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When Speaker Recognition Meets Noisy Labels:
Optimizations for Front-Ends and Back-Ends

Lin Li , Member, IEEE, Fuchuan Tong , and Qingyang Hong , Member, IEEE

Abstract—A typical speaker recognition system often involves
two modules: a feature extractor front-end and a speaker iden-
tification back-end. Despite the superior performance that deep
neural networks have achieved for the front-end, their success ben-
efits from the availability of large-scale, correctly labeled datasets.
While label noise is unavoidable in speaker recognition datasets,
both the front-end and back-end are affected by label noise, which
degrades speaker recognition performance. In this paper, we first
conduct comprehensive experiments to help improve our under-
standing of the effects of label noise on both the front-end and back-
end. Then, we propose a simple yet effective training paradigm and
loss correction method to handle label noise in the front-end. We
combine our proposed method with the recently proposed Bayesian
estimation of PLDA for noisy labels, and the whole system shows
strong robustness to label noise. Furthermore, we show two prac-
tical applications of the improved system: one application corrects
noisy labels based on an utterance’s chunk-level predictions, and
the other algorithmically filters out high-confidence noisy samples
within a dataset. By applying the second application to the NIST
SRE04–10 dataset and verifying filtered utterances by human val-
idation, we identify that approximately 1% of the NIST SRE04–10
dataset is made up of label errors.

Index Terms—Speaker recognition, noisy labels, x-vector,
probabilistic linear discriminant analysis.

I. INTRODUCTION

S PEAKER recognition is a typical biometric authentication
technology that verifies the identities of speakers from their

voices. A typical speaker recognition system often involves two
modules: a feature extractor front-end and a speaker identifica-
tion back-end. The front-end extracts low-dimensional discrim-
inative speaker representations (embeddings) from variable-
length utterances, whereas the back-end determines whether
two embeddings are from the same speaker [1]. The Gaussian
Mixture Model Universal Background Model (GMM-UBM) [2]
and i-vectors [3] are two typical conventional speaker recog-
nition models [4]. Probabilistic Linear Discriminant Analysis
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(PLDA) [5]–[8] is commonly used as a back-end scoring model.
To satisfy the PLDA Gaussian assumptions for training data [9],
extracted features generally require preprocessing, such as Lin-
ear Discriminant Analysis (LDA) and length normalization [10],
before being used to train a PLDA model. Both LDA and PLDA
are trained in a supervised manner that requires training data
with corresponding speaker labels.

Along with the increasing amount of training data and the
development of neural networks, state-of-the-art performances
for speaker recognition have been achieved by deep neural net-
works [4]. Among these networks, the x-vector [11] front-end is
perhaps the most popular deep speaker embedding architecture.
The x-vector directly replaces the i-vector to extract discrimi-
native speaker representations using time delay neural network
(TDNN) layers [12] with a statistical pooling layer. Based on the
x-vector architecture, multiple deep speaker embedding network
variants [13], [14] have been proposed to boost recognition
performance. In addition, margin-based objective functions [15],
[16] have been widely used to learn more discriminative speaker
representations. Although these methods have achieved remark-
able success, supervised training for deep embedding models
requires large-scale datasets that are correctly labeled.

Unfortunately, erroneously labeled samples are unavoidable
during speaker utterance collections. This phenomenon is de-
noted as label noise, and incorrectly labeled utterances are
denoted as noisy samples. For instance, the NIST SRE18 [17]
development set does not provide speaker labels but instead only
provides a phone number corresponding to each utterance [18].
The VoxCeleb dataset [19] is collected from YouTube, and the
speaker identities are confirmed through facial recognition based
on convolutional neural networks (CNNs). Typically, these
noisy labels can be categorized into three categories: closed-set,
open-set, and mixed-set. The closed-set refers to noisy samples
whose true labels are contained within the training classes. The
open-set contains noisy samples whose true labels are outside
the training set. The mixed-set refers to mixed closed-set and
open-set label noise. Fig. 1 provides a pictorial illustration of
noisy labels. Label noise would impair both the front-end and
back-end model training, thereby degrading the speaker recog-
nition performance. In this paper, we start with comprehensive
explorations of the closed-set, as it is a more challenging scenario
[20], and then explore the open-set, and mixed-set label noise.

For a training dataset with an unknown number of noisy
samples, the front-end goal is to learn discriminative feature
spaces where different speaker embeddings are adequately sep-
arated; which is so-called learning with label noise. Research on
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Fig. 1. An illustration of noisy labels. Supposing there are four categories in a
clean-set, “closed-set” indicates that some samples have erroneously been given
wrong labels from other classes within the dataset; “open-set” means that some
out-of-set samples have been grouped into the existing labels within the dataset,
and “mixed-set” denotes the conditions of both closed-set and open-set label
noise.

learning with label noise is flourishing [21]–[25]. The authors
of [26] provide a comprehensive overview of recently proposed
approaches for learning with label noise. These methods can
be roughly divided into four categories: robust loss functions,
robust architecture, robust regularization, and sample selection.
A robust loss function [22], [24], [27] prevents a network from
overfitting noisy samples by modifying the loss value or design-
ing a more robust objective function. Robust architecture [28],
[29] aims to model a noise transition matrix from a noisy dataset
by using an auxiliary architecture. Robust regularization [30],
[31] reduces the impact of noisy samples by adding regular-
ization techniques. Finally, sample selection [32], [33] handles
label noise by selecting correctly-labeled samples.

Meanwhile, learning with label noise has become a pop-
ular research topic in the study of speaker recognition. For
the x-vector front-end, the detrimental effects of label noise
in speaker recognition are confirmed in [34], and the author
proposed relaxing the constraints on speaker identity in the
entropy loss function to prevent the network from fitting noisy
samples. Pham et al. [35] conducted extensive experiments to
investigate the effects of different types of label noise on the
x-vector baseline. The authors of [36] proposed an iterative
noisy label detection approach to refine training data labels.
For the back-end, Borgström et al. [18], [37], [38] proposed
a novel method for Bayesian estimation of PLDA when label
noise occurs during PLDA training; we refer to this method as
NL-PLDA. However, the existing literature either focuses only
on the front-end or only on the back-end, and current research
does not comprehensively analyze the impact of label noise on
different components of speaker recognition systems.

In this paper, we simultaneously optimize the front-end and
back-end of speaker recognition systems when training datasets
are noisy. For the network front-end, we propose a simple yet
effective training paradigm to prevent networks from fitting
noisy samples. The proposed framework consists of three major
components:

1) A label confidence training scheme that incorporates
network-predicted pseudo-labels into the loss function; this
method is similar to Bootstrapping [22], but we use a well-
designed dynamically increasing confidence weight.

2) A rescaling strategy that reduces the posterior probability
of clean labels to emphasize them more in the loss function.

3) An improved AM-Softmax loss function that relaxes the
intra-class constraint.

For the back-end, we treat the true labels as multinomial
random variables and train an NL-PLDA model to perform
speaker identification scoring.

This paper builds upon our previous work on combating noisy
labels [39]. Instead of conducting experiments on the VoxCeleb
dataset, as in [39], the experiments in this paper are conducted on
the Switchboard [40]–[43] and NIST SRE 2004–2010 (SRE04–
10 in short) [44] datasets. In addition, more comprehensive
experiments are conducted to analyze the effects of label noise
on the x-vector, LDA, PLDA, and NL-PLDA models by setting
different label error rates in closed-set, open-set, and mixed-set
scenarios. The contribution of this paper are multifold and are
summarized as follows:

1) In the front-end, a label confidence training paradigm with a
dynamic confidence policy, a rescaling strategy, and an improved
AM-Softmax are proposed for front-end learning with label
noise. In combination with these components, the network shows
consistent improvements in the robustness to label noise. Fur-
thermore, a label correction method based on chunk-level label
predictions is proposed that significantly reduces the number of
noisy samples in a dataset.

2) In the back-end, we show how to apply NL-PLDA to filter
out noisy labels. For further practical contribution, we provide
an optimized expectation-maximization (EM) algorithm and
pseudocode for the NL-PLDA training process.

3) To verify whether there are noisy samples in the SRE04–
10 dataset, we utilize the network predictions and NL-PLDA
estimation to filter out high-confidence noisy samples and then
verify them by human validation. As a result, we find that
approximately 1% of the samples in the SRE04–10 dataset are
mislabeled. After removing these samples, a relatively correct
spk2utt mapping is released for this dataset.

This paper is organized as follows. Section II reviews the
three most popular models used in speaker recognition sys-
tems. Section III introduces our proposed method for front-end
learning with label noise. A detailed EM algorithm description
for NL-PLDA is presented in Section IV and Appendix A.
Section V shows the comprehensive experiments, results, and
analyses. Section VI shows applications of the proposed method.
Conclusions are given in Section VII.

II. EMBEDDING-BASED SPEAKER RECOGNITION

A. X-Vector

Currently, deep learning-based speaker recognition is of in-
creasing interest to researchers. The x-vector is a typical ar-
chitecture that extracts discriminative low-dimensional vectors
for speakers through a neural network. Benefiting from a large
amount of data, the x-vector shows superior performance over
the i-vector, and it is the main focus of this paper. The x-vector
typically consists of frame-level layers, a pooling layer, segment-
level layers, and a softmax layer. The frame-level layers process
variable-length acoustic frames from speech using TDNN. The
pooling layer aggregates variable-length frames into a fixed-
dimensional vector. The segment-level layers are generally com-
posed of two fully connected layers, and the outputs of the two
layers are so-called x-vectors.
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To deal with long-duration and variable-length training data,
acoustic sequences are usually cut into multiple small chunks,
and then they are used as inputs to train a network. During
training, an objective function computes the cross-entropy be-
tween given speaker labels and corresponding output probabil-
ities. In addition to the standard softmax objective function,
the additive margin softmax (AM-Softmax or CosFace) [15],
[45] and the additive angular margin softmax (AAM-Softmax
or ArcFace) [16] are two commonly used loss functions. The
backpropagation-based optimization algorithm updates the pa-
rameters of a network by minimizing the loss function. However,
in the presence of noisy labels, this loss function might drive a
speaker network to learn the opposite. Therefore, improving the
loss function to prevent a network from fitting noisy samples is
the key for learning with noisy labels.

B. LDA

LDA is a supervised method to reduce feature dimensions,
which is useful for classification tasks; therefore, it is widely
used in image recognition and speaker recognition. LDA max-
imizes the Fisher criterion for subspace embeddings by pro-
jecting high-dimensional features into low-dimensional fea-
tures through a projection matrix P, i. e., LDA maximizes the
between-class variance and minimizes the within-class variance.
LDA is trained by optimizing the following Fisher criterion
function:

P̂ = argmax
P

tr
(
P

T
SbP

)
tr
(
PTSwP

) , (1)

where Sb and Sw denote between-class and within-class vari-
ance, respectively. They are calculated as

Sb =
1

N

M∑
m=1

Nm (µm − µ) (µm − µ)T (2)

Sw =
1

N

M∑
m=1

Nm∑
n=1

(xm
n − µm) (xm

n − µm)T , (3)

where N is the total number of embeddings from M speakers,
Nm is the number of samples of the m-th speaker, µm denotes
the mean of the m-th speaker, µ denotes the global mean, and
xm
n represents then-th embedding of them-th speaker. However,

since LDA is a supervised model, we explore how label noise
affects LDA in Appendix B.

C. PLDA

PLDA is a probabilistic generative model typically used
to make probabilistic inferences about a data class. It is a
probabilistic version of LDA. Compared to LDA, PLDA adds
a continuous Gaussian prior to class centers, which enables
it to generate new unseen class centers given even a single
example. In addition to the standard PLDA formulation [6],
there are several variants of PLDA [46], such as the simplified
variant [7], two-covariance variant [5], [7], and heavy-tailed
PLDA [8]. In this paper, we adopt two-covariance PLDA, which
is assumed to generate the class center and the observed data in a

Fig. 2. An overview of the proposed method. During training, the SubAM-
Softmax outputs the predicted label for each chunk, and the total loss is formed
by a confidence-weighted combination of predicted and original labels.

two-stage process:

ym ∼ N (
ym|µ,B−1

)
(4)

xm
n ∼ N (

xm
n |ym,W−1

)
, (5)

where µ, B, and W are the parameters estimated by PLDA,
namely the global mean, between-speaker, and within-speaker
precision matrices, respectively.

In the hypothesis-testing stage, given a pair of individual
embeddings, we decide whether two given embeddings belong
to the same speaker by computing a likelihood ratio. Although
making such a decision based on cosine distance is simpler,
its performance might be suboptimal under more challenging
situations (e. g., cross-channel, language mismatch, and noisy
environments). Due to the multiple PLDA domain adaptation
technologies [37], [38], [47]–[49], and data augmentation meth-
ods [11], [50], PLDA shows its superior advantages. Under the
assumption that speaker embeddings follow Gaussian distribu-
tions, PLDA has shown to be the theoretically optimal scoring
method [51]. Therefore, it is currently the dominant back-end
algorithm for speaker recognition.

III. FRONT-END LEARNING WITH NOISY LABELS

We propose a training scheme and a loss correction method
to improve the front-end’s label noise tolerance. As illustrated
in Fig. 2, our framework consists of three major components:
1) incorporate pseudo-labels into a loss function with a well-
designed dynamic confidence policy that weighs the combina-
tion of pseudo-labels and original labels; 2) rescale clean-label
posterior probability; and 3) introduce a sub-center layer into
AM-Softmax to separate noisy samples from training data.
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A. Label Confidence Training

To put this formally, let us first reconsider deep embedding-
based speaker recognition systems from a classification per-
spective. The x-vector network training process is formulated
as a problem of learning a model hθ(u) from a set of batch
training samples D = {(ui, yi)}Bi=1, where B is the mini-batch
size, yi ∈ {0, 1}M denotes the ground-truth label corresponding
to ui, and M is the total number of classes. For classification
issues concerning label noise, label yi might be noisy (i. e., ui is
a noisy sample). Supposing the extracted embedding of ui is xi,
the parameters of the network would be updated by optimizing
the following loss function:

L = − 1

B

B∑
i=1

log (Pi,yi
) , (6)

where Pi,yi
denotes the posterior probability that xi is classified

as the ground-truth label yi. In this paper, we term Pi,yi
as

the ground-truth label posterior probability; if adopting AM-
Softmax, Pi,yi

is formulated as:

Pi,yi
=

es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑M

j �=yi
es(cos(θj,i))

, (7)

where m is the additive angular margin, s is the scale factor, θj,i
is the angle between Wj and xi. cos(θj , i) = WT

j xi represents
the similarity score, and Wj is the j-th class center vector of the
fully connected layer matrix W. It is noteworthy that here W ∈
RM×d, whereas in Section III-C, the dimension is extended to
RM×K×d based on a sub-center layer.

However, a neural network trained directly on this objective
function will overfit noisy samples, as the loss contains noisy
labels. Nonetheless, prior studies have shown that deep neural
networks first learn clean samples and general patterns from a
dataset, and then they are forced to memorize noisy labels [21],
[52]. This indicates that the network classifies noisy samples
into correct classes; therefore, to leverage the network’s ability to
learn from data with label noise, we incorporate a predicted label
posterior probability Pi,ŷi

into the objective function to prevent
fitting incorrect samples as training iterations become larger. The
subscript ŷi ∈ {0, 1, . . .,M − 1} denotes the predicted label of
xi, which is categorized as class j with the max-activated output.
Then, the loss function in Eq. (6) is extended as follows:

L′ = − 1

B

B∑
i=1

{(1− αt) log (Pi,yi
) + αt log (Pi,ŷi

)} , (8)

where αt ∈ [0, 1] is the t-th training iteration confidence weight
between Pi,yi

and Pi,ŷi
, and it determines whether the loss

function relies more on the ground-truth label or the predicted
label.

The technique of Eq. (8) is similar to Bootstrapping [22].
However, Bootstrapping setsαt as a fixed value for all iterations.
If αt is set too small, the network is influenced greatly by
noisy labels during the whole training process. The resulting
performance is suboptimal since the noisy label correction is
limited. If αt is set too large, there is a risk that the network
may be too skeptical and choose labels in a random way.

Therefore, a consistent balance should be established, and we
adopt a dynamic weight for αt. Since the network parameters
are initialized randomly, and the predictions are likely to be
incorrect, it is not a practical idea to set αt to be too large at the
beginning of the training process. Additionally, αt should not
be set too small in an advanced stage of the training; otherwise,
noisy labels will create too many adverse effects. Thus, we set
αt as the exponentially increasing function of the number of
training iterations, formulated as:

αt = αT · (t/T )λ, (9)

where αT (0 ≤ αT ≤ 1) represents the confidence weight at
the final iteration T , t denotes the number of iterations of the
current training, and λ is the exponent that controls the rate
of increase. With this confidence policy, αt would dynamically
increase from 0 to αT as the number of iterations increases. This
is because the predictions become increasingly accurate during
training [53], [54]. Therefore, we refer to this method as label
confidence training.

In the case of minimizing Eq. (8), there is a risk that the
network may become overconfident and predict each sample as
having the same label during the last few iterations. To avoid this
problem, we use mutual information KL(Py, Pŷ) = Py log

Py

Pŷ

as label regularization [23], [55]. Label regularization measures
the statistical distance between the prior probability distribution
and the predicted distribution. Then, the total loss Ltotal is
written as:

Ltotal = L′ + β · Py log
Py

Pŷ
, (10)

where β is the regularization coefficient. To simplify the training
process, we set Py = 1

M , and Pŷ = 1
B

∑B
i=1 Pi,ŷ , which is

approximated by performing a calculation for each mini-batch.
Label regularization allocates each sample a prior probability
Py of belonging to all possible classes and helps the network
prevent assigning all labels to one class.

B. Clean Label Probability Rescaling

If the predicted label of a sample is the same as its ground-truth
label, we generally believe that this sample is correctly labeled
since the label confidence training criterion prevents the network
from fitting noisy labels. Then, Eq. (8) is equivalent to Eq.
(6). We emphasize these clean samples to utilize them to learn
discriminative speaker embeddings. Intuitively, the posterior
probability is larger for clean samples and smaller for noisy
samples; while the loss function is a monotonically decreasing
function of the posterior probability. We rescale the posterior
probabilities of clean samples in the loss function, in order
to increase their corresponding contribution to parameter op-
timization during training. Specifically, the probability for clean
samples is reduced to

P ′
i,yi

=
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑M

j �=yi
g(u)es(cos(θj,i))

, (11)
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where g(u) is a rescaling function, and is formulated as:

g(u) = eu·s(cos(θj,i)+1), (12)

where u ≥ 0, so that g(u) ≥ 1, thereby P ′
i,yi

≤ Pi,yi
for clean

samples. This idea is inspired by Co-mining [25]. However,
Co-mining requires two peer networks to detect noisy samples,
which makes the networks difficult to train at times. We directly
reweight clean samples by the network predictions.

C. Sub-Center AM-Softmax

AM-Softmax and AAM-Softmax are two angular margin-
based objective functions that are commonly used in deep
speaker recognition. The x-vectors learned by such functions
are angularly distributed and naturally match the back-end scor-
ing based on cosine similarity [56]. They also perform better
than Softmax when adopting the PLDA back-end for scoring
since they explicitly minimize the within-class covariance [4].
However, they are susceptible to label noise, as the inter-class
speakers contain incorrect samples. To address this problem,
sub-center AAM-Softmax has recently been proposed for face
recognition [27], and it relaxes the intra-class constraint of
AAM-Softmax [16]. In speaker recognition, AM-Softmax per-
forms comparably to AAM-Softmax [57]–[59], and it converges
faster [60]. Therefore, in this work, we adopt AM-Softmax as an
objective function and relax its intra-class constraint to further
improve the robustness to label noise.

The concept of “sub-classes” has been employed in face
recognition for some time. Research shows that sub-classes sep-
arate different patterns more clearly, thus improving recognition
accuracy [61], [62]. Following the set in [27], we introduce sub-
classes into AM-Softmax and refer to the improved loss function
as sub-center AM-Softmax (SubAM-Softmax for short). K
sub-centers are introduced in each class to relax the intra-class
constraint. To form K sub-centers, the dimension of matrix W
in SubAM-Softmax is extended to RM×K×d, and then the sim-
ilarity score is formulated as cos(θj,i) = maxk(W

T
jk
xi), k ∈

{1, . . . ,K}, where maxk denotes a max-pooling step. The
sub-classes are able to capture the complex distribution of the
training data and separate noisy samples from clean samples.
Therefore, sub-classes enable the loss function to be more robust
to label noise [27].

D. Discussion

1) Handling Hard Samples: In this paper, we refer to hard
samples as clean samples that require more time for the network
to learn. In the proposed method, we relabel samples according
to the network’s predictions. Although the predictions are more
accurate than the original noisy labels, they may also misclassify
some hard samples as noisy. To reduce this mislabeling, we keep
the original labels in the loss function as a part of supervised
training. Moreover, in the well-designed confidence policy, as
shown in Eq. (9), αT controls the maximum confidence degree,
and λ controls the confidence rate for the network. Thus, the
two parameters are empirically set to trade-off ground-truth and
pseudo labels.

2) How This Method Works: The framework leverages both
the generalization ability of a network and speech signal features
to learn from label noise. In generalization, a network first
learns the patterns of a dataset and maintains highly robust
performances at the beginning of the training process [52],
which enables a model to compute correct patterns for noisy
samples and classify them into correct classes before memoriz-
ing them. Therefore, the proposed method prevents a network
from fitting incorrect samples by incorporating predicted labels
to correct them on the fly. Additionally, a speech utterance is a
one-dimensional time-series signal, and each utterance is usually
divided into multiple chunks as inputs for deep neural network
training [63]. When the network learned those patterns related
to different speaker identities during training, it can be assumed
that the network would predict correct labels for the majority
of chunks in an utterance, which facilities the proposed label
confidence training process.

IV. BACK-END PLDA ESTIMATION WITH NOISY LABELS

To address the problem of label errors in the back-end, a
method for Bayesian estimation of PLDA with noisy labels is
proposed in [18], [38]. The theoretical analysis of NL-PLDA
has been covered extensively in [18], [38]. In this section, as a
supplement, we present a detailed algorithmic presentation of
NL-PLDA and its utilization of automatic filtering to weed out
high-confidence noisy samples.

To combat label noise, NL-PLDA treats true labels as multi-
nomial random variables and estimates a model’s parameters
based on maximum-likelihood estimation in the context of Vari-
ational Bayes. The training samples and corresponding labels are
denoted as X = {x1, . . . ,xN}, L = {l1, . . . , lN}, respectively,
where N is the sample size from M individuals. However, since
there are noisy samples, L is not the correct identity. To tackle
this problem, the true label for each sample xn is modeled as a
latent identity zn ∈ RM , and we let Z = {z1, . . . , zN} denote
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the set of true identities corresponding to X . The element zn,m
(
∑M

m=1 zn,m ≡ 1) of Z indicates class membership, and the
expectation of zn,m can be seen as the confidence (probability)
that xn belongs to individual m.

The EM algorithm for the NL-PLDA is summarized in short
form in Algorithm 1, and the details are available in Appendix
A. In the E-step, the EM algorithm estimates both the posterior
of the true identity and the individual feature distribution simul-
taneously; whereas the M-step updates the label error rate ε, true
latent identities Z , and the parameters of NL-PLDA.

Moreover, since Z explicitly models the latent identity dis-
tribution, it can be utilized to filter out high-confidence noisy
labels. Before training, no a priori information about the error
rate is available; therefore, it is assumed that there are no label
errors (ε = 0). Therefore, the initialization for Z is shown as the
left matrix of Eq. (13), where zn,m is initialized as zn,ln = 1,
implying that xn belongs to the original corresponding individ-
ual ln. During the EM iteration steps, Z is determined by the
maximum posterior estimation. We assume that the final updated
Z is shown as the right matrix of Eq. (13). When the value of
zn,ln becomes relatively small, this indicates that ln might have
a high probability of mislabeling. Therefore, a threshold (e. g.,
zn,ln ≤ 0.1) is empirically set to filter out these samples.⎡

⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0.9 0 0 · · · 0.01

0.1 0.7 0.1 · · · 0
0 0.8 0 · · · 0.1
...

...
...

. . .
...

0.4 0.2 0.2 · · · 0.05

⎤
⎥⎥⎥⎥⎥⎦ (13)

V. EXPERIMENTS

A. Datasets

1) Training Datasets: The training datasets are prepared
following SRE16 Kaldi recipe1, including the Switchboard
Phase2–3 [40], [41], Cellular1–2 (SWBD) [42], [43], and
SRE04–10 [44] datasets. After filtering out nonspeech frames
by energy-based voice activity detection (VAD), the recordings
shorter than four seconds and the speakers with less than eight
recordings are discarded. Finally, the SWBD portion contains
18,407 English recordings from 1,318 speakers, and SRE04–10
includes 2,682 speakers with 48,022 utterances. Most of these
recordings are in English, while some are in Chinese, Russian,
Arabic, etc. We use the two pooled datasets to train the front-end
extractions, while only using the SRE04–10 portion for the LDA
and PLDA back-end training.

2) Evaluation Datasets: The evaluation datasets consist of
NIST SRE16 [64] and NIST SRE18 CMN2 [17]. Specifically,
SRE16 is composed of Cantonese and Tagalog telephone con-
versations; the Cantonese dataset contains 965,395 trials and the
Tagalog dataset contains 1,021,332 trials. For SRE18, the CMN2
collection is mainly spoken in Tunisian Arabic, and contains
108,095 trials in the development set and 2,063,007 trials in the
evaluation set.

1[Online]. Available: https://github.com/kaldi-asr/kaldi/tree/master/egs/
sre16/v1

TABLE I
CONFIGURATIONS OF THE X-VECTOR-BASED FRONT-ENDS

“Fixed Confidence” denotes setting αt in (8) to a fixed value, and “Dynamic
Confidence” denotes setting αt to a dynamic value.

B. Experimental Settings

1) Data Preparation: In this section, we describe the way we
prepare the simulated closed-set label noise. In our experiments,
we first assume that the original training datasets are clean
(without error labels), denoted as ε = 0%. To better monitor
the network prediction accuracy in a clean dataset, we divide
the training datasets into a training set and a validation set. The
validation set is composed of one utterance randomly selected
from each speaker, and the remaining recordings are used to
compose the training set. It is noteworthy that there is no overlap
between the two subsets. The validation set is kept clean and
is used to monitor the actual prediction accuracy. To simulate
different label error rates in the training set, we perform label dis-
ruption on the SWBD and SRE04–10 training sets. Specifically,
we randomly select ε ∈ {5%, 10%, 20%, 30%, 50%} for each
speaker’s utterances and then randomly relabel them as other
speaker identities presented in the training set. For instance, if
ε = 50%, then half of each speaker’s utterances are randomly
relabeled as belonging to other speakers in the training set to
obtain a 50% label error rate in the SWBD and SRE04–10
training sets, respectively.

All of the raw audio files are converted to 40-dimensional Mel-
frequency Cepstral Coefficients (MFCCs) with a 25 ms window
and a 10 ms frame shift. Cepstral Mean Normalization over a
three-second sliding window is applied to the MFCCs. After
removing nonspeech frames by VAD, the average duration of
utterances in SWBD is 171 seconds and 160 seconds in SRE04–
10. For the front-end training, speech utterances are uniformly
cut into chunks without overlaps, where the chunk length is set
to 400 frames. These chunks are randomly formed into mini-
batches as the network inputs. That is, we adopt the sequence
sampling as designed in ASV-Subtools [65].

2) Front-End Configurations: We conduct experiments us-
ing x-vector-based front-ends, which are implemented in ASV-
Subtools [65]. For the x-vector baseline system, we apply the
extended-TDNN (E-TDNN) structure [13] with AM-Softmax
loss to train a 512-dimensional x-vector extractor. The detailed
implementations of the E-TDNN source codes are released on
GitHub2. In addition to the x-vector baseline, we also train six
other x-vector-based front-ends with different configurations, as
shown in Table I. These front-ends are roughly trained by adding
more components progressively, which enables us to observe the

2[Online]. Available: https://github.com/Snowdar/asv-subtools/tree/master/
pytorch/model

https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v1
https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v1
GitHub
https://github.com/Snowdar/asv-subtools/tree/master/pytorch/model
https://github.com/Snowdar/asv-subtools/tree/master/pytorch/model
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Fig. 3. Comparisons of the Baseline (Row 1) and Front2 (Row 2) accuracy under 0%, 20%, and 50% label error rates.

contribution of individual components. All of these networks are
trained on GeForce RTX 2080 Ti GPUs with a mini-batch size
of 256. AdamW is chosen as the optimizer, the weight decay is
set to 1e−1, and the learning rate is initially set to 1e−3 and
gradually reduced to 1e−6. The networks are trained with 21
epochs, in which there are approximately two hundred thousand
(200 K) iterations in total.

3) Back-End Training & Evaluation: Once trained, we
choose the epoch with the highest validation set accuracy as
the final model. For the evaluation process, we create one em-
bedding per utterance for scoring purposes. The activations for
the model’s penultimate fully connected layer are extracted as
speaker embeddings (x-vectors). Then, we project the x-vectors
to a lower 256-dimensional space using LDA and adopt cen-
tering and length normalization. We trained LDA, PLDA, and
NL-PLDA only on the SRE04–10 dataset. Although LDA is a
supervised model, it is observed that LDA is not much affected
by label noise from the explorations of LDA in Appendix B. For
simplicity, we focus on the optimization of PLDA training with
label noise and do not perform any label noise techniques on
LDA.

Since the evaluation datasets are non-English, and PLDA
is mainly trained on English utterances, domain mismatch
is possible between the training and testing. To handle this
problem, we adopt the unsupervised PLDA adaptation method
implemented in Kaldi. For the SRE16 evaluation, the SRE16
unlabeled development set is used for PLDA adaptation. While
for the SRE18 CMN2 task, the PLDA adaptation is trained on
the SRE18 unlabeled set. The scoring results are reported in
terms of Equal Error Rate (EER) and minimum detection cost
function (minDCF) with p-target set to 0.01.

Experiments based on closed-set label noise are shown in
Section V-C, open-set label noise experiments are shown in
Section V-D, and mixed-set label noise experiments are shown
in Section V-E.

C. Validations With Closed-Set Label Noise

In this section, we compare the effects of label noise on the
x-vector baseline and the Front1–6 extractors. The fixed confi-
dence weight for Front1 is chosen as αt = 0.3. The exponent
value for label confidence training is set to λ = 2.0, and αT is
set to 1.0.

1) Training Processes: Before presenting the final results,
we first show an explicit comparison of prediction accuracy on
the training set and evaluation set between the x-vector baseline
and Front2. Note that the prediction accuracy is computed as
the fraction of chunk samples in the training set or validation
set that are classified correctly with respect to the corresponding
labeled classes. As depicted in Fig. 3, the representative training
evolutions with label error rates of ε ∈ {0%, 20%, 50%} are pre-
sented in order from left to right. Compared with Fig. 3(a), (b),
and (c), we observe that the clean dataset converges faster than
the mislabeled dataset, indicating that the network takes longer
to learn mislabeled samples. It also shows that the network learns
reasonable representations in the first few iterations, as shown by
the phenomenon that the validation set obtains higher prediction
accuracy than the training set with label error rates of 20% and
50%. Unfortunately, the increasing number of training iterations
does not further motivate the model to learn as expected; instead,
it leads to the model overfitting incorrect samples, which subse-
quently degrades the prediction accuracy of the validation set.
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TABLE II
PERFORMANCE COMPARISONS OF X-VECTOR BASELINE AND FRONT6 WITH CLOSED-SET LABEL ERROR RATES (ε)

Fig. 4. Results of different front-ends used in conjunction with PLDA and NL-PLDA when encountering closed-set label errors. Results are provided for (a) the
SRE16 Cantonese task, (b) the SRE16 Tagalog task, (c) the SRE18 CMN2 development task, and (d) the SRE18 CMN2 evaluation task, in terms of EER.

In contrast, the label confidence training technique suffers from
fewer adverse effects due to mislabeled samples. As shown in
Fig. 3(e) and (f), the model produces higher validation set accu-
racy during the entire training evolution. In addition, it is quite
remarkable that a final validation accuracy rate of approximately
80% can be achieved even when the label error rate increases to
50%. We would like to emphasize that the final training accuracy
of the models trained by this approach is close to the expected
true label error rate of the dataset, indicating that this approach
separates erroneous samples from correct samples within the
whole training dataset.

2) Results: The results of the x-vector baseline and Front6
extractor used in conjunction with PLDA and NL-PLDA are
summarized in Table II. To visually display the performance
trends of different front-ends and back-ends, we plotted the
curves for the four evaluation tasks in terms of EER, which
are shown in Fig. 4.

It can be observed that the x-vector baseline performance
breaks down rapidly as the label error rate increases. A 90%
relative degradation in EER is obtained with a label error rate
of 50%. The Front2 and Front3 extractors yield lower EERs
than the baseline in situations with label noise. Additionally,
compared with the results of Front1, we clearly observe that

Front2 outperforms Front1 in most situations, indicating that
the gradually increasing confidence weight is more effective in
reducing the impact of label noise. Furthermore, when incorpo-
rating label regularization, Front3 leads to lower performance
degradation relative to Front2. Therefore, in the next front-end
experiments, we adopt the dynamic confidence policy with label
regularization.

To examine the effectiveness of the rescaling strategy and
SubAM-Softmax for handling label noise, Fig. 4 provides the
results of the Front4–6 extractors, which add the rescaling,
SubAM-Softmax, and the combined techniques, respectively.
Compared to the results of Front3, one can observe that Front4
exhibits greater resistance to the impact of label noise and
boosts the performance, which shows that adding a rescaling
technique to focus more on clean labels is helpful for learning
with noisy labels. Additionally, comparisons of the results of
Front3 and Front5 show that SubAM-Softmax is more robust
than the standard AM-Softmax in dealing with label noise.

Next, we observe the experimental results of NL-PLDA,
which are shown by the dashed lines in Fig. 4. For the different
front-ends, the NL-PLDA results are consistent with the trend
of PLDA as the label noise rates increase; while NL-PLDA
achieves better performance in terms of EER and minDCF
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TABLE III
PERFORMANCE COMPARISONS OF THE BASELINE AND FRONT6 WITH OPEN-SET LABEL ERROR RATES (p)

Fig. 5. Performance comparisons of the Baseline and Front6 used in conjunction with PLDA and NL-PLDA in the situation of open-set label noise. Results are
provided for (a) the SRE16 Cantonese task, (b) the SRE16 Tagalog task, (c) the SRE18 CMN2 development task, and (d) the SRE18 CMN2 evaluation task, in
terms of EER.

than simply using PLDA scoring. This implies that NL-PLDA
is capable of handling label noise. However, the performance
of NL-PLDA degrades in the presence of strong label noise,
especially for the x-vector. One explanation is that an insufficient
number of correct labels poses a challenge to NL-PLDA training.
Another important reason is that the speaker embeddings learned
by the x-vector contain less discriminative information, which
confuses the NL-PLDA label noise estimation. This implies that
a front-end that is robust to label noise would facilitate the whole
system’s performance improvement. Additionally, when Front6
is used in conjunction with the NL-PLDA back-end, it yields
significant performance improvements relative to the baseline
methods when the training datasets are noisy. Due to the space
limitation, we demonstrate the detailed results of Front1–Front5
in the website3, as well as the minDCF curves.

From the results presented above, we draw the following
conclusions: 1) Substantial improvements are obtained by label
confidence training. 2) Rescaling and SubAM-Softmax have
complementary properties, and the systems yield further im-
provements when used in tandem. 3) NL-PLDA always per-
forms better than PLDA when training labels are noisy. 4) The
superiority of NL-PLDA benefits from a more robust front-end,
especially in the presence of strong label error rates.

D. Validations With Open-Set Label Noise

In this section, we conduct experiments to validate the perfor-
mance of the improved front-ends and NL-PLDA with open-set
noisy datasets. The open-set noisy datasets are simulated by ran-
domly selecting p ∈ {5%, 10%, 20%, 30%, 50%} training utter-
ances per speaker in the original SWBD and SRE04–10 datasets

3[Online]. Available: http://dwz.date/fbC5

and replacing them with utterances randomly selected from the
concatenated VoxCeleb2 datasets. (Subsegments belonging to
the same video are concatenated together to form a unique
utterance, and then it is downsampled to 8 kHz). The labels
and the number of utterances per speaker remain unchanged.
We use open-set noisy datasets to train the x-vector baseline and
Front6 extractors.

Experimental results for four evaluation datasets with PLDA
and NL-PLDA scoring are shown in Table III, the EER curves are
shown in Fig. 5. As shown, Front6 achieves better performances
compared to the x-vector baseline, which indicates that the
proposed method robustly trains front-ends from open-set noisy
datasets. Although these noisy samples cannot be localized to
the corresponding correct labels in the training set, it can be
assumed that this method reduces their detrimental effects by
assigning them to similar classes from the training set.

E. Validations With Mixed-Set Label Noise

In this section, we consider the mixed condition with both
closed-set label noise and open-set label noise. The mixed-set
label noise rate is denoted by τ ∈ {5%, 10%, 20%, 30%, 50%}.
The proportions of open-set noise and closed-set noise in the
mixed-set are both 50%. The preparations for closed-set and
open-set noisy samples are the same as those in Section V-B
and Section V-D. The results are presented in Table IV, and
the EER curves for the four evaluation datasets are shown in
Fig. 6. We clearly see that Front6 consistently outperforms the
x-vector baseline with mixed-set label noise. In addition, the NL-
PLDA effectively models mixed label noise and is more robust.
In summary, synthetic experiments reveal that our method is
powerful enough to handle mixed label noise, particularly in
cases of high label noise rates.

http://dwz.date/fbC5
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TABLE IV
PERFORMANCE COMPARISONS OF THE X-VECTOR BASELINE AND FRONT6 WITH MIXED-SET LABEL ERROR RATES (τ )

Fig. 6. Performance comparisons of the Baseline and Front6 used in conjunction with PLDA and NL-PLDA in the situation of mixed-set label noise. Results are
provided for (a) the SRE16 Cantonese task, (b) the SRE16 Tagalog task, (c) the SRE18 CMN2 development task, and (d) the SRE18 CMN2 evaluation task, in
terms of EER.

VI. APPLICATIONS

A. Label Correction for Synthetic Datasets

As shown above, when a model is trained to be robust to noisy
labels, the prediction accuracy of the model is greater than the
correct label rate of the data. One straightforward application is
to relabel a full utterance using its chunk-level predictions from
a trained model, and we call this application label correction.
This is of practical interest, as label-corrected datasets can then
be beneficially used to retrain front-end networks and back-end
models.

To verify this, we apply label correction to synthetic closed-
set, open-set, and mixed-set label noise. The Front6 extractors
trained on different label error rates are utilized to predict the
chunk-level labels for the corresponding dataset. In the label-
prediction process, the inputs for the network are the chunk-level
samples from each utterance, while the output is the speaker
label corresponding to each chunk sample. Then, each utterance
is relabeled with the predicted label that occurs with more than
50% frequency in its multiple chunks, which is seen as the
dominant label. If an utterance does not have a dominant label,
this utterance would be discarded, as it is likely to be an outlier.

The experimental results show that the utterance-level predic-
tion accuracy of a dataset with label noise is further improved
through label correction, and the updated label error rate is
significantly reduced compared to the original error rate. For
example, the closed-set error rate is reduced from: 5% → 1.2%,
10% → 1.4%, 20% → 1.9%, 30% → 2.6%, and 50% → 8.6%,
which implies that this method corrects erroneous labels even in
cases with high error rates.

We then use the label-corrected datasets to retrain the speaker
recognition systems. The comparisons of Front6 trained with

and without label correction for the SRE18 CMN2 evaluation
task are shown in Fig. 7. We clearly observe that great improve-
ments have been achieved for all types of label noise, namely
closed-set, open-set, and mixed-set. These improvements show
that label correction alleviates adverse effects from mislabeling
in all scenarios.

B. Label Denoising for Real-Word SRE04–10 Dataset

We further investigate whether there are mislabels in the orig-
inal “clean” SRE04–10 dataset. This experiment adopts more
rigorous methods, including network prediction, NL-PLDA
estimation, and human validation; we call this process label
denoising. After being trained on the original dataset, Front6 and
NL-PLDA are used to filter out high-confidence noisy samples.
Two types of samples are filtered out: those with predicted labels
that are inconsistent with ground-truth labels and those with
low latent identities (zn,m < 0.1). We obtain a subdataset that
is 1.2% the size of the original SRE04–10 dataset. Then, we
identify these erroneous labels by human validation; we find
that more than half of these samples are indeed mislabeled. For
example, some speaker utterances are identified as being spoken
by a male when they are in fact spoken by a female and vice versa.
Furthermore, some utterances contain ambient sound in which
a speaker’s voice can barely be heard. Examples of mislabeled
audio files are publicly available4. Finally, we retrain the x-vector
baseline on the original dataset with these samples removed, and
the results are shown in Table V. Compared with the results of
the x-vector trained without the use of label denoising, slight
improvements are observed in the SRE18 CMN2 development

4[Online]. Available: http://dwz.date/fbC5

http://dwz.date/fbC5
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Fig. 7. Performance comparisons of Front6 trained with and without the label correction datasets, (a) label correction in the situation of closed-set label noise,
(b) label correction in the situation of closed-set label noise, (c) label correction in the situation of mixed-set label noise. Results are provided for the SRE18 CMN2
evaluation task in terms of EER, where “LC” denotes label correction.

Fig. 8. Performance comparisons of different LDA configurations, where “NL” denotes noisy labels and “CL” denotes clean labels. The SRE18 CMN2 evaluation
results of the x-vector baseline with PLDA and NL-PLDA in situation of closed-set label noise are provided in terms of EER and minDCF.

Fig. 9. t-SNE visualization of speaker embeddings without LDA, LDA trained on noisy labels, and LDA trained on clean labels (in order from left to right,
respectively). The speaker embeddings are extracted by the x-vector baseline trained with a 50% label error rate. Each number or color represents a class.

TABLE V
RESULTS OF X-VECTOR TRAINED WITH AND WITHOUT LABEL DENOISING FOR

THE SRE18 CMN2 TASK

and evaluation test sets. In addition, a relatively clean version
of the SRE04–10 spk2utt file that contains speaker-to-utterance
mappings is also available in the website4.

VII. CONCLUSION

In this paper, we demonstrate that label noise leads to sig-
nificant performance degradation in both the x-vector front-end
and PLDA back-end. Then, we propose a simple yet effective
approach to combat label noise during front-end training. Our
proposed framework contains three strategies, including a label
confidence training scheme, a posterior probability rescaling
strategy, and an improved AM-Softmax loss function. When
progressively combining these three strategies, experiments con-
ducted on the pooled SWBD and SRE04–10 datasets show
consistent improvements in robustness against label noise. Since
a speaker recognition system consists of both a front-end and
a back-end, it is necessary to optimize both to achieve the
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best performance. Consequently, we also optimize the back-end
PLDA when the training labels are noisy. When combining the
optimized front-end and back-end, the whole speaker recogni-
tion system demonstrates strong resistance to noisy labels.

In addition, we show two practical applications for this im-
proved system, including label correction and label denoising.
Label correction is used to correct noisy labels that occur in a
dataset. We propose correcting noisy samples based on utter-
ance chunk-level predictions from a well-trained network. The
experimental results show that label correction greatly reduces
the number of noisy samples. Therefore, models retrained on a
label-corrected dataset perform similarly to those trained on a
clean dataset. We apply label denoising to the original SRE04–
10 dataset to weed out the original erroneous labels, and both
the front-end and back-end are used to algorithmically filter out
high-confidence noisy samples. Then, we verify the sample la-
bels with human validation. Through verification, approximately
1% of the samples are found to be noisy in the original SRE04–10
dataset. Experimental results show that models trained on the
label-denoised datasets achieve slight improvements compared
to the baseline system.

In the future, we are interested in validating our method on
other front-end networks and conducting experiments on real-
world datasets with noisy labels. In addition, we plan to apply
this approach to semi-supervised learning and self-supervised
learning networks.

APPENDIX A
PLDA LEARNING ALGORITHM WITH NOISY LABELS

This Appendix presents the EM algorithm for the parameter
{µ,B,W} learning in NL-PLDA [18]. For convenience, let 〈·〉
denote the expectation of a given random variable.

In the E-step, let us first pre-compute the number of erroneous
samples as:

Ne =

N∑
n=1

(1− 〈zn,ln〉) , (14)

the number of samples for the m-th individual:

Nm =

N∑
n=1

〈zn,m〉 , 1 ≤ m ≤ M, (15)

the first-order moment for the m-th individual:

rx,m =
N∑

n=1

〈zn,m〉xn, 1 ≤ m ≤ M, (16)

and the global second-order moment:

Rx =
N∑

n=1

xnx
T
n . (17)

Then, we compute the first and second moments of the latent
variables:

〈ym〉 = Φ−1
m (Bµ+Wrx,m) , (18)〈

ymyT
m

〉
= Φ−1

m + 〈ym〉 〈ym〉T , (19)

where

Φm = B+NmW. (20)

Next, we need to compute the following auxiliary matrices:

ry =
M∑

m=1

〈ym〉 , (21)

Ro
y =

M∑
m=1

〈
ymyT

m

〉
, (22)

Ry =

M∑
m=1

N∑
n=1

〈zn,m〉 〈ymyT
m

〉
, (23)

Rxy =

M∑
m=1

rx,m 〈ym〉T . (24)

For the M-step, we update the matrix of label latent identity
Z by:

〈zn,m〉 = in,m∑M
j=1 in,j

, (25)

where

in,m = P (ln | zn,m = 1, ε)N (
xn | 〈ym〉 ,W−1

)
× exp

(
−1

2
tr
{
WΦ−1

m

})
(26)

P (ln | zn,m = 1, ε) =

{
1− ε, if ln = m

ε
M−1 , else

(27)

ε =
Ne

N
. (28)

After that we update the NL-PLDA parameters as follows:

µ =
ry
M

, (29)

B = M

(
Ro

y −
ryr

T
y

M

)−1

, (30)

W = N
(
Rx −Rxy −RT

xy +Ry

)−1
. (31)

APPENDIX B
EFFECTS OF LDA CONFIGURATIONS

Since LDA training also requires speaker labels, in this set
of experiments, we investigate the effects of different LDA
configurations on PLDA and NL-PLDA. Three distinct back-end
configurations are compared concretely: without LDA, LDA
trained on noisy labels, and LDA trained on clean labels, re-
spectively. The x-vector baseline is used as the front-end, and
the experimental results are shown in Fig. 8. From the results, it
is clear that the back-end without LDA yields the worst results;
moreover, NL-PLDA trained without LDA loses its ability to
combat label noise and even achieves worse results than PLDA
trained without LDA. However, the performance of NL-PLDA
is improved by using LDA projection, even if the LDA is trained
with noisy labels. LDA trained on clean labels achieves optimal
results. By comparing the conditions of LDA with clean labels
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and with noisy labels, we found that the relative performance gap
is within 5% of the EER values with NL-PLDA in the back-end,
even under a label error rate of 50%.

To further observe the effects of LDA, we visualize the speaker
embeddings by plotting the t-SNE embeddings. The embeddings
from ten distinct clusters with different LDA configurations
are shown in Fig. 9. Each embedding is represented by its
corresponding true label. From Fig. 9(a), it is apparent that
embeddings without LDA projections are more isolated within
their classes, and they do not have clearly separated boundaries
between classes. While in Fig. 9(b) and (c), the embeddings
with LDA are more effectively separated into clusters. The
embeddings presented in Fig. 9(b) are very similar to those
in Fig. 9(c), demonstrating that LDA shows insensitivity to
label noise. It also suggests that LDA removes non-discriminant
dimensions, which are potentially caused by label noise, and
LDA facilitates PLDA and NL-PLDA training.
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