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Abstract—Emotional voice conversion (VC) aims to convert a
neutral voice to an emotional one while retaining the linguistic
information and speaker identity. We note that the decoupling
of emotional features from other speech information (such as
content, speaker identity, etc.) is the key to achieving promising
performance. Some recent attempts of speech representation de-
coupling on the neutral speech cannot work well on the emo-
tional speech, due to the more complex entanglement of acoustic
properties in the latter. To address this problem, here we pro-
pose a novel Source-Filter-based Emotional VC model (SFEVC) to
achieve proper filtering of speaker-independent emotion cues from
both the timbre and pitch features. Our SFEVC model consists
of multi-channel encoders, emotion separate encoders, pre-trained
speaker-dependent encoders, and the corresponding decoder. Note
that all encoder modules adopt a designed information bottleneck
auto-encoder. Additionally, to further improve the conversion qual-
ity for various emotions, a novel training strategy based on the 2D
Valence-Arousal (VA) space is proposed. Experimental results show
that the proposed SFEVC along with a VA training strategy outper-
forms all baselines and achieves the state-of-the-art performance
in speaker-independent emotional VC with nonparallel data.

Index Terms—Auto-encoder, emotional voice conversion,
prosody, source-filter networks, valence arousal.

I. INTRODUCTION

EMOTIONAL voice conversion (VC) is a useful speech
processing technique for changing the emotional states

of a speech utterance while retaining its linguistic information
and speaker identity. It can be applied in various domains,
such as virtual assistants, call centers, emotion recognition and
audiobook narration [1], [2], [3], [4], etc.
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Fig. 1. (a) Normal speaker voice conversion methods use the deep learn-
ing models to convert the timbre features for speaker identity conversion;
(b) Conventional emotional voice conversion methods use deep learning models
to convert both pitch and timbre features for emotion conversion; (c) Proposed
SFEVC model uses source-filter networks to filter out the speaker-independent
and dependent emotion codes from the timbre and pitch features and convert the
speaker-independent emotion code for conversion.

Originally motivated by the traditional speaker VC, the study
of emotional VC has recently attracted wide attention in the field
of speech processing. However, emotional VC and traditional
speaker VC differ in many ways. As shown in Fig. 1(a), in the
speaker VC tasks, either the one-to-one conversion [5], [6], or
the many to many conversion [7], [8], their main purposes are
both to convert the source speaker’s voice to sound like that of
the target speaker. In the emotional VC, we only convert the
prosody of the voice to that of a target emotion such as anger
or happiness, of the same person rather than another speaker.
In a nutshell, for voice conversions, the traditional speaker VC
aims to change the speaker’s identity, whereas the emotional VC
endeavors to convert the emotional states of the same speaker.

Traditional speaker VC researches include modeling the tim-
bre features mapping with statistical methods such as the Gaus-
sian mixture model (GMM) [9] [10] and non-negative matrix
factorization (NMF) [11], [12]. Recent deep learning approaches
such as deep neural network (DNN) [13], long short-term mem-
ory network (LSTM) [14], and generative adversarial networks
(GANs) [15] have achieved remarkable performance in the
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traditional VC [7], [16], [17]. As a consequence, emotional VC
has also developed in this direction. Early studies on emotional
VC handle both timbre (spectrum) and pitch (F0) conversion
with GMM [18], [19], [20]. Some deep learning-based emo-
tional VC models, such as DNN, RNN, and GANs have proven
effective on emotional VC. For example, Luo et al. increased the
dimension of the F0 features and applied the DNN model in the
emotional VC [21]. Moreover, for the data augmentation, they
used the continuous wavelet transform (CWT) to analyze the F0
features [22] and improved their work using the dual-supervised
GANs models to do the training [23]. Ming et al. [24] applied
the LSTM models in the emotional VC, and Kun et al. [25]
used the unsupervised cycleGAN model to do the nonparallel
conversion in the emotional VC. These works have made a great
contribution to the development of emotional VC.

However, as shown in Fig. 1(b), conventional emotional VC
methods just applied the nonlinear mapping model to the pitch
(F0) conversion, which is similar to the normal speaker VC
models used in the timbre features conversion as in Fig. 1(a). In
our experiments, we have observed that the speaker similarity
will reduce the effectiveness of the emotional VC probably due
to the “noise” in the emotional features. The common emotional
features converted by traditional VC models include not only the
emotion but also other information (e.g. existing target speaker
identity) altogether, causing the converted emotional speech to
not retain the source speaker identity well. Nonetheless, as we
hear from different speakers, even in different languages, we can
easily recognize their emotions from the speech. Motivated by
this, we find that there are speaker-independent emotion codes,
which can be extracted from different speakers and languages.
Therefore, in this work, we focus on disentangling the emotion
feature from the other acoustic features in order to achieve
emotional VC effectively. As shown in Fig. 1(c), to address
this problem, we propose a source-filter emotional VC networks
(SFEVC) to decouple the speaker-independent emotion code
from other acoustic information of different speakers, but keep
the speaker-dependent features of the source speaker unchanged.

The source-filter model [26] represents the speech production
process by separating the excitation and the resonance phenom-
ena in the vocal tract, where the source corresponds to the glottal
excitation and the filter corresponds to the vocal tract. This model
assumes that these two phenomena are completely decoupled. Li
et al. [27] also pointed out the effectiveness of source-filter model
for emotional vowel perception in the valence-arousal space.
We note that the use of the source-filter model in emotional VC
deserves further exploration, which will be to shown as follows
in this paper.

In our SFEVC model, the source-filter network is based
on the encoder-encoder-decoder architecture, which consists
of multi-channel encoders, emotion-separate encoders, and the
corresponding decoder. All encoders are applied with the de-
signed information bottleneck auto-encoders, which can filter
out the specified features from the emotional speech. For the
multi-channel encoders, they can disentangle the content from
the acoustics features (timbre and prosody). However, these
speaker-dependent acoustics features are still mixed with the
emotion features. Therefore, the emotion-separate encoders are

focusing on separating the speaker-independent emotion fea-
tures from these speaker-dependent acoustic features. Finally,
the decoder takes the speaker-independent emotion codes of
target voice as input to convert the speaker’s emotion without
distorting the speaker-dependent acoustic features of source
voice.

Moreover, according to the emotion studies [28], [29], [30],
psychological emotion labels can be typically divided into
discrete emotion states (angry, happy, neutral, and so on) or
dimensional continuous emotion space (valence-arousal (VA)
space) [31]. As indicated in the emotion research [32], valence
(how positive or negative an emotion is) and arousal (power of
the activation of the emotion) constitute popular and effective
representations for affecting the emotion. Using the VA space
over the two emotion dimensions is considered to be more
general than the use of discrete states in solving the speech
problem. For example, the pitch feature of audio [33], [34],
one of the most reliable features, can be seen as an important
representation of arousal [35], although it may not well represent
the valence. Therefore, the happiness and sadness should be far
away from each other in the VA space, while happiness and
anger might be less distinct. To further improve the conversion
performance in terms of emotion expressiveness, a novel VA
training strategy, which leverages the relationship between dis-
crete emotion classes and VA space, is proposed to train our
SFEVC model more effectively.

To validate our proposed model, we conduct the experiments
on multiple emotional voice dataset. Note that we introduce a
new sales conversation corpus with a new high tension emotion,
denoted as “High Tension Emotion dataset (HTE1),” that will
contribute to enrich the development of VC research community.

In summary, the main contributions of this work are summa-
rized as follows:
� We point out that there are speaker-independent emotion

codes, which can be extracted from different speakers and
languages, and introduce a novel emotional VC paradigm
based on the source-filter model to disentangle the speaker-
independent emotion feature from other acoustic features.

� A novel VA training strategy based on the 2D valence-
arousal space is proposed for an effective training proce-
dure.

� To validate the effectiveness of our proposed model, we
have conducted the experiments not only on three open
source emotional voice datasets, but also a newly released
high tension emotion dataset, in which the emotions are
more complex and challenging to convert. Our experimen-
tal results show the superior performance of our proposed
method over state-of-the-art emotional VC methods.

To our best knowledge, this is the first study of applying the
source-filter model in the emotional VC literature.

This paper is organized as follows. The background of emo-
tional speech, source-filter theory and valence-arousal theory
are briefly reviewed in Section II. Emotion voice data analysis
is provided in Section III. Section IV presents our proposed

1HTE: https://github.com/ZhaojieL/HTE-data

https://github.com/ZhaojieL/HTE-data
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Fig. 2. (a) An illustration of the process of emotion speech generation where the larynx and the vocal tract affect the pitch and timbre features respectively; (b)
Differences of the timbre and pitch features between neutral and emotional speech of the same content; (c) The conventional source-filter model simulates the
speech production via the excitation in the larynx and the resonance in the vocal tract.

SFEVC method. Section V gives the details of experimental
evaluations, and Section VI concludes the paper.

II. BACKGROUND

We provide here a brief primer on the emotional speech,
the source-filter model and the emotional valence-arousal space
theory.

A. Information in Emotional Speech

Fig. 2(a) gives a simplified illustration of the process of speech
generation. The speech excitation comes from the vibration of
vocal cords in the larynx. The generated voiced sound is then
modulated by resonance of the vocal tract (guttural, oral and
nasal cavities). The speech signal contains four main informa-
tion components: language content, timbre, pitch and rhythm.
The emotional features are embedded in these components in
different ways.

Content belongs to the language model in speech research.
The phoneme is the basic unit of speech content in most lan-
guages. Each phoneme has a particular formant pattern. Thus
different phonemes appear in different shapes in the spectro-
gram. As shown in Fig. 2(b), the spectrograms of the same
content spoken in different emotions have similar shapes. In
the emotional VC tasks, the linguistic information needs to be
kept unchanged. Thus, the source-filter model needs to retain the
content information while converting the emotional features.

Timbre is reflected by the formant, which is the peak of the
spectral envelope that results from an acoustic resonance of the
human vocal tract. The timbre can represent the tone color or
unique quality of a sound, which helps us instantly identify and
classify sound sources, such as individual people or musical
instruments. In the emotional speech, the high arousal e.g. happy
or angry voice tends to sound sharper and brighter than the
low arousal or neutral voice [36]. As shown in Fig. 2(b), the
comparison between a happy and a neutral utterance shows that
the happy voice has a sharper spectrogram in some words, and a
higher formant frequency range at the end of the utterance than
the neutral one. Thus, it is necessary to extract the emotional
information from the timbre features.

Pitch is an important parameter in emotional speech pro-
cessing systems. Modulated pitch is generated by the larynx

and modulated primarily by fine changes in the tension of the
vocal folds. The ability to voluntarily and flexibly control pitch
patterns, in the context of vocal learning, is unique to humans
among primates [37], while it has been previously thought that
this ability was due to anatomical differences in the larynx [38].
As shown in Fig. 2(b), the happy voice has a higher frequency
than the neutral voice. It has been proved that the higher pitch,
increased intensity, and faster rate are associated with more
excited or high arousal emotions in speech [39]. Thus, in this
research, we will transform and control the pitch of voice by
the designed emotion auto-encoder, for flexible emotion con-
version. However, the pitch contour also contains the rhythm
information and speaker identity. For example, female speakers
tend to have a higher pitch range than male speakers, which
indicates certain speaker identity information. Moreover, since
each nonzero segment of the pitch contour represents a voiced
segment, the time length of each voiced segment indicates how
fast the speaker speaks, which can be represented as the rhythm
information.

Rhythm is a recurring pattern of sound or speech in time
series. It represents how fast the speaker utters each syllable or
word. Regular recurrence of grouped stressed and unstressed,
long and short, or high-pitched and low-pitched syllables goes
in alternation. As shown in Fig. 2, each pitch contour is divided
into segments, which correspond to vowels of words, and the
time lengths of these segments reflect the rhythmic information.
Emotions can be inferred from speech rhythm. For instance, the
happy or angry voice is usually faster than the sad or neutral
voice.

B. The Source-Filter Model

The source-filter model simulates the speech production via
two distinctive parts, i.e. the excitation in the larynx and the
resonance in the vocal tract. This principle is illustrated in
Fig. 2(c). The vowel spectrum P (s) is the product of the spec-
trum of the glottal source U(s), the transfer function of the
vocal tract T (s) (filter), and the radiation characteristics R(s).
This model is also known as the “source-filter theory” of vowel
production [40]. An example of source-filter modeling is the
Linear Prediction (LP) model [41], which uses the source-filter
theory assuming that the speech is the output signal of a recursive
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digital filter while the excitation is received at the input. In
reality, the mechanism of the vocal fold is more complex, making
this assumption over-simplistic. There exist other source-filter
models that use multi-layer deep learning (DL) models to deal
with the complex excitation signals composed of deterministic
and stochastic components [42]. Some traditional speaker VC
methods [43], [44] also applied source-filter theory on feature
decoupling, but are mostly focused on simulating the vocal tract,
while information about pitch, rhythm, and content is still mixed.
A recent source-filter speaker VC method, SPEECHFLOW [45],
can blindly decompose speech into content, timbre, pitch, and
rhythm, and generate speech from these disentangled represen-
tations. However, our task is aiming at converting the emotion
while keeping the speaker-dependent features unchanged, which
is different from the SPEECHFLOW. Moreover, emotional
speech is the result of the interplay between acoustic attributes
including timbre and pitch [46], [47], and is thus affected by them
in varying degrees [23], [48]. Therefore, decoupling the timbre
and pitch from content can only change the style of speech,
but may not be sufficient to convert it to an expected emotion
well. In this work, we further decouple the speaker-independent
emotional features from the prosody and timbre features for
emotional VC.

C. Valence-Arousal

Representing human emotions has been a fundamental re-
search topic in psychology. The most frequently used emotion
representation is the categorical one, comprising several basic
categories such as anger, disgust, fear, happiness, sadness, sur-
prise and neutral, etc. It is, however, the dimensional emotion
representation [49] that is more appropriate to depict subtleties.
Most of the dimensional models classify affective states in two
dimensions, i.e. ‘Valence’ and ‘Arousal’. As indicated in the
emotion research, the 2D VA space provides a popular and
effective representation for affecting emotions. For example,
the pitch feature of audio, one of the most reliable features,
can be seen as an important representation of arousal [35],
while the facial expression can be used as the valence. Thus,
we can improve the training effectiveness for the emotional VC
via the separate learning pipeline, based on the relationships
between emotions’ valence-arousal (VA) spaces. More details
are provided in Section IV-C.

III. DATA ANALYSIS

In this chapter, we provide the speech data analysis for the
most important feature, i.e. pitch (F0), in the emotional VC,
using the ESD database [50], which consists of 350 parallel
utterances spoken by 10 native English and 10 native Chinese
speakers and covers 5 emotion categories (neutral, happy, angry,
sad, and surprised). We apply the t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [51] to reduce the dimensionality of the
emotional features of the different emotional speech and to plot
them in a two-dimensional space. Fig. 3(a) and (b) represent the
t-SNE separation by the F0 features, which are the main emotion
representation in speech. The instances are marked per emotions
in two different languages. As shown in the figures, the neutral

Fig. 3. t-SNE visualization of F0 features from 350 sentences with the same
content spoken in (a) Chinese. (b) English.

Fig. 4. t-SNE visualization of F0 features of two emotions spoken in different
languages.

emotion is mostly mixed with the sad, while the happy, surprised
and angry mixed together. The low arousal emotions (sad and
neutral) can be easily separated from relatively high arousal
emotions (happy, angry and surprised) [52], while it is difficult
to separate emotions in the same arousal group, no matter how
different their valence is. Thus, it is easier to represent the
emotion’s arousal features with the prosody feature of speech,
rather than the valence features. Therefore, when converting the
emotions, we need to train the emotional source-filter network
with different stages based on the 2D VA space.

As shown in Fig. 4, we also apply the t-SNE to plot the emotion
features extracted from different speakers in different languages.
We color-coded the instances according to emotions and the
different shapes of the data points show the different speakers
in different languages. We can see clusters forming based on
emotions instead of languages, which indicates that the emotion
is a speaker-independent feature, even in the different languages.
Motivated by this, we can use different speakers’ emotional
speech to extract the speaker-independent emotion codes as



LUO et al.: DECOUPLING SPEAKER-INDEPENDENT EMOTIONS FOR VOICE CONVERSION VIA SOURCE-FILTER NETWORKS 15

Fig. 5. The conversion workflow of SFEVC.

shown in Fig 1 (c). Then, we use the different emotion speech by
the same speaker to train the source-filter networks to learn how
to filter out the emotion feature but keep the speaker-dependent
pitch and timbre features unchanged.

IV. SOURCE-FILTER EMOTIONAL VOICE CONVERSION

A. The SFEVC Framework

As shown in Fig. 5, our proposed SFEVC model consists of
three encoders and one decoder. In the conversion flow, the pitch
and timbre features are extracted from the neutral voice using
the speech process tool WORLD [53]. The neutral voice and its
pitch feature are fed into the multi-channel encoders to get the
content code, rhythm code, and pitch code. The pitch code and
the extracted timbre feature are inputs for the speaker-dependent
encoders to get the source speaker-dependent codes, and the
emotion separate encoders to get the speaker-independent target
emotion codes. Finally, the content code, rhythm code, speaker-
dependent codes, and speaker-independent emotion codes are
decoded by the decoder to obtain the emotional voice.

Fig. 6 shows the detailed structure of the proposed SFEVC. 1)
In the multi-channel encoders, the features from the source and
target emotion speech of the same speaker are separately fed into
each channel. Each channel has a different and carefully crafted
information bottleneck design to decompose speech into con-
tent, prosody, and rhythm, separately. 2) In the emotion-separate
encoders, we use both the source and target emotion features
from the same speaker as inputs, so that the speaker-independent
emotion information can be separated from the source and
target pitch codes, and the timbre features from the source and
target emotional speech. 3) The speaker dependent encoders
are pre-trained using the same emotional speech by different
speakers, which is similar to the normal speaker voice conversion
encoder. 4) The decoder aims to take the decoupled features as
input to generate the target speech spectrogram features. We will
introduce all modules as follows.

1) Multi-Channel Encoders: We apply the multi-channel en-
coder with three encoder channels Er, Ec, Ef . Here Er denotes
the rhythm encoder, Ec the content encoder, and Ef the pitch
encoder. Each channel has a different, carefully crafted infor-
mation bottleneck design, which is similar to AutoVC [44].

The inputs of the multi-channel encoders are speech X and
normalized pitch contours (PNorm.P and PNorm.P t). As the
normalized pitch contours are normalized to have the same
mean and variance across the same speakers, the normalized
pitch contours only contain the pitch information and rhythm
information, but no content information and timbre information.

The outputs of the encoders are called codes Z =
{Zr,Zc,Z

s
f ,Z

t
f ,}, where Zr, Zc, Zs

f and Zt
f denote the

rhythm code, content code, pitch code of source emotion, and
pitch code of target emotion, respectively. The codes can be
expressed as follows:

Zr = Er(X),Zc = Ec(A(X)),

Zs
f = Ef (A(P )),Zt

f = Ef (A
(
P t

)
), (1)

where A(·) denotes the random resampling (RR) operation. As
shown in Fig. 6, we applied RR operation for content encoder and
pitch encoder, but not rhythm encoder. Because the RR operation
divides the input into segments of random lengths and randomly
stretch or squeeze each segment along the time dimension.
Therefore, it can be used as an information bottleneck to filter
out the rhythm information.

2) Emotion-Separate Encoders: As discussed earlier, in the
emotional VC tasks, we regard the emotion information as
speaker-independent, which is mixed in the timbre and prosody
features. Thus, in the emotional VC, we need to decouple the
speaker-independent emotion features from the timbre features(
U ,U t

)
and pitch codes

(
Zs

f ,Z
t
f

)
extracted from the multi-

channel encoders, while keeping the speaker-dependent features
unchanged. In the emotion-separate encoders, Et−s

U and Et−s
Zf

represent the speaker-independent emotion encoders for timbre
and pitch features, respectively. The emotion-separate encoders
can be expressed as follows:

Zt
U = Et−s

U

(
U t, U

)
,

Zt
Zf

= Et−s
Zf

(
Zt

f ,Z
s
f

)
. (2)

To let the Et−s
U extract speaker-independent emotion features

from timbre features, the inputs are timbre features
(
U t, U

)
of source and target emotion speech (s and t) from the same
speaker (X). To let Et−s

Zf
extract speaker-independent emotion

features from pitch features, the inputs are
(
Zs

f ,Z
t
f

)
from

the multi-channel encoders by the same speaker. The speaker-
independent emotion codes extract from the timbre and prosody
can be represented as Zt

U and Zt
Zf

respectively.
3) Speaker-Dependent Encoder: To keep the source speaker-

dependent features unchanged, we used the pre-trained speaker-
dependent encoder Es

U and Es
Zf

for timbre features and pitch
codes encoding, respectively. The pre-trained model used the
timbre features and pitch codes of the source emotion speech by
different speakers as inputs for training encoders.
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Fig. 6. The detailed structure of the proposed SFEVC. ‘RR’ denotes random resampling. ‘PNorm.’ denotes the normalized pitch contour. P and P t represent
the normalized pitch contour of source emotion and target emotion, respectively. U , and U t represent the input timbre features of source emotion speech and
target emotion speech, respectively. (E)s and (Z)s represent the encoders and their codes, respectively. Pitch feature (P ) consists of the speaker-dependent pitch
feature (PD) and the speaker-independent pitch feature (P I ). Timbre feature (T ) consists of speaker-dependent timbre feature (TD) and speaker-independent
timbre feature (T I ). Some rhythm blocks have some holes in them, which represents that a portion of the rhythm information is lost. The grey block at the top of
the encoders denotes the information bottleneck.

To extract the speaker-dependent features of source
emotion by the pre-trained encoders Es

U and Es
Zf

, the inputs
are the source timbre features U and source pitch codes Zs

f .
The source speaker-dependent codes extracted from timbre and
prosody features can be represented as follows:

Zs
U = Es

U (U),

Zs
Zf

= Es
Zf

(
Zs

f

)
(3)

4) Decoder: The decoder takes Z as its input and produces a
speech spectrogram X̂s→t as output. Now we want to convert the
voice’s speaker-independent emotion from the source emotion
X to the target emotion Xt but keep the speaker identity
unchanged. The converter should have the following desirable
property:

X̂s→t = D
(
Zr,Zc,Z

t
Zf

,Zs
Zf

,Zt
U ,Z

s
U

)
. (4)

Here, Zr and Zc are the source speech rhythm and content.
Zs

Zf
andZs

U mean the speaker-dependent pitch and timbre from

source speech. Zt
Zf

and Zt
U denote the speaker-independent

pitch and timbre from target emotion speech.
During training, the output of the decoder tries to reconstruct

the input spectrogram:

min
θ

E
[∥∥∥X̂s→t −X

∥∥∥
]2
2

(5)

where θ denotes all the trainable parameters. It has been proved
that if all the information bottlenecks are appropriately set and
the network representation power is sufficient, a minimizer
of (5) will satisfy the multi-channel encoders and emotion-
separate encoders, separately. More details can be found in
Appendix A.

B. Method Explanation

In this section, we explain why SFEVC can achieve speech
decomposition by multi-channel encoders and filter the speaker-
independent emotion features from the timbre and pitch features
by emotion-separate encoders. The theory of how multi-channel
encoders achieve speech decomposition is similar to the other
source-filter networks applied in the speaker VC tasks [44], [45].
When passing through the random resampling (RR) operation,
a random portion of the rhythm block is wiped, but the other
blocks remain intact. Thus, when the speech and pitch features
pass through the random resampling operation, their rhythm
blocks of them are missing information. Rhythm encoder Er(·)
is the only encoder that has access to the complete rhythm
information. Hence, if Er(·) is forced to lose some information
by its information bottleneck, it will prioritize removing the
content, pitch and timbre. For the same reason, the Ef (·) only
encodes pitch features. Then the content encoder Ec(·) becomes
the only encoder that can encode all the content information, and
thus, will keep the content and remove the other features by the
designed bottlenecks layers. Finally, with Er(·) encoding only
rhythm andEc(·) encoding only content, the pitch encoderEf (·)
must encode the pitch information.

Different from the conventional source-filter networks for
normal speaker voice conversion, where the speaker’s identity
is directly fed to the decoder, in the emotional VC, we need
to convert the emotion of voice but keep the source speaker
identity unchanged. Thus, we propose the emotion-separate
encoders to encode the timbre features (U ,U t) and the pitch
codes (Zt

f ,Z
s
f ). As shown in the emotion-separate encoders,

the speaker-independent encoders (Et−s
U and Et−s

Zf
) encode the

paired source and target emotion by the same speaker X .
Thus, these encoders are only embedded with the emotion
codes without the speaker’s identity. For the speaker-dependent
encoders (Es

U and Es
Zf

), they are pre-trained using the inputs
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Fig. 7. SFEVC+VA inference and VA training stages based on valence-arousal
space. T represents the corresponding target emotion SFEVC. V ↑ and V ↓
represent increasing and decreasing valence for the converted emotional voice,
respectively. A ↑ and A ↓ represent increasing and decreasing arousal for the
converted emotional voice, respectively.

from the same emotional voices spoken by different speakers,
which can be embedded with the speaker’s identity in the pitch
and timbre features. In general, through these emotion-separate
encoders, speaker-dependent and speaker-independent features
can be decoupled from the timbre and pitch features.

C. Inference and Training Procedure of SFEVC+VA.

In the inference of SFEVC+VA, our input is the neutral voice.
For all the conversions, the inputs need to pass through the
target emotion SFEVC, which is pre-trained in the basic SFEVC
model, to get the basic converted emotional voice. For instance,
as shown in the inference part in Fig. 7, when we want to convert
a neutral voice to a happy voice, we need to filter the neutral voice
by passing it through the pre-trained neutral-to-happy SFEVC,
the valence source-filter (V ↑) and arousal source-filter (A ↑),
which can increase its arousal and valence, respectively. To
convert to the angry voice, it needs to decrease the valence and
increase the arousal using the (A ↓) and (V ↑). For the sad voice,
(A ↓) and (V ↓) can be used. For the surprised voice, which has
similar valence to the neutral voice, it only needs to pass through
the target emotion SFEVC and arousal source-filter (A ↓). For
the high tension voice conversion, it needs to pass through the
high tension SFEVC and the same VA source-filters with a happy
voice (A ↑, V ↑)

As described in the data analysis in Section III, sad and neutral
are mixed, while happy, angry, and surprised emotions are mixed
when using the t-SNE for clustering of pitch features. Also,
as shown in the VA datasets in Fig. 7, in the emotion wheel,
neutral and sad belong to middle or low arousal emotion features,
while happy, surprised and angry are the high arousal features.
It indicates that it is effective to convert the emotion in different
arousal using the relatively high arousal emotion (angry) and low
arousal emotion (sad) as the training datasets. Also, it is effective
to convert the emotion in different valences using relatively low
valence emotion (angry) to high valence emotion (happy) as

training datasets. Therefore, in our VA training-based model,
we train the valence and arousal source-filters based on valence
arousal features, separately.

In the training phase, we use the angry-happy and angry-sad
pairs for training the valence source-filters and arousal source-
filters, separately. For training the valence source-filters, we train
the conversion function from angry to happy to get the valence
conversion code, which is focused on converting the low valence
to high valence (V ↑). Their inverse conversion (e.g. happy to
angry) can convert the high valence features to low valence,
which can be represented as V ↓. Similar training processing to
arousal source-filters, we can obtain the arousal source-filters
A ↑ and A ↓, to respectively filter out the low arousal and the
high arousal features.

V. EXPERIMENTS

A. Dataset and Experimental Settings

All experiments are conducted on four datasets including the
ATR [19], JSUT corpus [54], ESD [50] and our new HTE datset.
� ATR [19]: In the database, 50 sentences from the ATR

Japanese phonetically balanced text set were used in the
experiments. These 50 sentences are designed to include a
minimum phoneme set of Japanese. All the texts were read
by two female professional narrators with neutral, angry,
happy and sad voices.

� JSUT corpus [54]: In the JSUT corpus, 100 sentences
are recorded by three female professional narrators with
neutral, angry and happy voices.

� ESD [50]: The dataset consists of 350 parallel utterances
with an average duration of 2.9 seconds spoken by 10
native English and 10 native Mandarin speakers. For each
language, the dataset consists of 5 male and 5 female
speakers in five emotions (happy, sad, neutral, angry, and
surprised).

� HTE: We introduced the High tension emotion dataset
(HTE) for real world emotional VC testing evaluation.
The dataset consists of 100 parallel utterances including 50
sales conversation utterances and 50 phonetically balanced
sentences with an average duration of 5 seconds spoken by
6 native Japanese voice actors (3 males and 3 females).
Each sentence is spoken with two scenarios: 1) acting as a
salesperson who speaks in a high tension emotional voice,
and 2) acting like a normal person who speaks in a neutral
voice.

All the speech data are sampled at a 16 kHz rate with 16 bits
resolution. We set these four datasets into the following: neutral
to angry voice (N2An), neutral to sad voice (N2Sa), neutral
to happy voice (N2Ha), neutral to surprised voice (N2Su), and
neutral to high tension voice (N2Hi) data pairs. They are split
into training and test sets as shown in Table I. We conducted
evaluations with a five-fold cross-validation scheme and the
performance is measured using average conversion evaluation.
Please refer to our online demo2 to play the speech samples.

2Demo page: https://zhaojiel.github.io/SFEVC/

https://zhaojiel.github.io/SFEVC/


18 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

TABLE I
DISTRIBUTION OF TRAINING AND TEST SETS. WE USE 10% OF THE TRAINING

DIALOGUES AS THE VALIDATION SET

TABLE II
HYPERPARAMETER SETTINGS OF MULTI-CHANNEL ENCODERS

TABLE III
HYPERPARAMETER SETTINGS OF EMOTION-SEPARATE ENCODERS

B. Experimental Settings

As described in Section II, the networks consist of the multi-
channel encoders, the emotion-separate encoders, and the output
decoder. All the encoders share a similar architecture, which
consists of convolutional layers followed by group normaliza-
tion [55]. The gray blocks at the top of the encoders shown
in Fig. 1 are the designed information bottlenecks which are a
stack of BLSTM layers. They are applied after the output of
the convolutional layers to reduce the feature dimension. By
using the designed bottlenecks, the information of each channel
can be passed through a downsampling operation to reduce the
temporal dimension, producing hidden representations. Table II
shows the hyperparameter settings of multi-channel encoders,
Er, Ec and Ef . Table III shows the hyperparameter settings of
second-level emotion-separate encoders (Es

U , Et−s
U , Es

Zf
and

Et−s
Zf

). The decoder first upsamples the hidden representation to
restore the original sampling rate. Then all the representations
are concatenated along the channel dimension and fed to a
stack of three BLSTM layers [17] with an output linear layer
to produce the final output. The output features are converted
back to the speech waveform using the same wavenet-vocoder
as in [56] on the VCTK corpus.

C. Comparative Study

To evaluate the proposed method, we reimplemented several
state-of-the-art emotional VC models for comparison.
� DBNs+NNs [21]: This is the earliest emotional VC method

based on deep learning models. The model uses the DBNs

to convert spectral features and the NNs to convert the F0
features.

� Dual-SANs [23]: This model adopts the dual supervised
adversarial network, in which continuous wavelet trans-
form method was used to augment prosody (F0) features.

� CycleGAN [25]: The CycleGAN model has been widely
used in the non-parallel VC tasks. Kun et al. have also used
this unsupervised learning model in the emotional VC.

� SPEECHFLOW [45]: This is a state-of-the-art source-filter
method that has been used in the normal speaker VC
task. We applied it in the emotional VC that uses the
designed bottlenecks auto-encoder for filtering the timbre
and prosody features.

� SFEVC: This is our proposed method SFEVC that uses
designed bottlenecks multi-channel encoders and the
emotion-separate encoders, but without adding the VA
training.

� SFEVC+VA: We adopt the novel VA-based training to train
valence and arousal source-filters, denoted as SFEVC+VA.
This model is built to validate the effectiveness of adding
the VA training models for basic SFEVC.

We have conducted objective evaluations using the parallel ut-
terance datasets for training for all methods. As the CycleGAN,
SPEECHFLOW and the proposed method are parallel-data-free
frameworks, they are also trained under non-parallel condition
by upsetting the order for the source and target sentences.

D. Objective Evaluation

In the emotional VC task, the timbre and pitch features are
mainly represented by mel-cepstral coefficients (MCC) and F0
features. Therefore, for objective evaluation, we use mel-cepstral
distortion (MCD) to measure how close the converted MCC is to
the target MCC in the mel-cepstral space, and root means square
error (RMSE) to evaluate the conversion error between target F0
and converted F0. The MCD and F0-RMSE values are calculated
using the different emotional voices from the same speaker since
the emotional VC aims to convert the emotion-related features
but keep the speaker identity unchanged. The averaged MCD
and RMSE are shown in Table IV and Table V, respectively.

As shown in Table IV, the MCD values between source and
target emotion speech samples are over 5, indicating that the
timbre features of voices spoken by the same speaker also have
some variations for different emotions. Comparing the MCD of
the source voice and converted voice, all models show decreased
values. Comparing Dual-SANs, SPEECHFLOW, SFEVC, and
SFEVC+AV with CycleGAN, the MCD varies slightly for N2Sa
but decreases significantly for the other high arousal emotions.
This is because CycleGAN is effective for transferring sophis-
ticated local texture appearance between image domains, but it
has difficulties with objects that have both related appearance
and shape changes. For the angry and happy voice conversion,
their spectrum shape is more different from the neutral voice
than the sad voice. This shows that although cycle-consistency
is effective for the training of GANs when converting the neutral
voice to a sad voice, the effect of cycle-consistency is no more
than the dual supervised learning models (Dual-SANs) and
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TABLE IV
MCD RESULTS FOR THE CONVERSION OF NEUTRAL VOICE TO EMOTIONAL VOICE USING DIFFERENT METHODS WITH THREE PUBLIC DATASETS AND ONE NEWLY

RELEASED HIGH TENSION EMOTION DATASET

TABLE V
F0-RMSE RESULTS FOR THE CONVERSION OF NEUTRAL VOICE TO EMOTIONAL VOICE USING DIFFERENT METHODS WITH THREE PUBLIC DATASETS AND ONE

NEW RELEASED HIGH TENSION EMOTION DATASET

the designed bottlenecks encoder models (SPEECHFLOW and
SFEVC) in the emotional VC task, where the emotional features’
shapes change a lot.

As shown in Table V, comparing the RMSE results, all models
show significantly decreased values. The bottlenecks encoder
models can obtain better results than DBNs+NNs and the GAN-
related models (Dual-SANs and CycleGANs). In the bottlenecks
encoder models, our proposed SFEVC and SFEVC+VA models
get better RMSE values than the SPEECHFLOW in the neu-
tral to high tension emotion and surprised emotion. This indi-
cates that our emotion-separate encoder is effective in complex
emotions. Comparing the results of SFEVC and SFEVC+VA,
the latter has less errors for the conversion from neutral to
angry.

Comparing the MCD results and RMSE results of the parallel
training data and non-parallel training settings, their scores differ
little for all source-filter models (SPEECHFLOW, SFEVC and
SFEVC+VA). Moreover the source-filter models have a better
results than the cycleGAN for the non-parallel data, especially
for the small dataset (ATR and JSUT).

E. Subjective Evaluation

For the subjective experiment, similarity test and naturalness
MOS test are used as evaluation metrics.

1) Emotion Similarity: In the emotional VC task, the more
similar the converted voice sounds to the target emotion, the
more effective the model is. Therefore, we carry out a sub-
jective emotion classification test for the neutral voice to emo-
tion pairs including Neutral-to-Angry, Neutral-to-Sad, Neutral-
to-Happy, Neutral-to-Surprised, and Neutral-to-High Tension,
comparing different models (DBNs+NNs, Dual-SANs, Cycle-
GAN, SPEECHFLOW, and SFEVC and SFEVC+VA). For each

test model, 30 native-speaker listeners including 15 Japanese
(10 males and 5 females) and 15 Chinese (10 males and 5
females) of different ages are involved and asked to label the
emotions of the converted voices in their respective mother
language. The Japanese datasets do not include the surprised
emotion and the Chinese dataset does not include the high
tension emotion. Hence for the Japanese converted voice, 40
utterances are randomly selected from the evaluation sets for
the converted angry, happy, sad and high tension voices (10
sentences for each emotion). For the Chinese converted voices,
40 utterances are randomly selected from the evaluation sets
for the converted angry, happy, sad and surprised voices (10
sentences for each emotion). Finally, we sum up all the test
models’ results in Table VI.

As shown in Table VI(a), when evaluating the original
recorded emotional speech utterances, all classification accu-
racy is higher than 90%, indicating the classifier performs well
enough to be used in the emotion classification test. The classi-
fication accuracy of Neutral-to-Sad is nearly 100%, indicating
that the human can easily separate the low valence emotion (sad)
from the high valence voice (happy, angry, surprised and high
tension). Because the high tension and happy voice are similar,
the classification accuracy of Neutral-to-Happy and Neutral-
to-High Tension is lower than the others. The classification
results for the converted voices of DBNs+NNs, Dual-SANs,
CycleGAN, SPEECHFLOW, and SFEVC and SFEVC+VA are
shown in (b), (c), (d), (e), (f), and (g) of Table VI, respectively.

As shown in Table VI (b), the conventional DBNs+NNs
method shows poor performance in all emotional VC tasks, espe-
cially for the conversion from neutral to angry and from neutral
to high-tension. This result confirms that the DBNs+NNs model
training without the GANs models (Dual-SANs and CycleGAN)
or designed bottlenecks auto-encoder models (SPEECHFLOW,
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TABLE VI
RESULTS OF CLASSIFICATION FOR RECORDED VOICES[%] AND CONVERTED

VOICES [%]

Fig. 8. MOS of the speaker similarity for the conversion of neutral voice to
emotional voice, with 95% confidence intervals computed from the t-test.

SFEVC, and SFEVC+VA) cannot convert the emotion features
well.

Comparing the results of GANs based models (Dual-SANs
and CycleGAN) with the source-filter models (SPEECHFLOW,
SFEVC, and SFEVC+VA), we see that the classification
accuracy is similar for the converted angry voice and sad voice.
However, GANs based models get lower quality for the con-
verted surprised voice and converted high-tension voice, indicat-
ing that the source-filter models have better conversion efficacy
for the more complex emotions (surprise and high tension).

Comparing the results among the source-filter methods, i.e.
Table VI (e), (f) and (g), we see that the proposed SFEVC
has obtained better results than the SPEECHFLOW. Moreover,
comparing the results of SFEVC and SFEVC+VA, it proves
that applying the two stages training method based on 2D VA
space can improve the quality for all the high valence emotion
conversions.

2) Speaker Similarity: Our emotional voice conversion task
is converting the emotion but keeping speaker-dependent fea-
tures of the source speaker unchanged. Therefore, we also
conduct subjective experiments on the speaker similarity for dif-
ferent models (DBNs+NNs, Dual-SANs, CycleGAN, SPEECH-
FLOW, and SFEVC and SFEVC+VA). The similarity evaluation
is conducted on the converted emotional voice and reference
emotional voice of the source speaker pairs. 40 utterances are
randomly selected from the evaluation sets for the converted
angry, happy, sad and high tension voices (10 sentences for
each emotion). Each pair is evaluated by 15 subjects (Japanese),
with a score ranging from 1 (different speakers) to 4 (same
speaker). Fig. 8 shows each model’s average score of all the
converted emotional voices. As shown in Fig. 8, the proposed
SFEVC and SFEVC+VA models have higher scores than the
other models, which indicates that the SFEVC models is more
effective in keeping the speaker-dependent features unchanged.
SFEVC and SFEVC+VA have similar results, which show that
the valence arousal training stages retain the speaker-dependent
features well.

3) Naturalness: In line with most previous works in the
VC field, to measure naturalness, we conduct a MOS test for
the naturalness evaluation by 30 native subjects including 15



LUO et al.: DECOUPLING SPEAKER-INDEPENDENT EMOTIONS FOR VOICE CONVERSION VIA SOURCE-FILTER NETWORKS 21

Fig. 9. MOS of the naturalness evaluation for the conversion of neutral voice to emotional voice, with 95% confidence intervals computed from the t-test.

Japanese (10 males and 5 females) and 15 Chinese (10 males and
5 females) of different ages. For each test model, 40 sentences are
randomly selected from the Japanese evaluation sets including
10 utterances for each converted emotional voice (happy, angry,
sad and high tension), and 40 sentences are randomly selected
from the Chinese evaluation sets including 10 utterances for
each converted emotion voice (happy, angry, sad and surprised).
The scale ranged from 1 (totally unnatural) to 5 (completely
natural). The results are shown in Fig. 9. In this test, a higher
value indicates a better result, where the error bar shows the
95% confidence interval. From these results, we can see that
all naturalness scores are above or near 3, which means that
reasonable naturalness. Comparing the results of different mod-
els, we can see that the GANs models and source-filter models
improved a lot than the DNBs+NNs. In the GANs models, the
Dual-SANs gets more stable results than the CycleGANs, which
has low naturalness in the neutral to high-tension converted
voice. The source-filter models can get better results than the
GANs models, especially for the high arousal voice conversion.
Our proposed SFEVC model obtains better results than the other
source-filter model. Especially for the conversion of neutral
voice to high tension voice, the score is 0.3 higher than the other
methods.

4) Ablation Study: In addition, we also conduct the abla-
tion study for different encoders. To evaluate whether each
bottleneck information is the expected information, we remove
Zr, Zc, speaker-independent emotion codes (Zt

U and Zt
Zf

), or
speaker-dependent codes (Zs

U and Zs
Zf

), separately. For each
ablation test, we conduct the similarity evaluation (emotion
similarity and speaker similarity) on the converted emotional
voice and reference the emotional voice of the source speaker.
40 utterances are randomly selected from the evaluation sets
for the converted angry, happy, sad, and high tension voices
(10 sentences for each emotion). 15 subjects (Japanese) are
involved to conduct the speaker similarity evaluation with a
score ranging from 1 (different speakers) to 4 (same speaker)
and emotion similarity evaluation with a score ranging from
1 (different emotions) to 4 (same emotion). As shown in Ta-
ble VII, removing the content code or rhythm code will destroy
the linguistic information of the speech, which leads to very
low scores. Removing the speaker-independent emotion codes
will result in around a 0.51 drop in emotion similarity scores
and a slight decrease in speaker similarity scores, which in-
dicate that our proposed emotion-separate encoder is effective
in the emotion conversion. Removing the speaker-dependent

TABLE VII
ABLATION RESULTS W.R.T. THE CODES, I.E. CONTENT CODE (Zc), RHYTHM

CODE (Zr), SPEAKER-INDEPENDENT EMOTION CODES (Zt
U AND Zt

Zf
), AND

SPEAKER-DEPENDENT CODES (Zs
U AND Zs

Zf
), ON MOS TESTS OF EMOTION

SIMILARITY (ES) AND SPEAKER SIMILARITY (SS)

codes will result in around a 0.3 drop in speaker similarity
scores, which indicates the efficacy of the speaker-dependent
encoder.

VI. CONCLUSION

In this work, we have presented a source-filter emotional
voice conversion model applied with the multi-channel encoders
and emotion-separate encoders, which can better decompose
the timbre, pitch, content and rhythm features from the speech
information and decouple the speaker-independent emotion fea-
tures from the speaker-dependent emotion features. Moreover,
we have also introduced a training strategy based on the valence-
arousal space, which can improve the conversion expressiveness
for the high arousal emotion. Experimental results show that
our proposed SFEVC model is more effective in converting any
emotions compared to the conventional method and achieved
the state-of-the-art results.

APPENDIX A
DETAILED CALCULATION OF RECONSTRUCTING THE

CONVERTED EMOTIONAL VOICE

Assume that the speech X can be reconstructed by (C,R,P,T)
as follows:

X = D(C,R, P, T ) = D
(
C,R,

(
PD, P I

)
,
(
TD, T I

))
(6)

where C, R, P , and T represent the content, rhythm,
pitch, and timbre, respectively. The pitch and timbre fea-
tures can be separated by speaker-independent features
(P I , T I ) and speaker-dependent features (PD, TD). In the
emotional VC, for the input source emotion voice Xs =
D(Cs, Rs, (P

D
s , P I

s ), (T
D
s , T I

s )), the main task is to replace
speaker-independent emotion features (P I

s , T
I
s ) to the target
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emotion features (P I
t , T

I
t ), but keep the other features un-

changed as Xt = D(Cs, Rs, (P
D
s , P I

t ), (T
D
s , T I

t )). Combing
1, 2, 3 and 4 our emotional VC task is to reconstruct the converted
voice as follows:

X̂s→t = D
(
Zr,Zc,Z

t
Zf

,Zs
Zf

,Zt
U ,Z

s
U

)

= D
(
Er(X), Ec(A(X)), Es

Zf

(
Zs

f

)
,

Et−s
Zf

(
Zt

f ,Z
s
f

)
, Es

U (U) , Et−s
U

(
U t, U

))

= Xt = D
(
Cs, Rs,

(
PD
s , P I

t

)
,
(
TD
s , T I

t

))
, (7)

which achieves 0 reconstruction loss in 5.
To train the speaker-independent emotion encoders, the inputs

are the speech in different emotions (Xs, Xt) spoken by the
same speaker X. Thus, the content (Cs), rhythm (Rs), and
speaker-dependent features (PD

s , TD
s ) are the same information.

Therefore, the loss function to minimize the ||X̂s→t −Xt||
depends on reconstructing the speaker-independent emotion
features (P I , T I ) by encoders (Et−s

Zf
Et−s

U ) and decoder D:

min
Et−s

Zf
(·),Et−s

U (·),D(·)
L||X̂s→t −Xt|| = LP I + λ1LT I , (8)

where,

LP I = E
[
||Et−s

Zf

(
Zt

f ,Z
s
f

)− P I
t ||1

]

= E
[
||Et−s

Zf

(
Ef (A (P )) , Ef

(
A
(
P t

))− P I
t ||1

]
,

LT I = E
[||Et−s

U (U t, U)− T I
t ||1

]
(9)

and the weight λ1 is set to 1.
The speaker-dependent encoders are pre-trained using

the speech in the same emotion (Xs,Y s) by differ-
ent speakers X and Y. Y s can be represented as Y s =
D(Cs, Rs, (P

D
y , P I

s ), (T
D
y , T I

s )), where,Cs, Rs, P
I
s , T

I
s are the

same information as Xs. Therefore, the pre-trained speaker-
dependent encoders only focus on the conversion of speaker-
dependent features (PD, TD). Our emotional VC task is to
keep the speaker-dependent features decoupled from timbre
and pitch features of Xs unchanged. Then, the loss function
to minimize the ||X̂s→t −Xs|| depends on reconstructing the
source speaker-dependent features (PD, TD) as:

min
Es

Zf
(·),Es

U (·),D(·)
L||X̂s→t −Xs|| = LPD + λ2LTD , (10)

where,

LPD = E
[
||Es

Zf

(
Zs

f

)− PD
s ||1

]

= E
[
||Es

Zf
(Ef (A (P )))− PD

s ||1
]
,

LTD = E
[||Es

U (U)− TD
s ||1

]
(11)

and the weight λ2 is set to 1.
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