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Abstract—The text-based speech editor allows the editing of
speech through intuitive cutting, copying, and pasting operations
to speed up the process of editing speech. However, the major
drawback of current systems is that edited speech often sounds
unnatural due to cut-copy-paste operation. In addition, it is not
obvious how to synthesize records according to a new word
not appearing in the transcript, which often needs the help
of text-to-speech (TTS) and voice conversion (VC) technology
at the same time. This paper first proposes a novel end-to-
end text-based speech editing method called context-aware mask
prediction network (CampNet). The model can simulate the
text-based speech editing process by randomly masking part of
speech and then predicting the masked region by sensing the
speech context. It can solve unnatural prosody in the edited
region and synthesize the speech corresponding to the unseen
words in the transcript. Secondly, for the possible operation of
text-based speech editing, we design three text-based operations
based on CampNet: deletion, insertion, and replacement. These
operations can cover various situations of speech editing. Thirdly,
to synthesize the speech corresponding to long text in insertion
and replacement operations, a word-level autoregressive gener-
ation method is proposed, which can synthesize the speech of
arbitrary length text. Fourthly, we propose a speaker adaptation
method using only one sentence for CampNet and explore the
ability of few-shot learning based on CampNet, which provides a
new idea for speech forgery tasks. The subjective and objective
experiments1 on VCTK and LibriTTS datasets show that the
speech editing results based on CampNet are better than TTS
technology, manual editing, and VoCo method (the combination
of TTS and VC). We also conduct detailed ablation experiments
to explore the effect of the CampNet structure on its performance.
Finally, the experiment shows that speaker adaptation with only
one sentence can further improve the naturalness of speech
editing for one-shot learning.

Index Terms—text-based speech editing, text-to-speech, mask
prediction, coarse-to-fine decoding, one-shot learning

I. INTRODUCTION

The rapid development of internet has accelerated the
transmission of information. There are various media

for us to learn, entertain and communicate: movies, podcasts,
YouTube videos, interactive online education, etc. The produc-
tion of these media is often inseparable from speech editing.
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Fig. 1. The replacement operation of text-based speech editing. The operation
can be divided into two steps: first, masking the region to be edited and then
predicting new speech according to the modified text and speech context.
Deletion and insertion operations in text-based speech editing can also be
divided into masking and prediction processes, as described in Sec. II-C.

Typical speech editing interfaces [1] present a visualization of
the speech such as waveform and/or spectrogram and provide
the user with standard select, cut, copy, paste, and volume
adjustment, which are applied to the waveform itself. Some
advanced operations such as time-stretching, pitch bending,
and de-noising are also supported. Such tools provide a great
convenience for media producers and have a wide range of
application scenarios [2].

Some state-of-the-art systems allow the editor to perform
select, cut, and paste operations in the text transcript of the
speech and apply the changes to the waveform accordingly,
which is called text-based speech editing [3]. In many cases,
it is useful to delete some words, insert a new word or
phrase in the speech editing process, such as deleting dirty
words, replacing a misspoken word or inserting an adjective
as emphasis. Text based speech editing can directly modify the
speech waveform by deleting, inserting or replacing the target
word in the text. However, it mainly faces two problems. One
is that the edited speech often sounds unnatural because the
edited region does not match the prosody of speech context.
(e.g., mismatches in intonation, stress, or rhythm) [4]. Another
is that the interfaces do not support the ability to synthesize
new words not appearing in the transcript [3]. There are a
series of studies on these problems.

For the first problem of prosody mismatch, the main reason
is that the prosody of edited speech does not match the
context of the original speech. Due to the continuity of human
speech, there will be different prosody in different scenes.
Directly concatenating the speech in different scenes will lead
to problems such as discontinuity of fundamental frequency
(F0) and background mismatch. To solve this problem, speech
manipulation includes fast pitch-shifting and time-stretching
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techniques is applied, which include Time-Domain Pitch-
Synchronous Overlap-and Add (TD-PSOLA) [5], WORLD
[6], and STRAIGHT [7]. These methods are efficient and
suitable for real-time interactive applications but will produce
audible artifacts [8, 9]. Neural vocoders such as WaveNet [10],
etc. [11–16] can obtain higher perceptual quality than tradi-
tional methods, but can not perform context-aware generation
for text-based speech editing. To generate prosodies that sound
natural in context with any preceding or following speech,
context-aware prosody correction [4] is applied to modify the
prosodic information of the target segment. In this method,
the prosodic information is predicted by neural network, then
prosodic modification is realized by applying the TD-PSOLA
algorithm [5], followed by de-noising and de-reverberation
[17]. This method combines neural network and digital signal
processing method, which can effectively improve the speech
quality. However, an obvious limitation of this system is that
the words to insert or replace may not be found in the available
speech data of the target speaker, which limits the application
in the field of text-based speech editing.

The second problem is that new words that do not appear
in transcripts could not be synthesized. It is easy for a person
to type a new word not appearing in the transcript, but it
is not obvious how to synthesize the corresponding speech.
Of course, it is possible to record new audio with missing
words, but it needs to access the original voice talent [3],
which will bring great difficulties to the speech editing process.
With the rapid development of deep learning in the task
of speech generation, the speech synthesized by machines
can be comparable to humans, such as the works Tacotron
[18, 19] and WaveNet [10] in the field of TTS. Besides,
some transfer learning works based on TTS can generate
the speech of the target speaker, such as global style token
(GST) [20], etc [21–23]. However, these methods are sentence
level generation, and it is impossible to edit the specific
words in the synthesis speech. To achieve text-based speech
editing, the previous work was completed with the help of
TTS and voice conversion (VC) system [24, 25], which is
called VoCo [3, 26]. The key idea of VoCo is to synthesize
the inserted word using a similar TTS voice (e.g., having
correct gender) and then modify it to match the target speaker
using the VC model [27](making an utterance by one person
sound as if it was made by another). Since each module is
independent of the other, it will accumulate errors and bring
difficulties to the construction of the system. EditSpeech [28]
is developed upon a neural TTS framework. It uses force
alignment technology to align text with speech first, and then
uses partial inference and bidirectional fusion to incorporate
the contextual information related to the edited region. This
method does not need pipeline structure, but introduces a priori
alignment information to realize the mapping between edited
text and target region, so as to avoid the unnatural phenomenon
caused by cut-copy-paste operation.

Based on the analysis of the above two problems, it can
be found that the operation of cut-copy-paste leads to the
unnatural phenomenon of speech editing results. There are
two reasons. First, it isn’t easy to synthesize the edited region
in combination with the speech context. Second, during the

process of deleting, cutting or pasting some voice clips, it
is easy to occur an unnatural connection. Different from the
cut-copy-paste operation, we view text-based speech editing as
two steps. We take the replacement operation as an example, as
shown in Fig. 1. The replacement process can be divided into
two steps. First, we mask part of the original speech that needs
to be edited. Then the masked region is predicted according
to the modified transcription and speech context. In fact, some
other operations of text-based speech editing, such as deletion
and insertion, can also be viewed as the process of masking
and prediction, which will be described in detail in Sec. II-C.
The advantage of this view is that text-based speech editing
can be described by an end-to-end model, which can directly
generate edited speech according to the context and ensure the
natural prosody of speech.

This paper describes approaches to text-based speech editing
that can automatically delete, replace and insert the speech
at word level by editing the transcription. The approaches
can avoid the unnatural problems caused by cutting and
pasting in traditional methods and synthesize speech matching
with the context in an end-to-end form. Firstly, the context-
aware mask prediction network (CampNet) is proposed to
simulate the process of text-based speech editing. Secondly,
three text-based speech editing operations based on CampNet
are designed: deletion, replacement, and insertion. Thirdly,
a word-level autoregressive generation method is proposed
to improve the editing length. Fourthly, a transfer learning
method using only one sentence is proposed, which can further
improve the naturalness of the model and provide a new idea
for speech forgery.

Overall, the main contributions of this paper are:

• We propose CampNet for the text-based speech editing
task, which avoids the unnatural phenomenon caused by
“cut-copy-paste” operation in the traditional method and
can synthesize new words not appearing in the transcript.
To our best knowledge, CampNet is the first text-based
speech editing model that can be trained in end-to-
end form without duration information. The model uses
mask prediction to simulate the text-based speech editing
process (Sec. II-A), and uses coarse-to-fine decoder to
improve the perception of speech context (Sec. II-B).

• Based on CampNet, we design three speech editing
operations, corresponding to delete, replace and insert
operations, respectively (Sec. II-C). These operations can
comprehensively cover different kinds of situations that
text-based speech editing can face.

• In the text-based insertion and replacement operations, to
synthesize the speech corresponding to long text, a word-
level autoregressive generation method is proposed (Sec.
II-D), which can synthesize the speech of arbitrary length
text by using CampNet.

• We propose a one-sentence speaker adaptation method
for the CampNet, further boosting the performance for
one-shot learning, and providing a new idea for speech
forgery. Experiments show that this method can obtain
better speech similarity for unseen speakers with only
one sentence than TTS and VC systems (Sec. II-E).
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Fig. 2. Structure of Context-Aware Mask Prediction Network (CampNet). To simulate text-based speech editing, the model randomly masks a region of
speech at the training stage and then predicts the masked speech according to the corresponding text and speech context.

This paper is structured as follows. The proposed CampNet,
its operations for text-based speech editing, word-level autore-
gressive generation method, and its transfer learning method
are described in Section II. After explaining the experiments
and results in Section III and Section IV, we draw a conclusion
in Section V.

II. CONTEXT-AWARE MASK PREDICTION NETWORK

The context-aware mask prediction network (CampNet)
consists of two processing stages, as shown in Fig. 2: encoder
and decoder. First, the encoder module processes the input
sentence and converts it into a hidden representation. This
representation is used to guide the decoder to predict the
acoustic feature of the edited speech. Second, a random region
of acoustic features is masked as the ground truth to condition
the decoder at the decoding stage. The decoder is divided into
two steps. The first step is to learn the alignment information
between the masked ground truth and the text representation
through the multi-head attention mechanism and predict coarse
acoustic features. Then, the second step is to predict finer
acoustic features based on the coarse acoustic features and
original speech context, which can further fuse the context
information of speech to make the predicted speech more
natural. We call the process of masking part of the acoustic
features and predicting the mask region as the ”context-aware
mask prediction”.

In the section, we will first introduce CampNet. Secondly,
we will show how to use CampNet for text-based speech
editing tasks, including delete, replace and insert operations.
Thirdly, the word-level autoregressive generation method is
proposed. Finally, we will present the few-shot and one-shot
learning methods based on CampNet.

A. Context-Aware Mask Prediction

The task of end-to-end text-based speech editing model
is to modify part of the original speech to match
the edited transcription. Given the source acoustic fea-
tures y = (y1, . . . , yn, . . . , ym, . . . , yT ) and its transcrip-
tion sequences x = (x1, . . . , xa, . . . , xb, . . . , xM ), where
(xa, . . . , xb) is aligned with acoustic features (yn, . . . , ym).
When (xa, · · · , xb) in transcription x is edited and the new
transcription x′ is (x1, . . . , x

′
a, . . . , x

′
b′ , . . . , xM ), the target

acoustic feature is y′ = (y1, . . . , y
′
n, . . . , y

′
m, . . . , yT ). We

assume that the length of the new speech in the editing region
is consistent with that of the original region in the training
stage. If it is inconsistent at the inference stage, an additional
duration model [29] can be used to predict the duration of
edited words. Then we can add or delete some fragments on
the original part to achieve consistent length. The purpose of
this assumption is to ensure that there is no mismatch between
the model in the training stage and the test stage. So, the
problem of text-based speech editing can be formulated in
terms of estimating the condition probability P (y′|y, x, x′; θ)
of the target acoustic feature, and θ is corresponding model
parameters, where

P (y′|y, x, x′; θ) = P (y′n, . . . , y
′
m|y, x, x′; θ) (1)

Since (y′n, . . . , y
′
m) is independent of text sequences x and

related to text x′, we can get the formula from Eq. 1:

P (y′|y, x, x′; θ) = P (y′n, . . . , y
′
m|y, x′; θ) (2)

In addition, it can be observed that (y′n, . . . , y
′
m) and

(yn, . . . , ym) have the same position, and their contents are
different. To remain the position information of edited region
(y′n, . . . , y

′
m) and not be interfered by the content information

of (yn, . . . , ym), (yn, . . . , ym) can be replaced with a new
token < mask >, and the masked source acoustic features
ymask can be expressed as:

ymask = (y1, . . . , < mask >, . . . , < mask >, . . . , yT ) (3)

Where the n position in ymask is the starting point of the mask,
and m is the ending point of the mask.

Then the condition probability P (y′|y, x, x′; θ) can be for-
mulated as:

P (y′|y, x, x′; θ) = P (y′n, . . . , y
′
m|ymask, x

′; θ) (4)

From the Eq. 4, the task of text-based speech editing can
be decomposed into the following two process. First, mask
the region of the original speech y that needs to be edited,
and get the masked acoustic features ymask. Then, combined
with the masked acoustic feature ymask and the edited text
sequence x′, neural network is used to predict the edited region
(y′n, . . . , y

′
m). Because x′ and ymask have different lengths,

and it has been proved that transformer can effectively fuse
the context information of sequences with different lengths



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. At the inference stage, three different operations of text-based speech editing based on CampNet are proposed.

[30], an encoder-decoder framework based on transformer is
adopt as the structure of CampNet, which is shown in Fig. 2.

In the CampNet, an encoder processes the input sentence
x′ = (x1, . . . , x

′
a, . . . , x

′
b′ , . . . , xM ) and converts it into a

hidden representation in the following way:

m = (m1,m2, . . . ,mM ) = encoderθe(x
′) (5)

where θe denotes the parameters of encoder network.
Since there are only text and speech pairs in the training

stage, we randomly mask part of the speech and then use
the network to predict the masked part to simulate the text-
based speech editing process. The advantage of the masking
mechanism is that the training data of speech editing can be
well simulated without parallel corpus of speech editing. In
addition, due to randomly mask a region during training, a
wealth of augmented data can be obtained, improving the
robustness of the model. The masked acoustic features ymask

are first consumed by a neural network composed of two fully
connected layers with ReLU activation [31], named prenet.
It is responsible for projecting ymask into the same subspace
as phoneme embeddings, which can be expressed as:

h = (h1, h2, . . . , hT ) = prenetθp(ymask) (6)

where θp denotes the parameters of prenet.
Finally, combined with m and h hidden features, the final

signal is predicted by the decoder, which can be expressed as:

(yn′ , . . . , ym′) = decoderθd(h,m) (7)

where θd denotes the parameters of decoder network.
At the decoding stage, how to perceive the context of speech

is the key to synthesize natural speech. We propose a coarse-
to-fine decoding method to achieve context-aware, and the
details are introduced in the following subsection.

B. Coarse-to-Fine Decoding

To better perceive context information of speech and make
the predicted speech more natural, we propose a two-stage

decoder, which is named as “coarse-to-fine decoding”. The
structure is a two-stage transformer in series, as shown in
Fig. 4. Since our framework is non-autoregressive, when we
perform the first decoding (coarse decoding), the model needs
to predict all frames of the mask area at one time, and
can not fuse the information of the previous frame in the
form of autoregression to predict the information of the next
frame. Therefore, to better integrate the context information,
we perform the second decoding (fine decoding) based on
the accumulation of the output of the first-level decoder and
the original masked speech information. Then the model can
obtain better context information, rather than directly predict
the speech information from the masked signal.

Since the transformer can output the whole sequence in
parallel, the coarse decoding process can be represented by
the product of the probabilities of each frame:

P (ycoarse|ymask, x
′; θ) =

T∏
t=1

P (yt | ymask, x
′; θ) (8)

In this process, we only predict the acoustic features of the
masked region, while the output target of the region without
masking is the mask value < mask >, as shown in Fig. 4. It
can be seen from Eq. 8 that each frame of ycoarse is output
in parallel. Compared with the autoregressive models such as
Tacotron and WaveNet, the non-autoregressive model can not
fuse the information of the previous frame well. This will
cause the naturalness of the synthesized speech to be worse
than that of the autoregressive model. To solve this problem,
we perform the second decoding, which feeds the sum of
ycoarse and ymask to a fine decoder to predict finer acoustic
features yfine. It can be expressed as:

P
(
yfine | ycoarse, ymask ; θ

)
=

T∏
t=1

P (yt | ycoarse + ymask; θ)

(9)
The second decoding can combine the output of the first-

level decoder and the context information of original speech,
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Fig. 4. Structure of coarse-to-fine decoding. We first generate the coarse
acoustic features ycoarse from text information and masked acoustic features.
Then, a fine decoder fills in the missing details based on coarse acoustic
features and speech context, and predicts finer acoustic feature yfine.

which is helpful to generate more natural and expressive
speech. The target of the second decoder is the same as the first
decoder. The advantage of this is that the model can synthe-
size speech in a non-autoregressive way, and better integrate
context information in the form of two-level decoding.

C. Speech Editing Operations Based on CampNet

With a pre-trained CampNet model, some operations of
speech editing, such as deletion, insertion, and replacement,
can be carried out. The operations are shown in Fig. 3. In this
section, we will introduce these in detail.

1) Delete operation: The deletion operation allows the user
to remove a region of speech waveform that corresponds to
certain specified words. We divide the process into three steps.
The first step is to manually delete the target region and
the corresponding words in the text. Due to manual deletion,
unnatural phenomena will appear at the connection, such as
fundamental frequency discontinuity. To repair this problem,
there are two solutions. One is convenient but empirical, and
the other is accurate but requires additional duration model.
For the former, we can take the connection point as the center
and mask the left and right of speech in a small range. Then,
we input the masked speech and the text after deleting the
target word into CampNet to re-predict the masked region.
The reason for masking a small range at the connection is
to re-predict the pronunciation of word-final of the previous
word and word-initial of the next word. Since masking a small
area at the connection is empirical, another more accurate
method is to use an additional duration model to predict the
pronunciation duration of word-final of the previous word,
word-initial of the next word, as well as the pause information
of the two words. Then mask a specific range according to this
information. Users can adopt one of two methods according
to the needs of different scenarios.

2) Replace operation: The replace operation allows the
user to replace a fragment of speech with another speech. The
operation can be divided into two cases. One is that the length
of the replaced segment is close to the target pronunciation.
The other is that there is a large gap between them. For the
former, it can be divided into two steps. The first step is to

CampNet

mel  Explain the very phenomenon

mel  Explain the very very phenomenon

CampNet

mel  Explain the very very weird phenomenon

CampNet

mel

original mel     “Explain the very phenomenon”

mel1   “Explain the very very phenomenon”

mel2   “Explain the very very weird phenomenon”

CampNet

target mel

CampNet

CampNet

Fig. 5. An example of word-level autoregressive generation method. The
figure shows the process of inserting a speech with the text ”very very weird”
(marked in red) into the original speech.

define the word boundary to be replaced, mask it according
to the word boundary and then modify the text. It is worth
noting that the range of masking can be larger than the actual
boundary when masking. In this way, the model can learn more
natural connections. The second step is to input the masked
speech and the modified text into CampNet. The model will
predict the replaced speech according to the modified text.

If there is a big difference between the length of the replaced
speech and the original speech, such as adding some words
or deleting some words, a pre-training duration model can be
used to predict the length of the replaced region. The duration
model is widely used in traditional TTS task[29]. Here, we use
the duration model to obtain the speech length of the replaced
word. Then according to the predicted length, the masked
region can be added or deleted some fragment to ensure the
consistency of the duration.

3) Insert operation: The insert operation allows the user
to insert a speech into the edited speech. This operation is
similar to the replacement operation. Firstly, we can use the
pre-trained duration model to predict the duration of the words
to be inserted. Then insert the masked signal with the predicted
length into the original speech. Finally, input the modified text
and speech into CampNet, and predict the inserted speech.

It is worth mentioning that when we insert or replace
some words, to make the pronunciation of the edited words
more natural with adjacent words, we can mask part of the
pronunciation of the adjacent words appropriately, such as the
word-final of the previous word, and word-initial of the next
word. Then, CampNet is used to re-predict the pronunciation
of the masked area of these adjacent words, so as to make the
prosodic connection more natural.

D. Word-level Autoregression Generation Based on CampNet

In the replacement or insertion operation of text-based
speech editing in Sec. II-C , it is easy to face the need to
generate speech with long text (For example, the text to be
replaced has many words, or the inserted speech has many
words). Since we only mask a small part of speech in the
training process, when we need to generate speech with long
text in the inference stage, the training and inference stages
do not match, and the performance of the model will be poor.
Therefore, in order to enable CampNet to synthesize long
text speech in the inference stage, we propose a word-level
generation method, which can effectively solve this problem.
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Fig. 6. An example of data augmentation using only one utterance. By
randomly masking a region of speech, one sample can be extended to multiple
different inputs.

The generation method based on word-level autoregression
is shown in the Fig. 5, different from synthesizing the speech
corresponding to all texts at one step, we view the generating
long text speech as a multi-stage process. First, insert the first
word into the original text and synthesize the speech with the
modified text. Then, on this basis, insert the second word and
cycle in turn until all words are inserted, then the final speech
can be obtained. Since this process generates speech word by
word, it is called word-level autoregressive generation method.

It should be noted that the word-level autoregressive gen-
eration is important for CampNet. This method can make
CampNet not limited to the problem of editing length, but
can synthesize speech of any length and ensure the stability
of generation.

E. Transfer Learning for Text-based Speech Editing

When the target speaker’s corpus is small, synthesizing the
target speaker’s voice has always been a research hotspot.
Many studies are conducted from the perspective of TTS and
VC. Unlike TTS and VC systems, the proposed framework
uses the existing speech as input to modify individual words.
Compared with synthesizing a whole sentence simultaneously,
the task is simpler, so it is easy to get better stability and
similarity. In addition, CampNet can obtain the speaker infor-
mation through the unmasked region without using the speaker
embedding, which avoids the error caused by the extraction
of the speaker embedding.

After pre-training the CampNet with multi-speaker data, the
model can synthesize a new speaker’s voice without transfer
learning. We can also fine-tune the parameters for better
results, similar to the transfer learning in TTS and VC tasks.
However, CampNet can enlarge the training data by randomly
masking different positions of speech. Even the training corpus
has only one sentence, which can not be achieved by the TTS
and VC model. This section will introduce the transfer learning
methods based on CampNet for few-shot learning and one-shot
learning in detail.

1) Few-shot learning: When we need to use a small corpus
for speaker adaptation, we only need to transfer the parameters
related to speaker features in our proposed framework. Since
the encoder only has text input and there is no speaker
embedding to control the speech, after pre-training the model
with a multi-speaker dataset, we can consider the encoder’s
parameters universal. We only need to fine-tune the decoder
because the input of the decoder is the acoustic features. After

fine tuning the decoder, the model can predict the acoustic
features that better match the target speaker.

2) One-shot learning: One-shot learning has always been
the difficulty of speech forgery. This section provides a differ-
ent idea from TTS and VC, which can obtain better similarity.
We can directly fine-tune the model with only one sentence
to improve the similarity with the target speaker who has
never appeared in the training corpus. Because CampNet is
based on mask and prediction mechanism, randomly masking
acoustic features can effectively augment the training data and
improve the robustness of the model, which is shown in Fig. 6.
After several steps of fine-tuning the model with one sentence,
the model is not easy to overfit, and the performance will be
further improved due to the difference of input at each step.

III. EXPERIMENTAL PROCEDURES
A. Dataset and Task

In this section, we conduct experiments on VCTK [32] and
LibriTTS [33] corpus to evaluate our proposed method. The
VCTK corpus includes speech data uttered by 110 English
speakers with different accents. Each speaker reads out about
400 sentences. Specifically, we select four speakers from the
VCTK dataset as the test set, and the rest utterances are divided
into 90% training set and 10% validation set. We use the
training set to train the model. We also randomly select 100
sentences from the LibriTTS corpus as the test set to verify
the model’s performance on the cross dataset.

We mainly compare the replacement operation of CampNet
and other systems, which is easy to evaluate with the orig-
inal speech 2. To ensure that the edited speech of different
systems is consistent with the content of the original speech,
which facilitates the comparison between objective metrics and
subjective metrics, we randomly choose 80 words that span 3
to 10 phonemes from 80 different sentences for each test set.
For each sentence, we remove the region of the corresponding
words in the speech. Then we use different systems to predict
the removed region. All wav files are sampled at 16KHz.

B. Model Details

Acoustic features are extracted with a 10 ms window shift.
LPCNet [16] is utilized to extract 32-dimensional acoustic
features, including 30-dimensional BFCCs [34], 1-dimensional
pitch and 1-dimensional pitch correction parameter. Five sys-
tems are compared in our experiments, including TTS tech-
nology, the combination of TTS and VC, manual editing,
CampNet and actual recording. We use the training set in
VCTK to train the LPCNet model.
• Synth We train a neural TTS system to synthesize the

speech and copy the target region to insert into the edited
speech. To make the voice of the synthesized speech as
similar as that of the target speaker as possible, Tacotron2
based on global style token (GST [20]) is used as the
acoustic model. The structure of Tacotron2 is the same as
that in paper [19]. The hidden dimension of the encoder
and decoder in Tacotron is 512, and the GST dimension

2Examples of more operations can be found at
https://hairuo55.github.io/CampNet.

https://hairuo55.github.io/CampNet
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is 128. We use the phoneme as input and output the 32-
dims acoustic features extracted by LPCNet. The initial
learning rate is set to 1e-3. Adam [35] is used as the
optimizer.

• VoCo The main idea of VoCo is to synthesize the inserted
word using a similar TTS voice (e.g., having correct
gender) and then modify it to match the target voice using
a VC model. To realize the VoCo system, we train the
neural TTS system and VC system, respectively. For the
TTS system, the configuration is the same as Synth. We
select two speakers (one male and one female) from the
training set as source speakers. Then, the TTS system is
used to synthesize speech, and the VC system synthesizes
the voice which is similar to the target speaker. We copy
the target region from the output speech and insert it into
the edited speech. The voice conversion is based on pho-
netic posteriorgrams (PPGs) [27], which can be applied
to non-parallel voice conversion and achieved both high
naturalness and high speaker similarity of the converted
speech. The 512-dimensional PPGs are extracted from
the acoustic model in speaker independent-ASR, which
is implemented using the Kaldi toolkit [36] and trained on
our 20,000 hours corpus. The voice conversion model’s
structure follows the structure in paper [27]. Furthermore,
to make the voice conversion system have the one-shot
ability, we use GST as speaker embedding to train a
multi-speaker VC model. The initial learning rate of the
VC model is set to 1e-3, and Adam [35] is used as the
optimizer. It should be noted that the TTS technology in
the original VoCo adopts the unit selection technology,
which is complex to realize in VCTK datasets. While,
at present, the popular end-to-end TTS technology can
also generate natural speech. Therefore, we mainly adopt
the idea of realizing speech editing with TTS and VC
technology in VoCo, and use Tacotron to realize TTS.

• Edit We use the editing interface to refine the speech
further if it improves on Synth/VoCo.

• Real The actual recording without modification.
• CampNet The proposed framework of CampNet is

shown in Fig. 2. The structures of encoder, coarse decoder
and fine decoder are based on transformer [37], as shown
in Fig. 7. We input the phoneme sequence into a 3-
layer CNN [38] to learn the context information of the
text. Each phoneme has a trainable embedding of 256
dims, and the output of each convolution layer has 256
channels, followed by batch normalization and ReLU
activation and a dropout layer as well [31, 39, 40]. The
transformer blocks of the encoder and fine decoder are
3. The transformer block of the coarse decoder is 6.
The hidden dimension of the transformer is 256. At the
training stage, we set the masked region to be 12% of
the total speech length. The initial learning rate is 1e-3.
Adam [35] is used as the optimizer. All batches are set
to 16, and the number of training steps is 2 million.

C. Objective Evaluation Metrics

The quality of edited speech can be evaluated by comparing
it with the actual speech using the following metrics. To reflect

Fig. 7. Structures of encoder, coarse decoder and fine decoder of CampNet.

the overall information of speech (including the information of
the editing area and the information of the junction), we cal-
culate the objective metrics of the whole speech. Specifically,
since CampNet only synthesizes acoustic features, speech
waveforms need to be generated by vocoders. In contrast,
other systems paste the target speech directly into the original
speech waveform. Therefore, to avoid the influence of vocoder,
we also paste the target region predicted by CampNet to the
corresponding position of the original speech when calculating
the objective metrics. Such objective comparison can be more
accurate and fair. In this way, the speech of the unedited area
of all systems can be guaranteed to be consistent. In addition,
the test set of each system is the same, so it can be ensured that
the metrics are only related to the speech of the editing area,
and it will not cause unfairness in the comparative experiment.

1) Mel-Cepstral Distortion (MCD): Given two mel-cepstra
x̂ = [x̂1, . . . , x̂M ]

> and x = [x1, . . . , xM ]
>, we use the mel-

cepstral distortion (MCD) [41]:

MCD[dB] =
10

ln 10

√√√√2

M∑
i=1

(x̂i − xi)2 (10)

to measure their difference. Where M is the order of mel-
cepstrum and M is 28 in our implementation. Here, we
used the average of the MCDs taken along the DTW [42]
path between edited and reference feature sequences as the
objective performance measure for each test utterance.

2) F0-RMSE (Hz): For the F0 of speech, following RMSE
is applied [43]:

F0-RMSE = 1200

√
((log2 (Fr)− log2 (Fs))

2 (11)

where the subscript r and s represent reference and edited
speech, respectively. The F0-RMSE is calculated for each
frame, and we use the average of the F0 taken along the DTW
path between converted and reference feature sequences.

3) V/UV error: The ratio of the number of unmatched U/V
frames between reference and edited speech to total frames is
calculated as the V/UV error [43]. For two different lengths
of speech, we still use the DTW algorithm to align them.

4) F0-CORR: We use the correlation coefficient between
the edited and reference F0 contours as the objective per-
formance measure to evaluate the F0 of edited speech [43].
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TABLE I
OBJECTIVE EVALUATION RESULTS OF SYNTH, VOCO, EDIT AND CAMPNET ON THE TEST SETS OF VCTK AND LIBRITTS

VCTK LibriTTS
Metrics Synth VoCo Edit CampNet Synth VoCo Edit CampNet

MCD(dB) 0.594 0.589 0.582 0.380 0.871 0.894 0.870 0.628
F0-RMSE(Hz) 10.463 10.555 10.451 8.637 21.898 2.093 21.308 20.201

V/UV error 1.944 1.843 1.937 1.635 3.916 4.347 3.956 3.675
F0-CORR 0.973 0.972 0.975 0.981 0.940 0.945 0.939 0.954

Fig. 8. The waveforms and spectrograms of natural speech and speech edited by different system (the speaker did not appear in the training set). The region
marked with time (0.24s ∼ 0.54s) is the edited region. The text of the masked region is ’division’.

Since the synthesized and reference speech are not necessarily
aligned in time, we computed the correlation coefficient after
properly aligning them using the DTW algorithm. If we use
ỹ = [ỹ1, . . . , ỹM ′ ] and y = [y1, . . . , yM ′ ] to denote the vectors
consisting of the elements which is aligned. We can use the
correlation coefficient between ỹ and y

R =

∑M ′

m′=1 (ỹm′ − ϕ̃) (ym′ − ϕ)√∑M ′

m′=1 (ỹm′ − ϕ̃)2
√∑M ′

m′=1 (ym′ − ϕ)2
(12)

where ϕ̃ = 1
M ′

∑M ′

m′=1 ỹm′ and ϕ = 1
M ′

∑M ′

m′=1 ym′ , to
measure the similarity between the two F0 contours.

IV. RESULTS

In this section, we first compare the performance of Camp-
Net and some other systems, such as objective metrics, sub-
jective metrics, and operating efficiency. Then, some ablation
experiments based on CampNet are conducted. Finally, the
ability of few-shot learning and one-shot learning based on
CampNet is explored.

A. Comparison between CampNet and Some other Method

This section compares the performance of our proposed
CampNet with three other speech editing methods, including
Synth, VoCo, Edit by objective and subjective evaluations.

First, the objective results on the test sets of VCTK and
LibriTTS are listed in Table I. In general, it can be found
that the metrics on the two test datasets of CampNet are
the best among all the systems. Specifically, in the frequency
domain, the CampNet obtained the lowest MCD, which means
that human perception would be better. Besides, the F0 has a
significant influence on speech perception. We can find that
CampNet achieves the best performance in F0-related metrics
(F0-RMSE, V/UV error, and F0-CORR). The results show

Real Synth VoCo Edit CampNet

M
O

S

2.0

2.5

3.0

3.5

4.0

4.5

5.0 VCTK 
LibriTTS 

Fig. 9. The MOS score with 95% confidence intervals of the four systems
and real speech.

that CampNet can obtain more accurate fundamental frequency
information.

Second, we show the waveforms and spectrograms of
natural speech and the edited speech generated by different
methods. We take the p225 007.wav in the VCTK corpus
as an example, as shown in Fig. 8. The region marked
with time (0.24s ∼ 0.54s) is the edited region. It is worth
mentioning that the speaker p225 in the test set does not
appear in the training set. It can be found that there will be an
unnatural connection in the speech edited by Synth and VoCo
models.There are apparent F0 discontinuities in the frequency
domain. In addition, we draw the curve of F0. It can be found
that the F0 of speech synthesized by Synth and VoCo are
higher than the original region, while the speech synthesized
by CampNet is consistent with the surrounding F0.

Third, subjective evaluations are conducted to compare the
performance of CampNet with other systems in terms of
the naturalness of edited speech. In this evaluation, twenty
utterances in each test set are selected and edited using the
proposed method and other systems, including Synth, VoCo,
and Edit. It should be noted that all the speakers of the test
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Fig. 10. The MOS score with 95% confidence intervals of different operations
and real speech.

data did not appear in the training set. Twenty listeners took
part in the evaluation. They are told in advance which word
is predicted. The listeners were asked to listen and rate the
quality of the restored sentence on a Likert scale [44]: 1 =
bad (very annoying), 2 = poor (annoying), 3 = fair (slightly
annoying), 4 = good (perceptible but not annoying) and 5
= excellent (imperceptible, almost real). They can play the
recording multiple times. Fig. 9 shows the MOS score of each
system. The results show that the CampNet is better than the
other three systems in each test set. This is also consistent
with the previous analysis of objective metrics. In addition, we
compare the MOS scores of different operations. Specifically,
we have prepared three test sets for the three operations. The
speech of each test set has 20 sentences. Twenty listeners took
part in the evaluation. They can play the recording multiple
times. Fig.10 shows the MOS score of each operation. The
results show that the MOS of delete operation is higher. The
MOS score of insertion operation and replacement operation
is similar, and their gap is small.

In addition, we also compared CampNet with EditSpeech
[28] and context-aware prosody correction method [4]. To
make the comparison more obvious, we directly use the speech
in the demo page of these systems as the standard, and
use CampNet to generate the corresponding parallel speech
as the comparison. We have put the samples on our demo
page (https://hairuo55.github.io/CampNet), and we are looking
forward to readers’ listening.

B. Inference Speed

We evaluate the inference speed of our proposed method
with other systems. Since in the Synth and VoCo systems,
Tacotron is used as the acoustic model, which significantly
impacts the operation efficiency of the whole system. In this
section, we compare CampNet with Tacotron and Transformer-
TTS. The details of these TTS models are as follows:
• Tacotron represents for the TTS model in which the

decoder is based on LSTM. The structure details are the
same as the acoustic model in the Synth system.

• Transformer-TTS represents for TTS model which is
based on transformer structure [30]. The structure details
are the same as the model in the paper [30]. The number
of encoder’s blocks is 3, and the number of decoder’s
blocks is 9, which is consistent with the number of

TABLE II
THE COMPARISON OF INFERENCE SPEED WITH 95% CONFIDENCE

INTERVALS FOR CAMPNET, TACOTRON2 AND TRANSFORMER-TTS. THE
VALUE OF INFERENCE SPEED INDICATES HOW LONG IT TAKES TO

SYNTHESIZE 500 FRAMES OF ACOUSTIC FEATURES.

Model Params Inference(s) Speedup
Tacotron 3.94e7 1.501± 0.280 /
CampNet 1.47e7 0.044 ± 0.015 34×

Transformer-TTS 1.52e7 9.460± 1.092 /
CampNet 1.47e7 0.044 ± 0.015 215×

decoder blocks of CampNet. The number of hidden layer
features is 256.

The evaluation experiments are conducted with 52 Intel
Xcon CPU, 512GB memory, and 1 NVIDIA V100 GPU. It
is worth mentioning that, during the model’s design, we have
kept the model parameters as consistent as possible to elimi-
nate their effects. Each model outputs 500 frames of acoustic
features for fair comparison. We show the generation speed of
acoustic features in Table II. It can be seen that the CampNet
speeds up acoustic features generation by 34 times, compared
with the Tacotron model. CampNet speeds up acoustic features
generation by 215 times, compared with the Transformer-TTS
model. It shows that autoregressive generation greatly affects
the model’s speed. CampNet can synthesize speech in the form
of non-autoregressive and effectively improve the synthesis
efficiency.

C. The Comparison of Alignment with Tacotron

In this section, we explore the alignment mechanism of the
CampNet model, which can help us understand the process of
speech editing better. Since the coarse decoder is used to align
text and speech, this section explores its attention mechanism.

First, we visualize the alignments of text and speech in
the multi-head attention of coarse decoder, and the alignment
of local sensitive attention in Tacotron is also visualized
for comparison, as shown in Fig. 11. We can find that the
alignment of Tacotron is aligned in the whole time step, where
each column denotes the attention probabilities corresponding
to different encoder states for one decoder step. On the
contrary, the alignment of CampNet is only in a small region,
that is, the edited region. Its mapping area on the encoder
is the edited text. Therefore, CampNet’s attention mechanism
only focuses on the edited region and automatically finds the
text corresponding to the edited region. Compared with the
whole alignment in Tacotron, the advantage of this method
is that it can make the model pay more attention to the
edited region and make the predicted speech consistent with
the context. Aligning only a region is simpler than aligning
all, which is also in line with our intuitive understanding.
Moreover, because text-based speech editing only requires
partial alignment, the quality of the training corpus needed
is not too high, while the TTS corpus should be as standard
as possible.

Fig. 12 shows the alignment results after masking different
words in a sentence. It can be seen that the model has good
robustness to edit different words in different positions. In
addition, the last figure of Fig. 12 shows the alignment of

https://hairuo55.github.io/CampNet
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Fig. 11. Comparison of Tacotron alignment and CampNet alignment. The alignment of Tacotron is to align with the text in a complete time step. CampNet
only aligns the edited speech region with the edited text.
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Fig. 12. Alignments after masking the speech segments at different positions.
The last one is the alignment of masking the two region at the same time.

two words edited simultaneously during the inference stage.
Although we only mask one region of speech at the training
stage, we can modify two different regions at the same time
at the inference stage. This also verifies that the model can
effectively learn the alignment between speech and text and
only focus on the edited region.

D. Effectiveness of Coarse-to-Fine Decoding

As introduced in Section II-B, a coarse-to-fine decoding
method is proposed to boost performance. To further under-
stand the role of coarse-to-fine decoding, we compare the
following three kinds of speech.
• One-decoder represents the speech output by the model,

which removed the coarse-to-fine decoding of CampNet.
We directly use one decoder to output the final speech.
To ensure the block number of the decoder are equal to
the CampNet, we set the block numbers of the decoder
as 9, which is the sum of the coarse decoder and fine
decoder.

• Coarse-decoder represents the speech ycoaser output by
the coarse decoder of CampNet.

• Fine-decoder represents the speech yfine output by the
fine decoder of CampNet.

First, we visualize some spectrograms of original speech
and the edited speech after modifying one of the words, as
shown in Fig. 13, where 0.24s to 0.88s is the edited region.
The speaker of the sample does not appear in the training
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Fig. 13. The spectrograms of the speech generated by different methods. The
region marked with time (0.24s ∼ 0.88s) is the edited region.

TABLE III
OBJECTIVE EVALUATION RESULTS OF ONE-DECODER,

COARSE-DECODER AND FINE-DECODER ON THE TEST SETS
OF VCTK AND LIBRITTS.

Coaser-decoder One-decoder Fine-decoder
MCD(dB) 0.395 0.388 0.380

VCTK F0-RMSE(Hz) 9.108 8.851 8.637
V/UV error(%) 1.712 1.686 1.635

F0-CORR 0.977 0.978 0.981
MCD(dB) 0.639 0.632 0.628

LibriTTS F0-RMSE(Hz) 21.650 20.859 20.201
V/UV error(%) 3.859 3.766 3.675

F0-CORR 0.945 0.951 0.954

corpus. From the perspective of F0, it can be found that the
speech output by the fine decoder is closest to the F0 of the real
speech. The F0 of the One-decoder is higher than the original
F0. Although the F0 of the Coarse-decoder is different from
the real one, after adjusting by the fine decoder, a similar F0
curve is obtained. Besides, we can find that the speech of the
fine decoder has a more precise spectrum.

Second, we compare the objective metrics of the three kinds
of speech, as shown in Table III. It can be found that the speech
of the fine decoder achieves the best performance in all metrics
on the two test sets. Specifically, the speech output by the fine
decoder is closer to the natural speech in both spectrum and
F0, which shows that coarse-to-fine decoding can learn more
accurate frequency domain information.

Third, we conduct a subjective ABX test to compare the
three kinds of speech. In each subjective test, twenty sentences
are randomly selected from the LibriTTS test set. Twenty lis-
teners evaluate each pair of generated speech. The listeners are
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TABLE IV
OBJECTIVE EVALUATION RESULTS OF DIFFERENT MASK RATIO AT INFERENCE STAGE ON THE VCTK TEST SET

VCTK LibriTTS
Metrics M-6% M-8% M-10% M-12% M-14% M-16% M-6% M-8% M-10% M-12% M-14% M-16%

MCD(dB) 0.465 0.387 0.391 0.380 0.383 0.398 0.746 0.661 0.631 0.628 0.634 0.650
F0-RMSE(dB) 10.511 9.723 9.407 8.637 9.255 9.114 22.895 22.242 21.049 20.201 21.086 21.820

V/UV error 1.989 1.658 1.610 1.635 1.492 1.750 5.679 4.136 3.635 3.675 4.000 4.259
F0-CORR 0.971 0.976 0.977 0.981 0.978 0.978 0.952 0.943 0.949 0.954 0.948 0.945

TABLE V
AVERAGE PERFERENCE SCORE(%) ON SPEECH QUALITY

AMONG DIFFERENT SYSTEMS, WHERE N/P STANDS FOR ”NO
PERFERENCE”. THE p-VALUES <0.01.

System Scores N/P Scores System
A A(%) Neural(%) B(%) B

CoareDecoder 22.25 47.00 30.75 OneDecoder
FineDecoder 43.25 32.75 24.00 OneDecoder
FineDecoder 44.75 35.00 20.25 CoareDecoder

Fig. 14. Comparison of loss functions with different mask ratios at the training
stage. The smaller the masked region is, the easier the model is to be optimized
and the lower the loss is.

asked to judge which utterance in each pair has better speech
quality or no preference in the edited area. They were told
in advance which word was predicted. The results are listed
in Table V. Fine-decoder outperformes Coarse-decoder and
One-decoder, which is consistent with the objective metrics
analysis. This result further shows the effectiveness of coarse-
to-fine decoding.

It is worth noting that whether the model is improved
can be judged through numerical comparison of the ob-
jective metrics, but this is not absolutely relevant. More
importantly, we should judge it by subjective evaluation.
We have put the relevant samples on the demo page
(https://hairuo55.github.io/CampNet/), and we recommend
readers to listen.

E. The Ability of Editing Different Length

As introduced in Section II-E1, we propose the mask
prediction method to simulate the speech editing process. The
core idea is to randomly mask a speech region at the training
stage and then predict the masking region. There may be a
mismatch between the length of the masking region at the
training stage and the inference stage, which may affect the

TABLE VI
OBJECTIVE EVALUATION RESULTS OF DIFFERENT MASK

RATIO AT INFERENCE STAGE ON THE VCTK TEST SET

0.5s 1.0s 1.5s 2.0s 2.5s
MCD(dB) 0.345 0.628 0.960 1.296 1.387

F0-RMSE(dB) 4.577 7.133 10.887 13.403 14.584
V/UV error 1.489 2.783 4.626 6.201 8.175
F0-CORR 0.994 0.986 0.964 0.945 0.931

model’s performance. This section mainly explores the impact
of this problem on the model performance.

First, we explore the influence of different mask ratios dur-
ing training. Specifically, the mask ratios at the training stage
are set to 6%, 8%, 10%, 12%, 14%, and 16%, respectively.
The trained models are represented by M-6%, M-8%, M-10%,
M-12%, M-14%, and M-16%. All models are trained for 2
million steps with the same structure and hyper-parameters.
Fig. 14 compares the change of loss of each model with the
increase of training steps. Obviously, with the rise of mask
ratios, the loss function becomes larger and larger, which
means it is more difficult for the model to predict the masked
speech. The smaller the mask ratios, the easier the model is
to be optimized. Further, to test the effect of each model, we
calculate the objective metrics of each model on the test set,
which is shown in Table IV. It can be found that when the
mask ratio is set to 12%, the model has the best effect on most
indicators (MCD, F0-RMSE, and F0-CORR). Therefore, we
use a mask ratio of 12% in the training phase, which performs
well in the test set and can also optimize the training loss to
a suitable level.

Second, we explore the impact of the edited region’s length
at the inference stage in one-step. In order to control the length
of the editing area in the test set within the specified length,
we directly mask a region in a fixed length and use CampNet
to predict the mask region. Referring to Table IV, we set the
mask ratio as 12% during the training stage. For all speech
in the test set, we take a fixed position of the speech as the
starting point, then mask the speech with different lengths,
which are 0.5s, 1.0s, 1.5s, 2.0s, and 2.5s, respectively. We
input the masked speech into CampNet to predict the masked
speech. We calculate the objective metrics of the predicted
speech and the real speech, as shown in Table VI. It can be
found that with the increase of mask length on the test set,
the model’s performance shows a downward trend. The best
effect on the test set is the smallest mask length, that is 0.5s.
This indicates that the smaller the mask area is, the closer
the synthesized speech is to the real speech. When the mask
length exceeds 1.5s, the synthesized speech is quite different
from the actual speech in the sense of hearing. Therefore, the
length of the editing area should not be too long during the
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Fig. 15. The spectrograms of the speech generated by different methods. The
region marked with red color (0.7s ∼ 3.1s) is the insertion area, and its
correspondin text is ”very very very very very weird”. The pronunciation in
the insertion area of method One-step is not clear, while the pronunciation of
method Word-level is natural and normal.

inference stage, preferably less than 1.5s under the condition
that the mask ratio at the training stage is 12%. It is worth
mentioning that this length is sufficient to deal with common
scenes in text-based speech editing, such as replacing wrong
pronunciation or inserting emphasis words.

F. Effectiveness of Word-level Autoregressive Generation
Method

As introduced in Section II-D, we propose a word-level
autoregressive generation method based on CampNet to face
the situation of generating speech with long text. In this
section, to explore the ability of word-level autoregressive
generation method, we take the insert operation as an example,
different from the previous experiments, the length of the
words to be replaced is much longer than that used in the
previous experiments. The number of words to be inserted is
more than 5, and the corresponding speech length is more
than 2 seconds. We compared the following two generation
methods:
• One-step means to generate the speech of all words to

be inserted at one step.
• Word-level means to generate the speech by using word-

level autoregressive generation method, which is intro-
duced in Section II-D.

First, we compare the spectrum generated by the two
methods after inserting some words, as shown in Fig. 15. It
can be seen that when the word-level autoregressive generation
method is adopted, the generated speech is more stable. When
multiple words are generated at one step, the pronunciation
of the synthesized speech will be unclear. The reason is
that only short speech segments is masked in the training
stage, which makes it impossible to generate long segments
of speech during the inference stage. While, the word-level
autoregressive generation method can ensure the matching of
mask length in inference and training stage.

Second, since there is no real speech as a comparison when
inserting long text, it is not convenient for us to make objective
evaluation. Therefore, we conduct a subjective ABX test to

TABLE VII
AVERAGE PERFERENCE SCORE(%) ON SPEECH QUALITY

AMONG DIFFERENT SYSTEMS, WHERE N/P STANDS FOR ”NO
PERFERENCE”. THE p-VALUES <0.01.

System Scores N/P Scores System
A A(%) Neural(%) B(%) B

One-step 5.25 8.00 86.75 Word-level

compare the two methods. In each subjective test, twenty
sentences are randomly selected. Twenty listeners evaluate
each pair of generated speech. The listeners are asked to judge
which utterance in each pair has better speech quality or no
preference in the edited area. They were told in advance which
word was predicted. The results are listed in Table VII. It
is obviously that, in the case of a large number of words
to be inserted, the generation method based on word-level
autoregression is better than the one-step generation method.
For more samples, please refer to our demo page.

G. The Ability of One-shot and Few-shot Learning

As introduced in Section II-E, we propose a transfer learn-
ing method based on CampNet. In this section, we explore the
ability of CampNet to face few-shot and one-shot learning by
comparing the following three models:
• 1-utt wo finetune means to directly edit the speech of

an unseen speaker using CampNet without fine-tuning the
model.

• 1-utt w finetune means to fine-tune CampNet with one
sentence from an unseen speaker before speech editing,
which is introduced in Section II-E2.

• 50-utts w finetune means to fine-tune CampNet with 50
sentences from an unseen speaker before speech editing,
which is introduced in Section II-E1.

The steps of fine-tuning are five epochs of the dataset used
to fine-tune. The fine-tuning datasets are separate from the
data used to calculate objective and subjective metrics. We
calculate the objective metrics of the synthesized speech and
real speech of each system, as shown in Table VIII. We can
find that fine-tuning the model with a small amount of corpus
can significantly improve the performance in objective metrics.
Even if one utterance is used for fine-tuning the model, it can
be found that the objective metrics are improved by comparing
system 1-utt w finetune and 1-utt wo finetune. This shows
the effectiveness of using only one sentence to adapt the
model.

Besides, we conduct an ABX test on the three methods.
Twenty sentences of each speaker are synthesized by two
comparative systems. Twenty listeners evaluate each pair of
generated speech. The listeners are asked to judge which
utterance in each pair has better speech quality or no pref-
erence. The p-value is used to measure the significance of
the difference between two systems. The results are listed in
Table IX. It can be found that the quality of speech can be
further improved through fine-tuning. Furthermore, using only
one sentence, the adaptive model is also significantly improved
than the non-adaptive model.
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TABLE VIII
OBJECTIVE EVALUATION RESULTS OF DIFFERENT METHODS ON THE TEST SETS.

Speaker Metrics 1-utt wo finetune 1-utt w finetune 50-utts w finetune
MCD(dB) 0.395 0.273 0.275

P225 F0-RMSE(Hz) 7.557 4.630 4.614
(female) V/UV error(%) 1.655 1.325 1.338

F0-CORR 0.983 0.992 0.992
MCD(dB) 0.367 0.272 0.271

P226 F0-RMSE(Hz) 9.406 7.740 6.987
(male) V/UV error(%) 1.627 1.173 1.137

F0-CORR 0.958 0.966 0.978

TABLE IX
AVERAGE PREFERENCE SCORES (%) ON SPEECH QUALITY OF DIFFERENT METHODS, WHERE N/P STANDS FOR “NO

PREFERENCE”, AND p DENOTES THE p-VALUE OF A t-TEST

1-utt wo finetune 1-utt w finetune 50-utts w finetune N/P p
1-utt wo finetune vs 50-utts w finetune 11.75 – 66.00 22.25 <0.01
1-utt w finetune vs 50-utts w finetune – 19.50 60.75 19.75 <0.01
1-utt wo finetune vs 1-utt w finetune 27.25 36.00 – 36.75 <0.01

V. CONCLUSION

This paper has proposed a context-aware mask prediction
network for the end-to-end text-based speech editing task,
which can delete, replace and insert the speech at the word
level by editing the transcription. To simulate the speech
editing process at the training stage, the text-based speech
editing task is viewed as a two-stage process: masking and
prediction, and a coarse-to-fine decoding method is proposed
to achieve context-aware prediction. At the inference stage,
three operations are designed based on CampNet, correspond-
ing to the deletion, insertion, and replacement operations.
Then, to synthesize the speech of arbitrary length text in
insertion and replacement operations, a word-level autore-
gressive generation method is proposed. Finally, we propose
a one-sentence speaker adaptation method for the CampNet
and explore the ability of few-shot and one-shot learning
based on CampNet, which can boost performance further by
using only one sentence. Compared with TTS and VC, it also
provides a new method for speech forgery. The experimental
results demonstrate that the CampNet is better than the TTS,
VoCo, and manual editing in subjective evaluation, objective
evaluation, and operational efficiency for the text-based speech
editing task. In addition, the few-shot learning ability based on
CampNet is better than TTS and VC systems. Improving the
speech quality further based on CampNet is the future work.
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