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Abstract—This paper presents a two-stage online phase re-
construction framework using causal deep neural networks
(DNNs). Phase reconstruction is a task of recovering phase of
the short-time Fourier transform (STFT) coefficients only from
the corresponding magnitude. However, phase is sensitive to
waveform shifts and not easy to estimate from the magnitude
even with a DNN. To overcome this problem, we propose to
use DNNs for estimating differences of phase between adjacent
time-frequency bins. We show that convolutional neural networks
are suitable for phase difference estimation, according to the
theoretical relation between partial derivatives of STFT phase
and magnitude. The estimated phase differences are used for
reconstructing phase by solving a weighted least squares problem
in a frame-by-frame manner. In contrast to existing DNN-based
phase reconstruction methods, the proposed framework is causal
and does not require any iterative procedure. The experiments
showed that the proposed method outperforms existing online
methods and a DNN-based method for phase reconstruction.

Index Terms—Real-time spectrogram inversion, group delay,
instantaneous frequency, time-frequency analysis, low-latency.

I. INTRODUCTION

PHASE reconstruction of short-time Fourier transform
(STFT) coefficients is important for various audio tech-

nologies such as speech enhancement [1]–[6], audio source
separation [7]–[11], and text-to-speech synthesis [12]–[15]. As
the structure of audio signals is apparent in the magnitude of
STFT coefficients, ordinary methods for these technologies
have focused on manipulating the magnitude. After obtain-
ing the magnitude, the corresponding phase is required to
reconstruct a time-domain signal. Although the phase of an
observed signal is available in speech enhancement and audio
source separation, it often causes artifacts and residual interfer-
ence [16], [17]. In text-to-speech synthesis, the magnitude is
generated from linguistic features, and thus the phase is fully
unavailable. Hence, phase reconstruction of STFT coefficients
is helpful for many applications.

As summarized in Fig. 1, various phase reconstruction
methods have been studied, such as consistency-based meth-
ods [18]–[20], phase gradient heap integration (PGHI) [21],
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Fig. 1. Comparison of offline and online phase reconstruction methods.
Methods in the bottom half exploit the prior knowledge of the target signal.

sinusoidal-model-based methods [22], [23], and deep neural
network (DNN)–based methods [24]–[32]. These methods can
be divided into two categories: phase reconstruction with and
without prior knowledge of a target signal.

As phase reconstruction methods without prior knowledge,
consistency-based methods have been widely used [18]–[20].
These methods are based on the relation among nearby STFT
coefficients owing to the window and its overlapping nature.
To recover this relation, most consistency-based methods
are given as iterative optimization algorithms. Meanwhile,
PGHI [21] does not require such iterative procedures or the
prior knowledge. PGHI is based on a relation between the
magnitude and phase of the STFT coefficients [33], [34];
partial derivatives of phase can be analytically calculated from
magnitude under some assumptions. This relation enables
PGHI to reconstruct phase by integrating phase derivatives. As
a result, PGHI has achieved promising results despite lacking
any prior knowledge about the target signal.

In contrast, sinusoidal-model-based and DNN-based meth-
ods leverage prior knowledge about the target signal. The
assumption of sinusoidal-model-based methods is that the
target signal consists of sinusoids [22], [23]. This assumption
allows one to approximate the phase derivative with respect to
time by the frequency of each sinusoid. Then, the phase can be
reconstructed by integrating the approximated derivative over
time. However, such theoretically derived methods are only
applicable to specific signals, and DNN-based methods are
promising because DNNs can automatically learn prior knowl-
edge from a training dataset. Since some DNN-based methods
have been successfully applied to phase reconstruction [29],
we also propose to use DNNs to exploit prior knowledge
learned from the training dataset.
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(i) Overview of the two-stage online phase reconstruction

(ii) Detail of each stage

Fig. 2. Illustration of the two-stage online phase reconstruction. As depicted
in the top figure, the first stage estimates phase differences from the log-
magnitude, and the second stage reconstructs phase from them. Instead of
TPD, the DNN estimates a modified version of TPD called baseband phase
delay (BPD) as shown in the bottom figure. The estimated BPD is converted
to TPD by adding 2παm/M . The second stage reconstructs the phase frame-
by-frame by solving a weighted least squares problem of complex STFT
coefficients.

While many phase reconstruction methods are offline al-
gorithms, online phase reconstruction is highly desired in
a wide range of applications, including incremental text-to-
speech [35] and low-latency audio source separation [36].
Therefore, except for the DNN-based methods, the afore-
mentioned methods have been extended to the online set-
ting [22], [23], [37], [38]. A promising method is an extension
of PGHI called real-time PGHI (RTPGHI) [38]. Although
it outperforms the consistency-based method [37] and the
sinusoidal-model-based method [22], there remains room for
improvement. First, the STFT phase-magnitude relation is
valid only in the continuous setting, and thus estimated phase
differences contain some errors in the discrete setting. Second,
to approximate the phase derivatives, the centered difference
scheme used in PGHI is not allowable in the online setting
without look-ahead frames. Instead, RTPGHI uses the back-
ward difference that results in lower performance than the
original PGHI. The strong modeling capability of DNNs can
improve the estimation accuracy of phase differences.

In this paper, we propose a DNN-based online phase re-
construction framework. As illustrated in Fig. 2, the proposed
framework consists of two stages: ( i ) estimating the phase
differences from the magnitude and (ii) reconstructing the
phase from the estimated phase differences. First, we estimate
the phase differences with respect to time (TPD) and frequency
(FPD) by using causal DNNs. This DNN-based estimation is
expected to be robust to the mismatch of the STFT phase-
magnitude relation by leveraging the prior knowledge acquired
from a training dataset. Second, we recurrently reconstruct
phase from the estimated differences. To handle the phase
differences efficiently, we treat them as the ratios of complex
STFT coefficients. Then, the phase is reconstructed by solv-
ing a weighted least-squares problem of STFT coefficients.

Through several experiments, we confirmed the effectiveness
of the proposed two-stage framework compared to existing
online phase reconstruction methods.

Note that this paper is related to our conference paper [30],
in which we developed the basic concept of the two-stage
phase reconstruction framework in the offline setting. In this
paper, we extend it to an online method with improvement on
all components, i.e., both the first and the second stages. The
contributions of this paper are summarized as follows:

• proposing an online phase reconstruction framework us-
ing causal DNNs, while our previous work [30] focused
on the offline setting;

• applying convolutional neural networks (CNNs) to esti-
mate phase differences, which is motivated by the STFT
phase-magnitude relation;

• presenting a novel method for reconstructing phase from
its differences by solving the weighted least squares
problem of complex STFT coefficients;

• investigating and comparing the performance of various
online phase reconstruction methods.

The rest of the paper is organized as follows. In Section II,
offline and online phase reconstruction problems are formu-
lated. Section III explains the STFT phase-magnitude relation,
PGHI, and its online extension, RTPGHI. DNN-based phase
reconstruction methods are also reviewed. The proposed two-
stage framework for DNN-based online phase reconstruction
is introduced in Section IV. In Section V, the proposed method
is compared with various online phase reconstruction methods,
and then the effectiveness of both stages is investigated.
Finally, Section VI concludes this paper.

II. PROBLEM FORMULATION

STFT1 of a discrete signal χ with respect to a real sym-
metric window g of length L is defined as

X[m,n] =

bL/2c∑
l=−bL/2c

χ[l + αn] g[l] e−2πilm/M , (1)

where X[m,n] is the (m,n)th entry of the STFT coefficients, i
is the imaginary unit, α is a time shifting step, n = 0, . . . , N−
1 and m = 0, . . . ,M − 1 are the time-frame and frequency
indices, respectively. These symbols used in this section are
summarized in Table I. Let us denote the magnitude and phase
of the STFT coefficients X by A and Φ, respectively:

A[m,n] = |X[m,n]| (2)
Φ[m,n] = Arg(X[m,n]), (3)

where Arg(·) returns the principal value of the complex-
argument of its input.

We consider the task of phase reconstruction that aims at
estimating the target phase Φ while allowing the ambiguity of

1In the literature of audio signal processing, the transform defined by (1)
is commonly called STFT, while it is called the discrete Gabor transform in
other communities [39], [40]. In this paper, we use the term STFT according
to the former literature.
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TABLE I
LIST OF SYMBOLS USED IN SECTION II

Variables
χ[l] The lth sample of a discrete time-domain signal
g[l] The lth sample of a window used in STFT

X[m,n] Complex STFT coefficient at the (m,n)th bin
A[m,n] STFT magnitude given by |X[m,n]|
Φ[m,n] STFT phase given by Arg(X[m,n])

Notations with accents and subscripts
(̂·) Estimate of its input

(·)n
Vector of its input at the nth time-frame,
e.g., xn = [X[0, n], . . . , X[M − 1, n]]T

Maps
F (·) Mapping from the magnitude to the phase

Arg(·) Mapping from a complex scalar to its principal argument

2π. That is, our objective is to construct the a mapping F (·)
such that:

Φ̂ = F (A), (4)

Φ ≈ Φ̂ + 2πN, (5)

where N ∈ ZM×N is an arbitrary integer-valued array.
Offline phase reconstruction uses the STFT magnitude at all

time-frames as in (4), which can be written as follows:

Φ̂ = F (a0, . . . ,aN−1), (6)

where an = [A[0, n], . . . , A[M −1, n]]T, and (·)T denotes the
transpose. However, (6) is not applicable to the online setting.
In real-time applications, we should estimate the phase at each
time-frame only from the magnitudes up to the current time-
frame and few look-ahead frames:

φ̂n = F (. . . ,an, . . . ,an+NLA
), (7)

where φ̂n = [Φ̂[0, n], . . . , Φ̂[M − 1, n]]T, and NLA ∈ N is
the number of look-ahead frames. The number of time-frames
that affect the current output depends on the map F (·). When
using a causal CNN [41], it depends on the receptive field of
the CNN. Meanwhile, when using a recurrent neural network
(RNN), the output at the current time-frame implicitly depends
on the magnitudes at all the past time-frames. In this paper,
a system is said to be causal if it does not require future
information to compute its current output, i.e., NLA = 0.

III. RELATED WORKS

In this section, after explaining PGHI and RTPGHI, we
review the DNN-based phase reconstruction methods. The
symbols used in this section are listed in Table II.

A. Phase Gradient Heap Integration (PGHI)

PGHI is a non-iterative phase reconstruction method based
on the STFT phase-magnitude relation derived from the defini-
tion of continuous STFT [21]. In the continuous setting, STFT
of a function y ∈ L2(R) with respect to a window function
h ∈ L2(R) is defined as

Y (f, t) =

∫
R
y(τ + t)h(τ) e−2πifτdτ

= A(f, t) eiϕ(f,t), (8)

TABLE II
LIST OF SYMBOLS USED IN SECTION III

Variables
y L2 function as a signal
h L2 window function
Y Continuous STFT of the function y
A Magnitude of Y
ϕ Phase of Y

Ã[m,n] Log-magnitude of the discrete STFT coefficient
Vc[m,n] Phase derivative for time defined for the (m,n)th point
Uc[m,n] Phase derivative for frequency defined for the (m,n)th point
V [m,n] Backward phase difference for time (TPD)
U [m,n] Backward phase difference for frequency (FPD)

Maps
Fθ(·) DNN for estimating phase from the given magnitude
L(·, ·) Periodic loss function

where A and ϕ represent the magnitude and phase, respec-
tively. Let us define the Gaussian window as follows:

h(t) =

(
2

σ2

)1/4

e−πt
2/σ2

, (9)

where σ is a parameter of the Gaussian window. When using
the Gaussian window for STFT, both magnitude and phase are
partially differentiable with respect to both time and frequency.
In addition, the following phase-magnitude relation of STFT
can be derived [21]:

∂

∂t
ϕ(f, t) =

1

σ2

∂

∂f
log(A(f, t)) + 2πf, (10)

∂

∂f
ϕ(f, t) = −σ2 ∂

∂t
log(A(f, t)). (11)

This relation indicates that the phase derivatives can be ana-
lytically calculated from the corresponding log-magnitude. We
can thus reconstruct the phase by integrating its gradient up
to the global constant phase.

PGHI exploits the relations in (10) and (11) to compute the
phase gradient in the discrete setting, where STFT is defined
as (1). In PGHI, phase gradient is approximated by using the
second order centered differences of log-magnitude:

V̂c[m,n] =
αM

2β
(Ã[m+ 1, n]− Ã[m− 1, n]) +

2παm

M
, (12)

Ûc[m,n] = − β

2αM
(Ã[m,n+ 1]− Ã[m,n− 1]), (13)

where Ã[m,n] = log(A[m,n]), and β is a constant depending
on the window. Note that V̂c[m,n] and Ûc[m,n] approximate
phase derivatives sampled on the time-frequency (T-F) grid.

The phase is reconstructed by numerically integrating the
backward phase differences. Since there are multiple possible
paths for the integration, PGHI adaptively chooses one of the
following four integration paths:

Φ̂[m,n] = Φ̂[m,n− 1] + V̂ [m,n], (14)

Φ̂[m,n] = Φ̂[m,n+ 1]− V̂ [m,n+ 1], (15)

Φ̂[m,n] = Φ̂[m− 1, n] + Û [m,n], (16)

Φ̂[m,n] = Φ̂[m+ 1, n]− Û [m+ 1, n], (17)
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Fig. 3. Illustration of the phase derivatives and the backward phase differ-
ences. Green circles correspond to phases at the T-F grids. Red and blue arrows
indicate phase differences with respect to time and frequency, respectively.

where V̂ [m,n] and Û [m,n] are approximate backward TPD
and FPD, respectively. They are given by averaging the
estimated phase gradient in (12) and (13):

V̂ [m,n] =
V̂c[m,n] + V̂c[m,n− 1]

2
, (18)

Û [m,n] =
Ûc[m,n] + Ûc[m− 1, n]

2
. (19)

Note that the oracle backward TPD and FPD are given by

V [m,n] = Φ[m,n]− Φ[m,n− 1], (20)
U [m,n] = Φ[m,n]− Φ[m− 1, n], (21)

respectively. The relation between the phase derivatives and
the backward phase differences are illustrated in Fig. 3. While
the former is defined for every T-F points, the latter is defined
as the relation between adjacent T-F bins.

In the numerical integration, PGHI omits phase at a T-F bin
whose magnitude is small because phase differences should be
unreliable at such T-F bins. Instead, random phase is assigned
to such T-F bins for simplicity. We refer the reader to the
paper [21] and codes2 for more details of implementation.

B. Real-time PGHI (RTPGHI)

RTPGHI is an online extension of PGHI [38]. When allow-
ing one look-ahead frame, i.e., NLA = 1 in (7), the phase gra-
dient can be approximated by the centered difference scheme
as in (12) and (13). However, the centered difference in (13)
is not applicable to the causal setting (i.e., NLA = 0) because
Ã[m,n + 1] is not accessible. Hence, RTPGHI approximates
the phase derivative with respect to the frequency by using the
second order backward time-difference of the log-magnitude:

Ûc[m,n] = − β

2αM
(3Ã[m,n])−

4Ã[m,n− 1] + Ã[m,n− 2]). (22)

2PGHI and RTPGHI are implemented in the phase retrieval toolbox
(PHASERET): http://ltfat.github.io/phaseret/ [42].

Then, the phase is reconstructed via one of the integration
paths except (15) because Φ̂[m,n+ 1] is not available.

Although RTPGHI achieved promising results, it has some
limitations. First, the phase-magnitude relation in (10) and
(11) is only valid for the continuous case, and hence the
estimated TPD and FPD in (12) and (13) contain errors in
the discrete setting. Moreover, this relation assumes the use
of the Gaussian window which has infinite support in the
time domain. Such a window is not allowed in real-time
applications. Second, the experimental results in [38] showed
that the second order backward difference approximation in
(22) degrades the quality of the reconstructed signals from
that of the centered difference in (13).

C. DNN-based Phase Reconstruction

DNN-based phase reconstruction has gained increasing at-
tention because of strong modeling capability of DNNs [24]–
[32]. A DNN-based method can handle various signals by
learning prior knowledge from a training dataset. A straight-
forward approach is to model the map F (·) in (4) by a DNN.
When training such a DNN, we should consider the periodic
nature of the target phase Φ[m,n] because phase is given as
a complex-argument. Ordinary loss functions for a regression
problem, including the mean squared error, are not suitable
for training in such a situation.

To address this issue, several approaches have been pre-
sented. One approach uses a DNN to estimate complex STFT
coefficients X instead of their phase Φ [24], [28], [29].
Another approach quantizes the target phases and estimates
their indices [8], [9]. As a result of recasting the regression
problem as a classification problem, the periodic nature of the
phase is circumvented. Neither approach directly estimates the
phase to avoid dealing with a circular variable.

A periodic loss function has been proposed to train a DNN
that directly estimates the continuous circular phase [26], [27].
In this approach, a DNN Fθ(·) directly estimates the phase:

Φ̂ = Fθ(A), (23)

where θ is a set of parameters of the DNN. To measure the
error between the target phase Φ[m,n] and the estimated phase
Φ̂[m,n], a periodic loss function satisfying

L(φ, φ̂) = L(φ, φ̂+ 2πb) (24)

is considered, where b is an arbitrary integer. For instance, the
negative cosine loss function is given by

Lcos(φ, φ̂) = − cos(φ− φ̂). (25)

By using the periodic loss function, a DNN for estimating the
continuous phase is trained as follows:

min
θ

M−1∑
m=0

N−1∑
n=0

Lcos(Φ[m,n],Fθ(A)[m,n]), (26)

where we omit the summation over the training dataset be-
cause the DNN treats each pair of A and Φ separately. The
estimated phase has the ambiguity of 2π due to the use of
the periodic loss function. This ambiguity is not a problem

http://ltfat.github.io/phaseret/
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TABLE III
LIST OF SYMBOLS USED IN SECTION IV

Variables
W [m,n] Backward baseband phase difference (BPD)
V[m,n] Ratio between STFT coefficients at the adjacent time-frames
U[m,n] Ratio between STFT coefficients at the adjacent frequency-bins

Ψn Feature matrix for estimating the phase differences by DNNs
Λn Diagonal matrix representing the reliability of estimated TPD
Γn Diagonal matrix representing the reliability of estimated FPD

Maps
W(·) Wrapping operator
Gθtime

(·) DNN for estimating BPD from the given magnitude
Hθfreq

(·) DNN for estimating FPD from the given magnitude
P(·) Autoregressive map for reconstructing phase from TPD and FPD
Arg(·) Element-wise map from complex scalars to their principal arguments

when calculating the complex STFT coefficients with the given
magnitude as A[m,n] exp(iΦ[m,n]). The direct phase estima-
tion with a DNN is still hard because a small perturbation of
magnitude might imply a large phase difference.

IV. PROPOSED ONLINE PHASE RECONSTRUCTION

In this section, we propose a DNN-based online phase
reconstruction framework that consists of two stages. Section
IV-A shows the motivation of the two-stage framework. Then,
its overview is introduced in Section IV-B. The detail of each
stage is explained in Sections IV-C and IV-D, respectively. The
weighting rule in the second stage is presented in Section IV-E.
The symbols used in this section are summarized in Table III.

A. Motivation: Sensitivity of Phase to Waveform Shift

A DNN-based phase reconstruction method in [26] is for-
mulated as Φ̂ = Fθ(A). When training such a DNN in a
supervised manner, not only the periodic nature of the phase
but also the sensitivity to waveform shifts becomes a problem.
Considering the Fourier transform, its phase is sensitive to
waveform shifts, while its magnitude is shift-invariant. This
is approximately true for STFT when waveform shifts are
small. Furthermore, when the sign of a time domain signal
is inverted, the corresponding STFT phase is shifted by π
without changing magnitude. It is thus difficult to completely
determine the phase from given magnitude3.

The effects of a waveform shift on STFT magnitude and
phase are depicted in Fig. 4. We used an utterance in the LJ
speech dataset4 and that shifted by 0.5 ms. Their TPD and
FPD are depicted in the third and fourth rows where we wrap
them by using the following wrapping operator:

W(Φ) = Arg(eiΦ). (27)

Phase of the shifted signal is noticeably different from the
original one even though the magnitude remained almost the
same. We thus expect that the phase itself is not easy to

3STFT magnitude is not completely shift-invariant, and thus the phase
can be reconstructed except for the ambiguity of ±π under several as-
sumptions [43], [44]. However, these phase reconstruction methods require
excessive computation and are not suitable for the online setting.

4The LJ speech dataset is available in online: https://keithito.com/
LJ-Speech-Dataset/.
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Fig. 4. Examples of the STFT magnitude, phase, and backward phase
differences of an utterance and that shifted by 0.5 ms. The rightmost column
shows the errors between the original and shifted ones.

estimate from the magnitude. In contrast, according to the third
and fourth rows of Fig. 4, phase differences, TPD and FPD,
were robust to the waveform shift.

The harmonic structure is apparent in the FPD but vague in
the TPD. We thus modify TPD to BPD [3]5:

W [m,n] =W
(
V [m,n]− 2παm

M

)
. (28)

As depicted in the bottom row of Fig. 4, the harmonic structure
is more clear in BPD than in TPD. We thus expect that
BPD and FPD are easier to estimate by DNNs, where this
expectation will be experimentally confirmed in Section V-H.

B. Overview: Two-stage Online Phase Reconstruction

The example in the previous subsection suggested that
directly estimating phase is difficult because a DNN must
connect small changes in magnitude to large differences in
phase, as illustrated in Fig. 5-( i ). Such an unstable map is
not easy to model by a DNN. In contrast, we use DNNs to

5BPD (baseband phase delay) was introduced in a sinusoidal-model-
based phase reconstruction [3] and has also been used in DNN-based phase
reconstruction [31]. This DNN-based phase reconstruction method uses the
BPD to normalize the distribution of TPD. In Section IV-C, we will show the
importance of the modification in (28) especially with CNNs.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
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Fig. 5. Comparison between ( i ) the existing DNN-based direct phase
reconstruction and (ii) the first stage of the proposed framework. Although
the estimation is performed separately for each time-frame, magnitude and
phase differences at all time-frames are shown for visibility.

estimate BPD and FPD as depicted in Fig. 5-(ii). Since a small
change in log-magnitude results in small changes in BPD and
FPD, the maps from the log-magnitude to the phase differences
should be easily modeled by DNNs. After estimating BPD and
FPD, the phase is reconstructed in a frame-by-frame manner.
This two-stage phase reconstruction is summarized in Fig. 2.

At the first stage, causal DNNs Gθtime
(·) and Hθfreq

(·)
estimate BPD wn ∈ RM and FPD un ∈ RM−1 at the nth
frame, respectively, as follows:

ŵn = Gθtime
(ãn−NLB

, . . . , ãn), (29)
ûn = Hθfreq

(ãn−NLB
, . . . , ãn), (30)

where NLB ∈ N is the number of look-back frames. We stress
that both DNNs are causal and do not use magnitude at future
time-frames, i.e., NLA = 0.

At the second stage, the phase is reconstructed from the
estimated phase differences. We design the following map P(·)
that computes the phase at the nth time-frame from that at the
(n−1)th time-frame with the phase differences and magnitude:

φ̂n = P(φ̂n−1, v̂n, ûn,an,an−1), (31)

where v̂n is the estimated TPD computed from the estimated
BPD ŵn. This map is constructed based on a weighted least
squares problem of complex STFT coefficients. Its detail is
postponed to Section IV-D. Since both stages do not require
information on future time-frames, the proposed framework
causally reconstructs the phase in a frame-by-frame manner.

C. First Stage: DNNs for Estimating Phase Differences

The proposed framework can use arbitrary causal DNNs
as Gθtime(·) and Hθfreq

(·). While fully connected neural net-
works (FCNs) have been used for DNN-based phase recon-
struction [26], [27], [30]–[32], we present an efficient DNN
architecture for the proposed framework.

According to the phase-magnitude relation, phase deriva-
tives can be approximated by differences of log-magnitude
in the surrounding T-F bins as in (12) and (13). In PGHI,
the phase differences are approximated by averaging the
phase derivatives at the T-F grids as in (18) and (19). These
operations can be implemented by convolution in the T-F
domain except for 2παm/M in (12). In the online setting,
RTPGHI uses the second order backward difference in (22),
which can also be implemented by convolution. While these
mathematical formulations are concrete, we expect that estima-
tion accuracy can be improved by exploiting prior knowledge
of a target signal. For example, mixed derivative of phase is
useful for analyzing harmonic signals [45], and instantaneous
frequency of a sinusoidal component can be estimated from
its spectral peak [22]. To acquire such complicated phase
information from a dataset, DNNs should be effective.

We employ convolution layers that can efficiently aggregate
information in the surrounding T-F bins. Our DNNs consist
of the mean subtraction and 1-D frequency convolution layers
(FreqConv) as in Fig. 6. We concatenate the log-magnitude
up to the current time-frame and subtract its mean:

Ψn = N (ãn−NLB
, . . . , ãn), (32)

where Ψn ∈ RM×(NLB+1) is a frame-wise feature, and N (·)
subtracts the mean of its inputs. This map just changes the
global magnitude within the inputted NLB + 1 frames and
retains the STFT phase-magnitude relation. The following first
FreqConv layer treats temporal adjacencies of the inputted
T-F bins as channels. As a result, the FreqConv layer can
perform a causal convolution along the time-frame and mimic
the operations in (13) and (22). In detail, the number of
channels of the FreqConv layer corresponds to the kernel
size of the causal convolutions along the time-frame. The
frame-wise feature Ψn is passed to multiple FreqConv
layers. We combine the FreqConv layers with the gating
mechanism [46] as follows:

FreqGatedConv(Ψn)

= Sigmoid(FreqConv(Ψn))� FreqConv(Ψn), (33)

where the two FreqConv layers have different parameters.
This mechanism can adaptively control the information passed
to the next layer. Its effectiveness has been confirmed in DNN-
based phase reconstruction [29]. In this first stage of the
proposed framework, each feature Ψn is handled separately,
and thus it is causal.

CNNs have difficulty of using the absolute T-F location due
to their translation invariance. In the phase-magnitude relation
in (12), absolute frequency information 2παm/M is required
to compute the phase derivative with respect to time. It is thus
difficult to estimate TPD by a CNN. In contrast, BPD removes
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Fig. 6. Illustration of a DNN for estimation of BPD or FPD.

the absolute frequency information in (28) and is expected to
be easily estimated by a CNN.

Supervised learning is straightforward for training DNNs
that estimate BPD and FPD, because the pairs of magnitude
and phase differences are easily calculated from time-domain
signals. The target phase differences should be treated as
circular variables because they inherit the periodic nature of
the phase. Hence, we measure the errors of the estimated phase
differences by the periodic loss functions as follows:

LBPD(W,Ŵ) =

M−1∑
m=0

N−1∑
n=1

Lcos(W [m,n], Ŵ [m,n]), (34)

LFPD(U, Û) =

M−1∑
m=1

N−1∑
n=0

Lcos(U [m,n], Û [m,n]). (35)

The range of the estimated phase differences, Ŵ [m,n] and
Û [m,n], is not restricted to [−π, π).

D. Second Stage: Online Phase Reconstruction From Phase
Differences

As in (31), the second stage of the proposed framework P(·)
recurrently estimates the phase based on the estimated phase
differences. The phase differences estimated by DNNs have
ambiguity of 2π due to the use of the periodic loss function.
The second stage of the proposed framework must take care
of this ambiguity. Since it is not easy to directly handle such
phase differences with the ambiguity, we propose to convert
them to the ratios of complex STFT coefficients as follows:

V̂[m,n] =
A[m,n]

A[m,n− 1]
eiV̂ [m,n], (36)

Û[m,n] =
A[m,n]

A[m− 1, n]
eiÛ [m,n], (37)

where V̂ [m,n] = Ŵ [m,n] + 2παm/M . Note that the oracle
versions of these ratios are given by

V[m,n] =
X[m,n]

X[m,n− 1]
, (38)

U[m,n] =
X[m,n]

X[m− 1, n]
, (39)

which cannot be computed because the phase of X[m,n] is
not available. This conversion is depicted in Fig. 7. The main
advantage of this conversion is that the 2π ambiguity of the
estimated phase differences is avoided.

Re

Im

Re

Im

(i) Phase difference (ii) Ratio of complex STFT coefficients

Fig. 7. Illustration of the conversion from ( i ) the phase difference to (ii) the
ratio of the complex STFT coefficients.

On the basis of the complex ratios, we formulate an opti-
mization problem and estimate the phase by solving it. Let us
consider the complex ratios at the nth time-frame v̂n and ûn
given by

v̂n = [V̂[0, n], . . . , V̂[M − 1, n]]T, (40)

ûn = [Û[1, n], . . . , Û[M − 1, n]]T. (41)

To enforce the complex ratios between successive time-frames
close to v̂n, we minimize the following function T (·) with
respect to an optimization variable zn ∈ CM :

T (zn, x̂n−1, v̂n) = ‖zn − diag(v̂n)x̂n−1‖2Λn
, (42)

where x̂n−1 = [X̂[0, n − 1], . . . , X̂[M − 1, n − 1]]T is
the estimated STFT coefficients at the previous time-frame,
diag(·) returns the diagonal matrix whose diagonal elements
are its input vector, and ‖z‖2Λn

= zHΛnz. Meanwhile, to
enforce the complex ratios between adjacent frequencies close
to ûn, the following function S (·) is also minimized:

S (zn, ûn) = ‖Dnzn‖2Γn
, (43)

where the matrix Dn ∈ RM−1×M is defined as

Dn[m− 1,m− 1] = −Û[m,n], (44)
Dn[m− 1,m] = 1, (45)

and the other entries are zero. The weights Λn in (42) and
Γn in (43) are diagonal matrices that reflect the reliability of
the estimated TPD and FPD, respectively. The detail of the
weights is explained in the next subsection. By using these
two functions, the map P(·) in (31) is realized as follows:

φ̂n = Arg(x˜n), (46)
x˜n = argmin

zn

T (zn, x̂n−1, v̂n) + S (zn, ûn), (47)

where (46) calculates the complex-argument element-wise,
i.e., Φ̂[m,n] = Arg(X˜ [m,n]). The solution of (47) x˜n =
[X˜ [0, n], . . . , X˜ [M − 1, n]]T does not maintain the given
magnitude A[m,n]. We thus modify it as X̂[m,n] =
A[m,n] exp(iΦ̂[m,n]) and use the modified version in (42)
for the next time-frame.

The optimization problem in (47) aims to estimate complex
STFT coefficients that are consistent with the ratios calculated
from the phase differences. It can be solved in a closed form:

x˜n = (Λn + DT
nΓnDn)−1Λnyn, (48)
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where the mth entry of yn is given by v̂[m,n]X̂[m,n − 1].
By using (48), the proposed method reconstructs the phase in
a frame-by-frame manner without any iterative optimization.

E. Weighting Rule and Initialization

In the optimization-based phase reconstruction given in (46)
and (47), the weights, Λn and Γn, are important to improve
the quality of the reconstructed signal. The phase differences
with large weights are maintained, and thus the weights must
be designed based on the reliability of the estimated phase
differences. We propose to design the mth diagonal entry of
Λn and Γn by using the given magnitude:

Λn[m,m] = (A[m,n]A[m,n− 1])p, (49)
Γn[m,m] = γ0(A[m,n]A[m− 1, n])p, (50)

where p is a parameter for compressing or enhancing the
magnitudes, and γ0 ≥ 0 is a parameter to balance the two
weights. These weights are based on the assumption that
the ratios of complex STFT coefficients are accurate when
magnitude at the related T-F bins is large.

As a special case, the proposed method in (48) results in
the integration of the estimated TPD over time when γ0 = 0:

Φ̂[m,n] = Φ̂[m,n− 1] + V̂ [m,n]. (51)

This phase reconstruction was already used in a DNN-based
method [25]. Its performance is limited because the relation
between adjacent STFT coefficients in the frequency direc-
tion is neglected. The proposed method with γ0 > 0 uses
the relations in both time and frequency directions. Another
related work [47] applies some weight designed from the given
magnitude to training of DNNs that estimate phase. In contrast,
we use the weights for reconstructing phase from the phase
differences but not for training DNNs.

The recurrent phase reconstruction in (48) is not applicable
to the initial time-frame because x̂n−1 is not given. We
compute the phase at the initial time-frame Φ̂[m, 0] by accu-
mulating the estimated FPD. In our preliminary experiments,
however, it often resulted in a similar performance with other
initialization methods, e.g., the zero and random phases. This
should be because the estimated FPD is unreliable due to
a small magnitude at the initial time-frame. The proposed
method is robust against errors at the T-F bins with small
magnitudes because the relations between the T-F bins with
large magnitudes are emphasized by the weights in (49)–(50).
In detail, if the T-F bins at the previous time-frame have
small magnitude, the proposed method tries to maintain the
estimated FPD at the current time-frame and neglect the phase
at the previous time-frame.

V. EXPERIMENTS

In this section, we investigate the performance of the
proposed DNN-based two-stage framework in online phase
reconstruction. The experimental conditions are described in
Section V-A. Section V-B compares the proposed framework
with various online and offline phase reconstruction methods.
The generalization capability and robustness of the proposed

TABLE IV
EXPERIMENTAL CONDITIONS

Parameters of DNN Architecture
# of FreqConv layers 1 + 1

# of FreqGatedConv layers 5
# of channels 64

Kernel size of FreqGatedConv layers 3
Kernel size of FreqConv layers 1

NLB 3
# of parameters 206k

Parameters for Training
Optimizer RAdam [50]

Base learning rate 0.0004
Batch size 32

# of epochs 100
# of warmup epochs 5

Weight decay 10−6

Maximum norm of the gradients 10

framework are shown in Sections V-C and V-D, respectively.
The effectiveness of our CNN for the first stage is validated
in Section V-E. We investigate the effect of the weight param-
eters, p and γ0, on the quality of the reconstructed signals in
Section V-F. Section V-G demonstrates the effectiveness of the
optimization-based phase reconstruction method in the second
stage. Finally, the proposed two-stage framework is compared
with direct phase reconstruction in Section V-H.

A. Experimental Conditions

1) Dataset and STFT Parameters: Evaluations were per-
formed on the LJ speech dataset that consists of 13100
audio clips uttered by a female speaker. The audio clips
were sampled at 22050 Hz and randomly splitted into three
subsets: 12500 clips for training, 300 clips for validation,
and 300 clips for testing as in [48]. During the training,
the utterances were further divided into about 1-second-long
segments (24064 samples). The validation set was used to
optimize the hyperparameters for the second stage. STFT was
computed with the Hann window, where the window size and
shift size were 1024 and 256 samples, respectively. We used
ltfatpy6 to implement STFT and related transformations.

2) DNN Configuration and Training Setup: The DNN used
in the following experiments is illustrated in Fig. 6. It consists
of the mean subtraction layer, a FreqConv layer, and five
FreqGatedConv layers followed by another FreqConv
layer. We set the number of look-back frames NLB to 3 based
on the overlap of the window for STFT. Other configurations
are summarized in Table IV.

To train the DNNs, we used the RAdam optimizer [50] for
100 epoch where the batch size was 32. We linearly warmed
up the learning rate for 5 epochs to 0.0004 and adopt the half-
period cosine scheduler [51]. We applied a weight decay of
10−6 and a gradient clipping of 10 for stable training, which
were implemented in Pytorch [52].

6ltfatpy is available under: https://dev.pages.lis-lab.fr/ltfatpy/. It is a
python version of LTFAT: http://ltfat.org/ [49].

https://dev.pages.lis-lab.fr/ltfatpy/
http://ltfat.org/
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Fig. 8. Boxplots of PESQ, ESTOI, and LSC for 300 reconstructed utterances.
Blue and red boxes correspond to online and offline phase reconstruction
methods, respectively. Higher PESQ and ESTOI indicate better sound quality.
Lower LSC indicates better phase reconstruction.

3) Evaluation Metrics: The results of phase reconstruction
were evaluated by three objective measures. The first one is
the log-spectral convergence (LSC) [53] defined by

LSC(X̂,A)= 20 log10

‖A− |STFT(iSTFT(X̂))|‖Fro

‖A‖Fro
, (52)

where X̂[m,n] = A[m,n] eΦ̂[m,n], and ‖ · ‖Fro denotes the
Frobenius norm. When the estimated phase is perfect, i.e.,
Φ̂ = Φ, iSTFT and STFT do not alter the magnitude of X̂,
and LSC becomes −∞. The second and third ones are the
wide-band extension of the perceptual evaluation of subjective
quality (PESQ) [54] and the extended short-time objective
intelligibility (ESTOI) [55]. These objective measures have
been commonly used to evaluate naturalness and intelligibility
of the results of phase-aware speech enhancement [56] and
separation [57].

B. Comparison to Existing Online Phase Reconstruction

To validate the effectiveness of the proposed DNN-based
phase reconstruction, we compared the proposed method with
three online phase reconstruction methods: RTPGHI [38], a
consistency-based phase reconstruction method called real-
time iterative spectrogram inversion (RTISI) [37], and a
sinusoidal-model-based phase reconstruction method called
single pass spectrogram inversion (SPSI) [22]. For RTPGHI
and RTISI, we set the number of look-ahead frames NLA

to 0, i.e., all methods were set causal. We also investigated
the performance of two offline methods: PGHI and an offline
version of the proposed method. In the offline proposed
method, we additionally concatenated three look-ahead frames
as the input of the DNNs. All existing methods are imple-
mented in PHASERET [42]. In RTISI, the number of per-
time-frame iterations was set to 5, which is the default value
of PHASERET. We would like to stress that this is not a fair
comparison because only the proposed method uses a DNN
trained on utterances of the target speaker. This comparison,
however, demonstrates the great potential of incorporating

TABLE V
MEDIAN OF PESQ AND ESTOI OF 100 RECONSTRUCTED UTTERANCES

FOR EACH SPEAKER.

Female Male

p225 p228 p229 p226 p227 p232

PESQ

RTPGHI 3.52 3.35 3.27 3.40 3.19 3.38
Proposed 4.31 4.22 4.25 4.27 4.29 4.31

ESTOI

RTPGHI 0.840 0.830 0.859 0.823 0.862 0.874
Proposed 0.949 0.959 0.969 0.957 0.969 0.975

the prior knowledge into online phase reconstruction. The
generalization capability of the proposed method is validated
in the next subsection. Furthermore, the performance of the
existing methods combined with the DNNs are investigated in
Section V-G.

PESQ, ESTOI, and LSC of the reconstructed signals are
summarized in Fig. 8. The two methods that do not utilize prior
knowledge of target signals, RTPGHI and RTISI, resulted in
similar performance. Although SPSI considers the sinusoidal
model for target signals, it performed worse than the other
methods in our experiment. This should be a consequence of
the mismatch between the signal model and actual signals. The
proposed method was able to outperform all of the existing
methods. Note that the proposed method also outperformed the
offline PGHI. This result confirms the advantage of leveraging
prior knowledge of the target signals learned by DNNs. The of-
fline proposed method substantially improved the performance
from that of the online version. That is, the performance of the
two-stage phase reconstruction can be improved by leveraging
look-ahead frames.

C. Generalization for Unseen Speakers

To clarify the generalization capability of the proposed
method, we evaluated it on unseen speakers. While the training
and validation data were from the LJ speech dataset, the
evaluation was performed on utterances of three females
(p225, p228, p229) and three males (p226, p227, p232)
from the VCTK corpus. For each speaker, 100 utterances were
randomly selected and resampled at 22050 Hz as in [29].

The experimental results are summarized in Table V. Even
on the unseen speakers, the proposed method outperformed
RTPGHI which was the best reference method in the previous
experiment. This result confirms the generalization capability
of the proposed framework even when the training dataset con-
sists of utterances of a single speaker. Training on utterances of
multiple speakers might improve the generalization capability
further.

D. Application to Mel-Spectrogram Inversion

In many applications, the given STFT magnitude contains
some errors. To investigate the robustness against such errors,
we validated RTPGHI and the proposed method on the mag-
nitude recovered from that compressed to the mel scale. Mel-
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Fig. 9. Average PESQ and ESTOI of utterances reconstructed from the
degraded STFT magnitudes. The magnitudes in the linear scale with 513
bins were recovered from the mel-spectrograms in different number of bins.

spectrograms have been widely used as acoustic features in au-
dio synthesis, and phase reconstruction has been applied to the
magnitudes recovered from them [58], [59]. In this experiment,
the power-compressed magnitude in the linear scale with 513
bins, A[m,n]0.3, was converted to the mel scale with a smaller
number of bins Mmel ∈ {80, 160, 240, 320, 400}. Then, the
mel-scale magnitude is converted back to that in the linear
scale with regular power by solving a nonnegative least squares
problem, which is implemented in Librosa [60]. The power
compression has been used to maintain the components with a
small magnitude in least squares as in [61] and was effective
for both RTPGHI and the proposed method. The smaller Mmel
caused more error in the recovered linear-scale magnitude.

PESQ and ESTOI of the reconstructed signals are shown in
Fig. 9. In addition to RTPGHI and the proposed method, we
evaluated the recovered magnitude with the true phase. This
is an upper bound of the performance of phase reconstruc-
tion. When Mmel > 80, the proposed method substantially
outperformed RTPGHI. Recently, DNNs have been used to
recover the magnitude in the linear scale from that in the mel
scale [58], [59]. These DNN-based methods should improve
the quality of the recovered magnitude from the nonnegative
least squares used in this experiment. We thus expect that the
performance of the proposed method is improved by incorpo-
rating it with the DNN-based estimation of the magnitude in
the linear scale.

E. Effectiveness of CNN to Estimate BPD and FPD

To validate the effectiveness of the proposed CNN for es-
timating BPD and FPD, we compared its estimation accuracy
with that of an FCN. The CNN was the same as that used in
the previous experiment (Fig. 6). The FCN comprised 3 gated
linear units of 1024 units and a linear output layer as in [26],
where its number of total parameters was 8929k which is about
43 times more than that of the CNN. The input of the FCN was
the log-magnitudes up to the current time-frame as in (32), but
we concatenated them along with the frequency direction. The
training configuration was the same as in Section V-A2. The

Fig. 10. Histogram of the absolute wrapped error (AWE) of estimated BPD
and FPD. The vertical axis is proportion to the total number of all T-F bins
and audio clips. The number inside the above parentheses represents median.

estimated phase differences were evaluated by the following
absolute wrapped error (AWE):

Labs(φ, φ̂) =
∣∣∣W(φ− φ̂)

∣∣∣ . (53)

The histograms of AWE of the estimated BPD and FPD
are illustrated in Fig. 10. These histograms are more biased
towards the left when the estimates were more accurate.
AWE of RTPGHI is summarized in the rightmost column,
where TPD computed by (18) was converted to BPD. The
accuracy of FPD was significantly worse than that of BPD
because RTPGHI in the causal setting must use the second
order backward difference in (22) instead of the centered
difference for computing FPD. If the second order centered
difference was used by allowing one look-ahead frame, the
median of AWE was reduced to 0.389 from 0.701. Even
though the DNNs did not use any look-ahead frames, they
achieved notably better accuracy compared to RTPGHI. By
efficiently aggregating information in the surrounding T-F
bins, the CNN outperformed the FCN with 43 times fewer
parameters. Consequently, as shown in Table VI, the objective
measures of the reconstructed utterances were significantly
improved by using the CNN for the estimation of phase
differences.

To demonstrate the difficulty of estimating TPD using a
CNN, we compared a CNN and an FCN by directly estimating
TPD. Note that the proposed framework does not estimate
TPD itself, and hence we trained another DNN for this
experiment. The histograms of AWE for TPD estimation are



11

TABLE VI
MEDIAN OF PESQ AND ESTOI OF UTTERANCES RECONSTRUCTED FROM

THE PHASE DIFFERENCES ESTIMATED BY CNN AND FCN.

PESQ ESTOI LSC [dB]

CNN 4.46 0.997 -29.87
FCN 4.12 0.983 -18.64

Fig. 11. Histogram of AWE of estimated TPD.

Fig. 12. Average PESQ and ESTOI on the validation set. The parameters
varied on the logarithmic scale in both axes. We limit the color ranges to
clarify the peaks, which results in saturation for p > 100.4.

depicted in Fig. 11. The FCN achieved performance similar
to that for BPD in Fig. 10. In contrast, TPD estimation by
CNN resulted in much more error compared to that of BPD.
This result indicates that estimation of TPD is difficult for the
CNN as discussed in Section IV-C. Hence, the conversion of
the target from TPD to BPD is essential for the CNN.

F. Effect of the Weight Parameters p and γ0

As discussed in Section IV-E, the weights are important in
the second stage of the proposed framework. In our experi-
ments, the optimal weight parameters were obtained by using
the validation set, where the phase differences were estimated
by the CNNs trained as Section V-A. The search range of p
and γ0 were set to [0.1, 10] and [1, 100], respectively.

Fig. 12 shows PESQ and ESTOI of the reconstructed signals
on the validation set. The proposed framework performed well
with wide range of parameters, i.e., it is not so sensitive to
these parameters. ESTOI took the maximum value 0.996 at
p = 10−0.4 and γ0 = 10, which also gives a high PESQ value.
Hence, these parameters were used in the other experiments.

Fig. 13. Boxplots of PESQ, ESTOI, and LSC of signals reconstructed from
the phase differences approximated by (18) and (19). The time integration of
TPD [25] and the adaptive integration of TPD and FPD [38] are abbreviated
as Time Int. and Adaptive Int., respectively.

G. Evaluation of Various Methods for Reconstructing Phase
From Estimated Phase Differences

In this experiment, the second stage of the proposed
framework was evaluated. We compared the second stage
of the proposed framework with existing methods: the time
integration of the estimated TPD used in [25] defined by
(51), and the recurrent phase unwrapping (RPU) presented in
our conference paper [30]. The difference between RPU and
the proposal of this paper is the definition of least squares
problems; RPU solves the least squares problem of phase
without weighting, while the second stage of the proposed
framework solves the least squares problem of complex STFT
coefficients with weighting. We also evaluated the adaptive
integration of TPD and FPD used in RTPGHI [38]. Note
that, if the oracle phase differences are available, all methods
can perfectly reconstruct the phase up to the global constant.
To investigate their robustness to the error in the phase
differences, this experiment used the analytic formulas in (18)
and (19) or the CNNs to estimate the phase differences.

Fig. 13 summarizes the results using the phase differences
computed by the analytic formulas in (18) and (19). The per-
formance of the adaptive integration and the proposed method
was significantly better than that of the time integration and
RPU. The former group uses the magnitude to reconstruct the
phase from the estimated phase differences, while the latter
group does not. As a result, the former group is more robust
to the estimation error at T-F bins with small magnitudes.

Fig. 14 shows the results using the phase differences esti-
mated by the CNNs. According to Section V-E, the estimation
accuracy of FPD was improved by using the CNN from that
of (19). The performance was improved in all methods except
for the time integration that does not use FPD. The proposed
optimization-based method outperformed the other methods
including the adaptive integration. This should be because the
proposed method jointly optimizes all the phase at each time-
frame based on the carefully designed weight.
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Fig. 14. Boxplots of PESQ, ESTOI, and LSC of signals reconstructed from
the phase differences estimated by the CNNs.
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(ii) Proposed two-stage phase reconstruction
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(i) Conventional direct phase reconstruction

Fig. 15. Block diagram of the comparison between ( i ) conventional direct
phase reconstruction and (ii) proposed two-stage phase reconstruction. The
reconstructed phase Φ̂ was evaluated through the BPD Ŵ and FPD Û
calculated from it. Although magnitude and phase for all time-frames are
shown here, phase reconstruction was conducted in a frame-by-frame manner.

H. Comparison with DNN-based Direct Phase Reconstruction

In this experiment, the proposed two-stage framework is
compared with the direct phase reconstruction using the FCN
or CNN. For the direct phase reconstruction, the DNN was
trained to minimize the negative cosine loss function of
phase in (25). We further refined the estimated phase by an
iterative offline phase reconstruction method called Griffin–
Lim algorithm (GLA) as in the original paper [26]. The
number of iterations of GLA was 100. The reconstructed
phase was evaluated by AWE of the phase differences7. We
also investigated the total performance of the proposed two-
stage framework in this way. To be specific, we evaluated not
the phase differences estimated in the first stage but those

7We did not evaluate the estimated phase directly because global phase
shift is not reflected in the perceptual quality.

computed from the output of the second stage as follows:

Ŵ [m,n] = Φ̂[m,n]− Φ̂[m,n− 1]− 2παm

M
, (54)

Û [m,n] = Φ̂[m,n]− Φ̂[m− 1, n]. (55)

This evaluation is illustrated in Fig. 15.
The results of the DNN-based phase reconstruction methods

using FCNs and CNNs are summarized in Figs. 16 and 17,
respectively. The direct phase reconstruction resulted in the
lowest performance regardless of the types of DNN8. This
result indicates the difficulty of directly estimating phase
as discussed in Section IV-A. In contrast, the two-stage
framework with the FCNs successfully reconstructed phase
up to global constant phase. Although the direct phase re-
construction performed better when GLA was applied, the
proposed framework with the CNNs outperformed it. Note
that this comparison is unfair because GLA is an iterative
offline method that uses the information from all time-frames.
Even though the proposed two-stage method is non-iterative
and causal, it was able to outperform the combination of the
DNN-based and iterative methods.

Although the proposed two-stage method performed better
than the existing methods, there is room for improvement.
According to Fig. 10, AWE of BPD and FPD estimated in the
first stage using the FCNs were 0.417 and 0.480, respectively,
and those using the CNNs were 0.091 and 0.117, respectively.
The results in Figs. 16 and 17 indicates that the output of the
second stage was worse than those obtained in the first stage in
terms of phase differences. This implies that the second stage
of the proposed framework still has room for improvement.
Refinement of the second stage is left as a future work.

VI. CONCLUSION

In this paper, we have presented a two-stage online phase re-
construction framework. In the framework, BPD and FPD are
estimated by the causal DNNs based on 1-D frequency convo-
lution layers. Then, phase is reconstructed from the estimated
phase differences by analytically solving the weighted least
squares problem of complex STFT coefficients in a frame-by-
frame manner. We confirmed that the proposed method outper-
formed existing online phase reconstruction methods. We also
demonstrated the effectiveness of the two-stage framework by
comparison with the direct reconstruction method.

In future works, we will apply the two-stage online frame-
work to low-latency speech enhancement and separation. In
these applications, the noisy phase of an observed signal
is useful to improve the estimation accuracy of the phase
differences. Fine-tuning of the DNNs used in the first stage
to maximize the quality of the signals reconstructed by
the second stage is also a possible direction for improving
the proposed framework. Together with improvement of the
second stage as discussed in Section V-H, optimizing the
whole process of the proposed framework is the next step for
realizing a better phase reconstruction method.

8This is not due to the evaluation metric. We confirmed that the estimated
phase had large error which is reflected in BPD and FPD of the figures.
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Fig. 16. Histogram of AWE of the differences of reconstructed phase using
FCN. Median over all T-F bins and audio clips is given in the parentheses.

Fig. 17. Histogram of AWE of the differences of reconstructed phase using
CNN. Median over all T-F bins and audio clips is given in the parentheses.
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