [64], achieve impressive
performance on multiple-choice question answering, which
can be employed as the baseline model of all LSAT tasks.
Specifically, the context, the question and an option are
concatenated as the input for encoding, which is formulated
as [CLS] ¢ [SEP] q || o; [SEP] and || is the concatenation
operator. Given five options, five concatenated sequences are
constructed to be encoded. The representations of special token
[CLS] in five sequences are fed into a classification layer to
get the probabilities of options as their scores, and the option
with the highest score is selected as the answer. The models
are fine-tuned with cross-entropy loss on the training set.

C. Dataset

The LSAT datasets are collected from previous exams from
1991 to 2016, including a total of 90 examinations. Each exam
roughly contains 100 questions, among which 1/2 are logical
reasoning questions, 1/4 are analytical reasoning questions
and the rest 1/4 are reading comprehension questions. For
a small proportion of questions with only four options, we
randomly select one of the wrong choices as a supplemental
option for each instance. We name datasets of analytical
reasoning, logical reasoning and reading comprehension tasks
as AR-LSAT [19], LR-LSAT and RC-LSAT, respectively. Each



Datasets | Statistics | Train Val Test Total
awisar | Lo | 300 5 S oo
LRLSAT | 0 | s s06 10 4
Resar | feomet | 980 A0 s

TABLE I: The detailed statistics of LSAT datasets. # context
and # question are the numbers of contexts and questions in
each split.

dataset is further split into training, validation and testing sets.
The detailed statistics of each dataset are listed in Table [I

As collected from standardized examinations, these LSAT
datasets are of high quality and difficulty for complex rea-
soning, and are accompanied by an accurate evaluation metric
and relatively limited data size. The data sparsity makes these
reasoning tasks more difficult to be solved by traditional data-
driven approaches that purely learn data patterns from massive
data. Therefore, the models with solid complex reasoning
abilities need to be developed and decrease the dependency
on the data size.

IV. ANALYTICAL REASONING

A. Challenges in Analytical Reasoning

Analytical Reasoning aims to analyze a scenario involving a
set of predefined constraints and perform deductive reasoning
to draw correct solutions. As no previous work or benchmark
dataset completely studies this challenging task, we introduce
a new dataset, namely AR-LSAT [19], to foster research on
this area. Most of the questions in AR-LSAT can be viewed
as a constraint satisfaction problem [84], which needs to find
legal assignments of positions to participants satisfying the
given constraints. All participants, positions and constraints
are described in the context. Take a look at the first example
in Figure[I] two positions (i.e., X committee and Y committee)
need to be assigned to seven directors (i.e., A, B, etc.) under a
set of constraints. To solve such problems, the system requires
understanding the game settings including the compositions of
participants, the possible values of positions, and interpreting
the logical meaning of the constraints descriptions. Then it
involves conducting inference over constraints to deduce the
answers.

The analytical reasoning problems are quite challenging.
The situation descriptions in the context are diverse with
no domain restriction. A more accurate and comprehensive
understanding of the context is also required, because each
piece of the context is significant in building the whole
reasoning chain. Besides, the five options of a question tend
to be similar to each other and the answer never explicitly
appears in the context. Therefore, the AR task cannot be
superficially solved by relevant information extraction and
shallow contextual matching.

B. Symbolic Model: ARM

To explicitly model discrete analytical reasoning steps, we
start with a symbolic model called Analytical Reasoning
Machine (ARM) [19], which can answer the question by pre-
defined rules and deterministic deduction. To solve questions
like the first example in FigurdI] we propose to perform a four-
stage reasoning process: 1) extracting participants, positions,
constraints from the context and question; 2) interpreting
constraints into executable programs, i.e., a combination of
logical functions; 3) generating a set of legitimate assignments
by executing all programs; 4) selecting the most plausible
option by matching the legitimate assignments. Next, we will
introduce these steps in detail.

1) Arguments Extraction: We first extract participants, po-
sitions and constraints from the context to have a primary
understanding of the problem. Specifically, we use a Named
Entity Recognition model [85] to extract entities from the
context and group them into participants and positions. Entities
that appear together in the leading sentence of the context
are recognized as participants or positions, where participants
always appear before positions. We also identify constraints by
judging whether a sentence restricts the assignments between
participants and positions. As the example in Figure [T} seven
participants (i.e., A,B,C,D,E,F,G) need to be assigned into two
positions (i.e., X committee and Y committee). All sentences
except the first are recognized as constraint descriptions.

2) Constraints Interpretation: We next interpret natural
language constraints into executable programs based on three
types of predefined functions, i.e., relational, counting and
compositional functions. The relational function involves par-
ticipants and positions as arguments and focuses on the
relationship between them, e.g., “Before(A,B)” means “A must
be in a lower-numbered position than B” while “To(A,X)” indi-
cates “Participant A is assigned to position X”’. The counting
function describes the numerical and order constraints over
participants, which take as arguments both participants and
numbers. A compositional function takes two sets of relational
or counting functions as arguments and formulates the rela-
tionship between them, like conditional (if-then) relationship.
For example, the constraint “If A serves on the X, then B serves
on the Y” can be expressed as “IfThen({To(A,X)}, {To(B,Y)})”.

We design a set of trigger words to match potential func-
tions [74] and extract arguments (i.e., participants, positions,
and numbers) according to their relative positions to the trigger
words. For uncertain sentences with no matched function, we
also build a neural classification model based on RoBERTa to
predict their corresponding function types. The combination
of functions in each sentence is the interpreted program. In
figure |1} the set of interpreted programs corresponding to the
AR example is also presented.

3) Program Execution: We recognize the programs that
immediately determine the positions of some participants to
construct an initial assignment. For example, the constraint
“D and F both serve on the X committee” corresponds to the
initial assignment in Figure 3| Each assignment is formulated
as a table with columns as participants and rows as positions.
Each cell in the assignment has three possible states, i.e.,



Root: Initial assignment a,
A/B C D EF G
X - - - T|- T -

Y -|-|-|F[-F|-
Program

1.Enumerate possible assignments
fo = 1fThen({To(4,X)},{To(B,Y)}) 2.Execute program to find conflict

a; a; as a,

A/B/C|D E|F|G

X F|T|-|T|-|T|-
Y T F| -|F|-F|-

N

Fig. 3: The tree-based reasoning process. Here “T/F/-” means
“True/False/Unknown”.

F G A_B C D E F G
T x> [T]-
Fl- Y FIF| - F - Pus

True, False, Unknown, which means whether a participant is
assigned to a position.

Starting from the initial assignment, we conduct reasoning
to deduce legitimate assignments satisfying all constraints by
executing other programs. The reasoning process is formulated
into a tree-based heuristic shown in Figure [3] Specifically,
each node is an assignment while each edge is an executable
program, and the initial assignment is taken as the root node
ag. At each iteration, for a program f; we enumerate all
possible positions for participants involved in this program
if they are unknown, and execute the program to check
satisfaction for each assignment to remove the illegitimate
ones. Then taking each legitimate assignment as a new root
and starting a new iteration, we validate the next program
to further extend the reasoning tree. The tree is recursively
expanded until all programs are executed. The leaf nodes
that satisfy all constraints are obtained as final legitimate
assignments.

4) Option Selection: After deducing all legitimate assign-
ments, we analyze the options to select the most plausible one
as the answer. As each option can be interpreted as a program
in the same way described in § we can further extend
the reasoning tree and execute the option-based program. We
take the number of legitimate assignments of each option as
its score and the option with the maximum score is selected
as the final answer.

C. Neural Model: CGAR

As ARM requires substantial effort to craft sets of rules
which are far from perfect, we attempt to design two neural
models to ease the manual work. We first adopt the state-
of-the-art pre-trained models including RoBERTa [63] and
ALBERT [64] as described in § [[II-B] However, they struggle
to capture complex reasoning ability beyond shallow-level se-
mantic understanding and perform nearly a random guess [19].

We also propose a Constraint Graph-based Analytical Rea-
soning (CGAR) framework. Considering that for each AR
problem, participants are to be assigned into several positions,
and each constraint describes a restriction relationship between
some participants and positions. To better model the relation-
ship structure of involved participants and positions to deduce
the legitimate solutions, we propose constructing constraint

graphs for each question. We thus introduce a CGAR frame-
work that utilizes a graph convolutional network (GCN) [86]]
and a pre-trained model to reason over the constraint structure.
The framework is composed of three modules, namely, a graph
construction module, a graph reasoning module and an answer
prediction module.

1) Constraint Graph Construction: We construct a con-
straint graph G; for each (context ¢, question ¢, option o;)
triple. Then five graphs can be constructed corresponding to
five options of a question. Each is designed as a heterogeneous
undirected graph where the nodes consist of participants,
positions and constraints in the context. Each constraint node
is connected to its mentioned participant nodes and position
nodes. Besides, the (question, option) pair is also injected as
a global node to establish linkages with all constraint nodes,
to indicate whether the option satisfies the constraints and
answers the question. We follow the extraction method in [[19]]
which utilizes named entity recognition to extract participants
and positions from the leading sentence of the context. And
we simply take each sentence in the context as a constraint.

2) Graph Reasoning: To initialize the node representations,
we utilize the output of the pre-trained model as the embedding
of each token. For participant and position nodes, we perform
mean pooling on the constituent token embeddings to get their
representations. For constraint nodes, we take the average of
the start and end token embeddings of each sentence as their
representations. Then two [SEP] token embeddings are also
averaged to initialize the representation of the global node.
To model the heterogeneity of the graph, we also define three
types of nodes, including the entity node, the constraint node
and the global node. Participant and position nodes are both
viewed as entity nodes. We utilize a linear transformation onto
the node representations for different node types to get their
type-specific representations.

We employ a GCN to perform reasoning over a constraint
graph G;. During each message-passing iteration, we hope
to model the feasible states of participants and positions by
aggregating the constraint information to entities. Correspond-
ingly, constraint features and global features are also updated.
After multiple iterations, the global node is aware of available
states of participants and positions in (question, option) pair
for predicting whether option o; is the correct answer.

3) Answer Prediction: As in § we also need to
compute scores of each option to find the most plausible
answer. We determine the plausibility of each option o; given
the question ¢ with the information from both text ¢ and graph
G;. Specifically, we concatenate the final representation of the
global node with the representation of [C'LS] token from the
pre-trained model and feed it into a classification layer.

D. Neural-Symbolic Model: NSAR

Although neural models are capable of well capturing lan-
guage semantics, they disregard the interpretability of predic-
tions. To reconcile the robust learning in neural models and the
discrete reasoning of symbolic methods, we design a neural-
symbolic model to solve the AR task. We propose an approach
named NSAR (Neural-Symbolic model for Analytical Reason-
ing), which extracts the arguments and parses the constraints



into compositional programs in a neural manner, and executes
the programs to derive the answer with a symbolic inference
engine.

As the symbolic executor is non-differential, policy-gradient
methods are usually employed to train the model [74, [87].
However, analytical reasoning questions can only be answered
after examining the satisfiability of all the constraints, which
leads to extremely sparse rewards and makes the model hard
to be optimized. Thus, we manually annotate programs for
supervision learning.

1) Data Annotation: We first extend the constraint function
set defined in ARM [19] to improve the scalability (e.g.,
FirstPos and LastPos are too specific). It is composed of
common logical functions (AND, OR, IF, NOT, etc.) and
operator functions including arithmetics (4, —, =, >, <, etc.),
sorting (ARGMAX, MAX, etc.), assignment (VALUE), selection
(SELECT) and counting (COUNT) operations.

Before program annotation, we need to annotate the par-
ticipant and position sets of each problem. Then for each
constraint sentence in the context and the (question, option)
pair, we annotate a program following the above definition,
which is a composition of functions over the involved par-
ticipants and positions. For example, we annotate a program
as “VALUE(roadster) > VALUE(van) AND VALUE(roadster)
< VALUE(hatchback)” for the constraint “The roadster is
serviced later in the week than the van and earlier in the
week than the hatchback”. The statistics and examples of our
data annotation are listed in Appendix A.

2) Neural Parser: In the neural perception module, we
need to extract participants and positions from the context and
interpret constraints into programs.

a) Farticipant/Position Extractor: We separately take
participant extraction and position extraction as two sequence
tagging tasks. For each task, a pre-trained model with a linear
token classification head on top is employed for predicting
which tokens are parts of participants or positions [63]].

b) Program Parser: In order to model the relevance
and dependency relationship between different constraints for
program parsing, we take the whole context as an input and
generate a sequence of compositional programs. The concate-
nation of the question and each option is also fed as an input
to generate a program. Here we adopt a pre-trained encoder-
decoder model for program generation [18| [88]]. Besides, to
alleviate generating irrelevant or incorrect content in programs,
we dynamically limit the vocabulary for each input to tokens
of the input and all constraint functions.

3) Symbolic Executor: After obtaining programs from the
context, question and each option, we need to execute these
programs and present a score for each option. To do this,
we inherit the executor from § and § We
first execute programs from the context to obtain legitimate
assignments. Then we execute the program of each (question,
option) pair on these assignments and calculate the ratio of
assignments satisfying the option as the score. We finally
choose the option with the highest score as the answer.

E. Results and Analysis

1) Overall Comparison: We compare the performance of
the above three methods with a baseline pre-trained model and
human performance [19] on the validation and test sets. The
pre-trained baseline model, CGAR and the extractor in NSAR
all take RoBERTa-large [63] as the backbone while the parser
in NSAR employs a T5-based model [88]].

Methods | Val (%) Test (%)
Human Performance | - 59.7
Random Guess |  20.0 20.0
ARM 34.2 30.9
RoBERTa 24.2 23.1
CGAR 27.7 24.9
NSAR 24.2 24.8

TABLE II: The answer prediction accuracy (%) of different
methods on AR-LSAT.

The results are shown in Table We observe that the
symbolic system ARM outperforms RoBERTa and CGAR. It
shows that the complex analytical reasoning process is difficult
to be completely parameterized by neural models, while ARM
works better by customizing complicated rules targeted at the
AR-LSAT dataset and performing a deterministic deduction.
Meanwhile, such difficulty for neural learning is exacerbated
by limited data. From the improvement of CGAR compared
to RoBERTa, multiple message-passing iterations over the
constraint graph are proved to partly work on modeling the
analytical reasoning process. However, NSAR outperforms
RoBERTa while performing worse than both CGAR and ARM,
because there is no large-scale supervised data. We annotate
a small number of instances for extracting participant/position
and parsing program, which results in interpreting imperfect
programs and further influences the execution performance.
We deem that annotating more data or heuristically augment-
ing data will boost the performance of NSAR. Although we
have achieved an improvement over the baseline model, our
systems are still far from equivalent to human performance,
leaving significant opportunities for further exploration of this
highly challenging task.

2) Detailed Analysis on NSAR: We first analyze the perfor-
mance of participant extraction and position extraction in Table
The NSAR performs relatively worse than ARM in both
validation and test sets, indicating that it is more appropriate
to apply a rule-based extraction method to cover low-resource
but diverse datasets. In addition, there is still a certain gap
between the ARM model and perfect extraction, showing that
AR-LSAT is extremely challenging and needs a finer set of
extraction rules.

To investigate the performance of our program parser, we
evaluate the programs generated by combining all sentences in
the context and the question-option pair (as Combination set-
ting) and by separately feeding each sentence or the question-
option pair (as Separation setting), respectively. As shown in
Table our generated programs achieve a high Rouge-L
while the exact match score is low and even equals zero for
the combination setting. Besides the limited training data, it



Val Test

Methods
Prec. Recall Prec. Recall
ARM 96.2 92.9 - -
NSAR 87.5 86.0 85.8 87.9
ARM 84.4 85.8 - -
NSAR 56.3 52.2 44.9 61.5

TABLE III: Performance (%) of the participant extraction (top)
and position extraction (bottom).

Parser Settings EM  Rouge-L
Combination 0.0 60.9
Separation 16.2 68.4

TABLE IV: Evaluation results (%) of the program parser on
AR-LSAT. EM means Exact Match score.

is because that program parsing itself is a challenging task.
Specifically, it is susceptible to generating invalid programs
by a small midterm mistake and suffers from the intrinsic
diversity of programs that a constraint description can be
formulated as different programs. Moreover, we observe that
the program generation for long context is much more difficult
than shorter sentences. How to design a simple and generic
program language is an essential direction for saving annota-
tion resources and improving program generation quality.

3) Error Analysis: We further dive into the error cases
within our methods and summarize the major reasons caus-
ing wrong predictions for AR problems. The first reason is
that participants and positions sometimes fail to be correctly
extracted, which fundamentally causes the misunderstanding
of the problem settings and thus affects the answer prediction
of the aforementioned three methods.

Some other errors occur because the predefined program
language is not designed perfectly to cover some constraint
descriptions with complex semantics. For example, “two con-
secutive” in the constraint “No breed is featured on any two
consecutive days.” is difficult to be formulated. The obstacle
performance of the program parsing method also hinders the
correct analytical deduction.

Although the textual descriptions in AR-LSAT are straight-
forward, basic commonsense knowledge is also needed to fully
understand problem descriptions. For example, the system
should realize that “9:00 A.M.” and “2:00 PM.” are respec-
tively in the morning and afternoon when it needs to arrange
the schedule to satisfy “Some participants should be scheduled
in the morning.”.

4) Discussion: We make different attempts on AR-LSAT,
including neural, symbolic and neural-symbolic models, and
observe that there is a certain gap between human performance
and all attempted methods. Our models achieve a nearly 31%
accuracy while the powerful pre-trained models obtain only
random performance. We therefore would like to highlight
the challenges of analytical reasoning and shed a light on the
potential directions.

In order to solve the AR problem, the main step is to exactly
understand and abstract the textual constraints to machine
cognitive programs with minimum manual effort. Moreover,

a question is usually answered through multiple constraints.
The research of modeling multiple constraints and mitigating
error accumulation can be further studied. As commonsense
knowledge is required for better understanding constraint
descriptions, how to inject external knowledge into the AR task
is also a further research direction. Although analytical reason-
ing assesses both deep analytical understanding and complex
deduction reasoning capabilities, only few data is available for
exploration. How to develop solid complex reasoning ability
and ease the dependency on the data size should be given top
priority in future research. Data augmentation is yet another
feasible direction.

V. LOGICAL REASONING
A. Challenges in Logical Reasoning

Logical reasoning requires understanding a given text at
a logical level and performing logical inference to deduce
implications from asserted ones. It is a challenging task
widely studied in recent years and several logical reasoning
benchmarks have been introduced, such as ReClor [14] and
LogiQA [25]. Previous work usually treats the task as a
traditional reading comprehension problem, and utilizes large-
scale pre-trained language models [62, 163} 164] or graph neural
networks [76] to match the context with candidate options.
Although promising results have been achieved, they mainly
rely on word-level semantics without capturing symbolic logic.

In order to solve questions in LR-LSAT, as the example in
Figure [4] the reasoning system needs to extract the critical
constituents from the context as logical symbols like “o:
have keyboarding skills”, “(: be able to use a compute”,
“y: be able to write your essay using a word processing
program” and identify the logical relationships between them
to constituent existing logical expressions, like (—na — —f)
and (-8 — —vy). Then according to equivalence laws, it
performs logical inference to extend the logical expressions
that are not explicitly mentioned in the context. Comparing
the extended expressions with the expressions of candidate
options, it selects the most similar option as the answer.

B. LReasoner Model

We propose a logic-driven reasoner (LReasoner) model
for logical reasoning problems [20] from a neural-symbolic
perspective. It utilizes a logic-driven context extension frame-
work to integrate the above reasoning process. Besides, a
logic-driven data augmentation algorithm is also introduced,
to construct literally similar but logically different samples
and utilize contrastive learning to encourage our model better
capture logical information.

1) Logic-Driven Context Extension: The overall logic-
driven context extension framework is illustrated in Figure 4| It
first identifies the logical symbols and expressions explicitly
mentioned in the context as the elementary components for
reasoning (Logic Identification). Then it performs logical
inference following equivalence laws to extend the implicit
logical expressions (Logic Extension). Finally, it verbalizes
the extended logical expressions related to each option as an
extended context and utilizes it into the pre-trained model to
match the answer (Logic Verbalization).



Logic Identification

Logic Extension Logic Verbalization

Context: /| symbol & ‘ symbol 8 ‘

If you have no keyboarding skills at all, you will not
J ter. And if you are not able to

use a computer, you will not be able to write your
essays using a word chessiné Eri_?gram
symbol y

Options:

be able to write your essays using a word
processing program.

B. If you are not able to write your essays using a
word processing program, you have no
keyboarding skills.

word processing program.

A. If you have some keyboarding skills, you will -

Logical Expressions

in the context:

(=a—>=0);
(=B—=>=v);

Logical Expressions
in each option:

—>

Implicit Logical Expressions: score h;
(ma—>=pf)=2(f->a)
(=B—=>=y)=(y—>B) { Pre-trained Encoder }
(ma>=f)a(=f>=y)=2(-a>=y) |+ ¢ . 1
(f=a)aly =>p)=(y >a) [CLS) ¢ [SEP] gl o; [EXT] e; [SEP]
//|
U Extended contexts of each option: / /1
[
A. If you be able to use a compu yh¢ri you will

Extended Logical Expressions related

to each option: B. If you do not have keyboard'ng//skllls then

C. If you are able to write your essays using a A (a—=vy); A (B>a)i(y=>B)i(y—>a); you will not be able to write ygur /essdys
B i ) > . i C. If you be able to use a computer, 'lhem you w1ll
word processing program, you have at least B. (=y—>—-a); B. (ma—>=v); have keyboarding skills. If you | te aLble It
some keyboarding skills. C (y—=a); :> C. (B=a)i(y=B)i(y»a); ou be able to write your essa s lhu; ou
D. If you are able to use a computer, you will . . . . Y ¢ aYS)-- ¥
probably be able to write your es;ays using a D. (B->v): D. (B—=a);(y—=>B)i(y—>a); will have keyboarding skills. |/ e
E. (-y—=>-8); E. (ma—>-v); D. If you be able to use a computer, then you will

E. If you are not able to write your essays usinga
word processing program, you are not able to
use a computer.

have keyboarding skills. If you be|able ...
E. If you do not have keyboarding skills, then
you will not be able to write your essays ...

Fig. 4: The overall architecture of the logic-driven context extension framework for LR. ¢, ¢, o; and e; are the context, question,
i-th option and the extended context for ¢-th option, respectively. The texts in green mean that the option B is matched against

its extended context which has the highest score.

a) Logic Identification: It employs a constituency parser

[89] to extract constituents including noun phrases and gerun-

dial phrases from the context as basic logical symbols. Then

the logical symbols in each sentence are combined by logical

negative and conditional connectives {—, —} to constitute the

logical expression as a follow-up. If any negative word among
“not”, “n’t”, * ”, “n ew”, “little”, “neither”, *

LEINNT3

n’t”, “unable”, “no none
of”} is in or immediately before a logical symbol «, we
add the negation connective — before a as —a. If there is
a conditional relationship between two logical symbols o and
[ in a sentence, such as “if o, then 87, “« thus 3, “B due to
«a” and “—f unless a”, we can construct the corresponding
logical expression as (o — f3). As illustrated in Figure
it extract three logical symbols {«, 3,7} and identify two
existing logical expressions as (—a — =) and (=5 — —).

b) Logic Extension: There still exists some other implicit
logical expressions which can be deduced from asserted ones.
Therefore, it integrates the identified logical expressions in
all sentences of the context, and performs logical inference
over them to further extend the implicit expressions according
to logical equivalence laws, including contraposition [90] and
transitive law [91]:

Contraposition :

(a—p)
(a—=p)

As shown in Figure [ it implies a set of extended logical
expressions as Sg = {(8 — a), (y = 5), (~a = =), (y —
a)}.

c) Logic Verbalization: Considering that symbolic logic
is more difficult to encode, it uses the pre-trained model
as the backbone of our framework. It verbalizes extended
logical expressions into natural language and feeds them as
an extended context into the pre-trained model. Specifically,
it selects the related extended expressions for each option that
have the same logical symbols as the option and transforms
such expressions into natural language by filling them into a
template. (—a — —y) can be verbalized as “If do not «, then

(8 = —a) (D

Transitive Law : B—=7v) = (a—=7v) Q)

will not ~”. It takes such a sentence as an extended context for
each option and feeds [CLS] ¢ [SEP] q || o [EXT) e [SEP]
into the pre-trained model to get each option’s score.

2) Logic-Driven Data Augmentation: In order to make our
model better capture logical information from the context, we
also introduce a logic-driven data augmentation algorithm. It
utilizes logical expressions to augment challenging samples
with literally similar but logically different contexts. Taking
the original context to construct the positive sample, it con-
structs logical negative samples by modifying the existing
logical expressions in the context and verbalizing the modified
expressions into a negative context. The modification opera-
tions include randomly deleting a logical expression, reversing
the conditional order of a logical expression and negating a
logical symbol in a logical expression.

It then adopts contrastive learning [92] and trains our
model to select the correct context supporting the answer to
encourage the model to put more focus on logical information,
especially logical negative and conditional relationships. As
a result, the model is trained in a combination of answer
prediction loss and context classification loss.

C. Results and Analysis

1) Overall Comparison: We compare our LReasoner model
with several baseline models for logical reasoning, and the
comparison results are shown in Table [V] We can see that
LReasoneraperr achieves a great performance, outperforming
all baseline models by a considerable margin on both valida-
tion and test sets. This indicates the effectiveness of our logic-
driven system for logical reasoning. And LReasonerg,germ
and LReasonera;pegrr both perform better than the correspond-
ing baseline models RoBERTa and ALBERT. It demonstrates
that LReasoner is robust to be effective for logical reasoning
on top of different pre-trained models.

We also conduct ablation study which takes ALBERT
as our backbone model. LReasoneraiperr (W/o CE) and
LReasonera gerr (W/o DA) both outperform the baseline



Methods Val (%)  Test (%)
Random Guess 20.0 20.0
BERT 39.3 394
RoBERTa 49.2 49.6
ALBERT 57.9 57.8
LReasonerr,peRrTa 54.0 53.3
LReasoner s gert 65.0 63.5

Ablation study

LReasonerarperr (W/o CE) 63.4 61.6
LReasonera;gerr (W/0 DA) 61.7 60.0

TABLE V: The answer prediction accuracy (%) of different
methods on LR-LSAT. CE and DA are our logic-driven context
extension framework and data augmentation algorithm.

model ALBERT and perform worse than our final system
LReasonerapgrr. It demonstrates that both logic-driven con-
text extension framework and logic-driven data augmentation
algorithm are beneficial for logical reasoning.

2) Analysis of Logic Identification: To investigate the per-
formance of the heuristic logic identification method, we
randomly sample 50 instances and manually annotate the
logical symbols and expressions as labels. We report the recall
score of logical symbol identification and logical expression
identification as 65.9% and 48.9%, respectively. We can see
that our generic logic extraction method which operates in an
unsupervised manner achieves relatively reliable performance.
How to design an unsupervised and generic logic extraction
method is essential to be studied to further enhance the
performance of the overall system.

3) Performance on ReClor & LogiQA: We also conduct
experiments on two public logical reasoning datasets, Re-
Clor [[14] and LogiQA [235]], to investigate the robustness of our
logic-driven reasoner. ReClor dataset is proposed from GMAT
and LSAT tests while LogiQA is collected from the National
Civil Servants Examination of China, and each question is
provided with a context and four answer options. As shown
in Table our system is robust to be effective on both ReClor
and LogiQA, and even surpasses the human performance of
ReClor.

ReClor LogiQA
Model

Val Test Val Test
RoBERTa [63]] 62.6 556 359 353
ALBERT [64] 70.2  66.5 389 37.6
DAGN [76] 658 583 369 393
LReasonerr,geRrTa 66.2 624 38.1 406
LReasoneray pert 732 707 41.6 41.2
Human Performance - 63.0 - 86.0

TABLE VI:. Experimental results (accuracy %) of different
models on ReClor and LogiQA.

4) Error Analysis: Although our LReasoner system
achieves outstanding performance, there still exist some in-
stances that cannot be solved. Similar to the logical reasoning
dataset ReClor [14], LSAT also integrates various types of
logical reasoning skills, including “Necessary Assumptions”,
“Sufficient Assumptions”, “Implication”, “Most Strongly Sup-

ported”, “Strength”, “Weaken”, “Match flaws”, etc. We thus
investigate the detailed performance with respect to different
logical reasoning types to analyze which type of questions
tend to be more challenging.

Among nearly 17 categories, our model performs relatively
poorly on Match flaws and Weaken with an almost 60%
accuracy while accuracies of other types are higher than 70%.
Weaken aims to find the statement that weaken the argument.
Match flaws is even more challenging as it requires analysis
of the flaw that conflicts with the complete logical chain
illustrated in the context, and find an option exhibiting the
same flaw. Our system that first extracts logical expressions
and then implies the implicit logical expressions is not suitable
for abstracting the complete logical chain for flaw matching
and modeling the different degrees of a logical statement to
identify weaken statements.

5) Discussion: Our logic-driven system is able to model
the discrete logical inference process explicitly and achieves
an outstanding performance on LR-LSAT. Our system even
surpasses human performance on another logical reasoning
dataset, ReClor. However, some challenges are still there.
The first is that current methods treat all types of logical
reasoning skills alike and do not dive into the difference
between reasoning types. How to deal with different logical
reasoning types is a further research direction. Moreover, the
main challenge for logical reasoning is to point out the logi-
cal structures among the context. Specifically, automatically
extracting the logical elementary units and identifying the
logical relationships between units in an unsupervised manner
is essential to be explored and improved. Further research
can also focus on directly encoding the symbolic logical
structure rather than verbalizing them into natural language for
utilization. Concretely, we can separately model each logical
connectives in different networks, and take the involved logical
symbols as the network inputs to learn the logical expressions.

VI. READING COMPREHENSION
A. RC-LSAT Challenges

Apart from analytical reasoning and logical reasoning,
LSAT also involves reading comprehension, which is a funda-
mental ability of human intelligence. It requires understanding
long-form, complex passages and distinguishing what is the
correct statement by synthesis, comparison, and application of
principles. Many widely studied datasets have been developed
for reading comprehension, such as SQuAD [93]], MCTest [94]]
and RACE [93]. Recent pre-trained language models [63} [64]]
and diverse attention modules [96, 21] achieve state-of-the-art
performance on them, and even exceed human performance.
We compare RC-LSAT with several similar multiple-choice
reading comprehension datasets including MCTest, RACE,
and COSMOS QA [33] to investigate its challenges. The
overall statistics are presented in Table

We can see that the context, question and option of RC-
LSAT are more complicated than other datasets with longer
sequences, which are also more difficult to be comprehended.
Take a look at the following example question “Which one
of the following most accurately and completely describes



Dataset MCTest RACE COSMOS QA  RC-LSAT
# of contexts 660 27,933 21,866 360
# of questions 2,640 97,687 35,588 2,419
Context Len 210.1 321.9 70.3 511.5
Question Len 7.8 10.0 10.6 20.5
Option Len 34 53 8.1 16.8

TABLE VII: Statistics of RACE, COSMOS QA, and RC-
LSAT.

the function of the second paragraph of the passage?” and
the corresponding answer “explains the ramifications of the
strict constructionists claims and helps clarify the relevance
of evidence offered in subsequent paragraphs”. Not only text
understanding and function abstraction, but also positional
information modeling, such as “the second paragraph of the
passage”, should be both incorporated for answer prediction.
Besides, RC-LSAT is of relatively limited data size. The
above-mentioned challenges make models stuck in more com-
plex reading comprehension with few data.

B. Position-aware DUMA Model

Considering the state-of-the-art performance achieved by
DUMA model [21] on most similar examination-based reading
comprehension datasets RACE involving reasoning, we also
employ DUMA for RC-LSAT. Compared to the baseline
Model introduced in Sec it additionally employs a
Dual Multi-head Co-Attention module between the pre-trained
encoder model and the classification layer. It simulates human
transposition thinking patterns to further capture relationships
of key information from the passage, question and answer
options. In Dual Multi-head Co-Attention module, it first
separates the output representation of the encoder to obtain
EF =1[ef eb, ..., efp] and E94 = [e]® €%, ..., e?i], where e’
eg-“ denote the i-th and j-th token representation of passage
and question-answer respectively and I, [, are the corre-
sponding lengths. It then calculates question-answer-aware
passage representation E(24) and passage-aware question-
answer representation E94(F) in a bi-directional way. It
aggregates the key information from EQA(P) and EF(QA) a5
O; by mean pooling and concatenation operations and utilizes
it for answer classification instead of [C'LS] representation.

EQAP) — MultiHead Attn(ET , E?4, E?4),
EPQA) — MultiHead Attn(E9A, EY | ET), (3)
0; =[Mean(ECAP)); Mean(ET (@A),

Note that questions of RC-LSAT usually involve posi-
tional information indicators, like “line 3-5” and “second
paragraph”, we label the context with position marks, e.g.,
“(line3)... {/line3)” for line 3 and “(P2)... (/P2)” for paragraph

2. We feed labeled context as input and implement a position-
aware DUMA model.

C. Results and Analysis

1) Overall Comparison: We compare our position-aware
DUMA (P-DUMA) model with several baseline models and

DUMA model and the comparison result is shown in Ta-
ble We can see that our P-DUMA model achieves out-
standing performance on both validation and test sets. Position
marks are observed to help improve performance on top of
both ALBERT and DUMA, which shows the effectiveness of
our proposed position mark for RC-LSAT.

Model Val (%)  Test (%)
RoBERTa 52.0 44.0
ALBERT 51.9 48.7
DUMA 60.0 52.0
P-ALBERT 58.5 554
P-DUMA 57.4 56.1

TABLE VIII: Overall performance (%) on RC-LSAT. P-
ALBERT and P-DUMA mean position-aware ALBERT and
our position-aware DUMA model, respectively.

2) Transfer Learning: Previous work [97, 98] has shown
the effectiveness of pre-training on similar datasets then fine-
tuning on the target dataset for transfer learning, which can
partly relieve the pressure of data sparsity. Due to limited
samples in the RC-LSAT, we adopt the most similar RACE
as the source dataset and conduct a set of transfer learning
experiments. As shown in Table a significant improve-
ment is obtained after transfer learning for all models, which
further validates the potential of transfer learning for reading
comprehension. However, positional information has no effect
in transfer learning settings compared to position-unaware
ALBERT and DUMA. The reason may be that the gap between
RC-LSAT and RACE becomes larger after using position
marks, as no position label is provided in RACE.

Model Val (%)  Test (%)
ALBERTRACE 73.7 67.7
DUMARAcE 71.9 69.1
P-ALBERTRACE 71.5 68.4
P-DUMARACE 68.5 63.9

TABLE IX: Transfer learning results of models first trained
on RACE and then fine-tuned on RC-LSAT.

3) Error Analysis: Although outstanding performance has
been achieved, there still exist some challenging instances. We
illustrate the major error types of RC-LSAT as follows.

The first type of error is caused by the reason that the
context is too long and some essential information for answer
prediction is truncated and cannot be effectively encoded. The
second error type is that some comparative questions require
comparative learning ability, which still has not been consid-
ered. Take the question “The authors of the passages would
be most likely to disagree over whether?” as an example, the
model not only needs to understand the view of each author,
but also aims to comparatively infer the point that authors
would disagree with. In addition, the lack of commonsense
knowledge is another key problem for the wrong prediction.
For example, unaware that 1934 and 1939 are within the
1930s, the model would fail to answer the question “According
to the passage, which one of the following was true of the
physics community during the 1930s?”.



4) Discussion: Although previous work [64] 21]] and our
models have shown promising results on RC-LSAT, we still
have a way to go to improve performance. As the truncation
mechanism of pre-trained models threatens modeling long
sequence and the sparse self-attention mechanism [99] some-
times fails to be effective, designing an appropriate hierar-
chical encoder for long-form sequence encoding is emerging
as an area for further exploration. Besides, current methods
rarely specialize in answering comparative questions, how to
comparatively reading multiple passages and diving into the
differences also requires potential research.

A more challenging direction is to retrieve relevant com-
monsense or passages from open source and incorporate them
as evidence for answer prediction. Previous work [100} [101]
can only achieve poor performance on this topic due to
intrinsic noise in retrieved passages. Further research can focus
on improving evidence retrieval and predicting answers from
noised evidence.

VII. FURTHER DISCUSSION

After making attempts on three tasks of the LSAT, we
have achieved some progress towards complex reasoning. We
evaluate our whole system on the LSAT tests and raise some
positive findings. We further discuss the existing challenges
of complex reasoning and shed a light on the future research
directions.

A. Overall Performance of LSAT Tests

To give an intuitive overview of our machine intelligence in
LSAT tests, we convert our raw accuracy scores of three tasks
to an LSAT scale, which ranges from 120 to 180 [102]]. We
also integrate the accuracies of AR, LR and RC, to calculate
an overall score by weighted averaging with the original
proportion of 1 : 2 : 1. We compare our scaled scores with
the median score of candidates taking LSAT exams during
2019 ~ 2020 [103]]. We further demonstrate which level of
schools our systems could be admitted to according to the
law school rankings displayed by Internet Legal Research
Group [104].

Scaled (Raw) Score  School Ranking

Overall system 151 (56.8%) Top 104
AR system 135 (30.9%) > 200
LR system 155 (63.5%) Top 58
RC system 158 (69.1%) Top 30
Candidates 152 (58.0%) Top 94

TABLE X: Comparison results of our systems with human
candidates. > 200 means that the ranking of AR system is
beyond the top 200 which is not displayed by Internet Legal
Research Group [104].

As shown in Table [X] we have several positive findings.
Our overall system achieves impressive performance on the
standard LSAT tests designed to examine the reasoning ability
of prospective law school candidates, and performs compa-
rably with the median candidate scores, which indicates the
potential of machine complex reasoning. Our systems for RC

and LR even have a chance to be accepted by the top 30
and 58 law schools, respectively, which demonstrates that
the combination of the powerful pre-trained models and task-
specific reasoning modules is effective in performing complex
reasoning. Concretely, our logic-driven system endows itself
an excellent logical reasoning ability by performing explicit
logical inference while the DUMA model aware of position
information with transfer learning possesses fundamental com-
plex reading comprehension capability. Although AR is an
extremely challenging task requiring a more comprehensive
understanding of all context pieces to build the whole reason-
ing chain and only few data is available, our symbolic ARM
system is still able to get into a law school, which shows that
symbolic knowledge plus discrete interpretable reasoning steps
is essential in solving analytical reasoning task.

B. Challenges & Future Directions

Despite the positive achievement, some unsolved challenges
remain in complex reasoning. We investigate the major chal-
lenges and the corresponding potential solutions as follows.

1) Unsupervised Symbolic Knowledge Extraction: The au-
tomatic extraction of elementary symbolic units or expressions
builds the foundation of complex reasoning tasks as it is
required to fully understand complex scenarios, which further
affects the performance of the overall reasoning system. For
example, the extraction of mathematical expressions composed
of quantities and arithmetic signs is essential for numerical
reasoning, and logical reasoning is heavily reliant upon logical
expression identification. However, predefined rule patterns by
domain experts or large-scale annotated data for symbolic
knowledge extraction are expensive, which are impractical
to be obtained for all the tasks. Therefore, the unsupervised
extraction of symbolic knowledge is a major challenge in
complex reasoning.

To handle this challenge, we can begin by utilizing formal
programming languages [105] [106] to design a generic and
extensible extraction framework for universal symbolic knowl-
edge, supplemented by a set of task-specific extension and
modification operations. In this way, we can further modify
and extend the generic framework, and obtain the specific
extraction method for different complex reasoning tasks to
automatically extract high-quality symbolic knowledge.

2) Model Interpretability: Interpretability is a significant
characteristic of trustworthy and controllable reasoning sys-
tems, which makes the decision-making process of complex
reasoning comprehensible and predicts more reliable results.
Besides, the incorrect prediction can be traced to learn the
cause and intervened to make a revised prediction. For in-
stance, the explicit walk along the multi-hop relational paths
makes the multi-hop reasoning process more interpretable
to find the answer. Although neural models achieve robust
performance on complex reasoning, their prediction is always
a black box for humans to understand. How to improve the
interpretability of a neural system is essential to be studied.

We can design the neural model structure from the perspec-
tive of simulating human cognition and the reasoning process.
It integrates multiple modules for different reasoning steps,



and injects the intermediate results into the whole reasoning
chain, which makes the neural model interpretable.

3) Few-Shot Learning: As the data targeted at complex
reasoning with high quality and difficulty is rare and hard
to be collected or annotated, the traditional data-driven learn-
ing methods heavily relying on a huge amount of training
instances may have poor performance on complex reasoning
tasks. The analytical reasoning task is a typical example with
few data. Therefore, a few-shot learning paradigm [107, [108}
109]] urgently needs to be explored for complex reasoning to
improve the reasoning ability and the generalization capability
of systems with only a few training instances.

Transfer learning will be a potential direction of few-shot
learning for complex reasoning. It uses the pre-training models
on related tasks as the starting point which can ease the
sufferings of data sparsity, and transfer the reasoning ability
learned from source task to target domain. We can also
heuristically synthesize the data by modifying original data
to augment the dataset of the current complex reasoning task.

4) All-Sided Benchmark for Complex Reasoning: Recent
years have witnessed an increasing trend in natural language
understanding towards complex reasoning, yet there is no
existing integrated benchmark to the best of our knowledge,
that comprehensively evaluates different types and domains of
complex reasoning ability. It is worthwhile to build an all-sided
benchmark dataset to promote research in complex reasoning.

First of all, the benchmark should cover the three reasoning
capabilities involved in the LSAT. Specifically, reading com-
prehension establishes the foundation of complex reasoning
to understand and summarize the semantics of substances and
qualities. Logical reasoning extends complex reasoning ability
with logical deduction over propositions while analytical rea-
soning simulates the human analytical thinking and problem-
solving capacity. Then several widely studied complex reason-
ing tasks should be integrated, such as reasoning for common-
sense knowledge [27, 129, [30], multi-hop relationships [35 36]
and numerical calculation [44] [43]] described in §

Some other rarely explored complex reasoning abilities
also need to be considered. For example, we should dive
into abductive reasoning [110] and counterfactual reason-
ing [IL11}112]] to research cause-and-effect complex reasoning.
The former aims to trace the most likely explanation to
partial observations and the latter focus on the illation of
how alternative events in the past result in different outcomes.
Analogical reasoning [[113]] that draws a comparison between
different things and based on their similarities to infer their
further shared properties is widely adopted in human daily
thinking. As no benchmark dataset so far has been proposed
for mainly enhancing analogical inference, it also should be
involved in this comprehensive benchmark.

VIII. CONCLUSION

In this paper, we take a step towards complex reasoning
research by studying three tasks involved in LSAT tests,
namely, analytical reasoning, logical reasoning and reading
comprehension. Inspired by the advantages and disadvantages
of symbolic, neural, and neural-symbolic methods of complex

reasoning, we propose a hybrid system for three tasks and
achieve promising performance on the LSAT tests. In partic-
ular, our position-aware DUMA model with transfer learning
for reading comprehension and logic-driven model for logical
reasoning even have a chance to be recruited to the top 30
and top 58 law schools, respectively. It demonstrates our
progress in modeling complex reasoning abilities, notably the
fundamental reading comprehension and challenging logical
reasoning capability. Through a systematical study of the
LSAT, we further overall discuss the unsolved challenges in
complex reasoning and investigate the potential directions.
In the future, how to extract symbolic knowledge in an
unsupervised manner and improve the interpretability of a
neural reasoning system are promising directions. Few-shot
complex reasoning and building a comprehensive complex
reasoning benchmark are also worthy of exploration.

APPENDIX A
DATA ANNOTATION

We annotate a subset of programs to investigate the opera-
tion mechanism of our neural-symbolic method. An example
of our annotation is shown in Figure [5| For each problem,
we not only annotate the participants and positions, but also
annotate the programs of all constraints in the context and
question-option pairs. We annotate a total of 100/40/40
instances for participants and positions extraction in the
training/validation/test set. As the AR task has a situational
property that a group of questions share the same context but
ask different aspects of information, we annotate programs for
total 77 contexts and 428 questions, with 50/13/14 contexts
and 274/75/79 questions in the train/validation/test set.

Context :

A closet contains exactly six hangers—1, 2, 3,4, 5, and 6—hanging, in that order,
from left to right. It also contains exactly six dresses—one gauze, one linen, one
polyester, one rayon, one silk, and one wool —a different dress on each of the
hangers, in an order satisfying the following conditions:

The gauze dress is on a lower-numbered hanger than the polyester dress. (C-1)
The rayon dress is on hanger 1 or hanger 6. (C-2)

Either the wool dress or the silk dress is on hanger 3. (C-3)

The linen dress hangs immediately to the right of the silk dress. (C-4)

Question : Which one of the following CANNOT be true?

Options :
A. The linen dress hangs immediately next to the gauze dress.
B. The polyester dress hangs immediately to the right of the rayon dress.

C. The rayon dress hangs immediately to the left of the wool dress.
D. The silk dress is on a lower-numbered hanger than the gauze dress.
E. The wool dress is on a higher-numbered hanger than the rayon dress.

Annotated
Participants &

Participants: gauze, linen, polyester, rayon, silk, wool
Positions: 1,2, 3,4,5,6

Positions
Annotated C-1: VALUE(gauze) < VALUE (polyester)
Programs C-2: VALUE (rayon) = 1 OR VALUE (rayon) = 6

C-3: VALUE (wool) = 3 OR VALUE (silk) = 3
C-4: VALUE (linen) = VALUE (silk) + 1

Q-A: NOT ABS(VALUE(linen) - VALUE (gauze)) = 1
Q-B: NOT VALUE (polyester) = VALUE (rayon) + 1
Q-C: NOT VALUE (rayon) = VALUE (wool) - 1
Q-D: NOT VALUE (silk) < VALUE (gauze)

Q-E: NOT VALUE (wool) > VALUE (rayon)

Fig. 5: An example of our annotation for an AR problem.
C-¢ means the i-th constraint while Q-j denotes the pair of
the question and option j.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

REFERENCES

R. A. Duschl, H. A. Schweingruber, and A. W. Shouse,
“Taking science to school: Learning and teaching sci-
ence in grades k-8, Eurasia Journal of Mathematics,
Science & Technology Education, vol. 3, no. 2, pp. 163—
166, 2007.

N. B. Songer, B. Kelcey, and A. W. Gotwals, “How
and when does complex reasoning occur? empirically
driven development of a learning progression focused
on complex reasoning about biodiversity,” Journal of
Research in Science Teaching: The Official Journal
of the National Association for Research in Science
Teaching, vol. 46, no. 6, pp. 610-631, 2009.

S. Chattopadhyay, S. Banerjee, F. A. Rabhi, and U. R.
Acharya, “A case-based reasoning system for complex
medical diagnosis,” Expert Systems, vol. 30, no. 1, pp.
12-20, 2013.

S. Shi, Y. Wang, C.-Y. Lin, X. Liu, and Y. Rui, “Auto-
matically solving number word problems by semantic
parsing and reasoning,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1132-1142.

F. Reinhold, S. Hofer, M. Berkowitz, A. Strohmaier,
S. Scheuerer, F. Loch, B. Vogel-Heuser, and K. Reiss,
“The role of spatial, verbal, numerical, and general
reasoning abilities in complex word problem solving for
young female and male adults,” Mathematics Education
Research Journal, vol. 32, no. 2, pp. 189-211, 2020.
A. Galassi, K. Kersting, M. Lippi, X. Shao, and P. Tor-
roni, “Neural-symbolic argumentation mining: An argu-
ment in favor of deep learning and reasoning,” Frontiers
in big Data, vol. 2, p. 52, 2020.

A. Fujita, A. Kameda, A. Kawazoe, and Y. Miyao,
“Overview of todai robot project and evaluation frame-
work of its nlp-based problem solving,” World History,
vol. 36, no. 36, p. 148, 2014.

G. Cheng, W. Zhu, Z. Wang, J. Chen, and Y. Qu, “Tak-
ing up the gaokao challenge: An information retrieval
approach.” in IJCAI, vol. 2016, 2016, pp. 2479-2485.
K. Yu, Q. Liu, Y. Zheng, T. Zhao, and D. Zheng,
“History question classification and representation for
chinese gaokao,” in 2016 International Conference on
Asian Language Processing (IALP). 1EEE, 2016, pp.
129-132.

Z. Zhang, L. Zhang, H. Zhang, W. He, Z. Sun,
G. Cheng, Q. Liu, X. Dai, and Y. Qu, “Towards
answering geography questions in gaokao: A hybrid
approach,” in China Conference on Knowledge Graph
and Semantic Computing. Springer, 2018, pp. 1-13.
D. Gunning, V. K. Chaudhri, P. E. Clark, K. Barker, S.-
Y. Chaw, M. Greaves, B. Grosof, A. Leung, D. D. Mc-
Donald, S. Mishra ef al., “Project halo update—progress
toward digital aristotle,” Al Magazine, vol. 31, no. 3, pp.
33-58, 2010.

J. Ding, Y. Wang, W. Hu, L. Shi, and Y. Qu, “Answering
multiple-choice questions in geographical gaokao with a
concept graph,” in European Semantic Web Conference.

[13]

(14]

[15

—_

[16]

(17]

(18]

[19

—

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

Springer, 2018, pp. 161-176.

Z. Zhang and H. Zhao, “One-shot learning for question-
answering in gaokao history challenge,” arXiv preprint
arXiv:1806.09105, 2018.

W. Yu, Z. Jiang, Y. Dong, and J. Feng, “Reclor: A read-
ing comprehension dataset requiring logical reasoning,”
in International Conference on Learning Representa-
tions (ICLR), April 2020.

S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv,
“Solving geometry problems using a combination of
symbolic and numerical reasoning,” in International
Conference on Logic for Programming Artificial Intel-
ligence and Reasoning. Springer, 2013, pp. 457-472.
S. H. Bach, M. Broecheler, B. Huang, and L. Getoor,
“Hinge-loss markov random fields and probabilistic soft
logic,” arXiv preprint arXiv:1505.04406, 2015.

J. Zhang, B. Chen, L. Zhang, X. Ke, and H. Ding,
“Neural, symbolic and neural-symbolic reasoning on
knowledge graphs,” AI Open, vol. 2, pp. 14-35, 2021.
X. Chen, C. Liang, A. W. Yu, D. Zhou, D. Song, and
Q. V. Le, “Neural symbolic reader: Scalable integration
of distributed and symbolic representations for reading
comprehension,” in International Conference on Learn-
ing Representations, 2019.

W. Zhong, S. Wang, D. Tang, Z. Xu, D. Guo, J. Wang,
J. Yin, M. Zhou, and N. Duan, “Ar-lsat: Investigating
analytical reasoning of text,” 2021.

S. Wang, W. Zhong, D. Tang, Z. Wei, Z. Fan, D. Jiang,
M. Zhou, and N. Duan, “Logic-driven context extension
and data augmentation for logical reasoning of text,”
2021.

P. Zhu, H. Zhao, and X. Li, “Duma: Reading
comprehension with transposition thinking,” arXiv:
2001.09415, 2020.

I. Dagan, O. Glickman, and B. Magnini, “The pascal
recognising textual entailment challenge,” in Machine
Learning Challenges Workshop.  Springer, 2005, pp.
177-190.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning,
“A large annotated corpus for learning natural language
inference,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Lin-
guistics, Sep. 2015, pp. 632-642.

A. Williams, N. Nangia, and S. R. Bowman, “A broad-
coverage challenge corpus for sentence understanding
through inference,” arXiv preprint arXiv:1704.05426,
2017.

J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and
Y. Zhang, “Logiqa: A challenge dataset for machine
reading comprehension with logical reasoning,” in Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, 2020.

H. Rashkin, M. Sap, E. Allaway, N. A. Smith,
and Y. Choi, “Event2mind: Commonsense inference
on events, intents, and reactions,” arXiv preprint
arXiv:1805.06939, 2018.

A. Talmor, J. Herzig, N. Lourie, and J. Berant,



(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

“Commonsenseqa: A question answering challenge
targeting commonsense knowledge,” arXiv preprint
arXiv:1811.00937, 2018.

B. Zhou, D. Khashabi, Q. Ning, and D. Roth, “’ going
on a vacation” takes longer than” going for a walk”: A
study of temporal commonsense understanding,” arXiv
preprint arXiv:1909.03065, 2019.

R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5:
An open multilingual graph of general knowledge,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

M. Sap, R. Le Bras, E. Allaway, C. Bhagavatula,
N. Lourie, H. Rashkin, B. Roof, N. A. Smith, and
Y. Choi, “Atomic: An atlas of machine commonsense
for if-then reasoning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 3027-3035.

M. Sap, V. Shwartz, A. Bosselut, Y. Choi, and D. Roth,
“Introductory tutorial: Commonsense reasoning for nat-
ural language processing,” Association for Computa-
tional Linguistics (ACL 2020): Tutorial Abstracts, p. 27,
2020.

S. Zhang, X. Liu, J. Liu, J. Gao, K. Duh, and
B. Van Durme, “Record: Bridging the gap between
human and machine commonsense reading comprehen-
sion,” arXiv preprint arXiv:1810.12885, 2018.

L. Huang, R. L. Bras, C. Bhagavatula, and Y. Choi,
“Cosmos qa: Machine reading comprehension with
contextual commonsense reasoning,” arXiv preprint
arXiv:1909.00277, 2019.

D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay,
and D. Roth, “Looking beyond the surface: A challenge
set for reading comprehension over multiple sentences,”
in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long Papers), 2018, pp. 252-262.

J. Welbl, P. Stenetorp, and S. Riedel, “Constructing
datasets for multi-hop reading comprehension across
documents,” Transactions of the Association for Com-
putational Linguistics, vol. 6, pp. 287-302, 2018.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen,
R. Salakhutdinov, and C. D. Manning, “Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering,” arXiv preprint arXiv:1809.09600, 2018.

N. Inoue, P. Stenetorp, and K. Inui, “R4c: A benchmark
for evaluating rc systems to get the right answer for the
right reason,” arXiv preprint arXiv:1910.04601, 2019.
E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi,
P. Liang, and L. Zettlemoyer, “Quac: Question answer-
ing in context,” arXiv preprint arXiv:1808.07036, 2018.
S. Reddy, D. Chen, and C. D. Manning, “Coqa: A con-
versational question answering challenge,” Transactions
of the Association for Computational Linguistics, vol. 7,
pp- 249-266, 2019.

J. Chen, S.-t. Lin, and G. Durrett, “Multi-hop ques-
tion answering via reasoning chains,” arXiv preprint
arXiv:1910.02610, 2019.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

H. Wang, M. Yu, X. Guo, R. Das, W. Xiong, and T. Gao,
“Do multi-hop readers dream of reasoning chains?”
arXiv preprint arXiv:1910.14520, 2019.

P. Clark, O. Etzioni, T. Khot, A. Sabharwal, O. Tafjord,
P. Turney, and D. Khashabi, “Combining retrieval,
statistics, and inference to answer elementary science
questions,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

W. Ling, D. Yogatama, C. Dyer, and P. Blunsom,
“Program induction by rationale generation: Learning
to solve and explain algebraic word problems,” arXiv
preprint arXiv:1705.04146, 2017.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and
M. Gardner, “Drop: A reading comprehension bench-
mark requiring discrete reasoning over paragraphs,’
arXiv preprint arXiv:1903.00161, 2019.

A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski,
Y. Choi, and H. Hajishirzi, “Mathqga: Towards inter-
pretable math word problem solving with operation-
based formalisms,” arXiv preprint arXiv:1905.13319,
2019.

L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu,
“Translating a math word problem to an expression
tree,” arXiv preprint arXiv:1811.05632, 2018.

Z. Xie and S. Sun, “A goal-driven tree-structured neural
model for math word problems.” in IJCAI, 2019, pp.
5299-5305.

Y. Hong, Q. Li, D. Ciao, S. Huang, and S.-C. Zhu,
“Learning by fixing: Solving math word problems with
weak supervision,” in AAAI Conference on Artificial
Intelligence, 2021.

A. Saha, S. Joty, and S. C. Hoi, “Weakly supervised
neuro-symbolic module networks for numerical reason-
ing,” arXiv preprint arXiv:2101.11802, 2021.

L. A. Galarraga, C. Teflioudi, K. Hose, and F. Suchanek,
“Amie: association rule mining under incomplete evi-
dence in ontological knowledge bases,” in Proceedings
of the 22nd international conference on World Wide
Web, 2013, pp. 413-422.

W. Zheng, L. Zou, X. Lian, J. X. Yu, S. Song,
and D. Zhao, “How to build templates for rdf ques-
tion/answering: An uncertain graph similarity join ap-
proach,” in Proceedings of the 2015 ACM SIGMOD
international conference on management of data, 2015,
pp. 1809-1824.

M. Minsky and S. A. Papert, Perceptrons: An introduc-
tion to computational geometry. MIT press, 2017.

I. Donadello, L. Serafini, and A. D. Garcez, “Logic ten-
sor networks for semantic image interpretation,” arXiv
preprint arXiv:1705.08968, 2017.

L. S. Fuchs, D. C. Geary, D. L. Compton, D. Fuchs,
C. Schatschneider, C. L. Hamlett, J. DeSelms, P. M.
Seethaler, J. Wilson, C. F. Craddock et al., “Effects of
first-grade number knowledge tutoring with contrasting
forms of practice.” Journal of Educational Psychology,
vol. 105, no. 1, p. 58, 2013.

K. Supekar, A. G. Swigart, C. Tenison, D. D. Jolles,
M. Rosenberg-Lee, L. Fuchs, and V. Menon, “Neural



[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

predictors of individual differences in response to math
tutoring in primary-grade school children,” Proceedings
of the National Academy of Sciences, vol. 110, no. 20,
pp. 8230-8235, 2013.

I. Donadello and L. Serafini, “Integration of numeric
and symbolic information for semantic image interpre-
tation,” Intelligenza Artificiale, vol. 10, no. 1, pp. 33-47,
2016.

R. Sun, “Robust reasoning: integrating rule-based
and similarity-based reasoning,” Artificial Intelligence,
vol. 75, no. 2, pp. 241-295, 1995.

F. Rosenblatt, “The perceptron: a probabilistic model
for information storage and organization in the brain.”
Psychological review, vol. 65, no. 6, p. 386, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,”
nature, vol. 323, no. 6088, pp. 533-536, 1986.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural computation,
vol. 18, no. 7, pp. 1527-1554, 2006.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” in Ad-
vances in neural information processing systems, 2007,
pp. 153-160.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional transformers
for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171-4186.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” CoRR, vol. abs/1907.11692, 2019.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
and R. Soricut, “Albert: A lite bert for self-supervised
learning of language representations,” in International
Conference on Learning Representations, 2020.

T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, “Graph attention networks,’
arXiv preprint arXiv:1710.10903, 2017.

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein,
“Neural module networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016, pp. 39-48.

N. Gupta, K. Lin, D. Roth, S. Singh, and M. Gardner,
“Neural module networks for reasoning over text,”’
arXiv preprint arXiv:1912.04971, 2019.

S. I. Gallant, “Connectionist expert systems,” Commu-
nications of the ACM, vol. 31, no. 2, pp. 152-169, 1988.
S. I. Gallant and S. 1. Gallant, Neural network learning
and expert systems. MIT press, 1993.

H. L. H. de Penning, A. S. d. Garcez, L. C. Lamb,

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

and J.-J. C. Meyer, “A neural-symbolic cognitive agent
for online learning and reasoning,” in Twenty-Second
International Joint Conference on Artificial Intelligence,
2011.

T. R. Besold, A. d. Garcez, S. Bader, H. Bowman,
P. Domingos, P. Hitzler, K.-U. Kiihnberger, L. C. Lamb,
D. Lowd, P. M. V. Lima et al., “Neural-symbolic
learning and reasoning: A survey and interpretation,’
arXiv preprint arXiv:1711.03902, 2017.

A. d. Garcez, M. Gori, L. C. Lamb, L. Serafini,
M. Spranger, and S. N. Tran, “Neural-symbolic comput-
ing: An effective methodology for principled integration
of machine learning and reasoning,” arXiv preprint
arXiv:1905.06088, 2019.

C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao,
“Neural symbolic machines: Learning semantic parsers
on freebase with weak supervision,” arXiv preprint
arXiv:1611.00020, 2016.

W. Zhong, D. Tang, Z. Feng, N. Duan, M. Zhou,
M. Gong, L. Shou, D. Jiang, J. Wang, and J. Yin, “Log-
icalfactchecker: Leveraging logical operations for fact
checking with graph module network,” arXiv preprint
arXiv:2004.13659, 2020.

Y. Huang, M. Fang, Y. Cao, L. Wang, and X. Liang,
“Dagn: Discourse-aware graph network for logical rea-
soning,” arXiv preprint arXiv:2103.14349, 2021.

F. Arabshahi, J. Lee, M. Gawarecki, K. Mazaitis,
A. Azaria, and T. Mitchell, “Conversational neuro-
symbolic commonsense reasoning,” arXiv preprint
arXiv:2006.10022, 2020.

Y. Liu, M. Hildebrandt, M. Joblin, M. Ringsquandl, and
V. Tresp, “Integrating logical rules into neural multi-
hop reasoning for drug repurposing,” arXiv preprint
arXiv:2007.05292, 2020.

Y. Liu, M. Hildebrandt, M. Joblin, M. Ringsquand],
R. Raissouni, and V. Tresp, “Neural multi-hop reasoning
with logical rules on biomedical knowledge graphs,” in
European Semantic Web Conference. Springer, 2021,
pp. 375-391.

F. Moghimifar, L. Qu, Y. Zhuo, G. Haffari, and
M. Baktashmotlagh, “Neural-symbolic commonsense
reasoner with relation predictors,” arXiv preprint
arXiv:2105.06717, 2021.

P. Clark, “Elementary school science and math tests as
a driver for ai: Take the aristo challenge!” in AAAIL
Citeseer, 2015, pp. 4019-4021.

N. Arai, Artificial intelligence vs. Children who can’t
read textbooks. Toyo Keizai Shimpo, 2018.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “RACE:
Large-scale ReAding comprehension dataset from ex-
aminations,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational
Linguistics, Sep. 2017, pp. 785-794.

V. Kumar, “Algorithms for constraint-satisfaction prob-
lems: A survey,” Al magazine, vol. 13, no. 1, pp. 32-32,
1992.

M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power,



[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

“Semi-supervised sequence tagging with bidirectional
language models,” arXiv preprint arXiv:1705.00108,
2017.

T. N. Kipf and M. Welling, “Semi-supervised classifi-
cation with graph convolutional networks,” in Inferna-
tional Conference on Learning Representations (ICLR),
2017.

R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and
P. Kohli, “Leveraging grammar and reinforcement
learning for neural program synthesis,” arXiv preprint
arXiv:1805.04276, 2018.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-to-text
transformer,” arXiv preprint arXiv:1910.10683, 2019.
V. Joshi, M. Peters, and M. Hopkins, “Extending a
parser to distant domains using a few dozen partially
annotated examples,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Melbourne, Australia:
Association for Computational Linguistics, Jul. 2018,
pp. 1190-1199.

S. Russel, P. Norvig et al., Artificial intelligence: a
modern approach. Pearson Education Limited, 2013.
J.-K. Zhao, E. M. Rudnick, and J. H. Patel, “Static logic
implication with application to redundancy identifica-
tion,” in Proceedings. 15th IEEE VLSI Test Symposium
(Cat. No. 97TB100125). 1EEE, 1997, pp. 288-293.
T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A
simple framework for contrastive learning of visual rep-
resentations,” in International conference on machine
learning. PMLR, 2020, pp. 1597-1607.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang,
“Squad: 100,000+ questions for machine comprehen-
sion of text,” arXiv preprint arXiv:1606.05250, 2016.
M. Richardson, C. J. Burges, and E. Renshaw, “Mctest:
A challenge dataset for the open-domain machine
comprehension of text,” in Proceedings of the 2013
conference on empirical methods in natural language
processing, 2013, pp. 193-203.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy,
“RACE: large-scale reading comprehension dataset
from examinations,” in Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017, 2017, pp. 785-794.

Z. Zhang, J. Yang, and H. Zhao, “Retrospective reader
for machine reading comprehension,” arXiv preprint
arXiv:2001.09694, 2020.

S. Min, M. Seo, and H. Hajishirzi, “Question answering
through transfer learning from large fine-grained super-
vision data,” arXiv preprint arXiv:1702.02171, 2017.
D. Jin, S. Gao, J.-Y. Kao, T. Chung, and D. Hakkani-
tur, “Mmm: Multi-stage multi-task learning for multi-
choice reading comprehension,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2020, pp.
8010-8017.

1. Beltagy, M. E. Peters, and A. Cohan, “Long-

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

former: The long-document transformer,” arXiv preprint
arXiv:2004.05150, 2020.

Y. Lin, H. Ji, Z. Liu, and M. Sun, “Denoising distantly
supervised open-domain question answering,” in Pro-
ceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
2018, pp. 1736-1745.

L. Pang, Y. Lan, J. Guo, J. Xu, L. Su, and X. Cheng,
“HAS-QA: hierarchical answer spans model for open-
domain question answering,” in The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, 2019, pp. 6875-6882.

“Test prep nerds.” |https://testprepnerds.com/Isat/
Isat-scores/| Accessed July 1, 2021.

“Law school admission council.” https://www.lsac.
org/lsat-interpretive-guide/2019-2020 Accessed July 1,
2021.

“Internet legal research group.” https://www.ilrg.com/
rankings/law/index/1/desc/LSATLow, Accessed July 1,
2021.

C. Rawlings, W. Taylor, J. Nyakairu, J. Fox, and M. J.
Sternberg, “Reasoning about protein topology using
the logic programming language prolog,” Journal of
Molecular Graphics, vol. 3, no. 4, pp. 151-157, 1985.
R. J. Boulton, “A tool to support formal reasoning about
computer languages,” in International Workshop on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 1997, pp. 81-95.

L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning
of object categories,” IEEE transactions on pattern
analysis and machine intelligence, vol. 28, no. 4, pp.
594-611, 2006.

W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang,
“One-shot relational learning for knowledge graphs,”
arXiv preprint arXiv:1808.09040, 2018.

Z. Du, C. Zhou, M. Ding, H. Yang, and J. Tang,
“Cognitive knowledge graph reasoning for one-shot
relational learning,” arXiv preprint arXiv:1906.05489,
2019.

C. Bhagavatula, R. L. Bras, C. Malaviya, K. Sakaguchi,
A. Holtzman, H. Rashkin, D. Downey, S. W.-t. Yih, and
Y. Choi, “Abductive commonsense reasoning,” arXiv
preprint arXiv:1908.05739, 2019.

W. Starr, “Counterfactuals,” 2019.

L. Qin, A. Bosselut, A. Holtzman, C. Bhagavatula,
E. Clark, and Y. Choi, “Counterfactual story reason-
ing and generation,” arXiv preprint arXiv:1909.04076,
2019.

P. Bartha, “Analogy and analogical reasoning,” 2013.


https://testprepnerds.com/lsat/lsat-scores/
https://testprepnerds.com/lsat/lsat-scores/
https://www.lsac.org/lsat-interpretive-guide/2019-2020
https://www.lsac.org/lsat-interpretive-guide/2019-2020
https://www.ilrg.com/rankings/law/index/1/desc/LSATLow
https://www.ilrg.com/rankings/law/index/1/desc/LSATLow

	I Introduction
	II Related Work
	II-A Taxonomy of Complex Reasoning
	II-B Advanced Methods of Complex Reasoning
	II-C Examination-based Question Answering

	III Preliminaries
	III-A Task Definition
	III-B Baseline Model
	III-C Dataset

	IV Analytical Reasoning
	IV-A Challenges in Analytical Reasoning
	IV-B Symbolic Model: ARM
	IV-B1 Arguments Extraction
	IV-B2 Constraints Interpretation
	IV-B3 Program Execution
	IV-B4 Option Selection

	IV-C Neural Model: CGAR
	IV-C1 Constraint Graph Construction
	IV-C2 Graph Reasoning
	IV-C3 Answer Prediction

	IV-D Neural-Symbolic Model: NSAR
	IV-D1 Data Annotation
	IV-D2 Neural Parser
	IV-D3 Symbolic Executor

	IV-E Results and Analysis
	IV-E1 Overall Comparison
	IV-E2 Detailed Analysis on NSAR
	IV-E3 Error Analysis
	IV-E4 Discussion


	V Logical Reasoning
	V-A Challenges in Logical Reasoning
	V-B LReasoner Model
	V-B1 Logic-Driven Context Extension
	V-B2 Logic-Driven Data Augmentation

	V-C Results and Analysis
	V-C1 Overall Comparison
	V-C2 Analysis of Logic Identification
	V-C3 Performance on ReClor & LogiQA
	V-C4 Error Analysis
	V-C5 Discussion


	VI Reading Comprehension
	VI-A RC-LSAT Challenges
	VI-B Position-aware DUMA Model
	VI-C Results and Analysis
	VI-C1 Overall Comparison
	VI-C2 Transfer Learning
	VI-C3 Error Analysis
	VI-C4 Discussion


	VII Further Discussion
	VII-A Overall Performance of LSAT Tests
	VII-B Challenges & Future Directions
	VII-B1 Unsupervised Symbolic Knowledge Extraction
	VII-B2 Model Interpretability
	VII-B3 Few-Shot Learning
	VII-B4 All-Sided Benchmark for Complex Reasoning


	VIII Conclusion
	Appendix A: Data Annotation

