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TOE: A Grid-Tagging Discontinuous NER Model
Enhanced by Embedding Tag/Word Relations and

More Fine-Grained Tags
Jiang Liu, Donghong Ji, Jingye Li, Dongdong Xie, Chong Teng, Liang Zhao and Fei Li

Abstract—So far, discontinuous named entity recognition
(NER) has received increasing research attention and many
related methods have surged such as hypergraph-based meth-
ods, span-based methods, and sequence-to-sequence (Seq2Seq)
methods, etc. However, these methods more or less suffer from
some problems such as decoding ambiguity and efficiency, which
limit their performance. Recently, grid-tagging methods, which
benefit from the flexible design of tagging systems and model
architectures, have shown superiority to adapt for various in-
formation extraction tasks. In this paper, we follow the line
of such methods and propose a competitive grid-tagging model
for discontinuous NER. We call our model TOE because we
incorporate two kinds of Tag-Oriented Enhancement mechanisms
into a state-of-the-art (SOTA) grid-tagging model that casts the
NER problem into word-word relationship prediction. First, we
design a Tag Representation Embedding Module (TREM) to force
our model to consider not only word-word relationships but also
word-tag and tag-tag relationships. Concretely, we construct tag
representations and embed them into TREM, so that TREM can
treat tag and word representations as queries/keys/values and
utilize self-attention to model their relationships. On the other
hand, motivated by the Next-Neighboring-Word (NNW) and Tail-
Head-Word (THW) tags in the SOTA model, we add two new
symmetric tags, namely Previous-Neighboring-Word (PNW) and
Head-Tail-Word (HTW), to model more fine-grained word-word
relationships and alleviate error propagation from tag prediction.
In the experiments of three benchmark datasets, namely CADEC,
ShARe13 and ShARe14, our TOE model pushes the SOTA results
by about 0.83%, 0.05% and 0.66% in F1, demonstrating its
effectiveness.

Index Terms—discontinuous named entity recognition, grid-
tagging, tagging-oriented enhancement.

I. INTRODUCTION

NAmed entity recognition (NER) is a fundamental task
for natural language processing (NLP), which is able to

facilitate many other NLP tasks (e.g., question answering [1],
entity relationship extraction [2]). NER has been extensively
studied and researchers have come up with numerous effective
methods [3]–[7]. Previously, most methods [8]–[13] treat it as
a sequential marking problem, in which each token is assigned
with a tag representing its entity type. Their basic assumption
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She also notes new sharp pain in left shoulder blade and back area
E2 E2

E1 E1

Fig. 1. An example to show two discontinuous entities in a sentence of the
clinical corpus [15].

is that entity mentions should be short text spans [14] and
should not overlap with each other. Although this assumption
is valid in most cases, it is not always true, especially in
clinical corpora. [15]. As shown in Figure 1, the two entities
consist of several discontinuous segments and some segments
are overlapped. Therefore, it is necessary to design models
that can recognize both flat entities and discontinuous entities.

To achieve this goal, some recent studies have developed
some models for discontinuous NER, which can be roughly
divided into the following categories: 1) Sequence-tagging-
based methods [16] extend the BIO tag scheme to more com-
plex tag schemes such as BIOHD, but such ad hoc design is
not flexible enough to handle all the situations. 2) Hypergraph-
based methods represent all entity segments as graph nodes
and learn to combine these nodes with individual classifiers,
but such methods suffer from the false structure and struc-
tural ambiguity in the prediction process. 3) Seq2Seq-based
methods [17], [18] generate various entities directly, which
unfortunately may suffer from decoding efficiency issues and
certain common pitfalls of the Seq2Seq architecture, such as
exposure bias. 4) Span-based methods [19] list all possible
spans and classify them according to the level of spans.
However, these methods are limited by the maximum span
length and result in considerable computational complexity
due to span enumeration.

Recently, grid-tagging-based methods achieve promising
performance for discontinuous NER. Wang et al. (2021) [20]
predict the entity boundaries and entity word relationships
respectively through two grids and then decode the whole
entities from the entity segment graph through maximal clique
discovery. The latest state-of-the-art (SOTA) method, proposed
by Li et al. 2022 [21], is also based on grid tagging. It
transforms discontinuous NER into the word-word relationship
recognition problem, and utilizes one grid to include all word-
word relationships.

In this paper, we follow the line of grid tagging for dis-
continuous NER and propose two tag-oriented enhancements
to optimize the SOTA model. First, since the SOTA model
only pays attention to the relationships between words, we
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Fig. 2. An example to show our extended tag system. The red tags are new and
the black ones are used in the SOTA model [21]. Columns and rows represent
the subjects and objects of the relationships, where a subject indicates the tail
of the relationship arc and an object indicates the head. For more details refer
to Section III-E.

embed tag representations into the model in order to model
the relationships between each pair of tags and the relation-
ships between tags and words. These relationships are also
important because entity mentions can be correctly identified
only if all the tags have been predicted. Second, we add two
tags, namely Previous-Neighboring-Word (PNW) and
Head-Tail-Word (HTW), to its tag system (including
only two tags, Next-Neighboring-Word (NNW) and
Tail-Head-Word (THW)), in order to model more fine-
grained word-word relationships. As shown in Figure 2, when
the model fails to recognize the HTW relationship between
“pain” and “blade”, their THW relationship can still be rec-
ognized to compensate for such error.

To implement our above idea, we build a grid-tagging
model with Tag-Oriented Enhancement (TOE). The main
framework of the model is shown in Figure 3. First, word
representations are generated by BERT [22] and BiLSTM [23].
Then, we construct a tag representation embedding module
(TREM) to embed tag representations into our model. TREM
employs a convolution layer to represent each tag as a two-
dimensional (2D) table, because the tag in our task denotes
the relationship of each word pair. Then TREM uses self-
attention to model the relationships between each pair of tags
and the relationships between tags and words. TREM can run
multiple times to iteratively mix tag representations with word
representations. Finally, a co-predictor predicts the four word-
word relationships that we defined in this paper, namely PNW,
HTW, NNW and THW, using the word and tag representations
jointly. After that, discontinuous entities can be decoded out
from these tags.

We conduct experiments on three datasets, namely CADEC
[5], ShARe13 [2] and ShARe14 [24]. Results show that our
model achieves the best performance on all datasets and
outperforms eight baselines including the SOTA model. Our

contributions can be summarized as:
• We propose a novel tag representation embedding module

(TREM) to inject tag features and model the relationships
across tags and words.

• We extend the tag system of the SOTA model to model
more fine-grained word-word relationships and reduce error
propagation.

• Our model achieves the SOTA performance on 3 bench-
mark datasets. We conduct substantial experiments on 3
datasets to analyze and understand our model.1

II. RELATED WORK

We summarize the related methods for discontinuous NER
in the following categories. Sequence-tagging-based methods
In the field of NLP, NER is usually considered as a sequence
tagging problem [25]–[27]. Based on well-designed features,
CRF based models have achieved leading performance [28]–
[30]. Recently, neural network models have been used for
feature representation [31], [32]. In addition, upper and lower
cultural lexical representations such as ELMo [33], Flair [34]
and BERT [22] have also achieved great success. For NER, the
end-to-end bidirectional LSTM-CRF model [23], [35], [36] is
a representative architecture. These models can only recognize
regularly named entities. Tang et al. (2018) [16] extended
the BIO tagging scheme to BIOHD to solve the problem of
discontinuous mention. Even so, there is still the problem of
decoding ambiguity.
Hypergraph-based methods Lu and Roth (2015) [37] first
proposed a model based on hypergraph method to solve NER,
and expressed possible references by exponential method. Sub-
sequent studies [14], [38], [39] also developed and improved
the method. For example, Muis and Lu (2018) [14] used this
method to deal with discontinuous NER, and Wang and Lu
(2018) [39] used a deep neural network to strengthen the
hypergraph model.
Seq2Seq-based methods Gillick et al. (2015) [40] was the
first to use the Seq2Seq model to solve NER. The model
takes the original sentence as the input and takes the head and
tail position, span length and entity type of all entities as the
output. Fei et al. (2021) [18] combined Seq2Seq and pointer
network to deal with discontinuous NER. A recent study [17]
deals with all types of NER through the Seq2Seq model of
pointer network based on BART [41], and generates the index
and type sequence from the beginning to the end of all possible
entities. However, the Seq2Seq model has potential decoding
efficiency problems and exposure bias problems.
Span-based methods Other studies deal with NER by iden-
tifying entity spans, that is, enumerating all possible entity
spans, removing invalid entity spans or entity types, and
finally retaining the final prediction results [42], [43]. Li et
al. (2020a) [44] redefine NER as a machine reading compre-
hension (MRC) task, ask questions for different entity types
and extract entities according to the corresponding answers.
Li et al. (2021a) [19] convert the discontinuous NER to find
the complete subgraph from the span-based entity segment
graph, and obtain the competitive result. Unfortunately, due

1The code is publicly available at https://github.com/solkx/TOE.git
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Fig. 3. The overall architecture of our TOE model. H denotes the word representations. TF (t) denotes the tag-aware grid features, where t means that the
tag representation embedding process may run several iterations.

⊕
represents the element-level summation.

to enumeration, the effect of these methods is affected by
the maximum span length and has considerable complexity,
especially for longer entities.

Grid-tagging-based methods Recently, the method based
on grid marking [20], [21] has had a good performance. It
transforms sentences into 2D tables. The method in Wang et
al. (2021) [20] includes three steps: 1) identifying the span
of entity segments by marking the head and tail words in the
table; 2) Extracting the relationship between entity segment
span pairs by marking the head and tail words in another table;
3) The integrated entities are decoded from the entity segment
span graph through maximum clique discovery. In contrast,
the most advanced method [21] uses a simpler process (two
relationships, one table, no block decoding) and is more end-
to-end, reducing error propagation. It obtains the features
between words through the convolution layer, tags them on
the grid, and identifies all possible entities through neighbor
words relationships and head-tail relationships. The biggest
difference between this method and other previous methods is
that it focuses on the relationship between words rather than
more accurate entity boundary recognition. In addition, the
grid marking method can better avoid the disadvantages of
some other methods, such as the disadvantages of sequence-
to-sequence method and span based method.

The differences between our model and previous models
Our model follows the SOTA model [21] for discontinuous
NER, which is also based on grid tagging. However, the
differences include: 1) We design a new module to embed
tag representations into our model to enhance the interactions
between tags and words. 2) We extend the tag system in [21]

with two additional tags to model more fine-grained word-
word relationships.

III. METHODOLOGY

We define the discontinuous NER task as a grid tagging
problem and identify all possible entities through four prede-
fined tags. Our model architecture is shown in Figure 3. It
is mainly composed of four components and a tag system.
The four components are the encoder module, the convolution
module, the tag representation embedding module and the co-
predictor module. Firstly, the encoder module is composed of
a pre-training language model BERT [22] and a bidirectional
LSTM [23], which is used to generate the word representation
of upper and lower culture from the input sentence. Then, the
representation of multiple words on the grid is established and
refined through the convolution module. Then, the tag features
are captured by self-attention mechanism in TREM. The
convolution module and TREM undergo multiple iterations to
obtain more detailed features. Then, the co-predictor module
[45] is used to jointly infer the relationship between all word
pairs. Finally, all possible entities are obtained by decoding.

A. Encoder Module

We use BERT [22] as the text encoder of our model. Give an
input sentence X = {x1, x2, . . . , xN}, and input them into a
pre-trained BERT. The BERT encoded by the multi-layer self-
attention structure outputs the context representation of each
context tag. To further enhance context modeling, we adopted
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bidirectional LSTM [23] based on previous work [19], [46].
After BERT encoding, the sentence X can be represented as:

H = {h1,h2, . . . ,hN}, (1)

where hi ∈ Rdh is the representation of the i-th word and dh
represents the dimension of a word representation.

B. Convolution Module

Since the relationships between words in this paper are di-
rectional, each word plays either a subject or object role in one
relationship. The subject indicates the tail of the relationship
arc and the object indicates the head. As shown in Figure 2,
subjects and objects correspond to the elements in the column
and row respectively. We transform word representations into
the subject and object spaces as below:

Hs = W 1H + b1 = {hs1,h
s
2, . . . ,h

s
N},

Ho = W 2H + b2 = {ho1,h
o
2, . . . ,h

o
N},

(2)

where hsi , hoi ∈ Rdh represent the subject and object rep-
resentations of the i-th word, W 1, W 2 ∈ Rdh×dh and b1,
b2 ∈ Rdh are trainable weights and biases respectively.

The convolution module is then used as a representation
refiner. Firstly, the Conditional Normalization Layer (CLN)
[47] is used to generate the representation of words on the
grid, which can be regarded as a three-dimensional matrix V ∈
RN×N×dh :, in which each element in the Vij grid represents
a word pair (xi, xj):

V ij = CLN(hsi ,h
o
j) = γij � (

hoj − µ
σ

) + λij , (3)

where hsi is the condition of the normalized gain parameters
γij = W αh

s
i + bα and λij = W βh

s
i + bβ . W α, W β ∈

Rdh×dh and bα, bβ ∈ Rdh are trainable weights and biases
respectively. µ and σ are the mean and standard deviation
across the elements of hoj .

Then the grid representations are enriched by adding the
relative word position information Ewp ∈ RN×N×dwp be-
tween each pair of words and the grid position information
Egp ∈ RN×N×dgp that distinguishes the upper and lower
triangular areas, and then mix with the word pair information
V ∈ RN×N×dh to obtain the position area perception rep-
resentation C ∈ RN×N×dc through a multi-layer perceptron
(MLP):

C = MLP1([V ;Ewp;Egp]). (4)

Afterwards, the multiple 2D dilated convolutions (DConv)
with different dilation rates are used to capture the interactions
between the words with different distances, formulated as:

Q = GeLU(DConv(C)), (5)

where Q ∈ RN×N×dq is the output and GeLU is a activation
function [48].

C. Tag Representation Embedding Module (TREM)

The TREM module is used to embed the tag representations
into our model in order to model the interactions between tags
as well as tags and words: First, we generate the tag-aware grid
feature TF l ∈ RN×N×dt by mapping the grid representation
Q into the tag space. Specifically, for the element (i, j) in the
grid corresponding to the word pair (xi, xj), we generate its
tag-aware feature as:

TF l(i, j) = W lQij + bl, (6)

where W l ∈ Rdt×dq and bl ∈ Rdt are trainable weights and
biases.

Since there are four kinds of tags in this paper, namely
NNW, PNW, HTW and THW (cf. Section III-E), we concate-
nate them together as below:

TF (t) = [TF
(t)
NNW ;TF

(t)
PNW ;TF

(t)
HTW ;TF

(t)
THW ], (7)

where t means that the TREM module may run several times
to refine TF ∈ RN×N×4dt . Theoretically, the number Mnum

of tag space mappings can be smaller or larger than the number
of tags, because our formulations in Equation 6 and 7 are not
constrained by this number. However, we set Mnum the same
as the number of tags heuristically since we consider TF l as
a tag representation. We will empirically show the rationality
of such method in the experiments (cf. Table IV).

We input TF (t) into the max-pooling layers (Maxpool1,
Maxpool2 ∈ RN×4dt ) and FFN layers to recover the subject
and object word features H(t)

s and H(t)
o at the t-th iteration:

H(t)
s = Maxpool1(TF (t))W s + bs,

H(t)
o = Maxpool2(TF (t))W o + bo.

(8)

where W s, W o ∈ R4dt×dh and bs, bo ∈ Rdh are trainable
weights and biases. Maxpool1 and Maxpool2 merge the
representations TF (t) along the rows and columns of the
table respectively, so as to restore the subject and object word
representations, H(t)

s and H(t)
o .

Then we use the multi-head self-attention [49] to mine the
relationships between these tag-aware word representations:

H
(t)
s(ll) = MultiHeadAttention(H(t)

s ,H(t)
s ,H(t)

s ),

H
(t)
o(ll) = MultiHeadAttention(H(t)

o ,H(t)
o ,H(t)

o ),
(9)

and another multi-head self-attention to mine the relationships
between the original word representations and these tag-aware
word representations:

H
(t)
s(wl) = MultiHeadAttention(H

(t)
s(ll),Hs,Hs),

H
(t)
o(wl) = MultiHeadAttention(H

(t)
o(ll),Ho,Ho).

(10)

Since the TREM module may run several times to itera-
tively refine the tag-aware representations, we add a residual
connection [50] to alleviate the gradient vanishment problem:

H(t+1)
s = LayerNorm(H(t)

s + H
(t)
s(wl)),

H(t+1)
o = LayerNorm(H(t)

o + H
(t)
o(wl)),

(11)

where these new features are fed back to the convolution
module for next iteration.
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Algorithm 1 Decoding Algorithm.
Input: The relationships R ∈ RN×N×ln of all the word
pairs, where ln is the number of word relationship tags. Rlij
indicates that the word pair (xi, xj) has an l relationship,
where i, j ∈ [1, N ].
Output: Entity set E.
1: E = []
2: for Rlij ∈ R and j ≥ i do
3: if Exist(RTHWji ) or Exist(RHTWij ) then
4: S = [i] // Store the head word index
5: if i = j then // Entity contains only one word
6: E.add(S) // Store the entity span to E
7: else // Find next entity word
8: for k ∈ (i, j] do
9: FindNext(S,RNNWik , RPNWki , k, j, E)
10: return E
11: // Find next entity word m based on r1 and r1
12: function FindNext(S, r1, r2,m, e, E)
13: if Exist(r1) and Exist(r2) then
14: S.add(m) // Add the next word index
15: if m = e then // Next word is the tail word
16: E.add(S) // Store the entity span to E
17: else // Recursively find next entity word
18: for k ∈ (m, e] do
19: FindNext(S,RNNWmk , RPNWkm , k, e, E)

D. Co-Predictor Module

After the TREM, we get the tag-aware grid features TF (N)

for each word pair. These features are fed into an MLP
to predict the relationships between each pair of words. In
addition, we enhance the relational classification by combining
the MLP predictor with a biaffine predictor. Therefore, we
take these two predictors to calculate the two independent
relationship distributions (xi, xj) of word pairs at the same
time, and combine them as the final prediction. For MLP, its
input is the output TF (N) of TREM, so the relationship score
of each word pair (xi, xj) is calculated as:

y
′

ij = MLP2(TF (N)(i, j)), (12)

The input of the biaffine predictor is the output H of the
encoder layer, which can be considered as a residual connec-
tion [50]. Two MLPs are used to calculate the representation
of each word in the word pair (xi, xj). Then, the relationship
score between word pairs (xi, xj) is calculated using a biaffine
classifier [51]:

y
′′

ij = s>i Uoj + W [si;oj ] + b, (13)

where U , W and b are trainable parameters, and si =
MLP3(hsi ) and oj = MLP4(hoj) represent the subject and
object representations respectively. Finally, we combine the
scores from the MLP and biaffine predictors to get the final
score:

yij = Softmax(y
′

ij + y
′′

ij). (14)

She also notes new sharp pain in left shoulder blade and back area

NNW NNW

HTW

PNW PNW

THW

Fig. 4. An example to show the process of recognizing “pain shoulder blade”.

E. Our Tagging System

In the SOTA model [21], two kinds of tags are predicted:
• Next-Neighboring-Word (NNW) indicates that the

word pair (xi, xj) belongs to an entity, and the next word of
xi in the entity is xj .

• Tail-Head-Word (THW) indicates that the word in the
row of the grid is the tail of the entity, and the word in the
column of the grid is the head of the entity.

Although such tagging design is effective, it has some
drawbacks. For example, when the model misses a THW
relationship, it will fail to recognize the corresponding entity,
which cannot be recovered. Moreover, we believe that although
their tagging design is elegant, it results in a sparse tag
distribution in the grid and thus loses certain word-word
relationships. To enhance the tagging system and model more
fine-grained word-word relationships, we propose two new
tags:

• Previous-Neighborhood-Word (PNW) indicates
that the word pair (xi, xj) belongs to an entity. The previous
word of xi in the entity is xj .

• Head-Tail-Word (HTW) indicates that the word in the
row of the grid is the head of the entity, and the word in the
column of the grid is the tail of the entity.

By using these tags, we can model fine-grained word-
word relationships and compensate certain error propagation
from the model prediction. For example, we jointly predict
the NNW and PNW relationships, and when both of them
exist, we think that the word pair belongs to the same entity.
Similarly, we jointly predict the THW and HTW relationships
and when one of them exists, we think that the word pair is
the head and tail of an entity. The advantage of using this
decoding strategy will be shown in the ablation studies (cf.
Table IV).

Moreover, we show the pseudo-code of using this decoding
strategy in Algorithm 1. This decoding algorithm is mostly
similar to the one used in Li et al. (2022) [21], while the
differences exist in finding the head entity words (line 3) and
non-head entity words (line 9). Because we add two new tags,
PNW and HTW, the condition of head entity words changes
from “THW” to “HTW or THW” and the condition of non-
head entity words changes from “NNW” to “NNW and PNW”.

Based on this decoding algorithm, we also give an example
in Figure 4 to explain the process of recognizing “pain
shoulder blade”. By using the NNW relationship with the
subject “pain” and object “shoulder” and the PNW relationship
with the subject “shoulder” and object “pain”, we recognize



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
STATISTICS OF THREE DATASETS.

CADEC ShARe13 ShARe14
All Train Dev Test All Train Dev Test All Train Dev Test

#Sentences 7,597 5,340 1,097 1,160 18,767 8,508 1,250 9,009 34,614 17,407 1,361 15,850
#Entities 6,318 4,430 898 990 11,148 5,146 669 5,333 19,047 10,354 771 7,922

#Discontinuous 679 491 94 94 1,088 581 71 436 1,650 1,004 80 566
%Discontinuous 10.7 11.1 10.5 9.5 9.8 11.3 10.6 8.2 8.7 9.7 10.4 7.1

TABLE II
HYPER-PARAMETER SETTINGS

Hyper-parameter value
dh 768
dwp 20
dgp 20
dq 64, 80, 96, 128
y0 0

Dropout 0.1, 0.3, 0.5
Learning rate (BERT) 5e-6
Learning rate (others) 1e-3

Batch size 12, 16
Warm factor 0, 0.1, 0.4

Rounds (TREM iterations) 3

“pain shoulder” as a part of the entity. Similarly, “shoulder
blade” is also recognized in the same way. Then, by using
the HTW and THW relationships, we recognize “pain” and
“blade” are the head and tail of the entity, so that “pain
shoulder blade” can be recognized completely.

F. Learning

As shown in Figure 2, we can see that there may be more
than one relationship between each pair of words. Therefore,
we adopt a cross-entropy loss function that is extended for
multi-label classification [52]. In order to predict the correct
tag, we need the score of each target tag to be no less than that
of each non-target tag. In addition, we define a threshold so
that the scores of target classes are greater than the threshold,
and the scores of non-target classes are less than the threshold.
The final loss function is:

L = log
(

1 +
∑
n,m

eŷ
n
(i,j)−y

m
(i,j)

+
∑
n

eŷ
n
(i,j)−y0 +

∑
m

ey0−y
m
(i,j)

)
,

= log
(
ey0 +

∑
n

eŷ
n
(i,j)

)
+ log

(
e−y0 +

∑
m

e−y
m
(i,j)

)
,

(15)

where n ∈ Ωneg , m ∈ Ωpos, and Ωneg , Ωpos are the non-
target and target tag sets respectively. ŷn(i,j) and ym(i,j) are the
non-target and target tag scores respectively. y0 represents the
threshold. This loss function is similar to the circle loss [53].

IV. EXPERIMENT SETTING

A. Datasets

In order to evaluate our model, we conducted experiments
on three discontinuous NER datasets, namely CADEC [5],
ShARe13 [2] and ShARe14 [24], all of which come from the
documents in biomedical or clinical fields. They all contain

only one entity type, in which the entity type in CADEC
is ADR, and the entity type in ShARe13 and ShARe14
is Disease_Disorder. We use the preprocessing script
provided by Dai et al. (2020) [54] for dataset segmentation.
In these discontinuous NER datasets, discontinuous entities
account for about 10% of the total entities. The statistics of
these datasets are shown in Table I.

B. Baselines

Sequence-tagging-based methods assign a tag to each
token with different tag schemes, such as BIOHD [16]. Span-
based methods enumerate all possible spans and combines
them into entities [19]. Hypergraph-based methods use hy-
pergraphs to represent and infer entity mention [55]. Seq2Seq-
based methods directly generate the word sequences of the
entities at the decoder side [17], [18]. Grid-tagging-based
methods assign a tag for each pair of words and entities can
be decoded out from these tags [20], [21]. We also compare
with other methods that cannot be grouped into the above
categories, such as the transition-based method [54].

C. Evaluation Metrics

Our evaluation metrics follow previous work [17], [37],
[56], using the precision (P), recall (R) and F1. If the token
sequence and type of a predicted entity are exactly the same
as those of a gold entity, the predicted entity is regarded as
true-positive. We run each experiment three times and report
their average value.

D. Implementation Details

Our hyper-parameter settings are given in Table II. The
hyper-parameters are adjusted according to the fine-tuning on
the development sets. In addition, since the datasets come
from different fields, we use different pre-trained langauge
models to generate word representations. For CADEC, we
use BioBERT [57], and for ShARe13 and ShARe14, we
use ClinicalBERT [58]. Moreover, we use AdamW [59] as
the optimizer. Our model is implemented using PyTorch and
trained using NVIDIA RTX 3090 GPU.

V. RESULTS AND ANALYSES

A. Comparisons with the Baselines

The main results of the baseline models and our model
in three discontinuous NER datasets are shown in Table III.
We can observe that our model has the best results (F1
values) on the three datasets, which is due to the fact that
it not only captures the relationships between words, but also
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TABLE III
PERFORMANCE COMPARISONS BETWEEN THE BASELINE MODELS AND OUR MODEL ON THREE DATASETS. THE BOLD NUMBER REPRESENTS THE

HIGHEST RESULT IN EACH COLUMN. WE ALSO PERFORM THE SIGNIFICANCE TEST ON THE F1S OF OUR MODEL AND THE SOTA MODEL [21] ON THE
DEVELOPMENT SET AND TEST SET. ∗ DENOTES SIGNIFICANCE AT P<0.05. THE NUMBERS IN PARENTHESES MEAN THE MODEL RESULTS ON THE

DEVELOPMENT SETS.

MODEL CADEC ShARe13 ShARe14
P R F1 P R F1 P R F1

Sequence Tagging Tang et al. (2018) [16] 67.80 64.99 66.36 — — — — — —
Hypergraph-based Wang and Lu (2019) [55] 72.10 48.40 58.00 83.80 60.40 70.30 79.10 70.70 74.70

Seq2Seq Yan et al. (2021) [17] 70.08 71.21 70.64 82.09 77.42 79.69 77.20 83.75 80.34
Fei et al. (2021) [18] 75.50 71.80 72.40 87.90 77.20 80.30 — — —

Span-based Li et al. (2021a) [19] — — 69.90 — — 82.50 — — —
Others Dai et al. (2020) [54] 68.90 69.00 69.00 80.50 75.00 77.70 78.10 81.20 79.60

Grid Tagging
Wang et al. (2021) [20] 70.50 72.50 71.50 84.30 78.20 81.20 78.70 82.15 80.39

Li et al. (2022) [21] 74.09 72.35 73.21 85.57 79.68 82.52 79.88 83.71 81.75
(70.59) (68.45) (69.50) (80.20) (77.83) (78.99) (82.29) (81.37) (81.82)

TOE (ours) 77.77 70.66 74.04∗ 85.18 80.12 82.57 82.26 82.57 82.41∗
(74.22) (67.79) (70.86∗) (81.38) (77.59) (79.42∗) (83.77) (82.22) (82.98∗)

TABLE IV
ABLATION EXPERIMENTS. WE REPORT THE MODEL PERFORMANCE WHEN DELETING SOME MODULES SUCH AS TREM AND EXTENDING TAGS, OR

CHANGING SOME CONFIGURATIONS SUCH AS THE ROUNDS OF TREM, DECODING METHODS AND TAG MAPPING NUMBER Mnum . T (l1, l2) INDICATES
THAT WE THINK THE WORD RELATIONSHIP REALLY EXISTS WHEN BOTH l1 AND l2 EXIST. L(l1, l2) INDICATES THAT WE THINK THE WORD

RELATIONSHIP REALLY EXISTS WHEN EITHER ONE OF l1 AND l2 EXIST. BEST SETTING: T(NNW,PNW),L(THW,HTW); ROUNDS = 3; Mnum = 4. THE
NUMBERS IN PARENTHESES MEAN THE MODEL RESULTS ON THE DEVELOPMENT SETS.

CADEC ShARe13 ShARe14
P R F1 P R F1 P R F1

Best Setting 77.77 70.66 74.04 85.18 80.12 82.57 82.26 82.57 82.41
(74.22) (67.79) (70.86) (81.38) (77.59) (79.42) (83.77) (82.22) (82.98)

w/o TREM 73.44 72.19 72.80 84.85 79.31 81.98 79.50 83.36 81.38
(69.69) (69.86) (69.77) (79.67) (77.44) (78.53) (82.24) (79.90) (81.06)

Rounds = 2 75.75 70.93 73.25 85.84 77.55 81.38 79.91 83.44 81.63
(71.41) (69.15) (70.26) (81.07) (75.98) (78.31) (82.99) (80.52) (81.73)

Rounds = 4 75.84 69.12 72.23 84.80 78.36 81.41 81.00 82.91 81.93
(72.88) (67.35) (69.95) (79.22) (77.24) (78.11) (84.15) (79.07) (81.53)

NNW+THW 73.78 72.62 73.20 84.33 79.68 81.94 77.72 84.97 81.18
(69.66) (69.73) (69.69) (79.26) (78.08) (78.67) (81.82) (82.19) (81.99)

PNW+HTW 74.91 71.47 73.12 84.89 79.46 82.07 78.81 84.27 81.44
(70.54) (68.50) (69.49) (80.20) (77.83) (78.99) (82.29) (81.37) (81.82)

T(NNW,PNW),T(THW,HTW) 78.10 68.37 72.90 86.07 79.13 82.45 83.02 81.72 82.37
(73.35) (66.33) (69.65) (81.47) (76.28) (78.77) (86.06) (77.58) (81.60)

L(NNW,PNW),T(THW,HTW) 77.93 67.38 72.23 85.01 79.52 82.17 82.58 81.24 81.91
(73.33) (66.07) (69.48) (80.56) (77.04) (78.73) (84.66) (78.11) (81.25)

L(NNW,PNW),L(THW,HTW) 76.18 70.66 73.28 84.55 80.19 82.31 81.05 83.25 82.14
(71.25) (68.13) (69.63) (80.47) (77.47) (78.93) (84.01) (79.16) (81.51)

Mnum = 2 75.58 69.87 72.61 85.27 77.88 81.38 80.85 81.39 81.11
(71.80) (68.28) (70.00) (80.39) (76.18) (78.20) (84.49) (79.90) (82.13)

Mnum = 6 76.26 70.28 73.14 84.54 79.09 81.72 79.83 83.36 81.55
(71.88) (67.57) (69.65) (79.41) (76.78) (78.07) (83.33) (80.12) (81.69)

Mnum = 8 76.04 69.19 72.44 85.29 78.26 81.62 80.50 83.15 81.80
(72.13) (67.46) (69.71) (80.92) (76.78) (78.79) (83.59) (80.34) (81.92)

pays attention to the relationships between words and tags
and the relationships between tags and tags. In addition, we
expand two new tags, which can complement the prediction
of neighbor words and head-tail words. As a result, the
performance on CADEC, ShARe13 and ShARe14 is improved
by 0.83%, 0.05% and 0.66% compared to the previous state-
of-the-art ones.

B. Ablation Studies

In addition, we also conduct corresponding ablation exper-
iments, in order to verify the effectiveness of the modules
in our proposed model and understand their impacts. The
experimental results are shown in Table IV. First of all, if
the TREM module is deleted, the F1s of our model on three
datasets decrease by 1.24%, 0.59% and 1.03% respectively.

This shows that the TREM is effective, that is, the relationships
between words and tags are conducive to the prediction of tags.

Then, we also investigate the effect of the iteration number
in TREM. As can be seen from the table, no matter reducing
the number of iterations (e.g. rounds = 2) or increasing the
number of iterations (e.g. rounds = 4), the performance of our
model on all three datasets decrease. Specifically, when we
use 2 rounds, the F1 decreases by 0.79%, 1.19% and 0.78%
respectively. Similarly, when 4 rounds are used, the F1 also
decreases by 1.81%, 1.16% and 0.48% respectively.

After that, we conduct experiments to compare the effect of
using the tags in the SOTA model [21] (NNW+THW) and the
ones that we propose in this paper (PNW+HTW). As shown in
Table IV, the NNW+THW and PNW+HTW tagging strategies
achieve almost the same F1s, which is explainable because
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Fig. 5. Results of recognizing discontinuous entities, where (a) - (c) are the F1 values using the sentences containing at least one discontinuous entity, and
(d) - (f) are the F1 values considering only discontinuous entities.

TABLE V
EXAMPLES OF DIFFERENT OVERLAPPED TYPES.

Overlapped Type Example Sentence Entity Mention

Left Overlapped Hair dryness, breakage and loss. Hair breakage
Hair loss

Right Overlapped Hip, back and leg pain. Hip pain 
back pain

No Overlapped Brain fog and decreased cognitive skills. Brain fog
decreased cognitive skills

Multi. Overlapped Cough with yellow or bloody sputum. Cough with yellow sputum
Cough with bloody sputum

they entail the same neighbor-word and head-tail relationships
but implement these relationships in different directions. The
two new tags that we have added are kinds of effective
complements to the previous tags. Therefore, the model that
combines both of them achieves the best performance on all
three datasets.

Next, we investigate the effect of using different decoding
methods. As shown in Table IV, the “T(NNW, PNW) L(THW,
HTW)” decoding method performs the best. We assume that
the reason for this observation is that NNW and PNW rela-
tionships occur much more than THW and HTW relationships.
Thus, the model is apt to predict more NNW and PNW rela-
tionships but fewer THW and HTW relationships. Therefore,
it is necessary to tighten the establishing condition of neighbor
word relationships by using the logic “AND” between NNW
and PNW, but loose the establishing condition of head-tail
word relationships by using the logic “OR” between THW
and HTW. As seen, the “L(NNW, PNW) T(THW, HTW)”
decoding method, which is the opposite of the “T(NNW,
PNW) L(THW, HTW)” decoding method, performs the worst

TABLE VI
EXPERIMENTAL RESULTS OF RECOGNIZING THE ENTITIES WITH

DIFFERENT OVERLAPPED TYPES. THE BOLD NUMBER DENOTES THE
HIGHEST VALUE FOR EACH TYPE AND DATASET.

Model CADEC ShARe13 SHAER14

Wang et al.(2021) [20]

No 7.69 48.26 40.32
Left 42.86 64.07 66.15

Right 62.22 13.04 45.80
Multi. 0.00 29.63 0.00

Li et al.(2022) [21]

No 32.79 48.48 50.38
Left 46.51 69.60 62.40

Right 51.43 58.89 68.77
Multi. 17.98 33.33 0.00

TOE(ours)

No 38.87 50.21 53.29
Left 48.48 69.71 66.32

Right 56.79 49.59 72.31
Multi. 0.00 36.36 0.00

in all three datasets, further verifying our assumption.
Finally, we also investigate the effect of the tag mapping

number. We test 4 values for the tag mapping number Mnum,
namely 2, 4, 6, 8. We find that when the tag mapping number
is set to 4, which is the same as the number of tags, our
model achieves the best performance. Such an observation
is consistent with our intuition that the tag mapping number
should be equal to the tag number. This may be because each
tag mapping represents a tag, more or fewer tag mappings may
bring troubles to the model for aligning tag representations
with tags.

C. Effectiveness on Recognizing Discontinuous Entities

Figures 5(a) - (c) show the results using sentences contain-
ing at least one discontinuous entity. First, our model TOE
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TABLE VII
ERROR ANALYSIS ON DIFFERENT ENTITY TYPES. HEAD-TAIL RELATIONSHIP CORRESPONDS TO THE THW AND HTW TAGS, AND THE NEIGHBOR WORDS

RELATIONSHIP CORRESPONDS TO THE NNW AND PNW TAGS. ALL RESULTS COME FROM SENTENCES CONTAINING AT LEAST ONE CORRESPONDING
ENTITY TYPE.

Entity Type Error Type CADEC(%) ShARe13(%) ShARe14(%)

All

FP Head-tail relationship correct, neighbor words relationship incorrect 4.05 0.50 1.01
Head-tail relationship incorrect 40.28 40.33 52.29

FN Head-tail relationship correct, neighbor words relationship incorrect 2.43 0.50 0.91
Head-tail relationship incorrect 53.24 58.67 45.79

Total 100 100 100

Discontinuous Entity

FP Head-tail relationship correct, neighbor words relationship incorrect 9.74 5.06 6.87
Head-tail relationship incorrect 15.48 17.05 35.23

FN Head-tail relationship correct, neighbor words relationship incorrect 5.73 3.94 4.65
Head-tail relationship incorrect 69.05 73.95 53.25

Total 100 100 100

Flat Entity

FP Head-tail relationship correct, neighbor words relationship incorrect 0.00 0.00 0.00
Head-tail relationship incorrect 50.14 39.96 58.92

FN Head-tail relationship correct, neighbor words relationship incorrect 0.00 0.00 0.00
Head-tail relationship incorrect 49.86 60.04 41.08

Total 100 100 100

Overlapped Entity

FP Head-tail relationship correct, neighbor words relationship incorrect 12.53 4.70 3.47
Head-tail relationship incorrect 28.46 17.10 34.74

FN Head-tail relationship correct, neighbor words relationship incorrect 1.76 4.27 2.65
Head-tail relationship incorrect 57.25 73.93 59.14

Total 100 100 100

TABLE VIII
EFFICIENCY ANALYSIS. SENT/S IS THE NUMBER OF SENTENCES THAT

CAN BE PROCESSED PER SECOND.

Model Training Inference
(sent/s) (sent/s)

Dai et al.(2020) [54] 24.7 66.5
Yan et al.(2021) [17] 63.6 19.2

Wang et al.(2021) [20] 39.3 109.7
Li et al.(2022) [21] 116.1 365.7

TOE(ours) 78.5 195.1

achieves better results than other grid-tagging models such
as Wang et al. (2021) [20] and Li et al. (2022) [21]. This
demonstrates the superiority of our model, where both the
word and tag relationships are leveraged. In addition, our
model also performs better than other kinds of baselines such
as the transition-based system [54] and end-to-end generative
model [17]. Moreover, as shown in Figures 5(d) - (f), when
only comparing the performance of recognizing discontinuous
entities, our model still obtains the best results on all datasets.
In conclusion, our model has the advantage of identifying dis-
continuous entities, which contributes to overall performance
improvement.

D. Performance Analysis of Recognizing the Entities with
Different Overlapped Types

As mentioned in the previous section, discontinuous entities
and overlapped entities basically exist at the same time in the
three datasets. In order to analyze the ability of our model
to extract various overlapping entities, we divide them into
four categories according to previous work [20], [54], i.e.,
“no overlapped”, “left overlapped”, “right overlapped” and
“multiple overlapped”. Table V shows an example for each
overlapped category. As shown in Table VI, most of the results
of our model are optimal compared with the baseline models,
with regards to different overlapped types. This shows that our

model is more competitive and more adaptive in extracting
various overlapping entities. In addition, in some cases, the
F1s of our model and the baseline models are 0. This may be
because the number of such entities is significantly smaller in
the datasets, compared to the ones of other overlapping types.
For instance, the number of multiple overlapped entities in
the training set of ShARe14 is 20, leading to under-fitting for
model training.

E. Error Analysis

In order to understand the disadvantages and advantages
of our model, we perform an error analysis and show the
results in this section. Errors can be divided into false-positive
(FP) and false-negative (FN). Furthermore, FP errors and
FN errors can be further divided into two types: “head-tail
relationship incorrect” and “head-tail relationship correct but
neighbor words relationship incorrect”. As shown in Table VII,
we analyze the errors of our model on three discontinuous
datasets from four directions: “all entities”, “flat entities”,
“overlapped entities” and “discontinuous entities”. We can see
that regardless of the entity type, the FN and FP errors for
“head-tail relationship incorrect” account for high proportions.
Especially in recognizing flat entities, 100% errors come from
incorrect head-tail relationship recognition. This may be be-
cause the head-tail relationship is a more difficult relationship
to recognize compared with the neighbor relationship, since
entity boundary is hard to identify, which is a well-known issue
in previous work [18], [60]. In addition, we can also observe
that in most cases, the FP numbers of “head-tail relationship
incorrect” are smaller than the FN numbers, which shows that
the recognition coverage of gold-standard entities is still a
challenge for our model.
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F. Efficiency Analysis

Table VIII shows the training speed and prediction speed of
our model. Compared with the model of Li et al. (2022) [21],
our model has a slower training speed and prediction speed.
This is mainly because we inject the tag embedding into our
model and the computation in the TREM can be performed
iteratively, resulting in more parameters and calculations.
Although the performance improvement of our model leads
to a decrease in efficiency compared with the model proposed
by Li et al. (2022) [21], our model still has certain advantages
in the training and prediction speeds compared with other
baseline models [17], [20], [54], which demonstrates that the
method based on grid tagging is more efficient than other kinds
of methods.

VI. CONCLUSION

This paper extends a SOTA grid-tagging model for discon-
tinuous named entity recognition with tag-oriented enhance-
ment. Our enhanced model has two strengths: (1) It not only
pays attention to the relationships between words, but also
the relationships between words and tags. (2) It leverages a
more fined-grain tagging system to strengthen the prediction
of the relationships between words and tags. The experimental
results show that the performance of our model on all three
benchmark datasets are the best, and the ablation experiments
demonstrate the effectiveness of the two enhancements that we
propose in the model. Further experimental analyses show that
our proposed model can better identify discontinuous entities.
Although the enhancements bring a certain efficiency loss,
our model is still faster than most baselines in training and
prediction. In the future, we will apply our model in more
complex information extraction tasks such as nested entity
relationship extraction and structured sentiment analysis.
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