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Abstract—This paper proposes a new source model and train-
ing scheme to improve the accuracy and speed of the multichan-
nel variational autoencoder (MVAE) method. The MVAE method
is a recently proposed powerful multichannel source separation
method. It consists of pretraining a source model represented
by a conditional VAE (CVAE) and then estimating separation
matrices along with other unknown parameters so that the log-
likelihood is non-decreasing given an observed mixture signal.
Although the MVAE method has been shown to provide high
source separation performance, one drawback is the computa-
tional cost of the backpropagation steps in the separation-matrix
estimation algorithm. To overcome this drawback, a method
called “FastMVAE” was subsequently proposed, which uses an
auxiliary classifier VAE (ACVAE) to train the source model. By
using the classifier and encoder trained in this way, the optimal
parameters of the source model can be inferred efficiently, albeit
approximately, in each step of the algorithm. However, the
generalization capability of the trained ACVAE source model was
not satisfactory, which led to poor performance in situations with
unseen data. To improve the generalization capability, this paper
proposes a new model architecture (called the “ChimeraACVAE”
model) and a training scheme based on knowledge distillation.
The experimental results revealed that the proposed source
model trained with the proposed loss function achieved better
source separation performance with less computation time than
FastMVAE. We also confirmed that our methods were able to
separate 18 sources with a reasonably good accuracy.

Index Terms—Multichannel source separation, multichannel
variational autoencoder (MVAE), fast algorithm, auxiliary clas-
sifier VAE, knowledge distillation

I. INTRODUCTION

BLIND source separation (BSS) is a technique for separat-
ing observed signals recorded by a microphone array into

individual source signals without prior information about the
sources or mixing conditions. This technique has been used in
a wide range of applications, including hearing aids, automatic
speech recognition (ASR), telecommunications systems, music
editing, and music information retrieval.

Acoustic signals are convolved with the impulse responses
of acoustic environments and so the signal observed at a
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particular position is usually given as the convolutive mixture
of nearby source signals. Although it is possible to take a
time-domain approach to the BSS problem, it can be compu-
tationally expensive since it requires directly estimating and
applying demixing filters with thousands of taps. In contrast,
the time-frequency-domain approach is advantageous in that
the convolution operations can be replaced by multiplications
to achieve computationally efficient algorithms, and it allows
the flexible use of various models for the time-frequency (TF)
representations of source signals. Independent vector analysis
(IVA) [2], [3] is an example of the time-frequency-domain
approach, which makes it possible to solve frequency-wise
source separation and permutation alignment simultaneously
by assuming that the magnitudes of the frequency components
originating from the same source vary coherently over time.
Multichannel nonnegative matrix factorization (MNMF) [4],
[5] and independent low-rank matrix analysis (ILRMA) [6]–
[8] are other examples, which employ the concept of NMF
[9] to model the TF structures of sources. Specifically, they
assume that the power spectrum of each source signal can be
approximated as the sum of a limited number of basis spectra
scaled by time-varying amplitudes. IVA can be understood as
a special case of ILRMA where only one flat basis spectrum is
used for representing each source. This indicates that ILRMA
can capture the TF structure of each source more flexibly than
IVA, and this flexibility has been shown to be advantageous
in improving the source separation performance [7].

Recently, the success of deep neural network (DNN)-
based speech separation methods [10]–[18], including deep
clustering (DC) [11], [12] and permutation invariant training
(PIT) [13], [14], has proven that DNNs have an excellent
ability to capture and learn the structure of spectrograms.
The general idea of these methods is to train a network that
predicts a TF mask or clean signals given the spectral and
spatial features of observed mixture signals. Meanwhile, time-
domain methods based on end-to-end training have also been
extensively studied and have shown excellent performance
[19]–[21]. Some attempts [22], [23] have been made to com-
bine beamforming with the time-domain methods to avoid
artifacts introduced by nonlinear processing. Although such
an end-to-end approach provides reasonably good separation
performance, one drawback is that it suffers from the limitation
that the test conditions need to be similar to the training ones,
such as the number of speakers and reverberation conditions.

There have also been some attempts to incorporate DNNs
into the BSS methods mentioned earlier [24]–[29]. Indepen-
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dent deeply low-rank matrix analysis (IDLMA) [25], [30] is
one such method, where each DNN is trained using the utter-
ances of a different speaker. After training, the trained DNNs
are used to refine the estimated power spectra at each iteration
of the source separation algorithm. Namely, each DNN can
be seen as a speaker-dependent speech enhancement system.
One drawback of IDLMA would be that it can perform poorly
in speaker-independent scenarios due to its discriminative
training scheme. Within the DNN framework, deep generative
models such as variational autoencoders (VAEs) [31], [32],
generative adversarial networks (GANs) [33], and normalizing
flow (NF) [34] have proven to be powerful in source separation
tasks [26]–[29], [35]–[43]. An attempt to employ VAE for
semi-supervised single-channel speech enhancement was made
in [27] under the name of the “VAE-NMF” method, which
uses a VAE to model each single-frame spectrum in an
utterance of a target speaker and an NMF model to express
a noise spectrogram. Several variants of this method have
subsequently been developed, including the incorporation of
loudness gain for robust speech modeling [28], the adoption
of a noise model based on alpha-stable distribution instead
of a complex Gaussian distribution [37], and the extension to
multichannel scenarios [36], [38].

Independently, around the same time, we proposed a method
called the “multichannel variational autoencoder (MVAE)”.
This was the first to incorporate the VAE concept into the
multichannel source separation framework, and it has proven
to be very successful in supervised determined source sep-
aration tasks. Unlike the VAE-NMF methods, the MVAE
method uses a conditional VAE (CVAE) with a fully con-
volutional architecture to model the entire spectrogram of
each utterance. The CVAE is trained with the spectrograms
of clean speech samples along with the corresponding speaker
ID as a conditioning class variable. This is done so that
the trained decoder distribution can be used as a generative
model of signals produced by all the sources included in a
given training set, where the latent space variables and the
class variables are the parameters to be estimated from an
input mixture signal. The generative model trained in this
way is called the CVAE source model. At the separation
phase, the MVAE algorithm iteratively updates the separation
matrix using the iterative projection (IP) method [44] and the
underlying parameters of the CVAE source model using a
gradient descent method, where the gradients of the latent
variables are calculated using backpropagation. The main
feature of this optimization algorithm is that the log-likelihood
is guaranteed to be non-decreasing if the step size is carefully
chosen or if a backtracking line search [45] is applied for
the backpropagation algorithm. Furthermore, since the MVAE
uses a CVAE to model single source and the demixing matrices
are estimated only at separation phase, a trained CVAE source
model is principle able to handle arbitrary number of sources
and different recording conditions, which is significantly differ
from discriminative methods. However, one major drawback
of the MVAE method is that the backpropagation required for
each iteration makes the optimization algorithm very time-
consuming, which can be problematic in practice.

To address this problem, we previously proposed a fast

algorithm called “FastMVAE” [46], which uses an auxiliary
classifier VAE (ACVAE) [47] to model the generative distri-
bution of source spectrograms. In this method, the encoder
and auxiliary classifier are trained in such a way that they
learn to infer the latent space variables and class variables,
respectively, given a spectrogram. This allows us to replace the
backpropagation steps in the source separation algorithm with
the forward propagation of the two networks and thus signifi-
cantly reduce the computational cost. Furthermore, we showed
that FastMVAE can achieve source separation performance
comparable to the MVAE method when the training and test
conditions are sufficiently close to being consistent. However,
when there is mismatch between the training and test condi-
tions, due to, for example, the presence of long reverberation
or under speaker-independent conditions, FastMVAE tends to
perform worse than the MVAE method. This may be because
the encoder and classifier cannot generalize well to inputs that
are very different from the training data. To stabilize the pa-
rameter inference process under such mismatched conditions,
we derived an improved update rule based on the Product-of-
Experts (PoE) framework [48]. However, this method requires
manual selection of the optimal weights in advance, forcing
us to rely on heuristics.

FastMVAE being weak against the mismatch between the
training and test conditions may be because the model is
structured in such a way that the output of the auxiliary clas-
sifier is fed into the encoder and so the error in the classifier
output can directly affect the encoder output. One way to avoid
this would be to assume a conditional independence between
the outputs of the encoder and auxiliary classifier so that
they can perform their tasks in parallel. Instead of preparing
two separate networks, we propose merging the encoder and
classifier into a single multitask network to allow them to share
information. We call this new model the “ChimeraACVAE”
source model.

Another important issue is how to train the above model to
have good generalization ability. A number of techniques have
been developed with the aim of improving the generalization
ability of DNNs. These techniques can be roughly classified
into regularization-based [49]–[52], data augmentation-based
[53], and training strategy-based methods [54]–[56]. Knowl-
edge distillation (KD), a model compression and acceleration
technique that has been rapidly gaining attention in recent
years, is typically used to transfer knowledge of a teacher
model to a more compact student model. KD has been shown
to not only accelerate the inference process through model
compression but also provide better generalization ability to
the compressed model. In this paper, we propose adopting KD
to train the ChimeraACVAE source model. Specifically, we
use a pretrained CVAE model as a teacher model and transfer
its knowledge to the ChimeraACVAE model by using as a
criterion the Kullback-Leibler (KL) divergence between the
distributions of the outputs of the encoder and decoder of the
CVAE and ChimeraACVAE models.

In summary, the two main contributions of this paper are as
follows:
• We propose a new network architecture that replaces the

ACVAE source model in FastMVAE, which we call the
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“ChimeraACVAE” source model. It merges the encoder
and classifier into a single multitask network so that
it can handle the tasks of the encoder and classifier
simultaneously.

• We propose a loss function based on the KD framework
that allows the ChimeraACVAE source model to acquire
excellent generalization capability. We show that the
model trained in this way can improve source separa-
tion performance in both speaker-dependent and speaker-
independent conditions.

The rest of this paper is structured as follows. After de-
scribing the formulation of the determined multichannel BSS
problem and reviewing the original MVAE method in Section
II, we describe the ACVAE source model and the FastMVAE
method in Section III. In Section IV, we provide technical
details of the proposed ChimeraACVAE source model and its
training strategy. The effectiveness of the proposed method is
demonstrated in Section V by evaluating the source separation
performance of speaker-dependent and speaker-independent
scenarios. We conclude the article in Section VI.

II. MVAE

A. Problem Formulation

Let us consider a situation where I source signals are
captured by I microphones. We use xi(f, n) and sj(f, n) to
denote the short-time Fourier transform (STFT) coefficients
of the signal observed at the ith microphone and jth source
signal, where f and n are the frequency and time indices,
respectively. If we use

x(f, n) = [x1(f, n), . . . , xI(f, n)]T ∈ CI , (1)

s(f, n) = [s1(f, n), . . . , sI(f, n)]T ∈ CI , (2)

to denote the vectors containing x1(f, n), . . . , xI(f, n) and
s1(f, n), . . . , sI(f, n), the relationship between the observed
signals and source signals can be approximated as

s(f, n) = WH(f)x(f, n), (3)

W(f) = [w1(f), . . . ,wI(f)] ∈ CI×I , (4)

under a determined mixing condition, where WH(f) repre-
sents the separation matrix, and (·)T and (·)H denote the
transpose and Hermitian transpose of a matrix or a vector,
respectively. The goal of BSS is to determine W = {W(f)}f
solely from the observation X = {x(f, n)}f,n. Here, the
notation {Eb}b is used as an abbreviation for {Eb | b ∈ B},
where B denotes the set of all possible indices.

In the following, we assume that sj(f, n) independently fol-
lows a zero-mean complex proper Gaussian distribution with
variance (power spectral density) vj(f, n) = E[|sj(f, n)|2]:

p(sj(f, n)|vj(f, n)) = NC(sj(f, n)|0, vj(f, n)), (5)

This assumption is often referred to as the local Gaussian
model (LGM) [57], [58]. If sj(f, n) and sj′(f, n) are inde-
pendent for ∀j 6= j′, the density of s(f, n) becomes

p(s(f, n)|V(f, n)) =
∏
j

p(sj(f, n)|vj(f, n))

= NC(s(f, n)|0,V(f, n)), (6)

where V(f, n) = diag[v1(f, n), . . . , vI(f, n)]. From (3) and
(6), the density of x(f, n) is obtained as

p(x(f, n)|W(f),V(f, n)) =

|WH(f)|2p(s(f, n) = WH(f)x(f, n)|V(f, n)), (7)

where |WH(f)|2 is the Jacobian of the mapping x(f, n) 7→
s(f, n). Therefore, the log-likelihood of W = {W(f)}f and
V = {vj(f, n)}f,n,j , given X = {x(f, n)}f,n is expressed as

log p(X|W,V)

= 2N
∑
f

log |det WH(f)|+
∑
j

log p(Sj |V j)

c
= 2N

∑
f

log |det WH(f)|

−
∑
f,n,j

(
log vj(f, n) +

|wH
j (f)x(f, n)|2

vj(f, n)

)
, (8)

where we have used c
= to denote equality up to constant terms

and a bold italic font to indicate a set consisting of TF ele-
ments, namely Sj = {sj(f, n)}f,n and V j = {vj(f, n)}f,n.
The log-likelihood will be split into F frequency-wise terms
if no additional constraint is imposed on vj(f, n) or W(f),
implying that there is a permutation ambiguity in the separated
components for each frequency. Thus, the separated compo-
nents of different frequency bins that originate from the same
source need to be grouped together in order to complete source
separation. This process is called permutation alignment [59],
[60].

B. CVAE Source Model

Incorporating an appropriate constraint into the power spec-
trogram V j = {vj(f, n)}f,n not only helps eliminate the
permutation ambiguity but also provides a clue for estimating
W . In the MVAE method, the complex spectrogram of a
single source S = {s(f, n)}f,n is modeled using a CVAE
[31] conditioned on a class variable c. Here, c is a one-hot
vector consisting of C elements that indicates to which class
the separated signal belongs. For example, speaker IDs can
be used as the class category in multispeaker separation tasks,
where the entries of c will be 1 at the index of a certain speaker
and 0 at all other indices.

Since the following applies to all sources, index j will
be omitted throughout this paragraph. A CVAE consists of
decoder and encoder networks. The decoder network is de-
signed to produce the parameters of the distribution p∗θ(S|z, c)
of data S given a latent space variable z and a class
variable c. The encoder network is designed to generate
the parameters of a conditional distribution q∗φ(z|S, c) that
approximates the exact posterior p∗θ(z|S, c). The goal of
the CVAE training is to find the weight parameters in the
encoder and decoder networks, namely θ and φ, such that
the encoder distribution q∗φ(z|S, c) becomes consistent with
the posterior p∗θ(z|S, c) ∝ p∗θ(S|z, c)p(z). Note that the
KL divergence between q∗φ(z|S, c) and p∗θ(z|S, c) is shown
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to be equal to the difference between the log marginal
likelihood p∗θ(S|c) =

∫
z
p(S|z, c)p(z) dz and its variational

lower bound. Hence, minimizing the KL divergence between
q∗φ(z|S, c) and p∗θ(z|S, c) amounts to maximizing the follow-
ing variational lower bound [61]:

J = E(S,c)

[
Ez∼q∗φ(z|S,c)[log p∗θ(S|z, c)]

−KL[q∗φ(z|S, c)||p(z)]
]
, (9)

where we have used E(S,c)[·] to denote the sample mean of
its argument over the training examples {Sm, cm}Mm=1, and
KL[·||·] to denote the KL divergence. Although it is difficult
to obtain an analytical form of the expectation Ez∼q∗φ(z|S,c)[·]
in the first term of J , we can use a reparameterization trick
[61] to obtain a form that allows us to compute the gradient
with respect to φ using a Monte Carlo approximation. Now,
q∗φ(z|S, c), p∗θ(S|z, c), and p(z) are distributions that need to
be modeled. In the MVAE method, p(z) and q∗φ(z|S, c) are
described as Gaussian distributions as with a regular CVAE:

p(z) = N (z|0, I), (10)

q∗φ(z|S, c) = N (z|µ∗φ(S, c),diag(σ∗φ
2(S, c))), (11)

where µ∗φ(S, c) and σ∗φ
2(S, c) are the encoder network out-

puts. For stable training, the total energy of each training
utterance is normalized to 1. However, the energy of each
source in a test mixture does not necessarily equal 1. To fill this
gap, a scale factor g is additionally introduced into the decoder
distribution as a free parameter to be estimated at test time.
Specifically, we use an expression of the decoder distribution
with variance scaled by g. Hence, the decoder distribution for
the complex spectrogram S is expressed as

p∗θ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, gσ∗θ2(f, n; z, c)), (12)

where σ∗θ
2(f, n; z, c) denotes the (f, n)th element of the

decoder network output. (12) is called the CVAE source model.
If we use the above CVAE source model to represent the

complex spectrogram of the jth signal in a mixture signal,
zj , cj , and gj are the unknown parameters to be estimated.
Since the CVAE source model is given in the same form as
the LGM in (5) if we denote gjσ∗θ

2(f, n; zj , cj) by vj(f, n),
using this as the generative model for each source gives the
log-likelihood in the same form as (8).

C. Optimization Algorithm

The goal of the source separation algorithm in the MVAE
method is to maximize the posterior p(W,Ψ,G|X ) ∝
p(X|W,Ψ,G)p(z)p(c) with respect toW , Ψ = {zj , cj}j , and
G = {gj}j , where z is assumed to follow N (0, I), and p(c)
is the empirical distribution of the training examples {cm}m,
expressed as a multinomial distribution. Hence, the objective
function is log p(X|W,Ψ,G)+log p(z)+log p(c). A stationary
point of this function can be found by iteratively updating W ,
Ψ, and G so that the function value is guaranteed to be non-
decreasing. To update W , we can use the IP method [44]:

wj(f)← (WH(f)Σj(f))−1ej , (13)

wj(f)← wj(f)√
wH
j (f)Σj(f)wj(f)

, (14)

where Σj(f) = 1
N

∑
n x(f, n)xH(f, n)/vj(f, n) and ej de-

notes the jth column of an I × I identity matrix. As for G,
the update rule

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ∗θ
2(f, n; zj , cj)

(15)

maximizes the objective function with respect to gj when W
and Ψ are fixed. Under fixed W and G, the optimal zj and cj
that maximize the objective function can be found using the
gradient descent method. Note that cj can be updated under the
sum-to-one constraint by inserting an appropriately designed
softmax layer that outputs cj .

One important feature of VAE in general is its generalization
capability, namely the ability to learn the distribution of unseen
data. Thanks to this feature, we expect that the CVAE source
model trained on speech samples of sufficiently many speakers
can generalize somewhat well to the spectrograms of unknown
speakers, thus allowing the above algorithm to handle speaker-
independent scenarios reasonably well. Another advantage is
that it is guaranteed to converge to a stationary point, making
it easy to handle in practical use. However, the downside is
that the backpropagation algorithm required for each iteration
can be computationally expensive.

III. FASTMVAE
A. ACVAE Source Model

The motivation behind the FastMVAE method is to ac-
celerate the process of updating Ψ. Under fixed W and
G, the objective function of the MVAE method is equal
to the sum of log p(zj , cj |Sj , gj) up to a constant, where
Sj is the set {wH

j (f)x(f, n)}f,n, namely the complex spec-
trogram of the signal separated from the observed signal
using the current estimate of W . The idea of the FastMVAE
method is to express this posterior as p(zj , cj |Sj , gj) =
p(zj |Sj , cj , gj)p(cj |Sj , gj) and use two trainable networks
to approximate these two conditional distributions. Once these
networks have been trained, an approximation of the maximum
point of the posterior p(zj , cj |Sj , gj) can be obtained by find-
ing the maximum points of the two approximate distributions.

To obtain approximations of the two conditional distribu-
tions, the FastMVAE method employs the idea of ACVAE
training [47]. ACVAE is a CVAE variant that incorporates the
expectation of the mutual information [62]

I(c,S|z)

= Ec∼pD(c),S∼pθ(S|z,c),c′∼p(c|S)[log p(c′|S)] +H(c), (16)

into the training criterion with the aim of making the decoder
output as correlated as possible with the class variable c. Here,
pD(c) is the empirical discrete distribution of the samples
of c in the training set and H(c) represents the entropy of
c, which can be regarded as a constant. Since it is difficult
to express I(c,S|z) in analytical form, rather than using it
directly, ACVAE uses its variational lower bound

L = E(S,c′),z∼q∗φ(z|S,c′)[Ec,S∼p∗
θ
(S|z,c)[log r

∗
ψ(c|S,g)]] (17)
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Figure 1: Illustration of the ACVAE model in FastMVAE (left) and the ChimeraACVAE model in FastMVAE2 (right). We use
S̃ = S/g to denote a normalized spectrogram and omit g = 1 in encoder, decoder, and classifier distributions.

defined using a variational distribution r∗ψ(c|S, g) =
Mult(c|ρ∗ψ(S/g)) for optimization, where E(S,c′)[·] is equiv-
alent to E(S,c)[·], Ec[·] denotes the mean of its argument over
all one-hot vectors c ∼ pD(c), which can be approximated
by a Monte Carlo approximation, and Ez∼q∗φ(z|S,c)[·] and
ES∼p∗θ(S|z,c′)[·] are approached by a Monte Carlo approxima-
tion after reparameterization tricks. Here, Mult(c|ρ) ∝

∏
i ρ

ci
i

denotes a multinomial distribution, where c = [c1, . . . , cI ]
T

and ρ = [ρ1, . . . , ρI ]
T. ρ∗ψ(S/g) is a neural network that takes

S normalized by g as an input and produces a probability
vector consisting of C elements that sum to 1. r∗ψ(c|S, g)
is an auxiliary classifier. Since the exact bound is obtained
when r∗ψ(c|S, g) = p(c|S, g), the trained auxiliary classifier
r∗ψ(c|S, g) is expected to be a good approximation of the dis-
tribution p(c|S, g) of interest. ACVAE also uses the negative
cross-entropy

I = E(S,c)[log r∗ψ(c|S, g)] (18)

as the training criterion. Therefore, the entire training criterion
to be maximized is given by

J + λLL+ λII, (19)

where λL, λI ≥ 0 denote the regularization weights that
weight the importance of the regularization terms. The set of
the networks trained in this way using the spectrograms of
the training utterances is called the ACVAE source model. An
illustration of ACVAE is shown on the left of Fig. 1.

B. Optimization Algorithm

After ACVAE training, we achieve p(zj , cj |Sj , gj) ≈
r∗ψ(cj |Sj , gj)q∗φ(zj |Sj , cj , gj). Since the maximum points of
r∗ψ(cj |Sj , gj) and q∗φ(zj |Sj , cj , gj) can be found through
the forward passes of the auxiliary classifier and encoder,
respectively, we can quickly find an approximate solution
to (zj , cj) = argmaxzj ,cj p(zj , cj |Sj , gj) without resorting
to gradient descent updates. Specifically, cj is given as the
probability vector produced by the auxiliary classifier network:

cj ← ρ∗ψ(Sj/gj), (20)

and zj is given as the mean of the encoder distribution:

zj ← µ∗φ(Sj/gj , cj). (21)

Here, if the jth separated signal corresponds to a speaker
unseen in the training set, the elements of (20) can be
interpreted as quantities indicating how similar that speaker
is to all the speakers in the training set. If the signal of any

Algorithm 1 FastMVAE algorithm w/ PoE
Require: Network parameter θ, φ, ψ trained using (19),

observed mixture signal x(f, n), iteration number L ,
weight parameter α

1: randomly initialize W , Ψ
2: for ` = 1 to L do
3: for j = 1 to J do
4: yj(f, n) = wH

j (f)x(f, n)
5: (updating source model parameters)
6: initialize gj using (15)
7: normalize S̄j = {yj(f, n)/gj}f,n
8: update cj using (20)
9: update zj using (22)

10: compute σ∗j
2(f, n; zj , cj , gj = 1, θ)

11: update gj using (15)
12: compute vj(f, n) = gj · σ∗j 2(f, n; zj , cj , gj = 1, θ)
13: (updating separation matrices)
14: for f = 1 to F do
15: update wj(f) by IP method with (13), (14)
16: end for
17: end for
18: end for

speaker can be assumed to be expressed as a point in the
manifold spanned by all the speakers in the training set, our
algorithm is expected to be able to handle even mixtures of
unknown speakers.

However, our preliminary experiments revealed that directly
using the mean of the encoder distribution tends to degrade
source separation performance for speakers not included in the
training set. To stabilize the inference for unknown speakers,
we previously proposed reapplying the prior p(zj) to the
encoder output based on the PoE framework [48]to ensure that
zj will not be updated to an outlier. Namely, the prior p(zj)
is redefined as the product of two distributions with respect
to zj , namely, argmaxzj p(zj |Sj , cj , gj)p(zj)

α. Accordingly,
the modified update rule of zj is given as

zj ← Σ−1φ,j(Σ
−1
φ,j + αI)−1µ∗φ(Sj/gj , cj). (22)

Here, α is a parameter that weights the importance of the prior
p(zj) in the inference, and Σφ,j = diag(σ∗φ

2(Sj/gj , cj)).
Note that (22) reduces to the mean of the encoder distribution
when α = 0. The algorithm of the FastMVAE method is
summarized in Algorithm 1.
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IV. PROPOSED: FASTMVAE2

While the FastMVAE method can significantly reduce the
computation time compared to the MVAE method, its source
separation accuracy has been confirmed to be somewhat less
than that of the MVAE method [46]. We believe that this is
due to the limitations of the generalization capabilities of the
encoder and classifier obtained from the ACVAE training. In
this paper, we propose introducing a new model architecture
and training scheme to overcome these limitations, rather than
implementing a heuristic solution at the inference stage.

A. ChimeraACVAE source model

We first describe our motivation and ideas for developing
an improved version of the ACVAE source model, which we
call the “ChimeraACVAE” source model.

1) Multitask encoder: When performing source separation,
it is desirable that the speaker identity of each separated
signal does not change over time. This is because a change
of the identity of each separated signal means a failure in
source separation. However, constraining the identity not to
change is not an easy task if the decoder is not conditioned
on c (as in a regular VAE), since it will be trained so that
z becomes an entangled mixture of linguistic and speaker-
identity information. In contrast, conditioning the decoder on
c is expected to promote disentanglement between z and c
so that z represents only the linguistic information and c
represents only the speaker identity. This allows our source
separation system to always ensure that the speaker identity
of each separated signal is time-invariant. Thus, it is essential
for the decoder to remain conditioned on c, and it is the
encoder that we propose to modify. Specifically, we unify the
encoder and auxiliary classifier into a single network with two
branches that output the parameters of the encoder distribution
q+φ (z|S, g) = N (z|µ+

φ (S/g),diag(σ+
φ
2(S/g))) and those

of the class distribution r+ψ (c|S, g) = Mult(c|ρ+ψ (S/g)),
respectively. Here, the latent variable z and speaker identity
c are assumed to be conditionally independent. We believe
that the main reason for the performance degradation in
FastMVAE under the speaker-independent condition is the
cascade structure of the classifier and encoder, where errors
in the classifier directly affect the outputs of the encoder. The
conditional independence assumption in the ChimeraACVAE
source model allows us to parallelize the processes by the
classifier and encoder and prevent error propagation. Further-
more, the sharing of the layers in the unified encoder network
is expected to improve the generalization capability through
multitask learning.

2) Network details: The original ACVAE source model is
designed to include batch normalization layers in its networks.
However, since the computation of batch normalization de-
pends on the mini-batch size, the learned parameters may be
suboptimal in inference situations where the number of sources
differs from the mini-batch size during training. To avoid
inconsistencies in computation during training and inference,
we replace batch normalization [55] with layer normalization
[63]. In addition, we use a sigmoid linear unit (SiLU) [64]
instead of a gated linear unit (GLU) [65] to reduce model
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Figure 2: Network architectures of the unified encoder and
decoder in the ChimeraACVAE source model. The inputs and
outputs are assumed to be vector sequences. A spectrogram is
interpreted as a sequence of spectra, with frequency regarded
as the channel dimension. “w”denotes the length of the input
sequence. “Conv” and “Deconv” denote one-dimensional con-
volution and deconvolution, respectively, where “c”, “k”, and
“s” denote the channel number, kernel size, and stride size,
respectively. “LN” and “SiLU” stand for the layer normal-
ization and sigmoid linear unit, respectively. “mean” denotes
the operation of averaging the input sequence along the time
direction, and “softmax” denotes the operation of applying
a softmax function to the input vector. In the decoder, the
“class index encoding” c is concatenated to the input of each
deconvolution layer along the channel direction after being
repeated along the time direction so that it has the shape
compatible with the input.

size. SiLU, also known as the swish activation function, is a
self-gated activation function, which can be expressed as

Ol = (Ol−1 ∗Wl + bl)⊗ σ(Ol−1 ∗Wl + bl) (23)

when applied to a convolution layer. Here, Wl and bl are
weight and bias parameters of the lth layer, and Ol and Ol−1
denote the output and input of the lth layer, respectively. ⊗
denotes element-wise multiplication, and σ(·) is the sigmoid
function. Both SiLU and GLU are data-driven gates, which
control the information passed in the hierarchy. Unlike GLU,
where the linear and gate functions are parametrized sepa-
rately, SiLU uses the same parameters to represent them. This
halves the number of parameters in a single layer.

An illustration of the proposed ChimeraACVAE source
model is shown on the right in Fig. 1, and the network
architecture used to configure the model is shown in Fig. 2.
Table I shows the number of the parameters of the CVAE,
ACVAE, and ChimeraACVAE models used in the following
experiments. Note that the number of parameters depend on
the number of speakers in the training dataset. As can be seen
from this comparison, the ChimeraACVAE source model with
the above modifications has reduced the number of parameters
to about 40% of the original ACVAE source model, which is
even smaller than that in the CVAE model used in the MVAE
method.

B. Training criterion based on KD

Since the latent variable z no longer depends on c, we
must first rewrite the training loss of ACVAE, i.e., (19), by
replacing q∗φ(z|S, c) with q+φ (z|S). Note that we omit g in
this subsection, assuming that g is set to 1 and normalized
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Table I: Number of parameters of CVAE, ACVAE, and
ChimeraACVAE model used in the experiments.

Model Number of parameters [M]
Spk-dep Spk-ind

CVAE 10.6 12.5
ACVAE 17.0 18.9
ChimeraACVAE 7.0 7.9
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Teacher model: CVAE source model

Student model: Chimera ACVAE source model

Knowledge Distillation

Figure 3: Illustration of the response-based KD from a pre-
trained CVAE source model to the ChimeraACVAE source
model. We use S̃ = S/g to denote a normalized spectrogram.
Note that g = 1 is omitted from the expressions of the encoder,
decoder, decoder distributions owing to space limitations.

spectrograms are used during training. Thus, the reformulated
training criteria are given as

J = ES,c
[
Ez∼q+φ (z|S)[log p+θ (S|z, c)]−KL[q+φ (z|S)||p(z)]

]
,

(24)

L = ES′,z∼q+φ (z|S′)
[
Ec,S∼p+θ (S|z,c)[log r+ψ (c|S)]

]
, (25)

I = ES,c[log r+ψ (c|S)]. (26)

Here, ES′ [·] in (25) denote the mean of the arguments over
all spectrograms S′ ∼ pD(S) in the training dataset. The
superscript + is used to distinguish the networks in the
ChimeraACVAE model from those in the original ACVAE
model superscripted with ∗.

Unlike in the training phase, where the class label c is
known and given, in the separation phase, the spectrogram S
needs to be constructed using the estimated z and c. Therefore,
it is reasonable to simulate this situation in the training phase
as well. Namely, we consider not only the reconstruction error
defined using the given label c but also the reconstruction error
defined using the estimated c ∼ r+ψ (c|S). Thus, we propose
including

J ′ = ES,z∼q+φ (z|S),c∼r+ψ (c|s)[log p+θ (S|z, c)], (27)

L′ = ES′,z∼q+φ (z|S′),c∼r+ψ (c|S′)[ES∼p+θ (S|z,c)[log r+ψ (c|S)]],

(28)

in the training objective. Here, it should be noted that both
J ′ and L′ involve expectations over c ∼ r+ψ (c|S′). However,

there is currently no known reparametrization trick that can be
applied to random variables that follow multinomial distribu-
tions. Instead, we use the Gumbel-Softmax (GS) distribution
as an approximation to the multinomial distribution, which
allows the use of the reparameterization trick [66], [67].
The GS distribution of a continuous multivariate variable
k = [k1, . . . , kI]

T is defined as

pρ,τ (k) = Γ(I)τ I−1

(
I∑

i=1

ρi/k
τ
i

)−I I∏
i=1

(
ρi/k

τ+1
i

)
. (29)

This expression is derived analytically as a distribution that is
followed by the variables

ki =
exp((log ρi + gi)/τ)∑I
i′=1 exp((log ρi + gi)/τ)

(i = 1, . . . , I) (30)

where gi, i = 1, . . . , I are Gumbel samples drawn inde-
pendently and identically from Gumbel(0, 1), ρ is the class
probability vector produced by the classifier, and τ is called
the softmax temperature. Here, it is important to note that (29)
is shown to become identical to r+ψ (k|S′) as τ approaches
0. By replacing r+ψ (k|S′) with (29), (27) and (28) can be
approximated as

J ′GS = ES,z∼q+φ (z|S),k∼pρ̂,τ (k)
[

log p+θ (S|z,k)
]
, (31)

L′GS = ES′,z∼q+φ (z|S′),k∼pρ̂,τ (k),S∼p+θ (S|z,k)
[

log r+ψ (k|S)
]
.

(32)

Unlike the original expressions, these expressions allow the
computations of the derivatives with respect to ψ using the
reparameterization trick.

With the reduced number of model parameters, the chal-
lenge is how to make the ChimeraACVAE model have a high
generalization capability. To this end, we further introduce
training criteria derived based on the KD [51] using a pre-
trained CVAE model as the teacher model. KD, also known as
teacher-student learning, is a technique to transfer the knowl-
edge from a teacher model to a student model, originally pro-
posed for model compression [51] and later shown to improve
the generalization capability of the student model [68]. There
are three types of knowledge that can be transferred between
models: response-based knowledge, feature-based knowledge,
and relation-based knowledge. These refer to the knowledge of
the last output layer, the knowledge of each output layer, and
the knowledge of the relationship between layers, respectively.
Since the networks in both the teacher and student models
are reasonably shallow, we consider response-based KD to be
sufficient, as it requires a minimal increase in training cost.

Specifically, we transfer the knowledge of the distributions
of the latent variable q∗φ(z|S, c) and the complex spectrograms
p∗θ(S|z, c) learned by the CVAE model into the ChimeraAC-
VAE model by using these distributions as priors. We use
the KL divergences to measure the differences between the
distributions estimated by a student model and the pretrained
teacher model such that

Kz = ES,c
[
KL[q∗φ(z|S, c)||q+φ (z|S)]

]
, (33)

KS = ES,c,z∗∼q∗φ(z|S,c),z+∼q+φ (z|S)
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[
KL[p∗θ(S|z∗, c)||p+θ (S|z+, c)]

]
, (34)

K
′

S = ES,c,z∗∼q∗φ(z|S,c),z+∼q+φ (z|S),k∼pρ̂,τ (k)[
KL[p∗θ(S|z∗, c)||p+θ (S|z+,k)]

]
. (35)

Here, (35) is a criterion that measures the difference between
the teacher distribution and decoder distribution computed
using the GS distribution. An illustration of KD for training
the ChimeraACVAE model is shown in Fig. 3.

The total training criterion of the ChimeraACVAE is a
weighted linear combination of the above-mentioned criteria:

J + λLL+ λII + λJ ′J ′GS + λL′L′GS

− λKzKz − λKSKS − λK′SK
′

S . (36)

Here, λ∗ denotes a non-negative parameter that weighs the
importance of that term.

With the trained ChimeraACVAE source model, we can
use the same procedure as Algorithm 1 to perform source
separation. We call it FastMVAE2 to distinguish it from
the method using the ACVAE source model. Note that in
FastMVAE2, the PoE-based update rule is no longer required
thanks to the improved generalization capability, but of course
it can be used in addition.

V. EXPERIMENTAL EVALUATIONS

To evaluate the effectiveness of the proposed training pro-
cedure, we compare the source separation performance in
speaker-dependent and speaker-independent situations.

A. Datasets

For the speaker-dependent source separation experiment, we
used speech utterances of two male speakers (SM1, SM2)
and two female speakers (SF1, SF2) excerpted from the Voice
Conversion Challenge (VCC) 2018 dataset [69] . The audio
files for each speaker were about seven minutes long and
manually segmented into 116 short sentences, where 81 and
35 sentences (about five and two minutes long, respectively)
served as training and test sets, respectively. We used two-
channel mixture signals of two sources as the test data, which
were synthesized using simulated room impulse responses
(RIRs) generated using the image method [70] and real RIRs
measured in an anechoic room (ANE) and an echo room
(E2A). The reverberation times (RT60) [71] of the simulated
RIRs were set at 78 and 351 ms, which were controlled
by setting the reflection coefficient of the walls at 0.20
and 0.80, respectively. For the measured RIRs, we used the
data included in the RWCP Sound Scene Database in Real
Acoustic Environments [72]. The RT60 of ANE and E2A
were 173 and 225 ms, respectively. The test data included four
pairs of speakers, i.e., SF1+SF2, SF1+SM1, SM1+SM2, and
SF2+SM2. For each speaker pair, we generated ten mixture
signals. Hence, there were a total of 40 test signals for each
reverberation condition, each of which was about four to seven
seconds long.

The datasets for the speaker-independent experiment were
generated in the same way by using the Wall Street Jour-
nal (WSJ0) corpus [73]. All the utterances in WSJ0 folder

si tr s (around 25 hours) were used as the training set,
which consists of 101 speakers in total. A test set was created
by randomly mixing two different speakers selected from the
WSJ0 folders si dt 05 and si et 05, where the number of
speakers was 18. We generated test data using simulated RIRs
with RT60 = 78 ms and RT60 = 351 ms, where 100 mixture
signals were generated under each reverberation condition. All
the speech signals were resampled at 16 kHz. The STFT and
inverse STFT were calculated by using a Hamming window
with a length of 128 ms and half overlap.

B. Experimental settings

We chose ILRMA [7], the MVAE method [26]1 , and
the FastMVAE method [46] as the baseline methods for
both the speaker-dependent and speaker-independent cases,
and IDLMA [30] as another baseline method only for the
speaker-dependent scenario. For all the methods, the param-
eter optimization algorithms were run for 60 iterations, and
the separation matrix W(f) was initialized with an identity
matrix.

We set the basis number of ILRMA at 2, which is the
optimal setting for speech separation. For IDLMA, we used
the same network architecture and training settings as those
in [30] except for the optimization algorithm, where we used
Adam [74] instead of Adadelta [75]. Note that unlike other
methods where speaker information is estimated, IDLMA
requires speaker information in order to properly select the cor-
responding pre-trained network. The network architectures for
the CVAE and ACVAE source models were the same as those
used in [46], where the encoder consisted of 2 convolutional
layers using GLU following a regular convolutional layer,
the decoder consisted of 2 deconvolutional layers using GLU
following a regular deconvolutional layer, and the classifier
consisted of 3 convolutional layers using GLU following a
regular convolutional layer. All the GLU layers used batch
normalization to stabilize the training. Adam was used to train
the networks and estimate zj and cj in the MVAE method. In
the training of ChimeraACVAE, the weight parameters were
empirically set with the KD criterion Kz as 10 and the rest as
1. The temperature τ for the GS distribution was set at 1.

We calculated the source-to-distortions ratio (SDR), source-
to-interferences ratio (SIR), and sources-to-artifacts ratio
(SAR) [76] to evaluate the source separation performance,
and used perceptual evaluation of speech quality (PESQ)2

[77] and short-time objective intelligibility (STOI) 3 [78] to
ascertain the speech quality and intelligibility of the separated
waveforms.

C. Multi-speaker separation performance

We first investigated the effectiveness of each training
criterion proposed in Subsection IV-B in training the proposed
ChimeraACVAE source model. The correspondence between
the models and their training criteria are shown in Table

1Code: https://github.com/lili-0805/MVAE
2Code: https://github.com/vBaiCai/python-pesq
3Code: https://github.com/mpariente/pystoi
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Table II: Evaluated models and corresponding training criteria,
which are weighted linear combinations of the equations.

Model Training criterion
ACVAE (24), (25), (26)

+ estimated label (24), (25), (26), (31), (32)
+ KD z (24), (25), (26), (31), (32), (33)
+ KD S (24), (25), (26), (31), (32), (34), (35)
+ KD both (24), (25), (26), (31), (32), (33), (34), (35)

+ KD z (24), (25), (26), (33)
+ KD S (24), (25), (26), (34)
+ KD both (24), (25), (26), (33), (34)

Table III: SDR [dB], SIR [dB], SAR [dB], PESQ, and STOI
achieved by using ChimeraACVAE source model trained with
different loss functions. Bold font shows the highest scores.

Scenario Training criteria SDR SIR SAR PESQ STOI

Spk-dep

ACVAE 10.74 16.02 13.79 2.45 0.8170
+ estimated label 13.29 18.87 15.87 2.64 0.8409

+ KD z 15.90 22.23 17.78 2.79 0.8580
+ KD S 13.29 18.75 16.04 2.66 0.8378
+ KD both 15.40 21.63 17.43 2.77 0.8565

+ KD z 9.89 15.48 12.79 2.38 0.8114
+ KD S 12.41 17.69 15.23 2.56 0.8253
+ KD both 8.05 12.96 11.76 2.24 0.7880

Spk-ind

ACVAE 15.81 22.73 18.60 3.14 0.8855
+ estimated label 12.35 18.38 16.01 3.04 0.8634

+ KD z 16.89 24.74 18.79 3.17 0.8917
+ KD S 15.18 21.95 17.99 3.12 0.8832
+ KD both 17.04 24.87 18.85 3.19 0.8945

+ KD z 16.16 23.68 18.33 3.14 0.8863
+ KD S 15.66 22.65 18.48 3.14 0.8893
+ KD both 16.07 23.47 18.39 3.14 0.8892

Table IV: Comparsion of SDR [dB], SIR [dB], SAR [dB],
PESQ, and STOI among compact FastMVAE, FastMVAE, and
FastMVAE2 with the optimal parameter settings. Bold font
shows the highest scores.
Scenario Method SDR SIR SAR PESQ STOI

Spk-dep

Compact FastMVAE w/o PoE 7.52 12.71 10.80 2.29 0.7916
Compact FastMVAE w/ PoE 7.75 12.84 11.06 2.30 0.7933
FastMVAE w/o PoE [37] 13.78 19.51 16.16 2.03 0.8465
FastMVAE w/ PoE [37] 13.95 19.54 16.33 2.66 0.8452
FastMVAE2 15.40 21.63 17.43 2.77 0.8565

Spk-ind

Compact FastMVAE w/o PoE 8.16 12.62 12.47 2.60 0.8119
Compact FastMVAE w/ PoE 10.55 17.51 12.66 2.78 0.8453
FastMVAE w/o PoE [37] 10.43 15.41 15.73 2.73 0.8358
FastMVAE w/ PoE [37] 14.41 21.21 17.35 3.04 0.8776
FastMVAE2 17.04 24.87 18.85 3.19 0.8945

Table V: Comparsion of SDR [dB], SIR [dB], SAR [dB],
PESQ, and STOI between FastMVAE2 and baseline methods
with the optimal parameter settings. Bold font shows the
highest scores.

Scenario Method SDR SIR SAR PESQ STOI

Spk-dep

ILRMA 13.62 19.79 15.83 1.92 0.8570
IDLMA [46] 14.15 21.11 15.59 1.77 0.8692
MVAE [46] 17.03 23.75 18.61 2.24 0.8717
FastMVAE [46] 13.95 19.54 16.33 2.66 0.8452
FastMVAE2 15.40 21.63 17.43 2.77 0.8565

Spk-ind

ILRMA 14.43 20.98 17.45 2.28 0.8850
MVAE [46] 17.58 25.13 19.26 2.65 0.8934
FastMVAE [46] 14.41 21.21 17.35 3.04 0.8776
FastMVAE2 17.04 24.87 18.85 3.19 0.8945

II. Table III shows the results, which were calculated by
averaging over the entire dataset including multiple rever-

Table VI: Lengths [sec] of mixture signals in each case.
Number of sources Minimum Maximum Average

2 5.70 13.86 8.56
3 8.71 13.68 11.47
6 9.04 16.23 12.76
9 9.49 16.33 12.60
12 10.48 15.32 12.77
15 11.75 14.71 13.12
18 11.43 15.83 13.51

beration conditions. The results show that it is effective to
further exploit the reconstruction loss and classification loss of
the spectrograms reconstructed with the estimated class label
in the speaker-dependent scenario, where small amounts of
training data were available. Comparing the models trained
without KD (1st and 2nd rows) with that trained with KD
(3th to 5th rows), we found an improvement in SDR of
about 2.6 dB in speaker-dependent situations and more than
1 dB in speaker-independent ones, which confirmed that KD
can significantly improve source separation performance. In
particular, knowledge transfer of the distribution of the latent
variable z was effective in stabilizing the inference accuracy
even for unseen speakers. A further improvement was achieved
in the speaker-independent setting by transferring knowledge
between distributions of generated complex spectrograms, but
no improvement was seen in the speaker-dependent setting.

In Table IV, we show a comparison of source separation
performance between the FastMVAE and FastMVAE2 meth-
ods. To demonstrate the effectiveness of the proposed training
criterion, we trained an ACVAE with the architecture that
respectively replaces BN and GLU with LN and SiLU, which
is referred to as “compact FastMVAE”. The results of Fast-
MVAE and compact FastMVAE indicate that the replacement
of the normalization method and nonlinear activation did not
lead to an improvement of the source separation performance.
Therefore, the performance improvement by FastMVAE2 can
be attributed mainly to the proposed training criterion. The
FastMVAE2 method obtained the highest scores in terms of
all the criteria. Particularly, FastMVAE2 achieved an SDR
improvement of about 6.6 and 2.6 dB from the FastMVAE
without and with PoE, respectively. These results indicated that
the ChimeraACVAE source model had good generalization
to unseen data, which made the FastMVAE2 method able
to handle speaker-independent scenario without the heuristic
inference method. Table V shows the average scores achieved
by each method with their optimal parameter settings. The
proposed method significantly outperformed ILRMA and the
FastMVAE method, and narrowed the performance gap with
the MVAE method.

D. Comparison of computational time in situations with more
sources and channels

In this subsection, we investigate the computational time of
each method. We conducted speaker-independent experiments
with more sources and channels, and compared the computa-
tion time of each method for each update iteration and overall
processing time.
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Figure 5: Average inference time [sec] of each iteration (upper)
and overall processing (bottom).

As in the above speaker-independent experiment, the simu-
lated RIRs in the {2, 3, 6, 9, 12, 15, 18}-channel cases were
generated using the image method [70] with the reflection
coefficient of the walls set at 0.20. The details of the room
configuration and microphone array are shown in Fig. 4.
In each case, more sound sources and microphones were
added and placed in the order of increasing numbers. Speech
utterances were randomly selected from the WSJ0 folders
si dt 05 and si et 05. We generated 10 samples for each
case. The minimum, maximum, and average lengths of the
mixture signals are shown in Table VI. The average SDR
of the generated mixture signals for each case is shown in
the first row of Table VIII. All algorithms were processed
using an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and a
Tesla V100 GPU. Other experimental settings were the same
as those in the above speaker-independent experiment.

The inference times of ILRMA, FastMVAE, and FastM-
VAE2 are shown in Fig. 5, and those of MVAE are shown
in Table VII as a reference. The fast algorithms performed
extremely fast by using a GPU. Comparing the computation

Table VII: Average inference time [sec] of MVAE.

Type Number of sources and channels
2 3 6 9 12 15 18

Each iteration 0.70 1.05 2.65 4.36 9.24 10.43 14.03
Overall processing 43.72 65.11 155.77 266.80 478.08 583.02 872.83

times in the CPU, we found that the FastMVAE2 method
achieved runtimes comparable to ILRMA in the 2-source and
3-source cases, and faster than ILRMA in cases with more
than 3 sources. This indicates that the proposed method is
more efficient in situations with a large number of sources
and microphones. The average SDR scores obtained by each
method are shown in Table VIII. The proposed FastMVAE2
outperformed ILRMA and the FastMVAE without PoE, and
even outperformed the MVAE method in the 2-source case,
demonstrating the effectiveness of the proposed ChimeraAC-
VAE source model. Note that although the performance of
ILRMA was superior to the proposed method in the cases of
3 and 6 sources, this might change with different initialization
of the basis and activation matrices of the NMF. On the other
hand, the performance of the proposed method is independent
of the initialization. We show an example of the magni-
tude spectrograms of separated signals obtained by ILRMA,
MVAE, and FastMVAE2 with their corresponding ground truth
signals in Fig. 64. We found that although the MVAE and
FastMVAE2 methods suffered from the phenomenon called
block permutation [79], [80], in which the permutations in
different frequency blocks are inconsistent, the deep generative
model-based source models improved the estimation accuracy
in the low-frequency band (0-2 kHz), which resulted in a more
remarkable SDR improvement compared with ILRMA.

E. Spatialized-WSJ0-2mix benchmark

In this subsection, we evaluate the proposed FastMVAE2 in
the spatialized WSJ0-2mix benchmark [18], which is widely
used for evaluating the recent DNN-based methods. There
are 20,000 (∼30h), 5,000 (∼10h), and 3000 (∼5h) utterances
in the training, validation, and test sets. The training and
validation mixtures were generated from data in si tr s

folder and the test mixtures were generated from data in
si dt 05 and si et 05 folders. Therefore, the speaker-
independent settings mentioned in the above experiments are
still valid. RIR used for every utterance was simulated with a
random configuration, including room characteristics, speaker
locations, and microphone geometry. RT60 for the reverberant
case was randomly selected from 200 to 600 ms.

We compared FastMVAE2 with (1) oracle ideal binary mask
(IBM), (2) oracle ideal ratio mask (IRM), (3) oracle mask-
based minimum variance distortionless response (MVDR)
beamformer [81], (4) oracle signal-based MVDR, 5) time-
domain audio separation network (TasNet) [19], (6) multi-
channel TasNet [23], and (7) Beam-TasNet [23]. The oracle
IBM and IRM were obtained using the first channel of the
spatialized clean sources and applied to the first channel of
observed mixture signals. The difference between the oracle

4Audio samples are available at http://www.kecl.ntt.co.jp/people/
kameoka.hirokazu/Demos/mvae-ss/index.html

http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/mvae-ss/index.html
http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/mvae-ss/index.html
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Table VIII: Comparison of SDR [dB] between FastMVAE2 and baseline methods with the optimal parameter settings in
situations with different numbers of sources and channels. Values in parentheses indicate the improvement over unprocessed.
Bold font shows the highest scores.

Method Number of sources and channels
2 3 6 9 12 15 18

Unprocessed 0.09 -3.92 -8.13 -10.45 -12.15 -13.03 -13.86
ILRMA 20.89 (20.80) 23.04 (26.96) 7.54 (15.67) 1.61 (12.06) -0.11 (12.04) -3.79 (9.24) -5.92 (7.94)
MVAE 26.63 (26.54) 25.17 (29.09) 11.32 (19.45) 9.26 (19.71) 7.34 (19.49) 5.00 (18.03) 2.58 (16.34)
FastMVAE w/o PoE 15.77 (15.68) 7.59 (11.51) 3.32 (11.45) 4.23 (14.68) 0.69 (12.84) -0.06 (12.97) -1.96 (11.90)
FastMVAE2 28.58 (28.49) 21.50 (25.41) 6.53 (14.66) 5.77 (16.23) 4.04 (16.19) 2.90 (15.94) 0.22 (14.08)

mask-based and signal-based MVDR was the signal used
for computing spatial covariance matrices, where the former
used the multichannel IRM of each source and the later
directly used the clean reverberant speech of each source.
We investigated window lengths of 128 ms and 512 ms.
Settings for TasNet, multichannel TasNet, and Beam-TasNet
are available in [23] 5. One important factor here is the window
length. Beam-TasNet used a length of 512 ms to meet the
instantaneous mixture model for reverberant signals, while the
proposed method used that of 128 ms since the motivation of
the FastMVAE2 is to bridge the high performance of MVAE
and real-time applications with low latency.

We first show the results of the spatialized anechoic WSJ0-
2mix dataset in Table IX. With the anechoic setup, beam-
forming algorithms achieved higher performance than mask-
based methods. From these results, we confirmed that the
MVAE and proposed FastMVAE2 achieved even better per-
formance than the oracle mask-based MVDR beamformer,
indicating the effectiveness of these two methods when the
instantaneous mixture model assumption is satisfied. Next,
we show the results of the spatialized reverberant WSJ0-
2mix dataset in Table X. The performance of the MVAE and
FastMVAE2 degraded significantly due to reverberations. The
main reason was the instantaneous mixture model assumption,
which was not satisfied anymore with heavy reverberation and
short window length. We found that even the performance of
oracle MVDRs degraded significantly when the window length
became shorter. Two promising approaches can be considered
to deal with this problem, including using longer window
length and performing separation along with dereverberation
[40], [82], [83]. It is straightforward that longer window length
helps deal with heavy reverberant conditions, which has also
been confirmed from the results of oracle MVDRs with longer
window length and Beam-TasNet. However, a longer window
length is undesirable and should be avoided in real-time ap-
plications because it increases algorithmic latency. Therefore,
we consider the second approach, performing separation and
dereverberation simultaneously, as one direction of our future
works to overcome this limitation of the FastMVAE2 method.

VI. CONCLUSION

In this paper, we proposed an improved ACVAE source
model named “ChimeraACVAE” source model for the fast
algorithm of the MVAE method, which we call “FastMVAE2”.

5We would like to appreciate Dr. Tsubasa Ochiai from NTT Communication
Science Laboratories for providing us with the test dataset and evaluation
script so that we could compare our methods with results reported in [23].

Table IX: Comparison of SDR [dB] for spatialized anechoic
WSJ0-2mix dataset. “1ch” and “2ch” indicate the number of
channels used for processing.

Method window length [ms] SDR [dB]
Mixture — -0.4
Oracle IBM (1ch) 128 13.66
Oracle IRM (1ch) 128 13.55
Oracle mask-based MVDR (2ch) 128 23.26
Oracle signal-based MVDR (2ch) 128 39.68
Oracle mask-based MVDR (2ch) 512 15.66
Oracle signal-based MVDR (2ch) 512 48.02
MVAE (2ch) 128 28.49
FastMVAE2 (2ch) 128 31.31

Table X: Comparison of SDR [dB] for spatialized reverberant
WSJ0-2mix dataset. “1ch” and “2ch” indicate the number of
channels used for processing.

Method window length [ms] SDR [dB]
Mixture — 0.1
Oracle IBM (1ch) 128 13.41
Oracle IRM (1ch) 128 13.29
Oracle mask-based MVDR (2ch) 128 8.16
Oracle signal-based MVDR (2ch) 128 8.14
Oracle mask-based MVDR (2ch) 512 11.95
Oracle signal-based MVDR (2ch) 512 16.32
TasNet (1ch) [23] — 11.3
Multichannel TasNet (2ch) [23] — 12.7
Beam-TasNet (1ch) [23] 512 12.9
Beam-TasNet (2ch) [23] 512 13.8
MVAE (2ch) 128 5.35
FastMVAE2 (2ch) 128 6.02

ChimeraACVAE is a more compact source model that consists
of a unified encoder and classifier network and a decoder,
which are composed of fully convolutional layers with layer
normalization and an SiLU activation function. The KD
framework was applied to train the ChimeraACVAE source
model to improve the generalization capability to unseen data.
The experimental results demonstrated that the FastMVAE2
method achieved significant performance improvement in both
speaker-dependent and speaker-independent multispeaker sep-
aration tasks, approaching the performance that of the MVAE
method. Moreover, the proposed method significantly reduced
the model size and improved the computational efficiency,
which achieved computational time comparable to ILRMA in
cases of two and three sources and lower computational time
than ILRMA in cases of more sources.
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Figure 6: Magnitude spectrograms of ground truth signals (first column) and separated signals obtained by ILRMA (second
column), MVAE (third column), and FastMVAE2 (fourth column) in a nine-source case. SDR of input mixture signal with
respect to each speaker is shown in the top of figures in first column and SDR improvement achieved by each method is
shown in the top of each figure in second to fourth. The x and y axes of each figure denote time [sec] and frequency [kHz],
respectively. Audio samples are available at http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/mvae-ss/index.html.

http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/mvae-ss/index.html
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