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Abstract—This paper describes heavy-tailed extensions of a
state-of-the-art versatile blind source separation method called
fast multichannel nonnegative matrix factorization (FastMNMF)
from a unified point of view. The common way of deriving such
an extension is to replace the multivariate complex Gaussian
distribution in the likelihood function with its heavy-tailed gen-
eralization, e.g., the multivariate complex Student’s t and lep-
tokurtic generalized Gaussian distributions, and tailor-make the
corresponding parameter optimization algorithm. Using a wider
class of heavy-tailed distributions called a Gaussian scale mixture
(GSM), i.e., a mixture of Gaussian distributions whose variances
are perturbed by positive random scalars called impulse vari-
ables, we propose GSM-FastMNMF and develop an expectation-
maximization algorithm that works even when the probability
density function of the impulse variables have no analytical ex-
pressions. We show that existing heavy-tailed FastMNMF exten-
sions are instances of GSM-FastMNMF and derive a new instance
based on the generalized hyperbolic distribution that include the
normal-inverse Gaussian, Student’s t, and Gaussian distributions
as the special cases. Our experiments show that the normal-
inverse Gaussian FastMNMF outperforms the state-of-the-art
FastMNMF extensions and ILRMA model in speech enhance-
ment and separation in terms of the signal-to-distortion ratio.

Index Terms—Nonnegative matrix factorization, blind source
separation, probabilistic framework, expectation-maximization

I. INTRODUCTION

The goal of blind source separation (BSS) is to estimate
latent sources from observed mixtures recorded by multiple
microphones [1]. In general, the audio signal is converted to
a time-frequency (TF) spectrogram obtained with short-time
Fourier transform (STFT). A vast majority of modern statistical
BSS methods are based on the local Gaussian model (LGM)

Manuscript received XXX YYY, 2022; revised XXX YYY, 2022; accepted
XXX YYY, 2022. Date of publication XXX YYY, 2022; date of current ver-
sion XXX YYY, 2022. This work was partially supported by JSPS KAKENHI
Nos. 19H04137, 20K19833, and 20H01159, and NII CRIS Collaborative Re-
search Program operated by NII CRIS and LINE Corporation. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. xxx. (Corresponding author: Mathieu Fontaine.)

Mathieu Fontaine is with LTCI, Télécom Paris, Institut Polytechnique de
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Fig. 1. Heavy-tailed extensions of FastMNMF. We propose a general form
based on the Gaussian scale mixture representation (GSM-FastMNMF) that in-
cludes existing variants based on the Student’s t distribution (t-FastMNMF), the
α-stable distribution (α-FastMNMF), and the leptokurtic generalized Gaussian
(GG) distribution (GG-FastMNMF). We instantiate a new variant based on the
generalized hyperbolic (GH) distribution (GH-FastMNMF) and its special case
based on the normal-inverse Gaussian (NIG) distribution (NIG-FastMNMF).

that assumes the STFT coefficients of each TF bin to follow a
zero-mean multivariate complex Gaussian distribution whose
covariance matrix is given by the product of the nonnegative
power spectral density (PSD) and the positive semidefinite
spatial covariance matrix (SCM), where the SCM is a full-
rank matrix under echoic conditions [1].

A typical approach to BSS is to perform maximum-likelihood
(ML) estimation based on a unified probabilistic model of ob-
served mixtures consisting of source and spatial models repre-
senting the PSDs and SCMs of sources, respectively [2]. Assum-
ing the low-rankness of source PSDs as is often the case in real
sounds (e.g., music), the source model has often been formu-
lated as a LGM with nonnegative matrix factorization (NMF),
resulting in a versatile BSS method called multichannel NMF
(MNMF) [3], [4]. One way of reducing the computational cost
of MNMF stemming from a large number of SCM inversions
is to restrict the SCMs of all sources to rank-1 matrices, result-
ing in independent low-rank matrix analysis (ILRMA) [5]. An-
other promising way is to restrict the source SCMs to jointly-
diagonalizable yet full-rank matrices [6]–[9], i.e., to represent
the SCM of each source as a conical sum of common rank-1
SCMs, resulting in FastMNMF [8], [9]. Although FastMNMF
(denoted as N -FastMNMF) outperforms ILRMA under echoic
conditions, the light-tailed LGM inherited from MNMF does
not fit impulsive sounds with a large dynamic range.

To improve the robustness of N -FastMNMF against such
perturbations, local heavy-tailed models have often been used
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instead of the LGM [10]–[18] (Fig. 1). Using a local Student’s
t, leptokurtic generalized Gaussian (GG), or α-stable model,
N -FastMNMF [8], [9] can be extended to t-FastMNMF [11],
leptokurtic GG-FastMNMF [13]1, or α-FastMNMF [17], [18]2,
respectively. Similarly, the LGM in ILRMA [5] can be replaced
by a Student t [12], leptokurtic GG [14], and α-stable [18]
local model, respectively3. For ML estimation with t- and GG-
FastMNMF, deterministic parameter optimization algorithms
with closed-form update rules have been tailor-made according
to the minorization-maximization (MM) principle. Note that all
the Student’s t, leptokurtic GG, and α-stable distributions be-
long to the Gaussian scale mixture (GSM) family [19]; a ran-
dom vector following a GSM can be represented as a Gaussian
random vector whose scale is perturbed by a positive random
variable called an impulse variable [20]. For ML estimation
with α-FastMNMF, in contrast, the compound GSM represen-
tation is used for addressing the non-closed-form probability
density function (PDF) of the α-stable distribution [17], but
calls for a stochastic Metropolis-Hastings (MH) step for opti-
mizing the impulse variables [21]. Note that the GSM model
has been studied for audio source separation [22], speech en-
hancement [23], and sparse signal representation [24], but not
within the FastMNMF framework.

In this paper, we propose a general form of heavy-tailed Fast-
MNMF based on the GSM representation (GSM-FastMNMF)
that encompasses the aforementioned heavy-tailed FastMNMF
extensions and a new heavy-tailed variant based on the general-
ized hyperbolic (GH) distribution [25], [26] (GH-FastMNMF).
A noticeable instance of GH-FastMNMF is one based on the
normal-inverse Gaussian (NIG) distribution (NIG-FastMNMF),
which was experimentally proven to perform best for speech
enhancement and separation. Recent studies in [27] and [28]
for instance make use of NIG and GH innovations respectively
within an autoregressive model for time series modeling. The
ML estimation is done through an expectation-maximization
(EM) framework as in [29], [30] for NIG and [31], [32] for
GH model respectively.

For ML estimation with GSM-FastMNMF, we propose a gen-
eral parameter optimization algorithm based on the EM prin-
ciple and called multiplicative update variational expectation-

1The generalized Gaussian (GG) distribution with a shape parameter β > 0
consists of leptokurtic and platykurtic (heavy- and light-tailed) sub-families.
In [13], only platykurtic GG-FastMNMF with β ∈ [2, 4) is described, but
leptokurtic GG-FastMNMF with β ∈ (0, 2] can also be derived straightfor-
wardly in the same way that their generalized gaussian ILRMA extensions
are derived from ILRMA [14] (Section II-D3).

2The original version of α-FastMNMF [17] considers the source-specific
time-frequency-varying impulsiveness, whereas its modified version [18] con-
siders the source-specific time-varying but frequency-invariant impulsiveness.
To explain heavy-tailed extensions of FastMNMF from a unified point of view,
in this paper we discuss another version of α-FastMNMF that considers the
source-independent time-frequency-varying impulsiveness (Section II-D4).

3ILRMA [5] is exactly a special case of FastMNMF [8], whereas the Student
t [12] and leptokurtic GG [14] extensions based on the product of univariate
heavy-tailed distributions for independent sources are not special cases of
their respective heavy-tailed FastMNMF model in [11] and [13] based on
multivariate heavy-tailed distributions for dependent sources. In [18], a rank-
1 version of FastMNMF with an α model is naively qualified as ILRMA
extension, but the sources are only conditionally independent. In this paper
we take this approach to deriving a rank-1 version of X-FastMNMF and call
it X-R1-FastMNMF (e.g., t-R1-FastMNMF instead of t-ILRMA for Student’s
t model) to avoid confusion.

maximization (MU-VEM).
This readily instantiates a closed-form parameter estima-

tion algorithm for the above-mentioned variants except for α-
FastMNMF, which have been tailor-made independently. The
key advantage of this technique is that closed-form update
rules might be obtained even when the impulse variable law
is unknown or analytically intractable.

The rest of the paper is organized as follows. Section II
reviews existing variants of FastMNMF. Section III formulates
GSM-FastMNMF and instantiates GH-FastMNMF and NIG-
FastMNMF. Section IV compares the existing and new variants
of FastMNMF in speech enhancement and speaker separation.
Section V concludes the paper while a short Appendix provides
PDFs and proofs of mathematical results used in this article.

II. EXISTING VARIANTS OF FAST MULTICHANNEL
NONNEGATIVE MATRIX FACTORIZATION

We review a versatile BSS method called MNMF [4] that
maximizes the multivariate complex Gaussian likelihood (de-
noted by NC) and its computationally-efficient special case
called FastMNMF [8]. We also introduce heavy-tailed exten-
sions of FastMNMF that maximize the multivariate complex
Student’s t, leptokurtic GG, and α-stable likelihoods (denoted
by T νC , GGβC, and SαC , respectively).

A. Problem Specification

Suppose that N sources are recorded by M microphones.
Let Xn , {xnft}F,Tf,t=1 ∈ CF×T×M be the multichannel com-
plex spectrogram of source n ∈ {1, . . . , N} (called a source
image), where , represents equality by definition, F and T rep-
resent the number of frequency bins and that of time frames, re-
spectively. Let X , {xft}F,Tf,t=1 ∈ CF×T×M be that of the ob-
served mixture. Assuming the additivity of sources in the STFT
domain, our goal is to estimate the source images {Xn}Nn=1

from the mixture X such that

xft =

N∑
n=1

xnft. (1)

B. Probabilistic Formulation

The standard approach to BSS is based on the local Gaussian
model (LGM) [2]. Assuming both the independence of sources
and that of time-frequency bins, the source image xnft ∈ CM
of source n at frequency f and time t is assumed to indepen-
dently follow a zero-mean multivariate circularly-symmetric
complex Gaussian distribution as follows (see Eq (58) for the
PDF):

xnft ∼ NC

(
λnftGnf , Ynft

)
, (2)

where NC(µ,Σ) denotes the multivariate complex Gaussian
distribution with a mean vector µ and a covariance matrix
Σ � 0 (µ is omitted for brevity if µ = 0) , λnft ≥ 0 is the
power spectral density (PSD) of the source n at frequency f and
time t denoted snft, and Gnf � 0 is the positive semidefinite
spatial covariance matrix (SCM) of source n at frequency f .
Note that � stands for the set of positive semidefinite matrices.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XXX, XXXX 2022 3

Let Λ , {λnft}N,F,Tn,f,t=1 and G , {Gnf}N,Fn,f=1 be the sets of
the source PSDs and SCMs, respectively.

Using the law stability by linear combination of indepen-
dent Gaussian vectors, Eqs. (1) and (2) give the mixture xft
distributed as follows:

xft ∼ NC

(
N∑
n=1

λnftGnf , Yft

)
, (3)

where λnft and Gnf are represented by source and spatial
models, respectively, as described in Section II-C. Given the
mixture X as observed data, we aim to estimate Λ and G that
maximize the likelihood for X given by Eq. (3).

BSS is implemented with a Wiener filter that computes the
posterior distribution of xnft given xft as follows:

xnft | xft
∼ NC

(
YnftY

−1
ft xft,Ynft −YnftY

−1
ft Ynft

)
. (4)

The maximum-a-posteriori (MAP) estimate of the source image
xnft is thus given by E[xnft | xft] = YnftY

−1
ft xft.

C. Source and Spatial Models

MNMF [4] and its constrained versions such as ILRMA [5]
and FastMNMF [8] are based on the low-rank source model
that factorizes the PSDs of each source n as

λnft =

K∑
k=1

wnkfhnkt, (5)

where K is the number of bases, wnkf ≥ 0 is the magnitude of
basis k of source n at frequency f , and hnkt ≥ 0 is the activa-
tion of basis k of source n at time t. Let W , {wnkf}N,K,Fn,k,f=1

and H , {hnkt}N,K,Tn,k,t=1 be the sets of the bases and activations,
respectively. For ILRMA [5], MNMF [4], and FastMNMF [8],
the rank-1 spatial model, the unconstrained full-rank spatial
model, and the jointly-diagonalizable full-rank spatial model
have been proposed, respectively.

1) Rank-1 Spatial Model: Ideally, the sound propagation
process in a less-echoic environment is represented as a time-
invariant linear system as follows:

xnft = anfsnft, (6)

where anf ∈ CM is the steering vector of source n at frequency
f . Eq. (6) gives Eqs. (2) and (3), where Gnf , anfa

H
nf � 0

is the rank-1 SCM of source n at frequency f and H denotes
the conjugate transpose.

ILRMA [5] is based on the low-rank source model given
by Eq. (5) and the rank-1 spatial model given by Eq. (3)
with Gnf = anfa

H
nf . It is available only under a determined

condition (M = N ) to avoid the rank deficiency of the SCM
Yft for the observed mixture xft.

2) Full-Rank Spatial Model: Because Eq. (6) does not hold
when the reverberation is longer than the window size of STFT,
one may want to allow Gnf to be a full-rank matrix [2]. Note
that Eqs. (2) and (3) are not changed in form.

MNMF [4] is based on the low-rank source model given by
Eq. (5) and the full-rank spatial model given by Eq. (3) with
unconstrained Gnf . Unlike ILRMA, it can be used even under

an underdetermined condition (M < N ) in theory. Because
MNMF has a considerably larger number of spatial parameters
than ILRMA (NFM(M + 1)/2� NFM ), MNMF tends to
easily get stuck in a bad local optimum.

3) Jointly-Diagonalizable Spatial Model: An effective way
of reducing the complexity of MNMF is to assume {Gnf}Nn=1

to be jointly diagonalizable with a non-singular matrix Qf ∈
CM×M called a diagonalizer as follows [6]–[9]:

∀n, f, Gnf = Q−1f Diag(g̃nf )Q−Hf (version 1), (7)

where g̃nf , [g̃nf1, . . . , g̃nfM ]T ∈ RM+ is a nonnegative vector
of source n at frequency f , Diag(v) denotes a diagonal matrix
whose diagonal elements are given by a vector v, and T denotes
the transpose. Because Qf , [qf1, . . . ,qfM ]H ∈ CM×M
acts as a demixing matrix consisting of M demixing filters
{qfm}Mm=1, i.e., Q−1f , [uf1, · · · ,ufM ] acts as a mixing ma-
trix consisting of M steering vectors {ufm}Mm=1 correspond-
ing to different directions, g̃nf is considered to indicate the
weights of the M directions for source n. This naturally calls
for sharing the direction weights over all frequencies as follows:

∀n, f, Gnf = Q−1f Diag(g̃n)Q−Hf (version 2), (8)

where g̃n , [g̃n1, . . . , g̃nM ]T ∈ RM+ is a frequency-independent
nonnegative vector of source n [8]. For better performance, we
focus on this weight-shared version and define its diagonalizer
set as Q , {Qf}Ff=1. Note that the rank-1 spatial model is
obtained when M = N and G̃ , [g̃1, · · · , g̃N ]T = I, where I
denotes an identity matrix of size M .

FastMNMF2 [8] (simply called FastMNMF in this paper) is
obtained by integrating the low-rank source model given by
Eq. (5) and the jointly-diagonalizable full-rank spatial model
given by Eq. (3) with Eq. (8). Since the latent source image
xnft and the observed mixture xft are Gaussian distributed,
the projected source znft , Qfxnft and the projected mixture
zft , Qfxft are also Gaussian distributed as follows:

znft ∼ NC

(
λnftDiag(g̃n) , Ỹnft

)
, (9)

zft ∼ NC

(
N∑
n=1

λnftDiag(g̃n) , Ỹft

)
, (10)

MNMF for zft is thus a particular case of nonnegative tensor
factorization (NTF) that assumes the elements of zft to be
independent, whereas those of xft are correlated. (see Fig. 2
in [8]).

D. Gaussian and Heavy-Tailed Models

We explain the probabilistic model of FastMNMF (called
N -FastMNMF [8]) and those of the Student’s t and leptokurtic
GG extensions of N -FastMNMF that can handle more impul-
sive sources. Such an extension is achieved by replacing the
Gaussian distribution with a surrogate distribution in Eq. (10).
Let Θ , {W,H,Q, G̃} be a set of model parameters.
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1) Gaussian FastMNMF: Using the change-of-variable prin-
ciple for zft = Qfxft, the log-likelihood (LL) of the parame-
ters Θ for the observed mixture X is given by

log pΘ(X) =

F,T∑
f,t=1

log p(zft) +

F,T∑
f,t=1

log

∣∣∣∣ dzftdxft

∣∣∣∣
=

F,T∑
f,t=1

log p(zft) + T

F∑
f=1

log
∣∣QfQ

H
f

∣∣ , (11)

where log p(zft) is given by

log p(zft)
c
= −

M∑
m=1

z̃ftm
ỹftm

−
M∑
m=1

log ỹftm, (12)

where c
= denotes equality up to an additive constant and

z̃ftm , |zftm|2 =
∣∣qH
fmxft

∣∣2 , (13)

ỹftm ,
N∑
n=1

λnftg̃nm =

N,K∑
n,k=1

wnkfhnktg̃nm. (14)

2) Student’s t FastMNMF: t-FastMNMF [11] with a de-
gree of freedom ν > 0 controlling the tail lightness reduces
to N -FastMNMF [8] when ν → ∞, and reduces to t-R1-
FastMNMF when the rank-1 spatial model is used. More specif-
ically, Eq. (10) is replaced with

zft ∼ T νC
(
Ỹft

)
, (15)

where T νC (Σ) denotes a zero-mean multivariate complex t
distribution with a degree of freedom ν > 0 and a scale matrix
Σ � 0 (the PDF is given by Eq. (59)). The t distribution
approaches the Gaussian distribution as ν →∞. For reference,
the real parts of univariate complex t distributions are plotted
in Fig. 2. The LL of the parameters Θ is the same in form as
Eq. (11), where log p(zft) is given by

log p(zft)

c
= −

(ν
2

+M
)

log

(
1 +

2

ν

M∑
m=1

z̃ftm
ỹftm

)
−

M∑
m=1

log ỹftm. (16)

3) Leptokurtic Generalized Gaussian FastMNMF: Leptokur-
tic GG-FastMNMF with a shape parameter β ∈ (0, 2] control-
ling the tail lightness reduces to N -FastMNMF [8] when β = 2,
and reduces to leptokurtic GG-R1-FastMNMF with β ∈ (0, 2]
when the rank-1 spatial model is used. Note that leptokurtic
GG-FastMNMF with β ∈ (0, 2] has not been investigated in
the literature, whereas platykurtic GG-FastMNMF [13] and its
ILRMA version [14] with β ∈ [2, 4) have already been pro-
posed. More specifically, Eq. (10) is replaced with

zft ∼ GGβC
(
Ỹft

)
, (17)

where GGβC(Σ) denotes a zero-mean leptokurtic multivariate
complex GG distribution [33] with a shape parameter β ∈ (0, 2]
and a scale matrix Σ � 0 (the PDF is given by Eq. (60)). The
GG distribution with β = 2 reduces to the Gaussian distribution.
For reference, the real parts of leptokurtic univariate complex
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Fig. 2. Standard univariate complex GSMs on the real axis. Top left: Stu-
dent’s t distributions with degrees of freedom ν > 0. Top right: Leptokurtic
generalized Gaussian (GG) distributions with shape parameters β ∈ (0, 2].
Bottom left: α-stable distributions with characteristic exponents α ∈ (0, 2].
Bottom right: Normal inverse Gaussian (NIG) distributions with concentration
parameters ρ > 0.

GG distributions are plotted in Fig. 2. The LL of the parameters
Θ is the same in form as Eq. (11), where log p(zft) is given by

log p(zft)
c
= −

(
M∑
m=1

z̃ftm
ỹftm

) β
2

−
M∑
m=1

log ỹftm. (18)

4) α-Stable FastMNMF: α-FastMNMF [17] with a char-
acteristic exponent α ∈ [0, 2) controlling the tail lightness re-
duces to N -FastMNMF [8] when α = 2, and reduces to α-R1-
FastMNMF [18] when the rank-1 spatial model is used. More
specifically, Eq. (10) is replaced with

zft ∼ SαC
(
Ỹft

)
, (19)

where SαC (Σ) denotes a zero-mean non-skewed multivariate
elliptically complex α-stable distribution with a characteristic
exponent α > 0 and a scale matrix Σ � 0 [34]. For reference,
the real parts of univariate complex α-stable distributions are
plotted in Fig. 2. The LL of the parameters Θ is the same
in form as Eq. (11), where in general log p(zft) cannot be
expressed in a closed form except for α ∈ { 12 , 1, 2}, making
ML estimation of Θ challenging. To circumvent this problem,
one can rewrite Eq. (19) as an analytically-tractable GSM
representation (cf. Section III), where the auxiliary impulse
variable needs to be marginalized out with a computationally-
expensive MH algorithm [17]. Note that α-FastMNMF is not
dealt with in this paper because deterministic parameter update
rules cannot be obtained.

III. GAUSSIAN SCALE MIXTURE FAST MULTICHANNEL
NONNEGATIVE MATRIX FACTORIZATION

We propose GSM-FastMNMF, a general form of heavy-
tailed FastMNMF, including N -FastMNMF [8] (Section II-D1),
its heavy-tailed extensions such as t-FastMNMF [11] (Sec-
tion II-D2), leptokurtic GG-FastMNMF (Section II-D3), and
α-FastMNMF [17] (Section II-D4) and the rank-1 counterparts
such as t-R1-FastMNMF, leptokurtic GG-R1-FastMNMF, and



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XXX, XXXX 2022 5

α-R1-FastMNMF [18]. The closed-form deterministic parame-
ter update rules have been tailor-made independently for the
existing variants except for α-FastMNMF based on the stochas-
tic parameter update rules with the MH sampler.

We explain a probabilistic model of GSM-FastMNMF and
derive its parameter estimation algorithm. As a concrete exam-
ple of GSM-FastMNMF, we then instantiate GH-FastMNMF
based on the generalized hyperbolic (GH) distribution as a wide
family of heavy-tailed FastMNMF including N -FastMNMF [8]
and t-FastMNMF [11]. As a well-performing special case of
GH-FastMNMF, we focus on NIG-FastMNMF based on the
normalized inverse Gaussian (NIG) distribution.

A. Probabilistic Formulation

GSM-FastMNMF is obtained by extending the multivariate
complex Gaussian distributions used in Eqs. (9) and (10) to
multivariate complex GSMs represented as compound proba-
bility distributions as follows:

φft ∼ p(φft), (20)

znft | Θ, φft ∼ NC

(
φftỸnft

)
, (21)

zft | Θ, φft ∼ NC

(
φftỸft

)
, (22)

with φft > 0 is an auxiliary nonnegative random variable called
an impulse variable that stochastically perturbs the covariance
matrices Ỹnft and Ỹft according to some prior distribution
p(φft). The LL of the parameters Θ is given by

log pΘ(X) = log

∫
pΘ(X | Φ)p(Φ)dΦ, (23)

where Φ , {φft}F,Tf,t=1 and pΘ(X | Φ) is the same in form as
Eq. (11) except that the Gaussian density p(zft) is replaced
with the conditional Gaussian density p(zft | φft) given by

log p(zft | φft) c
= −

M∑
m=1

z̃ftm
φftỹftm

−
M∑
m=1

log φftỹftm. (24)

Note that several existing heavy-tailed extensions of FastMNMF
are obtained by marginalizing Φ out with the mixing distribu-
tion p(Φ) according to Eq. (23).

B. Multiplicative Update Variational Expectation-Maximization
Algorithm

We describe in that Section how parameters Θ are estimated.
Since the LL of Θ, log pΘ(X), given by Eq. (23) is hard to
directly maximize with respect to Θ, we use a multiplicative
update variational expectation-maximization (MU-VEM) prin-
ciple, i.e., derive a variational lower bound L(Θ, q(Φ),Ψ) of
log pΘ(X) using an arbitrary distribution q(Φ) of the latent
impulse variables Φ and a set of auxiliary variables Ψ (Sec-
tion III-B1) and iteratively update q(Φ) and Ψ in the E-step
(Section III-B2) and Θ in the M-step (Section III-B3) such
that L(Θ, q(Φ),Ψ) monotonically non-decreases.

1) Lower Bound: Let q(Φ) ,
∏F,T
f,t=1 q(φft) be an arbitrary

distribution on the latent impulse variables Φ. Using Jensen’s
inequality, Eq. (23) can be lower bounded as follows:

log pΘ(X) =

F,T∑
f,t=1

log

∫
pΘ(xft | φft)p(φft)dφft

=
∑
f,t

log

∫
q(φft)

pΘ(xft | φft)p(φft)
q(φft)

dφft

≥
∑
f,t

(
Eq(φft) [log pΘ(zft | φft)] +

∣∣QfQ
H
f

∣∣
−KL [q(φft) ‖ p(φft)]

)
, L′(Θ, q(Φ)), (25)

where KL(q ‖ p) denotes the Kullback-Leibler (KL) divergence
from q to p [35], and pΘ(zft | φft) is given by Eq. (24). The
equality condition that maximizes L′(Θ, q(Φ)) is given by

q(φft) = p(φft | xft) = p(φft | zft). (26)

Let Ψ , {Π,Ω} be a set of arbitrary nonnegative variables,
where Π , {πftmnk}F,T,M,N,K

f,t,m,n,k=1 satisfying
∑N,K
n,k=1 πftmnk =

1 and Ω , {ωftm}F,T,Mf,t,m=1. Since L′(Θ, q(Φ)) is still hard to
maximize with respect to Θ, it is further lower bounded as in
NMF based on the Itakura-Saito (IS) divergence [36] as follows:

L′(Θ, q(Φ)) = −
F,T,M∑
f,t,m=1

(
Eq(φft)

[
φ−1ft

]
z̃ftm∑N,K

n,k=1 wnkfhnktg̃nm

+ Eq(φft)[log φft]

+ log

(
N,K∑
n,k=1

wnkfhnktg̃nm

))

+

F,T∑
f,t=1

( ∣∣QfQ
H
f

∣∣−KL [q(φft) ‖ p(φft)]
)

≥ −
∑
f,t,m

(∑
n,k

Eq(φft)
[
φ−1ft

]
π2
nftmkz̃ftm

wnkfhnktg̃nm

+ Eq(φft)[log φft]

+ logωftm +
∑
n,k

wnkfhnktg̃nm
ωftm

− 1

)

+
∑
f,t

( ∣∣QfQ
H
f

∣∣−KL [q(φft) ‖ p(φft)]
)

, L(Θ, q(Φ),Ψ). (27)

Letting the partial derivative of Eq. (27) with respect to Ψ equal
to zero, the equality condition that maximizes L(Θ, q(Φ),Ψ)
is given by

πftmnk = wnkfhnktg̃nmỹ
−1
ftm, (28)

ωftm = ỹftm. (29)

2) E-Step: Given the current estimate of Θ, we update q(Φ)
using Eq. (26) and Ψ using Eqs. (28) and (29) such that the
lower bound L(Θ, q(Φ),Ψ) given by Eq. (27) is maximized
with respect to q(Φ) and Ψ. Note that the optimal estimate of



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. XXX, XXXX 2022 6

q(φft) given by Eq. (26) is used for computing the posterior
expectation Eq(φft)

[
φ−1ft

]
used in the M-step. The tractability

of φ̃−1ft , Ep(φft|zft)
[
φ−1ft

]
is thus a key for deriving closed-

form update rules. Let Φ̃ , {φ̃ft}F,Tf,t=1 be a set of the posterior
expectations. As derived in the Appendix, we have

d

dzHft
log p(zft) = −2φ̃−1ft Ỹ−1ft zft (30)

where Ỹft is defined in Eq. (10). Note that even if the posterior
density p(φft | zft) is intractable, φ̃−1ft is tractable if the log-
marginal density log p(zft) is differentiable with respect to
zft (e.g., GG-FastMNMF).

3) M-Step: Given the current estimates of q(Φ) and Ψ, we
update Θ such that the lower bound L(Θ, q(Φ),Ψ) given by
Eq. (27) is maximized with respect to Θ, in the same way as
N -FastMNMF [8]. Letting the partial derivative of Eq. (27)
with respect to W, H, and G̃ equal to zero and using Eq. (26),
(28), and (29), the update rules of W, H, and G̃ are obtained
in a closed form as follows:

wnkf ← wnkf

√√√√∑T,M
t,m=1 hnktg̃nmỹ

−2
ftmẑftm∑T,M

t,m=1 hnktg̃nmỹ
−1
ftm

, (31)

hnkt ← hnkt

√√√√∑F,M
f,m=1 wnkf g̃nmỹ

−2
ftmẑftm∑F,M

f,m=1 wnkf g̃nmỹ
−1
ftm

, (32)

g̃nm ← g̃nm

√√√√∑F,T
f,t=1 λnftỹ

−2
ftmẑftm∑F,T

f,t=1 λnftỹ
−1
ftm

, (33)

where ẑftm is given by

ẑftm = φ̃−1ft z̃ftm. (34)

The update rule of Q is also obtained in a closed form with
iterative projection (IP) [37] as follows:

Vfm ,
1

T

T∑
t=1

φ̃−1ft Xftỹ
−1
ftm, (35)

qfm ← (QfVfm)
−1

em, (36)

qfm ←
(
qH
fmVfmqfm

)− 1
2 qfm, (37)

where em is a one-hot vector whose m-th entry is 1 and
0 elsewhere. To avoid scale ambiguity, the parameters are
normalized as follows:

rf = MTr
(
QfQ

H
f

)
,

{
Qf ← r

− 1
2

f Qf ,

wnkf ← r−1f wnkf ,
(38)

un =

M∑
m=1

g̃nm,

{
g̃nm ← u−1n g̃nm,

wnkf ← unwnkf .
(39)

vnk =

F∑
f=1

wnkf ,

{
wnkf ← v−1nkwnkf ,

hnkt ← vnkhnkt.
(40)

C. Existing Instances of GSM-FastMNMF

We show that N -FastMNMF (Section II-D1), t-FastMNMF
(Section II-D2), leptokurtic GG-FastMNMF (Section II-D3),

and α-FastMNMF (Section II-D4) can readily be instanti-
ated from GSM-FastMNMF. The update rules of the param-
eters Θ = {W,H,Q, G̃} are commonly given by Eqs. (31)–
(40) and the posterior expectations Φ̃ can be computed using
Eq. (30). For each model, we instantiate the mixing distribu-
tion p(φft) given by Eq. (20) and compute φ̃ft and ẑftm ac-
cording to Eqs. (30) and (34), respectively.

1) Gaussian FastMNMF: N -FastMNMF [8] is obtained
when φft = 1, i.e.,

φft ∼ δ(φft − 1), (41)

where δ(x) is the Dirac’s delta function taking infinity at x = 0
and zero otherwise. In this case, Eq. (22) reduces to Eq. (10).
Using Eq. (12) and Eq. (30), we have

φ̃−1ft = 1. (42)

2) Student’s t FastMNMF: t-FastMNMF [11] with a degree
of freedom ν > 0 is obtained when φft follows an inverse
gamma (IG) distribution, denoted IG(a, b) where a > 0 is a
shape parameter and b > 0 is a scale parameter, and by setting
a = b = ν

2 (see Eq. (62) for the PDF):

φft ∼ IG
(ν

2
,
ν

2

)
, (43)

The marginalization of φft with Eqs. (20) and (22) gives
Eq. (15). Using Eq. (16) and Eq. (30), we have

φ̃−1ft =
ν
2 +M

ν
2 +

∑M
m=1

z̃ftm
ỹftm

. (44)

t-FastMNMF with Eq. (44) approaches N -FastMNMF with
Eq. (42) as ν diverges to infinity.

3) Leptokurtic Generalized Gaussian FastMNMF: Leptokur-
tic GG-FastMNMF with a shape parameter β ∈ (0, 2] is known
to be a GSM, but p(φft) is related to a positive α-stable distri-
bution whose PDF cannot be represented in a closed form ex-
cept for the Gaussian case (β = 2). Nonetheless, using Eq. (18)
and Eq. (30), we have

φ̃−1ft =
β

2

(
M∑
m=1

z̃ftm
ỹftm

) β−2
2

. (45)

GG-FastMNMF with Eq. (45) reduces to N -FastMNMF with
Eq. (42) when β = 2. When β = 2 for GG-FastMNMF in
Eq. (45), it implies that ∀(f, t), φ̃−1ft = 1 which describes the
MUs of N -FastMNMF.

4) α-Stable FastMNMF: α-FastMNMF [17] with a charac-
teristic exponent α ∈ [0, 2) is obtained when φft follows a
positive α

2 -stable distribution, denoted SαR+(v) where v > 0 is

a scale parameter, and by setting v = 2 cos
(
πα
4

) 2
α :

φft ∼ SαR+
(

2 cos
(πα

4

) 2
α

)
, (46)

The marginalization of φft with Eqs. (20) and (22) gives
Eq. (19). In general, the PDF of the α-stable distribution has no
closed-form expression except for the Levy (α = 1

2 ), Cauchy
(α = 1), and Gaussian (α = 2) cases. It is thus necessary to
approximately compute φ̃−1ft using an MH sampler as in [17].
Investigation of the existence and derivation of a closed-form
expression of φ̃−1ft remains as future work.
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D. Generalized Hyperbolic FastMNMF

We propose a new instance of GSM-FastMNMF based on the
multivariate complex generalized hyperbolic (GH) likelihood
(denoted by GHγ,ρ,ηC ), called GH-FastMNMF. Its constrained
version called GH-R1-FastMNMF is obtained when the rank-1
spatial model is used. The multivariate GH distribution [25]
has infinite divisibility property [38], i.e., a GH random vector
can be decomposed into the sum of i.i.d. random vectors [39].
Since the GH distribution is closed under affine transformation,
it has high affinity to the joint diagonalizability of FastMNMF
given by Eq. (8) because the observed mixture xft following a
GH distribution with a full scale matrix can be transformed to
the projected mixture zft = Qfxft following a GH distribution
with a diagonal scale matrix.

1) Probabilistic Formulation: GH-FastMNMF is obtained
by replacing Eq. (10) with (see Eq. (61) for the PDF)

GH-FastMNNF: zft ∼ GHγ,ρ,ηC

(
Ỹft

)
, (47)

where GHγ,ρ,ηC (Σ) denotes a zero-mean non-skewed multivari-
ate complex GH distribution with a shape parameter γ ∈ R, a
concentration parameter ρ > 0, a scaling parameter η > 0, and
a scale matrix Σ � 0. Note that the M elements of zft are
mutually dependent except for N -FastMNMF, a special case
of GH-FastMNMF. In GH-R1-FastMNMF (GH-FastMNMF
with M = N and G̃ = I), Eq. (47) reduces to

GH-R1-FastMNNF: zft ∼ GHγ,ρ,ηC (Diag(λft)) , (48)

where λft , [λ1ft, · · · , λMft]
T and the M elements of zft

are assumed to have a one-to-one correspondence to N sources
(M = N ). A reason why the rank-1 version of GH-FastMNMF
is called GH-R1-FastMNMF is that the estimated sources are
not made independent. To formulate a generalized hyperbolic
extension of ILRMA, one can assume a univariate complex GH
distribution for each element of zft , [zft1, . . . , zftM ]> in
exchange for loosing the analytical expression of xft (beyond
the scope of this paper) as follows:

zftm ∼ GHγ,ρ,ηC (λmft) . (49)

Note that Eq. (49) is equivalent to Eq. (48) only for the case
of N -FastMNMF, because even when an elliptically-contoured
multivariate distribution has a diagonal scale matrix, it can-
not generally be factorized into the product of independent
dimension-wise univariate distributions.

The LL of the parameters Θ = {W,H,Q, G̃} is the same
in form as Eq. (11), where log p(zft) is given by (see proof
in the Appendix)

log p(zft)
c
=
γ −M

2
log

(
1 +

2

ρη

M∑
m=1

z̃ftm
ỹftm

)

+ logKγ−M

ρ
√√√√1 +

2

ρη

M∑
m=1

z̃ftm
ỹftm


−

M∑
m=1

log ỹftm, (50)

where Kζ denotes the modified Bessel function of the second
kind with order ζ [40].

2) Parameter Estimation: The update rules of the parame-
ters Θ = {W,H,Q, G̃} are given by Eqs. (31)–(40), where
the posterior expectations Φ̃ are given by Eq. (30). As an in-
stance of GSM-FastMNMF, GH-FastMNMF is obtained when
φft follows a generalized inverse Gaussian (GIG) distribution,
denoted GIG(γ, ρ, η) where γ ∈ R is a shape parameter, ρ > 0
is a concentration parameter and η > 0 is a scaling parameter
(see Eq. (63) for the PDF):

φft ∼ GIG(γ, ρ, η), (51)

Using Eqs. (50) and (30), we have

φ̃−1ft =
2(M − γ)

ρη
(

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

)
+

1
√
η
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

Kγ−M+1

(
ρ
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

)
Kγ−M

(
ρ
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

) . (52)

Eq. (52) is already known to appear in the estimation of a real
univariate GH distribution [32], [41]. Interestingly, the same
result was found in the estimation of a multivariate isotropic
GH distribution. For mathematical convenience, we define an
alternative parametrization as follows:

a ,
ρ

η
, b , ρη. (53)

When γ = −ν2 , a = 0, and b = ν, the general update rules
of GSM-FastMNMF given by Eqs. (31)–(40) reduce to those
of t-FastMNMF derived from a lower bound function de-
fined in [11].4 N -FastMNMF is instantiated when ν → ∞
in t-FastMNMF, resulting in ∀(f, t), φ̃−1ft = 1. Because GH-
FastMNMF includes a large variety of distributions, we only
consider t-, N and a new extension based on the normal in-
verse Gaussian (NIG) distribution more deeply introduced in
Section III-E.

3) Source Image Inference: Using the estimated parameters
Θ, we infer the latent source image xnft from the observed
mixture xft. Thanks to the surrogate Gaussian representation
used in Eqs. (21) and (22), the posterior expectation of xnft
conditioned by φft can be computed exactly and efficiently
with a multichannel Wiener filter as follows:

E[xnft | xft, φft] = Q−1f E[znft | zft, φft]

= Q−1f (φftỸnft)
(
φftỸft

)−1
zft

= Q−1f ỸnftỸ
−1
ft zft, (54)

where φft’s were cancelled out. We thus have

E[xnft | xft] = Q−1f ỸnftỸ
−1
ft zft. (55)

4The widely-used multivariate Student’s t distribution given by Eq. (59)
is not derived from the multivariate GH distribution given by Eq. (61). In
[42], a multivariate GH distribution with γ = −ν, a = 0, and b = ν called a
generalized hyperbolic Student’s t distribution is used.
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Algorithm 1 MU-VEM algorithm for GSM-FastMNMF
1) Input

• Multichannel mixture spectrogram X

2) Configuration
• Specify the tail-index parameters

(except for N -FastMNMF)
ν (t-FastMNMF)

β (GG-FastMNMF)

ρ and η (NIG-FastMNMF)

• Specify the number of bases K
• Specify the number of iterations R

3) Initialization
• Initialize W and H randomly
• Initialize Qf to an identity matrix
• Initialize G̃ to a circulant matrix given by Eq. (57)

4) Optimization For r = 1 . . . R

• Compute z̃ftm and ỹftm using Eqs. (13) and (14), re-
spectively

• E-step: Compute φ̃−1ft = Ep(φft|zft)
[
φ−1ft

]
as

φ̃−1ft =


Eq. (42) (N -FastMNMF)

Eq. (44) (t-FastMNMF)

Eq. (45) (GG-FastMNMF)

Eq. (56) (NIG-FastMNMF)

• M-step: Update W,H, G̃, and Q using Eqs. (31)–(40)
5) Output

• Source image Xn given by Eq. (55)

E. Normal Inverse Gaussian FastMNMF

As a new variant of GH-FastMNMF with γ = − 1
2 , we derive

NIG-FastMNMF based on the normal inverse Gaussian (NIG)
distribution. In that case, the Eq. (52) boils down as in [29] to:

φ̃−1ft =
2(M + 1

2 )

ρη
(

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

)
+

1
√
η
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

K−M+ 1
2

(
ρ
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

)
K−M− 1

2

(
ρ
√

1 + 2
ρη

∑M
m=1

z̃ftm
ỹftm

) . (56)

Its constrained version called NIG-R1-FastMNMF is obtained
when the rank-1 spatial model is used, i.e., M = N and
G̃ = I. The NIG distribution is an important sub-class of
the GH distribution that is closed under convolution [38]. Its
semi-reproducibility (law linearly stable along with a shape
parameter [43]) has a high affinity to additivity-aware signal
modeling. For reference, the real parts of univariate complex
NIG distributions are plotted in Fig. 2.

The EM algorithms for t-, GG-, and NIG-FastMNMF are
obtained as instances of GSM-FastMNMF (Algorithm 1).

IV. EVALUATION

This section evaluates the performances of existing and new
instances of the proposed GSM-FastMNMF and their rank-
1 counterparts for a speech enhancement task (Section IV-B)
and a speech separation task (Section IV-C). We evaluate the
enhanced or the separated speech signals in terms of the signal-
to-distortion ratio (SDR) [44] and the perceptual evaluation
speech quality (PESQ) [45].

A. Experimental Conditions

We compared three existing instances of GSM-FastMNMF
using the jointly-diagonalizable spatial model (Section II-C1),
i.e., N -FastMNMF (Section III-C1), t-FastMNMF (Section
III-C2), and GG-FastMNMF (Section III-C3) with a new
instance of GSM-FastMNMF called NIG-FastMNMF (Sec-
tion III-E), where all parameter estimation except for GG-
FastMNMF are special cases of another instance of GSM-
FastMNMF called GH-FastMNMF (Section III-D). Using a
determined configuration (M = N ), we also tested the special
cases of these methods using the rank-1 spatial model (Sec-
tions II-D & III-D), referred to as N -R1-FastMNMF, t-R1-
FastMNMF, GG-R1-FastMNMF, and NIG-R1-FastMNMF,
respectively. Note that N -R1-FastMNMF is equivalent to
ILRMA [5]. Heavy-tailed extensions of ILRMA called GG-
ILRMA and t-ILRMA [12], which are different from GG- and
t-R1-FastMNMF derived in this paper, were not considered
because they were reported to work no better than ILRMA.
We also consider AuxIVA [37] in the determined case (Fig. 3)
and OverIVA [46] in the overdetermined case (Fig. 4). Both
IVA versions are computed using a Laplace model.

We estimated the parameters Θ = {W,H,Q, G̃} of each
method for an observed mixture spectrogram X obtained by
applying STFT with a Hann window of 1024 points (F = 513)
and a 75% overlap to a multichannel mixture signal sampled at
16 kHz. All elements of the parameters W and H of the NMF-
based source model were initialized to the absolute values of
random samples drawn from a standard Gaussian distribution.
As proposed in [8], the parameters Q and G̃ of the jointly-
diagonalizable spatial model were initialized as Qf ← I and
G̃← J, respectively, where I ∈ RM×M+ is an identity matrix
and J ∈ RN×M+ is a circulant matrix given by

J =


1 ε . . . ε 1 ε . . .
ε 1 . . . ε ε 1 . . .
...

...
. . .

...
...

...
. . .

ε ε . . . 1 ε ε . . .

 , (57)

where ε is set to a small value (ε = 10−2 in this paper) for the
FastMNMF variants or zero for the R1-FastMNMF variants.

For fair comparison, we made two disjoint datasets (vali-
dation and test sets) in speech enhancement and separation
tasks. In each task, the hyperparameters of each method (e.g.,
tail indices and the number of NMF bases) were optimized
via grid search such that the average SDR on the validation
set was maximized. For the grid search, we considered ν ∈
{1, 10, 40, 80, 100, 200} for t-(R1-)FastMNMF; β ∈ {1.1, 1.2,
. . . , 1.9} for GG-(R1-)FastMNMF; ρ ∈ {1, 5, 10, 15, 20, 30},
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TABLE I
HYPERPARAMETERS FOR SPEECH ENHANCEMENT

FastMNMF variants
N t GG NIG
n/a ν = 40 β = 1.6 (ρ, η) = (15, 1)

K = 4 K = 32 K = 16 K = 8

R1-FastMNMF variants
N t GG NIG
n/a ν = 40 β = 1.8 (ρ, η) = (10, 1)

K = 8 K = 4 K = 4 K = 8

η ∈ {0.5, 1, 2, 3, 5, 10} for NIG-(R1-)FastMNMF, and K ∈
{2, 4, 8, 16, 32} for the NMF-based source model. The hyper-
parameters optimized for the validation set and used for the
test set were listed in Table I (speech enhancement) and Ta-
ble VII (speech separation). The number of iterations for all
methods was set to 300 because it was enough to optimize
FastMNMF, R1-FastMNMF, ILRMA, auxIVA and overIVA un-
til convergence. The best hyperparameters are then used to
evaluate the test set. Further details on the dataset creation, the
hyperparameter optimization, and the best hyperparameter sets
are described in Section IV-B (for speech enhancement task)
and Section IV-C (for speech separation task).

B. Speech Enhancement with Determined Configurations

We report a comparative experiment on speech enhancement
that aims to extract a single speech source from a noisy mix-
ture. The audio data were taken from the REVERB Challenge
dataset [47], where the length of each sample is between 3 [s]
and 10 [s].; Multichannel mixtures (M ∈ {2, 5, 8}) were simu-
lated with a signal-to-noise ratio (SNR) of 0, 5, or 10 dB and
a reverberation time (RT60) of 250, 500, or 700 ms under a
near or far condition that the distance between a microphone
array and a speaker was 0.5 or 2.0 m. The validation set con-
sists of 100 randomly selected mixtures with an SNR of 5 dB
under the near condition. The test set consists of 200 randomly
selected mixtures with all conditions. For fair comparison and
the determined nature of the rank-1 spatial model, all methods
were used with a determined configuration (N = M ) and the
predominant source with the highest average energy was then
selected as a target speaker.

1) Investigation of Hyperparameters: The optimal parame-
ters for the speech enhancement task based on the grid search
parameter optimization (see Section IV-A) are listed in Table I.
Fig. 3 shows the SDRs on the validation set obtained by the
eight methods with M = N = 8 and K ∈ {2, 4, 8, 16, 32}
while Table V reports statistical significance results based on
Wilcoxon tests [48] between NIG(R1)-FastMNMF scores in
Fig. 3 and other extensions. NIG-FastMNMF tended to out-
perform the other methods and attained the best median and
mean SDRs when K = 8 with a statistical significance of
p ≈ 0.011 in average, whereas GG-FastMNMF attained the
best SDR when K = 16. We found the 95% confidence inter-
val and interquartile range of NIG-FastMNMF was wider than
those of N -FastMNMF. This could be explained by the nu-
merical instability of approximating the ratio of the modified
Bessel functions in Eq. (52).

In contrast, t-FastMNMF with a larger K gave a better SDR
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5

10

15

20

S
D

R
(i

n
d

B
)

N -FastMNMF
t-FastMNMF
GG-FastMNMF
NIG-FastMNMF

N -R1-FastMNMF
t-R1-FastMNMF
GG-R1-FastMNMF
NIG-R1-FastMNMF

Fig. 3. The SDRs obtained by N -(R1-)FastMNMF, t-(R1-)FastMNMF, GG-
(R1-)FastMNMF, and NIG-(R1-)FastMNMF with K ∈ {2, 4, 8, 16, 32} in
speech enhancement. White squares and notches indicate the means and the
95% confidence intervals, respectively. The dashed grey line represents the
median SDR results obtained by AuxIVA.

and N -FastMNMF with K = 4 achieved the best SDR. As
noticed in [5], [12], we observed that the rank-1 variants with
a smaller K tended to work better. Among the R1-FastMNMF
variants, t-R1-FastMNMF with K = 4 achieved the best SDR.

2) Investigation of Performances: Tables II and III respec-
tively show the SDRs and PESQs on the test set obtained by
the eight methods with the optimized hyperparameters. For
any method under any condition, the use of more microphones
resulted in a better SDR and PESQ.

In terms of the SDR, NIG-FastMNMF worked best on aver-
age under most conditions and outperformed the other methods
by a larger margin under a more adverse condition (e.g., SNR
of 0 dB). In terms of the PESQ, GG-FastMNMF worked best
on average when M ∈ {2, 5}, whereas NIG-FastMNMF gen-
erally worked best when M = 8. Since the modified Bessel
function in Eq. (52) is hard to compute with a high degree of
precision, the perceptual quality might have been degraded by
some artifacts.

Table IV shows the SDRs on the test set obtained when M =
8. As a whole, heavy-tailed extensions worked more accurately
as the RT60 decreases. In most cases, NIG-FastMNMF was
slightly better than the other variants except for the far setting
with an SNR of 10 dB.

In terms of the SDR, the heavy-tailed R1-FastMNMF variants
worked comparably on average when M = 8, albeit NIG-
R1-FastMNMF achieved the lowest standard deviation. This
indicates the robustness of NIG-R1-FastMNMF against various
SNR and distance conditions. A similar result was nevertheless
not observed in terms of the PESQ.

Overall, the proposed NIG-FastMNMF is considered to be
the most reasonable choice in a real scenario in terms of the
SDR and PESQ. Table VI lists the average elapsed times of
the eight methods with K = 16 on a GPU (NVIDIA® TITAN
RTX™) or CPU (Intel® Xeon® W-2145). The relatively heav-
ier computation of the NIG variants were originated from the
modified Bessel function used in Eq. (52). This issue could be
solved with a more efficient library than scipy [49].
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TABLE II
THE SDRS (MEAN ± STANDARD DEVIATION) OBTAINED BY THE EIGHT METHODS IN SPEECH ENHANCEMENT.

Dist. SNR M
FastMNMF variants R1-FastMNMF variants

N t GG NIG N t GG NIG

Near

0 dB
2 3.6 (±2.2) 3.0 (±1.7) 5.1 (±3.7) 5.6 (±3.6) 1.8 (±2.0) 3.5 (±5.5) 1.4 (±4.8) 3.2 (±5.0)
5 10.8 (±4.1) 8.3 (±2.1) 10.9 (±3.5) 11.9 (±4.1) 6.3 (±2.4) 6.6 (±4.5) 6.3 (±4.2) 7.0 (±3.0)
8 12.0 (±4.1) 10.8 (±3.4) 12.8 (±4.3) 13.5 (±4.4) 8.2 (±2.5) 8.8 (±4.1) 8.6 (±5.1) 8.6 (±2.7)

5 dB
2 9.7 (±4.4) 8.1 (±2.8) 10.1 (±3.8) 10.3 (±3.8) 6.2 (±1.7) 7.1 (±5.1) 6.3 (±4.9) 6.5 (±2.7)
5 13.2 (±3.4) 12.1 (±1.8) 14.1 (±2.9) 14.7 (±3.4) 10.0 (±1.7) 11.5 (±3.3) 11.9 (±3.9) 11.4 (±3.0)
8 14.4 (±3.2) 14.1 (±2.7) 15.7 (±3.2) 16.0 (±3.6) 11.7 (±2.3) 11.1 (±3.5) 13.8 (±3.1) 13.3 (±2.6)

10 dB
2 12.2 (±3.6) 11.7 (±2.9) 13.4 (±3.4) 13.4 (±3.5) 9.5 (±2.0) 10.8 (±3.5) 11.2 (±3.7) 11.7 (±2.2)
5 14.5 (±3.2) 14.7 (±2.0) 16.2 (±2.9) 16.3 (±3.3) 12.8 (±1.8) 12.6 (±3.0) 13.6 (±3.5) 13.8 (±3.6)
8 15.2 (±3.0) 15.7 (±2.4) 17.0 (±2.9) 17.6 (±3.1) 14.6 (±2.2) 12.7 (±2.9) 14.3 (±3.2) 14.4 (±3.5)

Far

0 dB
2 2.1 (±4.8) 0.5 (±1.8) 1.5 (±2.2) 2.2 (±2.8) −0.8 (±2.4) 0.7 (±4.8) 0.6 (±4.7) 1.1 (±2.1)
5 5.4 (±4.6) 4.6 (±2.8) 6.5 (±4.2) 7.2 (±4.5) 2.7 (±2.7) 3.7 (±3.1) 3.3 (±5.7) 3.7 (±2.7)
8 6.3 (±4.0) 6.1 (±3.4) 7.7 (±4.0) 8.2 (±3.9) 4.1 (±3.3) 5.2 (±3.2) 5.7 (±4.1) 5.9 (±2.8)

5 dB
2 4.9 (±4.4) 3.7 (±2.2) 5.0 (±3.0) 5.4 (±3.3) 2.7 (±2.4) 3.4 (±3.1) 3.7 (±3.0) 3.6 (±2.7)
5 6.8 (±4.3) 7.2 (±3.4) 8.3 (±4.2) 8.5 (±4.3) 5.6 (±3.4) 4.2 (±4.2) 4.9 (±3.6) 5.2 (±2.9)
8 8.1 (±3.5) 8.4 (±3.2) 9.5 (±3.6) 9.6 (±3.6) 6.2 (±4.0) 7.9 (±3.2) 7.7 (±3.5) 8.3 (±3.3)

10 dB
2 5.9 (±4.2) 5.9 (±2.9) 7.1 (±3.6) 7.2 (±3.5) 4.8 (±3.3) 5.2 (±4.1) 5.2 (±4.4) 5.6 (±3.1)
5 7.7 (±4.4) 8.7 (±3.7) 9.7 (±4.2) 9.6 (±4.2) 7.3 (±4.1) 8.0 (±5.6) 7.5 (±4.5) 8.2 (±3.1)
8 8.9 (±3.5) 9.9 (±3.3) 10.7 (±3.6) 10.6 (±3.6) 8.3 (±4.6) 9.0 (±4.2) 9.6 (±4.4) 9.2 (±3.2)

TABLE III
THE PESQS (MEAN ± STANDARD DEVIATION) OBTAINED BY THE EIGHT METHODS IN SPEECH ENHANCEMENT.

Dist. SNR M
FastMNMF variants R1-FastMNMF variants

N t GG NIG N t GG NIG

Near

0 dB
2 1.8 (±0.6) 1.9 (±0.6) 2.0 (±0.7) 1.9 (±0.6) 1.7 (±0.6) 1.7 (±0.6) 1.8 (±0.6) 1.7 (±0.6)
5 2.3 (±0.7) 2.4 (±0.7) 2.4 (±0.7) 2.4 (±0.7) 2.1 (±0.7) 2.0 (±0.7) 2.0 (±0.7) 1.9 (±0.7)
8 2.4 (±0.7) 2.5 (±0.7) 2.6 (±0.8) 2.6 (±0.8) 2.2 (±0.8) 2.3 (±0.7) 2.3 (±0.7) 2.1 (±0.7)

5 dB
2 2.1 (±0.7) 2.2 (±0.6) 2.2 (±0.7) 2.2 (±0.7) 2.0 (±0.6) 2.1 (±0.7) 2.0 (±0.7) 1.9 (±0.7)
5 2.6 (±0.6) 2.7 (±0.6) 2.7 (±0.6) 2.7 (±0.7) 2.4 (±0.7) 2.4 (±0.8) 2.5 (±0.8) 2.0 (±0.9)
8 2.8 (±0.6) 2.8 (±0.7) 2.9 (±0.7) 2.9 (±0.7) 2.5 (±0.7) 2.6 (±0.8) 2.6 (±0.8) 2.2 (±0.8)

10 dB
2 2.3 (±0.6) 2.4 (±0.6) 2.5 (±0.6) 2.5 (±0.6) 2.2 (±0.7) 2.3 (±0.8) 2.2 (±0.8) 2.0 (±0.8)
5 2.8 (±0.5) 3.0 (±0.5) 3.0 (±0.5) 3.0 (±0.5) 2.7 (±0.6) 2.7 (±0.9) 2.7 (±0.9) 2.4 (±0.9)
8 3.0 (±0.5) 3.1 (±0.5) 3.2 (±0.5) 3.2 (±0.5) 2.8 (±0.6) 2.9 (±0.9) 2.9 (±0.9) 2.7 (±0.9)

Far

0 dB
2 1.6 (±0.4) 1.7 (±0.4) 1.7 (±0.4) 1.7 (±0.4) 1.5 (±0.4) 1.5 (±0.4) 1.5 (±0.4) 1.5 (±0.4)
5 1.9 (±0.5) 2.0 (±0.5) 2.1 (±0.5) 2.1 (±0.6) 1.8 (±0.5) 1.8 (±0.5) 1.9 (±0.5) 1.8 (±0.5)
8 2.1 (±0.6) 2.2 (±0.6) 2.2 (±0.6) 2.3 (±0.7) 1.9 (±0.6) 1.9 (±0.5) 1.9 (±0.5) 1.9 (±0.5)

5 dB
2 1.7 (±0.4) 1.9 (±0.4) 1.9 (±0.4) 1.9 (±0.4) 1.7 (±0.4) 1.7 (±0.5) 1.7 (±0.5) 1.6 (±0.5)
5 2.1 (±0.5) 2.2 (±0.4) 2.2 (±0.5) 2.2 (±0.4) 2.0 (±0.5) 2.0 (±0.6) 2.1 (±0.5) 1.9 (±0.6)
8 2.1 (±0.5) 2.3 (±0.5) 2.4 (±0.6) 2.3 (±0.5) 2.1 (±0.6) 2.2 (±0.6) 2.2 (±0.6) 2.0 (±0.6)

10 dB
2 1.8 (±0.4) 2.0 (±0.4) 2.0 (±0.4) 2.0 (±0.4) 1.8 (±0.4) 1.8 (±0.5) 1.8 (±0.5) 1.7 (±0.5)
5 2.1 (±0.4) 2.3 (±0.4) 2.3 (±0.4) 2.3 (±0.4) 2.1 (±0.5) 2.2 (±0.6) 2.1 (±0.6) 2.0 (±0.6)
8 2.3 (±0.5) 2.5 (±0.5) 2.5 (±0.5) 2.5 (±0.5) 2.3 (±0.5) 2.4 (±0.6) 2.3 (±0.6) 2.4 (±0.6)

C. Speech Separation with (Over)determined Configurations

We report a comparative experiment on speech separation
that aims to separate multiple speech sources from an echoic
mixture in the overdetermined case M > N . The audio data
were taken from the WSJ0-mix reverberant dataset [50], [51]
where each sample is between 3 [s] and 8 [s] long and in-
cludes N ∈ {2, 3} speakers with an RT60 randomly ranging
from 200 [ms] to 700 [ms]. The validation set consists of 100
utterances and the test set consists of 200 utterances. For fair
comparison, N -, t-, GG-, and NIG-FastMNMF were tested
with both determined (N = M ∈ {2, 3}) and overdetermined
(M ∈ {5, 8}) configurations, where N sources with the high-
est average energies were selected as target speakers.

1) Investigation of Hyperparameters: The optimal param-
eters for the speech separation task based on the grid search
parameter optimization (see Section IV-A) are shown in Ta-
ble VII. Fig. 4 shows the SDRs on the validation set with

M = 8, N ∈ {2, 3}, K ∈ {2, 4, 8, 16, 32} while Table IX re-
ports statistical reference of NIG-FastMNMF with respect to
other FastMNMF variants considering a Wilcoxon test. We
discuss the results with N = 2. When K ∈ {4, 8}, NIG-
FastMNMF slightly outperformed the other methods in terms
of the average and median SDRs with a statistical significance
of p ≈ 0.016 on average. The interquartile range and 95%
confidence interval of NIG-FastMNMF, however, closed one
to each other and increased as the number of bases K in-
creased. We then discuss the results with N = 3. When K = 2,
the interquartile range of GG-FastMNMF was smaller than
those of the other methods with a statistical significance of
p ≈ 0.012 on average. GG-, NIG-, and N -FastMNMF with
a fewer K ∈ {2, 4, 8} yielded better median SDRs, whereas
t-FastMNMF with a larger K ∈ {16, 32} performed better. Al-
though the median and average SDRs of NIG-FastMNMF with
K = 32 were slightly worse than those of GG-FastMNMF,
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TABLE IV
THE SDRS (MEAN ± STANDARD DEVIATION) OBTAINED BY THE EIGHT METHODS IN SPEECH ENHANCEMENT FOR M = 8 AND VARIOUS RT60 .

Dist. SNR RT60 [s]
FastMNMF variants R1-FastMNMF variants

N t GG NIG N t GG NIG

Near

0 dB
0.25 14.3 (±4.2) 13.8 (±3.2) 15.9 (±4.6) 16.5 (±4.3) 11.9 (±2.9) 12.2 (±3.3) 11.6 (±2.6) 12.6 (±2.8)
0.50 11.1 (±4.1) 11.0 (±3.8) 12.0 (±4.4) 12.9 (±4.2) 7.1 (±2.1) 7.9 (±2.7) 7.6 (±3.2) 8.3 (±2.3)
0.70 10.7 (±3.8) 7.7 (±2.9) 10.4 (±3.9) 11.1 (±4.5) 5.6 (±2.4) 7.1 (±3.2) 6.6 (±3.9) 7.7 (±3.0)

5 dB
0.25 18.0 (±3.2) 16.7 (±2.6) 18.1 (±3.3) 18.4 (±3.3) 14.9 (±2.5) 15.2 (±2.7) 14.2 (±3.6) 15.4 (±2.8)
0.50 13.1 (±3.0) 13.3 (±2.4) 14.8 (±3.1) 15.8 (±4.2) 11.2 (±2.5) 11.2 (±3.0) 11.7 (±2.9) 13.0 (±2.3)
0.70 12.3 (±3.4) 12.2 (±3.0) 14.2 (±3.2) 13.8 (±3.2) 9.1 (±2.0) 11.0 (±2.8) 10.7 (±1.9) 11.6 (±2.6)

10 dB
0.25 19.5 (±3.8) 18.7 (±2.3) 19.1 (±3.3) 19.9 (±2.8) 18.0 (±2.1) 17.2 (±3.1) 16.2 (±2.7) 18.5 (±3.1)
0.50 13.9 (±2.7) 14.3 (±2.3) 16.8 (±2.8) 17.1 (±3.1) 14.2 (±2.5) 12.1 (±6.9) 13.5 (±2.7) 13.8 (±4.6)
0.70 12.3 (±1.9) 14.2 (±2.4) 15.0 (±2.5) 15.8 (±3.4) 11.6 (±2.1) 11.2 (±2.6) 10.6 (±5.7) 13.6 (±2.3)

Far

0 dB
0.25 9.9 (±3.4) 7.8 (±3.5) 10.2 (±4.4) 10.9 (±3.8) 8.3 (±3.4) 8.0 (±3.4) 7.0 (±3.1) 9.0 (±2.4)
0.50 4.9 (±3.9) 5.9 (±3.6) 6.8 (±3.6) 7.0 (±4.1) 3.9 (±2.1) 3.7 (±2.7) 4.5 (±3.3) 5.0 (±2.9)
0.70 4.0 (±4.7) 4.6 (±3.0) 6.2 (±4.3) 6.6 (±3.8) 0.9 (±2.4) 3.5 (±2.7) 3.2 (±3.6) 4.2 (±3.0)

5 dB
0.25 11.7 (±4.1) 11.3 (±3.3) 11.7 (±3.5) 12.2 (±3.9) 10.0 (±2.8) 10.2 (±2.8) 9.7 (±4.9) 9.5 (±3.0)
0.50 6.8 (±3.1) 7.0 (±2.7) 8.7 (±3.5) 8.5 (±3.5) 5.8 (±3.5) 6.4 (±3.2) 6.3 (±2.4) 8.0 (±4.1)
0.70 5.8 (±3.3) 7.0 (±3.6) 8.2 (±3.8) 8.3 (±3.4) 3.9 (±3.9) 4.6 (±3.2) 5.5 (±3.2) 7.3 (±2.6)

10 dB
0.25 13.0 (±3.0) 12.0 (±3.2) 13.8 (±3.8) 13.7 (±3.8) 12.1 (±4.1) 11.8 (±3.1) 9.6 (±3.7) 11.2 (±3.9)
0.50 8.7 (±3.8) 10.1 (±2.8) 9.4 (±2.9) 9.8 (±4.0) 9.1 (±3.0) 6.8 (±2.3) 7.5 (±3.2) 8.5 (±3.3)
0.70 5.0 (±3.6) 7.6 (±3.6) 9.0 (±3.8) 8.3 (±2.7) 4.9 (±4.1) 4.7 (±4.9) 7.3 (±4.0) 7.9 (±2.6)

TABLE V
STATISTICAL SIGNIFICANCE ( ”***” DENOTES HIGH (p < 0.001), ”**”

GOOD (p < 0.01), ”*” MARGINAL (p < 0.05) AND ”N.S.” NON SIGNIFICANT
(p >= 0.05) P-VALUE) FOR A NON-PARAMETRIC WILCOXON TESTED ON

THE NIG-(R1)FASTMNMF SDR SCORES OBTAINED IN SECTION IV-B

K
FastMNMF variants R1-FastMNMF variants
N t GG N t GG

2 ** ** * * *** n.s.
4 * ** *** * ** *
8 *** ** * ** ** **
16 ** ** * n.s. ** *
32 ** * * ** *** *

TABLE VI
PER-ITERATION TIMES [S] WITH K = 16, N =M = 8 (GPU/CPU)

FastMNMF variants
N t GG NIG

0.012/0.536 0.012/0.535 0.012/0.537 0.025/0.655

R1-FastMNMF variants
N t GG NIG

0.006/0.169 0.006/0.137 0.006/0.171 0.021/0.232

TABLE VII
HYPERPARAMETERS FOR SPEECH SEPARATION

FastMNMF variants
N t GG NIG
n/a ν = 100 β = 1.8 (ρ, η) = (15, 1)

K = 2 K = 8 K = 2 K = 8

NIG- and GG-FastMNMF generally tended to perform compa-
rably. Overall, we found that the best performances of these
FastMNMF variants were drawn when K ∈ {2, 4, 8}.

2) Investigation of Performances: Table VIII shows the
SDRs, SARs, and SIRs on the test set obtained by the four
methods with the optimized hyperparameters. Overall, NIG-
FastMNMF attained the best SDRs and SIRs, whereas t-
FastMNMF attained the best SARs. The numerically-unstable
computation of the modified Bessel function may have af-
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Fig. 4. The SDRs obtained by N -, t-, GG-, and NIG-FastMNMF with
K ∈ {2, 4, 8, 16, 32} in speech separation. White squares and notches indicate
the means and the 95% confidence intervals, respectively. The dashed grey
line represents the median SDR results obtained by OverIVA.

fected the SAR of NIG-FastMNMF. For N = 2, the SDR im-
provement from M = 5 to M = 8 was small for t- and N -
FastMNMF, whereas that was more significant for GG- and
NIG-FastMNMF.

Considering the overall results from investigation in Section
IV-B and IV-C, the proposed NIG-FastMNMF can be claimed
as being the most reasonable choice with an adequate set
of hyperparameters for speech separation as well as speech
enhancement.
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TABLE VIII
SDR, SAR, SIR MEAN (BEST IS BOLDED) AND STANDARD DEVIATION SCORES FOR ALL SETTINGS IN SECTION IV-C2

N M score
FastMNMF variants

N t GG NIG

2

2
SDR 2.8 (±3.4) 2.8 (±2.9) 3.6 (±3.3) 3.9 (±3.4)
SAR 10.0 (±2.6) 12.9 (±2.7) 11.6 (±2.6) 11.4 (±2.6)
SIR 6.5 (±4.1) 6.0 (±3.6) 7.0 (±4.1) 7.3 (±4.3)

5
SDR 7.3 (±5.1) 8.0 (±5.2) 8.7 (±5.6) 8.6 (±5.8)
SAR 14.9 (±4.1) 18.0 (±4.4) 17.0 (±4.8) 17.2 (±5.0)
SIR 12.0 (±6.0) 12.3 (±6.3) 13.4 (±6.8) 13.4 (±6.7)

8
SDR 7.7 (±5.1) 8.3 (±4.9) 8.9 (±5.8) 9.4 (±5.6)
SAR 16.7 (±4.3) 19.2 (±4.2) 18.7 (±5.1) 19.0 (±4.8)
SIR 12.7 (±6.7) 12.8 (±6.6) 14.0 (±7.6) 14.3 (±7.3)

3

3
SDR 1.2 (±2.0) 1.0 (±2.1) 1.3 (±2.1) 1.5 (±2.3)
SAR 8.6 (±2.0) 10.0 (±1.5) 11.3 (±1.7) 9.9 (±1.6)
SIR 3.7 (±3.0) 3.0 (±2.8) 3.4 (±2.9) 3.7 (±2.4)

5
SDR 2.8 (±3.2) 3.1 (±3.4) 3.3 (±3.1) 3.5 (±3.2)
SAR 12.9 (±2.7) 12.8 (±2.4) 14.1 (±2.8) 11.1 (±2.9)
SIR 6.1 (±4.3) 5.9 (±4.2) 6.5 (±4.4) 6.2 (±4.3)

8
SDR 4.5 (±3.8) 4.5 (±3.6) 5.0 (±3.8) 5.1 (±3.7)
SAR 13.8 (±3.6) 16.0 (±3.2) 15.6 (±3.4) 15.7 (±3.4)
SIR 8.3 (±5.0) 7.6 (±4.9) 8.6 (±5.2) 8.5 (±5.1)

TABLE IX
STATISTICAL SIGNIFICANCE ( ”***” DENOTES HIGH (p < 0.001), ”**”

GOOD (p < 0.01), ”*” MARGINAL (p < 0.05) AND ”N.S.” NON SIGNIFICANT
(p >= 0.05) P-VALUE) FOR A NON-PARAMETRIC WILCOXON TESTED ON

THE NIG-FASTMNMF SDR SCORES OBTAINED IN SECTION IV-C2

N K
FastMNMF variants
N t GG

2

2 * *** n.s.
4 ** * **
8 *** * **

16 *** ** n.s.
32 *** n.s. *

3

2 *** ** *
4 ** * n.s.
8 *** n.s *

16 *** n.s. n.s.
32 ** ** *

V. CONCLUSION

This paper has described GSM-FastMNMF, a robust gener-
alization of Gaussian FastMNMF (N -FastMNMF), that incor-
porates a general expression of heavy-tailed probability distri-
butions called a Gaussian scale mixture (GSM) into the jointly-
diagonalizable spatial model FastMNMF. We have developed
a multiplicative update variational expectation-maximization
(MU-VEM) algorithm for GSM-FastMNMF. As an instance
of GSM-FastMNMF, we have derived generalized hyperbolic
FastMNMF (GH-FastMNMF), which encompasses not only N -
FastMNMF and Student’s t FastMNMF (t-FastMNMF) but also
a new variant called normal-inverse Gaussian FastMNMF (NIG-
FastMNMF). We showed that leptokurtic generalized Gaussian
FastMNMF (GG-FastMNMF), which does not belong to GH-
FastMNMF, can also be instantiated from GSM-FastMNMF.
The speech enhancement and separation results revealed the ex-
perimental advantages of NIG-FastMNMF in most conditions.

Considering the recent advance of deep learning techniques,
one important future direction is to use a normalizing flow [52]

for formulating an adaptive time-varying spatial model as pro-
posed in [53]. Another complementary direction is to use a deep
generative model of speech for improving the expression capa-
bility of the source model as proposed in [54], [55]. From the
laborious grid study of this paper, a next step will be also to esti-
mate the tail-index parameters of a given mixture X as in [56].

The proposed general formalism of GSM-FastMNMF could
be extended for other scale mixture models such as the gener-
alized Gaussian scale mixture [57].

APPENDIX

PROBABILITY DENSITY FUNCTIONS OF
GAUSSIAN SCALE MIXTURE VARIABLES

Let x ∈ CM be a M -dimensional complex random vector
following a zero-mean elliptically-contoured multivariate com-
plex Gaussian scale mixture (GSM) with a positive semidefinite
scale matrix Σ � 0. Concrete examples are described below:
• A centralized Gaussian distribution is denoted by x ∼
NC(Σ) and the PDF of x is given by

p(x) =
1

πM |Σ| exp
(
−xHΣ−1x

)
. (58)

• A Student’s t distribution with a degree of freedom ν > 0
is denoted by x ∼ T νC (Σ) and the PDF of x is given by

p(x) =
2MΓ

(
2M+ν

2

)
(πν)

M
Γ
(
ν
2

)
|Σ|

(
1 +

2

ν
xHΣ−1x

)− 2M+ν
2

.

(59)

• A generalized Gaussian (GG) distribution with a shape
parameter β > 0 is denoted by x ∼ GGβC(Σ) and the PDF
of x is given by

p(x) =
β
2 Γ(M)

2
2M
β πMΓ

(
2M
β

)
|Σ|

exp

(
−
(
xHΣ−1x

) β
2

)
.

(60)
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• A generalized hyperbolic (GH) distribution with a shape
parameter γ ∈ R, a concentration parameter ρ > 0, and a
scaling parameter η > 0 is denoted by x ∼ GHγ,ρ,ηC (Σ)
and the PDF of x is given by

p(x) =
1

(πη)MKγ(ρ)|Σ|

(
1 +

2

ρη
xHΣ−1x

) γ−M
2

Kγ−M
(
ρη−1

√
ρη + 2xHΣ−1x

)
. (61)

PROBABILITY DENSITY FUNCTIONS OF
IMPULSE VARIABLES

Let x be a nonnegative random variable. Concrete examples
are described below:
• An inverse gamma (IG) distribution with a shape param-

eter α > 0 and a scale parameter σ > 0 is denoted by
x ∼ IG(α, σ) and the PDF of x is given by

p(x) =
σα

Γ(α)
x−α−1e−σx

−1

. (62)

• A generalized inverse Gaussian (GIG) distribution with
a shape parameter γ ∈ R, a concentration parameter
ρ > 0, and a scaling parameter η > 0 is denoted by
x ∼ GIG(γ, ρ, η) and the PDF of x is given by

p(x) =
1

2ηγKγ(ρ)
xγ−1e−

ρ
2 (η−1x+ηx−1). (63)

PROOF OF EQ. (30)

Let zft ∈ CM be an M -dimensional complex random vector
drawn from a Gaussian scale mixture (GSM) as described in
Section III-A. The gradient of p(zft) is given by [58]

d

dzHft
p(zft) =

d

dzHft

∫
p(zft | φft)p(φft)dφft

=

∫
p(φft)

d

dzHft
p(zft | φft)dφft. (64)

Because p(zft | φft) is an isotropic complex Gaussian distri-
bution, its derivative is given by

d

dzHft
p(zft | φft) = −2Ỹ−1ft zftφ

−1
ft p(zft | φft), (65)

where Ỹft is given in Eq. (10). Substituting Eq. (65) into
Eq. (64), we obtain

d

dzHft
p(zft) = −2Ỹ−1ft zft

∫
φ−1ft p(zft, φft)dφft

= −2Ỹ−1ft zftp(zft)

∫
φ−1ft p(φft | zft)dφft

= −2Ỹ−1ft zftp(zft)Ep(φft|zft)
[
φ−1ft

]
. (66)

Using Eq. (66), we have

d

dzHft
log p(zft) = p(zft)

−1 d

dzHft
p(zft),

= −2Ỹ−1ft zftEp(φft|zft)
[
φ−1ft

]
. (67)

This proves Eq. (30).

PROOF OF EQ. (50)

In the same way as a multivariate real generalized hyperbolic
(GH) distribution [59] , an isotropic multivariate complex GH
distribution p(x) of dimension M is given by perturbing the
scale of an isotropic multivariate complex Gaussian distribution
p(x|φ) with a generalized inverse Gaussian (GIG) distribution
p(φ) as follows :

p(x) =

∫ ∞
0

p(x | φ)p(φ)dφ, (68)

p(x | φ) =
1

πM |φΣ|e
−xH(φΣ)−1x, (69)

p(φ) =
1

2ηγKγ(ρ)
φγ−1e−

ρ
2 (η−1φ+ηφ−1), (70)

where Σ � 0 is a positive semidefinite matrix of dimension
M and γ ∈ R, ρ > 0, η > 0 are the GIG parameters. Eq. (68)
is computed as follows:

p(x) = Cγ,ρ,η,Σ

∫ ∞
0

φγ−M−1e−
1
2 ( 1

φ (2xHΣ−1x+ρη)+ρη−1φ)dφ

= Cγ,ρ,η,Σ

(
2xHΣ−1x + ρη

ρη−1

) γ−M
2

∫
ψγ−M−1e

− 1
2

(
( 1
φ +φ)
√
ρ2+2ρη−1xHΣ−1x

)
dψ

= 2Cγ,ρ,η,Σ

(
2xHΣ−1x + ρη

ρη−1

) γ−M
2

Kγ−M
(√

ρ2 + 2ρη−1xHΣ−1x
)

(71)

where Cγ,ρ,η,Σ = 1
2ηγKγ(ρ)πM |Σ| and the substitution ψ =√

ρη−1

2xHΣ−1x+ρη
φ occurs on the second equality. The integral in

the second equality is finally calculated thanks to the relation
[59] as follows:

∀θ > 0, Kk (θ) =
1

2

∫ ∞
0

qk−1e−
1
2 ( 1

q+q)θdq. (72)

Eq. (50) can be simply proved by introducing the FastMNMF
model and their variables z̃ftm and ỹftm defined in Eqs. (13)
and (14), respectively.
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