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Abstract—Adaptive filtering algorithms are pervasive through-
out signal processing and have had a material impact on a wide
variety of domains including audio processing, telecommunica-
tions, biomedical sensing, astrophysics and cosmology, seismology,
and many more. Adaptive filters typically operate via specialized
online, iterative optimization methods such as least-mean squares
or recursive least squares and aim to process signals in unknown
or nonstationary environments. Such algorithms, however, can
be slow and laborious to develop, require domain expertise to
create, and necessitate mathematical insight for improvement. In
this work, we seek to improve upon hand-derived adaptive filter
algorithms and present a comprehensive framework for learning
online, adaptive signal processing algorithms or update rules di-
rectly from data. To do so, we frame the development of adaptive
filters as a meta-learning problem in the context of deep learning
and use a form of self-supervision to learn online iterative update
rules for adaptive filters. To demonstrate our approach, we focus
on audio applications and systematically develop meta-learned
adaptive filters for five canonical audio problems including sys-
tem identification, acoustic echo cancellation, blind equalization,
multi-channel dereverberation, and beamforming.We compare our
approach against common baselines and/or recent state-of-the-
art methods. We show we can learn high-performing adaptive
filters that operate in real-time and, in most cases, significantly
outperform each method we compare against – all using a single
general-purpose configuration of our approach.

Index Terms—Adaptive filtering, meta learning, online
optimization, learning to learn, deep learning.

I. INTRODUCTION

ADAPTIVE signal processing and adaptive filter theory
are cornerstones of modern signal processing and have

had a deep and significant impact on modern society. Applica-
tions of adaptive filters (AF) include audio processing, telecom-
munications, biomedical sensing, astrophysics and cosmology,
seismology and more. Audio applications, in particular, are of
exceptional importance and find utility for many problems such
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as single- and multi-channel system identification, echo cancel-
lation, prediction, dereverberation, beamforming, noise cancel-
lation, and beyond. AFs typically operate via online iterative op-
timization methods, such as least mean square filtering (LMS),
normalized LMS (NLMS), recursive least-squares (RLS), or
Kalman filtering (KF), to solve streaming or online optimiza-
tion problems [1], [2], [3], [4], [5], [6] and process signals in
unknown and/or nonstationary environments.

AF tasks are often grouped into one of four core categories:
system identification, inverse modeling, prediction, and inter-
ference cancellation [4]. Each of these categories has numerous
AF applications, and advances in one category or application
can often be applied to many others. In the audio domain,
acoustic echo cancellation (AEC) can be formulated as single-
or multi-channel system identification and has been studied
extensively [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18]. Equalization can be formulated as an inverse model-
ing problem, has been explored in single- and multi-channel
formats, and is particularly useful for sound zone reproduc-
tion and active noise control [19], [20], [21], [22], [23], [24].
Dereverberation can be formulated as a prediction problem and
has been studied considerably in this context [25], [26], [27],
[28], [29], [30], [31]. Finally, multi-microphone enhancement
or beamforming can be formulated as an informed interference
cancellation task and also has a breadth of associated algo-
rithms [32], [33], [34], [35], [36], [37], [38].

When we consider AFs in the context of deep neural net-
works (DNNs), we note two main observations. First, AFs con-
tinue to be used extensively, but mostly via hybrid approaches
that combine neural networks with standard AF algorithms.
Second, the underlying AF algorithms and tools for the devel-
opment of new AFs have had little change in several decades.
Hybrid approaches, however, have proven very successful. For
example, in AEC, neural networks can be trained for residual
echo suppression, noise suppression, reference estimation, and
more [39], [40], [41], [42], [43], [44], [45], [46], [47]. In a
similar vein, neural networks paired with AFs for active noise
control tasks have shown impressive results [48], [49], [50],
[51]. For dereverberation, DNNs have proven useful for both
online and offline approaches by directly estimating statistics
of the dereverberated speech [52], [53], [54], [55], [56]. This
pattern has repeated itself for beamforming applications, where
DNNs have led to many performance improvements [57], [58],
[59], [60]. In many of these works, DNNs are trained to predict
ratio-masks, or otherwise directly enhance/separate the desired
signal. In essence, they act as a distinct module within a larger
pipeline that also uses AFs.
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In contrast, there are a small number of works that more
tightly couple neural networks and AFs and use DNNs for
optimal control of AFs. Recently, it was shown that DNNs can
estimate statistics to control step-sizes [61], [62] or estimate
entire updates [63] for a single-channel AEC. Similarly, past
work has used DNNs to predict updates for the internal statistics
of multi-channel beamformers [64] and to learn source-models
for multi-channel source separation [65]. These works differ
from hybrid approaches in that they leverage neural networks
to update or control AFs directly and thus focus on improving
the performance of AFs themselves. Such improvement can be
leveraged in isolation or, in theory, together with complementary
hybrid approaches.

More broadly, the idea of controlling AFs via neural networks
is related to several disciplines of signal processing and machine
learning including optimal control, optimization, automatic ma-
chine learning, reinforcement learning and meta-learning. Rele-
vant works within these areas include automatic selection of step
sizes [7], [66], [67], the direct control of model weights [68],
[69], [70], rapid fine-tuning [71], and meta-learning optimiza-
tion rules [72]. Out of these works, learning optimization rules
or learned optimizers is of critical relevance [73], [74], [75]
and presents the idea of using one neural network as a function
that optimizes another function. Such works, however, focus on
creating learned optimizers for training neural networks in an
offline setting, where the latter network is the final product, and
the learned optimizer is otherwise discarded (or otherwise used
to train additional networks). Moreover, this work has had little
application to AFs, except for our own work [63], which we
extend here.

In this work, we formulate the development of AF algorithms
as a meta-learning problem. We learn adaptive filter update rules
directly from data using self-supervision and call our approach
meta adaptive filtering (Meta-AF). Using our method, we no
longer need humans to hand-derive update equations, do not
need any supervised labeled data for learning, and do not need
exhaustive tuning. To showcase our approach, we systematically
develop learned AFs for exemplary applications of each of the
four canonical AF architectures. Then, for each AF task, we
compare our work to a suite of baselines and/or state-of-the-art
approaches for the problems of system identification, acoustic
echo cancellation, equalization, multi-channel dereverberation,
and multi-channel interference cancellation (beamforming). For
all tasks, we use identical hyperparameters, significantly reduc-
ing engineering and design time. We evaluate performance using
signal-to-noise ratio (SNR)-like signal metrics and perceptual-
or task-specific metrics as well as specific qualitative compar-
isons. Our results show we can learn high-performing AF algo-
rithms that operate in real-time and, in most cases, outperform
all methods we compare against.

The contributions of our work are as follows: 1) we present
the first general-purpose method of meta-learning AF algo-
rithms (update rules) directly from data via self-supervision (no
labels required) 2) we apply our approach to all canonical AF
architecture categories including system identification, inverse
modeling, prediction, and (informed) interference cancellation
and 3) we show how a single hyperparameter configuration

TABLE I
SYMBOLS AND OPERATORS

of our approach, trained with different datasets and losses,
can outperform all common AF baselines and/or several past
state-of-the-art methods we compare against according to one or
more evaluation metrics and are suitable for real-time operation
on commodity hardware. Compared to our previous work on
single-channel single-talk AEC [63], we present several new
improvements including 1) an improved loss, 2) additional in-
puts to our learned optimizer and 3) an updated development
for multi-block, multi-channel AFs with coupled updates and
4) extensive experimentation on four new applications. We
release demos for each task and open source all code1 including
baselines.

II. BACKGROUND

A. Notation

We provide an overview of the symbols and operators we use
in Table I. We denote scalars via lower-case symbols, column
vectors via bold, lower-case symbols, and matrices via bold
upper-case symbols. We use bracket indexing [τ ] to denote
time-varying signals and an underline to denote the time-domain
counterpart of a frequency-domain (FD) symbol. We index FD
rows via the subscript k, columns via the subscript m, and
elements via the subscripts km.

1For demos and code, please see https://jmcasebeer.github.io/projects/metaaf
and https://github.com/adobe-research/MetaAF, respectively.

https://jmcasebeer.github.io/projects/metaaf
https://github.com/adobe-research/MetaAF
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B. Overlap-Save and Overlap-Add Filtering

We perform short-time (STFT) Fourier filtering using ei-
ther overlap-save (OLS) or overlap-add (OLA) convolution.
The OLS method uses block processing by splitting the in-
put signal into overlapping windows and recombines complete
non-overlapping components. We use um[t] ∈ R to represent
the time-domain sample recorded by microphone m at dis-
crete time t. We collect N such samples from microphone
m to form the time-domain frame um[τ ] = [um[τR−N +
1], . . . , um[τR]] ∈ R

N , where τ is the frame index, N is the
window length in samples,R is the hop size in samples, andO =
N −R is the overlap between frames in samples. Finally, we
collect samples from allM microphones to form a multi-channel
time-domain signal, U[τ ] = [u1[τ ], . . . ,uM [τ ]] ∈ R

N×M . We
compute the corresponding FD representation via U[τ ] =
FNU[τ ] ∈ C

K×M , where K is the number of frequency bins,
set to K = N for this work. We select the mth channel from a
multi-channel FD representation using um[τ ] ∈ C

K . We define
the FD filter wm[τ ] ∈ C

K and the frequency and time output
for the mth channel as

ym[τ ] = diag(um[τ ])Zww
∗
m[τ ] ∈ C

K (1)

y
m
[τ ] = Zyym[τ ] ∈ R

R, (2)

where Zw=FKT�K/2TK/2F
−1
K ∈ C

K×K and Zy=T̄RF
−1
K ∈

C
R×K are anti-aliasing matrices, TK/2 = [IK/2,0K/2×K/2] ∈

R
R×K trims the last K/2 samples from a vector and T̄R =

[0R×O, IR] ∈ R
R×K trims the first O samples.

The counterpart to OLS is OLA filtering, which computes the
frequency output, time output, and buffer afterbm[τ ] as

ym[τ ] = diag(um[τ ])w
∗
m[τ ] ∈ C

K (3)

y
m
[τ ] = TRF

−1
K ym[τ ] + T̄Rbm[τ − 1] ∈ R

R (4)

bm[τ ] = F−1K ym[τ ] +T�RT̄Rbm[τ − 1] ∈ R
K . (5)

Here, TR = [IR,0R×O] ∈ R
R×K . Typically, the forward and

inverse DFTs are combined with analysis and synthesis win-
dows and optionally zero-padded. We use Hann windows [76].
For multi-channel multi-block input, single-channel output FD
filters, the OLS/OLA equations above are applied per channel,
and anti-aliasing is applied per block. The per frequency (anti-
aliased) filter is wk[τ ] ∈ C

BM with B buffered frames and M
channels all stacked. The filter input is similarly stacked and is
uk[τ ] ∈ C

BM , thus requiring (1) and (3) to be modified.

C. Adaptive Filter Problem Formulation

We define an AF as an algorithm or optimizer that solves

θ̂[τ ] = argmin
θ[τ ]
L(· · · )[τ ] (6)

via an additive update rule of the form

θ[τ + 1] = θ[τ ] +Δ[τ ], (7)

where θ̂[τ ] is a set of estimated time-varying filter parameters.
In this work, we focus exclusively on linear FD adaptive fil-
ters (FDAFs), where θ[τ ] = {w[τ ]} without loss of generality.

Common losses include the mean-square error (MSE),

LMSE [τ ] = E[‖em[τ ]‖2] = E[‖dm[τ ]− ym[τ ]‖2], (8)

the instantaneous square error (ISE),

LISE [τ ] = ‖em[τ ]‖2 = ‖dm[τ ]− ym[τ ]‖2, (9)

and the weighted least squares error (WSE),

LWSE [τ ] =

τ∑
n=0

γτ−n‖dm[n]− ym[n]‖2, (10)

where γ is a forgetting factor, m is a reference mic, and the
output ym is computed via (1) or (3) for FD signals or losses
and (2) or (4) for time-domain signals or losses.

D. Conventional Optimizers

For audio AFs, it is common to leverage OLS or OLA filtering
and solve (6) via optimization methods per frequency bin. So,
we modify (7) to be

wk[τ + 1] = wk[τ ] +Δk[τ ], (11)

where the update Δk[τ ] is per frequency k. We focus on three
common conventional AF optimizers in this form as well as
a machine learning optimizer to ground the development of
our method to familiar, fundamental algorithms. For gradient
methods, we use the partial derivative with respect to wk[τ ]

H.
1) Least Mean Square: The least mean square opti-

mizer (LMS) is a stochastic gradient descent method that uses
the ISE loss and gradient. The LMS update is

Δk[τ ] = −λ∇k[τ ], (12)

where λ is the step-size and ∇k[τ ] is the gradient of the ISE.
Note, LMS is stateless and only a function of the gradient.

2) Normalized Least Mean Square: The normalized
LMS (NLMS) algorithm modifies LMS via a running normalizer
based on the input power. The NLMS update is

vk[τ ] = γvk[τ − 1] + (1− γ)‖uk[τ ]‖2 (13)

Δk[τ ] = −λ
∇k[τ ]

vk[τ ]
, (14)

where the division is element-wise, λ is the step-size and γ is a
forgetting factor.

3) Root Mean Squared Propagation: The root mean square
propagation (RMSProp) optimizer [77] modifies NLMS by re-
placing vk[τ ] with a gradient-based per-element running nor-
malizer, ν[τ ] using forget factor γ as,

νk[τ ] = γνk[τ − 1] + (1− γ)‖∇k[τ ]‖2 (15)

Δk[τ ] = −λ
∇k[τ ]√
νk[τ ]

, (16)

The value, 1/
√
νk[τ ] supplements the fixed step-size λ and acts

as an adaptive learning rate, λ/
√
νk[τ ].

4) Recursive Least Squares: The aim of the recursive least
squares (RLS) algorithm is to exactly solve the AF loss,
most commonly the WSE error. This is accomplished by
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expanding the weighted least squares error into a function
of the weighted empirical signal covariance matrix, Φk[τ ] =∑

τ γ
N−τuk[τ ]uk[τ ]

H, where the summation time-indices are
application dependent (e.g. causal vs. non-causal implemen-
tations), and the (weighted) empirical cross-correlation vector
zk[τ ] =

∑
τ γ

N−τuk[τ ]dk[τ ]
H to compute the exact solution to

the resulting normal equations, Φk[τ ]wk[τ ] = zk[τ ]. Running
estimates of Φk[τ ] and zk[τ ] are also commonly used. However,
instead of performing repeated matrix inversion, the matrix
inversion lemma is used. Thus, RLS can be implemented using
a time-varying precision (inverse covariance) matrix Pk[τ ] and
the Kalman-gain κk[τ ],

κk[τ ] =
Pk[τ − 1]uk[τ ]

γ + uk[τ ]HPk[τ − 1]uk[τ ]
(17)

Pk[τ ] =
Pk[τ − 1]− κk[τ ]uk[τ ]

HPk[τ − 1]

γ
(18)

Δk[τ ] = κk[τ ](dkm[τ ]− ykm[τ ])
∗, (19)

where γ is a forgetting factor, dkm[τ ] and ykm[τ ] are the desired
and estimated signal at frequency k and reference microphone
m, and the initialization ofPk[τ ] is critical and commonly based
on the input SNR. In the case of multi-block and/or multi-
channel filters, there are multiple ways to formulate RLS, some
of which differ from time-domain RLS. Common approaches
include diagonalized RLS (D-RLS) and block diagonalized
RLS (BD-RLS) as well as QR decomposition techniques [5],
[78], [79] and differ in what terms of the covariance (precision)
matrix are modeled. D-RLS makes an independence assumption
and optimizes each k,m, b filter tap separately, forming K
diagonalBM× BMprecision matrices. BD-RLS couples across
frames and channels by formingK separateBM× BMprecision
matrices. In the case of single block/channel filters, D-RLS,
BD-RLS, and NLMS can be reduced to the same algorithm
with different parameterizations. In our case, we use identical
BD-RLS implementations across all tasks.

When conventional optimizers are compared to each other,
the order of performance commonly follows LMS, RMSProp,
NLMS, and RLS, while the order of computational complexity
is reversed. These algorithms, however, can be sensitive to
tuning, nonstationarities, nonlinearities, and other issues that
require engineering effort to mitigate failure cases and stability.
For multi-block BD-RLS filters, in particular, poor partition
conditioning can also lead to degraded RLS performance [80]
and/or stability issues compared to NLMS and other alternatives.
For the purposes of this work, we exhaustively grid-search tune
the hyperparemeters on held-out validation sets of signals per
task.

Beyond these basic optimizers, we also compare against
several additional methods. For the AEC task, we compare
against the double-talk robust diagonal Kalman filter (D-
KF) [11], the open-source double-talk robust Speex algo-
rithm [12], a weighted-RLS (wRLS) algorithm [81], and
WebRTC-AEC3 [82]. The D-KF algorithm is recommended
over other variants [15] and is a common AEC baseline [61]. In
addition, the Speex and wRLS [81] algorithms were the linear

AFs used (with a non-linear post-processor) in the first- [47]
and second-place [81] winners of the ICASSP 2021 Acoustic
Echo Cancellation Challenge [83], respectively. Since our work
focuses on linear adaptive filters and can easily be combined with
non-linear post-processors, we believe D-KF, wRLS, Speex,
and WebRTC-AEC3 are reasonable baselines. For dereverbera-
tion, we compare against NARA-WPE [30], which is a highly
effective normalized BD-RLS based optimizer [27], [30] and
comparable to the original NTT implementation [84].

E. Related Work

Initial work on automatically tuning AFs has been explored in
incremental delta-bar-delta [66], Autostep [67], and elsewhere.
Recent machine learning work discusses the idea of using DNNs
to learn entirely novel optimizer update rules from scratch [72],
[73], [74], [75]. We take inspiration from this work, but make
numerous advances specific to AFs. In particular, past learned
optimizers [72] are element-wise, offline, real-valued, only a
function of the gradient, and are trained to optimize general
purpose neural networks. In contrast, we design online AF opti-
mizers that use multiple input signals, are complex-valued, adapt
block FD linear filters, and integrate domain-specific insights to
reduce complexity and improve performance (coupling across
channels and time). Moreover, we deploy learned optimizers to
solve AF tasks as the end-goal and do not use them to train
downstream neural networks. We also note recent work that
uses a supervised DNN to control the step-size of a D-KF for
AEC [61] and another that uses a supervised DNN to predict
both the step-size and a nonlinear reference signal for AEC [62].
Compared to these, we replace the entire update with a neural
network, do not need supervisory signals, and investigate many
tasks.

III. PROPOSED METHOD

A. Problem Formulation

We formulate AF algorithm design as a meta-learning prob-
lem and train neural networks to learn AFs from data, creating
meta-learned adaptive filters. This is in contrast to typical AFs
that are manually created by human engineers. To do so, we
define a learned optimizer, gφ(·), as a neural network with one
or more input signals parameterized by weightsφ that optimizes
an AF loss or optimizee L(hθ(·), · · · ) or L for short, using an
additive update rule

θ[τ + 1] = θ[τ ] + gφ(·). (20)

We then seek an optimal AF optimizer gφ̂ over dataset D

φ̂ = argmin
φ

ED[ LM ( gφ,L(hθ(·), · · · ) ) ], (21)

where LM is a functional that defines the meta (or optimizer)
loss that is a function of gφ and an AF loss L with one or more
inputs and filtering function hθ that itself has one or more inputs
and parameters θ. Intuitively, when we solve (21), we learn a
network gφ(·) that solves the AF lossLwhen applied repeatedly
via an additive update.
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TABLE II
RELATIONSHIP BETWEEN AF OPTIMIZERS

B. Optimizee Architecture and Loss

The optimizee, or the AF loss L that is optimized via (20) is a
function of the filter or architecture hθ(·). The filter can be any
reasonable differentiable filtering operator such as time-domain
FIR filters, lattice FIR filters, non-linear filters, FD filters, multi-
delayed block FD filters [3], etc. Similarly, the AF loss can be any
reasonable differentiable loss such as the MSE, ISE, WSE, a reg-
ularized loss, negative log-likelihood, mutual information, etc.
For our work, we focus on single- and multi-channel multi-frame
linear block FD filters hθ applied via OLS or OLA with param-
eters θk[τ ] = {wk[τ ] ∈ C

BM} with B buffered frames and M
channels per frequency k. We also set the FDAF loss L[τ ] to be
the afterISE via after(9) with gradient computed with respect to
wk[τ ]

H as ∇kafter[τ ] = ukafter[τ ](ykm[τ ]− dkm[τ ])
∗.

C. Optimizer Architecture and Loss

1) Architecture: Our optimizer gφ is inspired by conven-
tional AF optimizers such as LMS, NLMS, and BD-RLS, but
updated to have a neural network form. In particular, we focus
on making a generalized, stochastic variant of an RLS-like
optimizer that is applied independently per frequency k to our
optimizee parameters, but coupled across channels and time
frames to allow our approach to model interactions between
channels and frames and vectorize across frequency. To do so,
we use a recurrent neural network (RNN) where the weights φ
are shared across all frequency bins, but we maintain separate
state ψk[τ ] per frequency. The inputs to our optimizer at fre-
quency k are ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]], where
∇k[τ ] is the gradient of the optimizee with respect to θk, and
ek[τ ] = dk[τ ]− yk[τ ]. Our optimizer outputs are the update
Δk[τ ] and the internal state ψk[τ + 1], resulting in

(Δk[τ ],ψk[τ + 1]) = gφ(ξk[τ ],ψk[τ ]) (22)

θk[τ + 1] = θk[τ ] +Δk[τ ]. (23)

Our design is in contrast to LMS-, NLMS-, RMSProp-like
optimizers that have no state (e.g. LMS) or minimal state dy-
namics (e.g. NLMS, RMSProp). In addition, these optimizers as
well as other learned optimizers [72] typically apply updates in-
dependently per element. For a comparison of optimizer inputs,
state, parameters, and gradients, please see Table II.

To define our RNN in more detail, we use a small network
composed of a linear layer, nonlinearity, and two Gated Recur-
rent Unit (GRU) layers with hidden size H = 32, followed by
two additional linear layers with nonlinearities, where all layers
are complex-valued. We always re-scale the inputs element-wise

TABLE III
OPTIMIZER COMPLEXITY COMPARISON

via

ln(1 + |ξ|)ej∠ξ, (24)

to reduce the dynamic range and facilitate training, but keep
the phases unchanged. This pre-processing was found useful in
several previous works [63], [72], although previous work used
explicit clipping, which we found unnecessary.

2) Loss: We examine two meta lossesLM (·) to learn our op-
timizer parametersφ. First, we define the FD frame independent
loss

LM = ln
1

L

τ+L∑
τ

E[||dm[τ ]− ym[τ ]||2], (25)

where dm[τ ] and ym[τ ] are the desired and estimated FD signal
vectors of the reference channel m (e.g. m = 0). Intuitively, to
compute this loss for a given optimizer gφ, we unroll (20) for a
time horizon of L time frames, compute the FD mean-squared
error over L frames, and then take the logarithm to reduce the
dynamic range, which we found to empirically improve learning.
This loss ignores the temporal order of AF updates and optimizes
for filter coefficients that are unaware of any downstream STFT
processing, but the idea of accumulating independent time-step
losses is common [72].

Second, we define the time-domain frame-accumulated loss

LM = lnE[||d̄m[τ ]− ȳm[τ ]||2] (26)

d̄m[τ ] = cat(dm[τ ],dm[τ + 1], . . .,dm[τ + L− 1]) (27)

ȳm[τ ] = cat(y
m
[τ ],y

m
[τ + 1], . . .,y

m
[τ + L− 1]), (28)

where dm[τ ] and y
m
[τ ] are the time-domain desired and es-

timated responses of reference channel m and d̄m[τ ] ∈ RRL

and ȳm[τ ] ∈ RRL. Intuitively, to compute this loss for a given
optimizer gφ, we run (20) for a time horizon of L frames,
concatenate the sequence of time-domain outputs and target
signals to form longer signals, then compute the time-domain
MSE loss, and take the logarithm. While both losses use the
same time-horizon, the frame accumulated loss allows us to
model boundaries between adjacent updates and implicitly learn
updates that are STFT consistent [85]. To the best of our knowl-
edge, our frame accumulated loss is novel for AFs.

3) Computational Complexity: We compare the computa-
tional complexity of our proposed approach to conventional
optimizers in Table III. We note that the complexity of our
approach is dependent on the hidden state size H of our RNN,
but is linear in channels M and blocks B, whereas BD-RLS
is quadratic in M and B, but does not depend on H. Note
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Algorithm 1: Training Algorithm.
function Forwardgφ,ψ, hθ,U,dm

for τ ← 0 to L do �Unroll
U[τ ],d[τ ]← STFT(U[τ ],dm[τ ]) �Forward STFT
ym[τ ]← hθ(U[τ ]) �Save filter output
y
m
[τ ]← STFT−1(ym[τ ]) �Inverse STFT

L← ||dm[τ ]− ym[τ ]||2 �AF frame loss
∇[τ ]← GRAD(L,θ) �Filter gradient
for k← 0 to K do �Apply update per freq
ξk[τ ]← [∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]]
(Δk[τ ],ψk[τ + 1])← gφ(ξk[τ ],ψk[τ ])
θk[τ + 1]← θk[τ ] +Δk[τ ]

ȳ← CAT(y[τ ] ∀τ) �Concatenate accumulated frames
return ȳ,ψ, hθ

function TrainD
φ← [90] init
while φ not CONVERGED do �Train loop
U,dm ← SAMPLE(D) �Sample signals
θ,ψ← 0,0 �Init filter and optimizer state
for n← 0 to end do �Loop across long signal
Ū, d̄m ← NEXTL(U,dm) �Get next L frames
ȳ,ψ, hθ ← FORWARD(gφ,ψ, hθ, Ū, d̄m)
LM ← via (26) �Meta loss
∇← GRAD(LM , φ) �Optimizer gradient
φ[n+ 1]←METAOPT(φ[n],∇) �Update opt

return φ̂ �Return best φ

that prior work on learned optimizers, including our own [63],
performs optimization completely element-wise, resulting in a
larger complexity of O(KMBH2).

D. Learning the Optimizer

To learn an optimizer gφ from data, we solve (21) using stan-
dard deep learning tools (i.e. JAX [86], [87]), including the use of
automatic differentiation for training and inference. In addition,
we use truncated backpropagation through time (TBPTT) [88]
with a stochastic gradient descent optimizer, Adam [89], that
we call our meta optimizer. We show a simplified form of our
training algorithm in Alg. 1 using our frame accumulated loss
and a batch size of one, where STFT is an OLA or OLS processor,
GRAD returns the gradient of the first argument with respect to
the second, SAMPLE randomly samples signals from a datasetD,
and NEXTL grabs the next L time buffers from a longer signal.
In practice, we use batching.

In more detail, we train gφ until the application specific
mean SNR metric on the validation fold of a dataset D has not
improved for four epochs. For each of our five applications, we
use (29), (30), (31), (36), and (45), respectively. We halve the
step size after an epoch with no improvement and define an
epoch as 10 passes through the dataset with a batch size of 32.
We have a hard stop for training at 100 epochs. From initial
experimentation, we note the choice of the meta-optimizer and
meta-optimizer parameters have large impact on performance.

Fig. 1. System identification block diagram. System inputs are fed to both the
adaptive filter and the true system (shaded box). The adaptive filter is updated
to mimic the true system.

We initializeφ via [90] and, when using Adam2, we found it was
important to use a small learning of 10−4 and a large momentum
term of. 99. To help stabilize training, we use gradient clipping
with a clipping value of 10. We use identical gφ settings for
each task with input and output sizes set toM ·B · 5 andM ·B,
respectively, all intermediate layer sizes set to 32, and separate
ReLU nonlinearities for real and imaginary.

Compared to our past work on single-channel single-talk
AEC [63], we 1) change our loss from (25) without the log to (26)
2) change the input of our learned optimizer from∇k[τ ] to ξk[τ ]
with updated pre-processing (24) and 3) develop multi-channel
Meta-AFs or development multi-block Meta-AFs to perform
time- and block-coupled updates instead of separate, indepen-
dent updates per frequency, block, and channel. To validate our
approach, we apply our algorithm to five audio tasks including
system identification, acoustic echo cancellation, equalization,
single/multi-channel dereverberation, and beamforming in Sec-
tions IV, V, VI, VII, and VIII, respectively and compare against
conventional methods. For our first task, we also ablate key
design decisions and then lock a single configuration for all
remaining tasks and experiments.

IV. SYSTEM IDENTIFICATION ABLATIONS

A. Problem Formulation

For our first task, we train a Meta-AF to perform online
system identification (ID). We seek to estimate the transfer
function between an audio source and a microphone over time,
as shown in Fig. 1. This is commonly done in room acoustics
and head-related transfer function measurements for virtual and
augmented reality. To do so, we model the unknown system (e.g.
acoustic room) with a linear frequency-domain filter hθ (opti-
mizee architecture), inject input signal u into the system, mea-
sure the responsed, and adapt the filter weights θ = {wk} using
our learned Meta-ID AF, gφ. The AF loss is the ISE between
the desired response, dk[τ ], and the AF predicted response,
yk[τ ] = wk[τ ]

Huk[τ ].

2We use a custom implementation of Adam in our source code due to a
complex-value error issue in the JAX implementation.
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Fig. 2. Optimizer design decision ablation. Using an accumulated log-loss
leads to our best model, particularly for more complex tasks we address later
on. RLS-like inputs are also useful. The exact value ofL is not critical, but larger
is better.

B. Experimental Design

We 1) ablate key design decisions of our AF optimizer archi-
tecture and loss in Section IV-C and 2) study the robustness of our
approach to modeling errors by changing the AF and true system
order at test time in Section IV-D. For evaluation metrics, we use
the segmental SNR (SNRd) between the desired and estimated
signals in dB. We compute this per-frame as,

SNRd(d[τ ],y[τ ]) = 10 · log10
( ‖d[τ ]‖2
‖d[τ ]− y[τ ]‖2

)
, (29)

where higher is better. We train gφ via Algorithm 1 using a
single GPU to adapt an OLS filter with a rectangular window size
N = 2048 and hop sizeR = 1024 on 16 kHz audio. For training
data, we created a dataset by convolving the far-end speech
from the single-talk portion of the ICASSP 2021 AEC Chal-
lenge data [91] with room impulse responses (RIRs) from [92]
truncated to 1024 taps.

C. Optimizer Design Results and Discussion

In Fig. 2, we change one aspect of our final design at a time
and show how each change negatively effects performance. Our
final design, L = 16, is colored light blue, alternative config-
urations are colored differently, and our previous work [63]
is approximately equivalent to a no log, no accumulation, no
extra inputs setting. After this ablation, we fix these values
for all remaining experiments and do not perform any further
tuning except changing the dataset used for training and using
different checkpoints caused by early stopping on validation
performance. In contrast, we re-tune all conventional opti-
mizer baselines for all subsequent tasks on held-out validation
sets.

1) Loss Function: First, we compare our selected frame ac-
cumulated loss model (light blue) to the frame accumulated loss
without log scaling (black) as well as the frame independent
loss (yellow) and without log scaling (light-purple). As shown,
the log-loss has the single largest effect on SNRd and yields an
astounding 11.7/7.3 dB improvement compared to the no-log
losses. When we compare the independent vs. accumulated
loss, the accumulation provides a .2 dB improvement. However,
when we listen to the estimated response, especially in more

Fig. 3. Evaluating the effect of different true system orders and adaptive filter
orders. Our learned AFs can operate well across a variety of linear system orders,
even when training is restricted to systems of a fixed length (1024 taps).

complex tasks, we found that the accumulated loss introduces
fewer artifacts and perceptually sounds better. Thus, we fix the
optimizer loss to be (26).

2) Input Features: Having selected the optimizer loss, we
compare the model inputs. We compare setting the optimizer
input to be only the gradient ξk[τ ] = [∇k[τ ]] for an LMS-like
learned optimizer (dark purple) and setting the optimizer to be
the full signal set ξk[τ ] = [∇k[τ ],uk[τ ],dk[τ ],yk[τ ], ek[τ ]] for
our selected RLS-like learned optimizer (light blue). As shown,
the inputs have the second largest effect on SNRd and using the
full signal set yields a notable 7.9 dB improvement. Thus, we
set the input to be the full signal set.

3) AF Unroll: With the optimizer loss and inputs fixed,
we evaluate four different values of AF unroll length, L =
2, 8, 16, 32, where L is the number of time-steps over which
the optimizer loss is computed in (26). Intuitively, a larger
unroll introduces less truncation bias but may be more unstable
during training due to exploding or vanishing gradients. The case
where L = 2 corresponds to no unroll, since for L = 1 the meta
loss is not a function of the optimizer parameters and yields a
zero gradient. As shown, for no unroll L = 2 (grey), we get a
reduction of the SNRd by 1.8 dB compared to our best model.
When selecting the unroll between 8, 16, 32, however, there is a
small (<1 dB) overall effect. That said, we find that longer unroll
values work better in challenging scenarios but take longer to
train. As a result, we select an unroll length of 16, as it represents
a good trade-off between performance and training time. Note,
the unroll length only effects training and is not used at test time.

D. System Order Modeling Error Results and Discussion

Given our fixed set of optimizer and meta-optimizer parame-
ters, we evaluate the robustness of our Meta-ID AF to modeling
errors by studying what happens when we use an optimizee filter
that is too short or too long compared to the true system. We do
so by testing a learned optimizer with 1) optimizee filter lengths
between 256 and 4096 taps and 2) held-out signals with true filter
lengths between 256 and 4096, as well as full length systems (up
to 32,000 taps).

Results are shown in Fig. 3. We measure performance by
computing the segmental SNRd score via (29) at convergence.
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Fig. 4. AEC block diagram. System inputs are fed to the adaptive filter and
true system (shaded box). The adaptive filter is updated to mimic the true system.
The desired response can be noisy due to near-end noise and speech (n[τ ], s[τ ]).

As expected, when the adaptive filter order is equal to or greater
than the true system order, we achieve SNRs of ≈ 40 dB. It is
interesting to note that our learned AF was only ever trained
on optimizee filters with an order of 1024 and 1024 tap true
systems. This experiment suggests our learned optimizers can
generalize to new optimizee filter orders.

V. ACOUSTIC ECHO CANCELLATION ABLATION

A. Problem Formulation

In our second task, we train a Meta-AF for acoustic echo
cancellation (AEC). The goal of AEC is to remove the far-
end echo from a near-end signal for voice communication by
mimicking a time-varying transfer function as show in Fig. 4.
The far-end refers to the signal transmitted to a local listener
and the near-end is captured by a local mic. We model the
unknown transfer function between the speaker and mic with
a linear multi-delay frequency-domain filter hθ , measure the
noisy response d which includes the input signal u, noise n,
and near-end speech s, and adapt the filter weights θ using our
learned Meta-AEC AF, gφ. The time-domain signal model is
d[t] = u[t] ∗w + n[t] + s[t]. The AF loss is the ISE between
the near-end and the predicted response. The FDAF near-end
speech estimate is ŝk[τ ] = dk[τ ]−wk[τ ]

Huk[τ ].

B. Experimental Design

We compare our approach to LMS, RMSProp, NLMS,
BD-RLS, a diagonal Kalman filter (D-KF) model [11], and
Speex [12] for a variety of acoustic echo cancellation scenar-
ios. Our scenarios, in increasing difficulty, include single-talk,
double-talk, double-talk with a path change, and noisy double-
talk with a path change and non-linearity. Single-talk refers to the
case where only the far-end input signal u is active. Double-talk
refers to the case where both the far-end signal u and near-end
talker signal s are active at the same time. A path change refers
to the case where the true system transfer function is abruptly
changed (e.g. during a phone call). Nonlinearities refer to the
case where the true system is not strictly linear (e.g. harmonic
loudspeaker distortion). We train a single gφ for AEC and then
test it for each scene type against all hyperparameter-tuned
baselines.

We measure echo cancellation performance using segmen-
tal echo-return loss enhancement (ERLE) [93] and short-time

Fig. 5. AEC single-talk performance. Meta-AEC converges rapidly and has
better steady-state performance. We use this same legend for all AEC plots.

objective intelligibility (STOI) [94]. Segmental ERLE is

ERLE(du[τ ],y[τ ]) = 10 · log10
( ‖du[τ ]‖2
‖du[τ ]− y[τ ]‖2

)
, (30)

where du is the noiseless system response and higher values
are better. When averaging, we discard silent frames using an
energy-threshold VAD. In scenes with near-end speech, we use
STOI ∈ [0, 1] to measure the preservation of near-end speech
quality. Higher STOI values are better. We train gφ via Al-
gorithm 1 using one GPU, which took ≈ 72 hours. We use a
four-block multi-delay OLS filter (MDF) with window sizes of
N = 1024 samples and a hop of R = 512 samples on 16 kHz
audio. In double-talk scenarios, we use the noisy near-end, d as
the target and do not use oracle cancellation results (such asdu).

With respect to datasets for single-talk, double-talk, and
double-talk with path-change experiments, we re-mix the
synthetic fold of the ICASSP 2021 AEC Challenge dataset
(ICASSP-2021-AEC) [91] with impulse responses from [92].
We partition [92] into non-overlapping train, test, and valida-
tion folds and set the signal-to-echo-ratio randomly between
[−10, 10]with uniform distribution. To simulate a scene change,
we splice two files such that the change occurs randomly be-
tween seconds four and six. For the noisy double-talk with
nonlinearity experiments, we use the synthetic fold of [91]. We
apply a random circular shift and random scale to all files, each
ten seconds long. For each task, there are 9000 training, 500
validation, and 500 test files. Finally, we also use an unmodi-
fied version of the ICASSP-2021-AEC training, validation, and
test set (does not include scene changes) to compare to other
previously published works directly.

C. Results and Discussion

Overall, we find that our approach significantly outperforms
all previous methods in all scenarios, but has a larger advantage
in harder scenes—more details discussed below.

1) Single-Talk: Our approach (light blue, x) exhibits strong
single-talk performance and surpasses all baselines by >≈ 3 dB
in both median and converged ERLE, as shown in Fig. 5. Addi-
tionally, Meta-AEC converges fastest, reaching steady-state≈ 4
seconds before other baselines.

2) Double-Talk: Our method (light blue, x) converges
fastest in double-talk, and matches the D-KF in converged-
performance, as shown in Fig. 6. Meta-AEC converges≈ 5 sec-
onds faster while scoring better inSTOI. This result is striking as
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Fig. 6. AEC double-talk performance. Meta-AEC converges fastest and has
similar peak performance to the D-KF, while preserving near-end speech quality.

Fig. 7. AEC double-talk with a path change (shaded region) performance. Our
approach re-converges rapidly with high speech quality.

Fig. 8. AEC noisy double-talk with nonlinearities and a path change (shaded
region) performance. Meta-AEC learns to compensate for the nonlinearity.

it is typically necessary to either explicitly freeze adaptation via
double-talk detectors or implicitly freeze adaption via carefully
derived updates as found in both the D-KF model (dark blue,
down triangle) and Speex (green, up triangle). We hypothesize
our method automatically learns how to adapt in double-talk in
a completely autonomous fashion.

3) Double-Talk With Path Change: Our method (light blue,
x) is able to more robustly handle double-talk with path changes
compared to other methods as shown in Fig. 7. Similar to straight
double-talk, our approach effectively learns how to deal with
adverse conditions (i.e. a path change) without explicit supervi-
sion, converging and reconverging in ≈ 2.5 seconds, with. 044
better median STOI. All other algorithms similarly struggle,
even Speex (green, up triangle), which has explicit self-resetting
and dual-filter logic.

4) Noisy Double-Talk With Nonlinearities and Path Change:
When we evaluate scenes with noise, nonlinearies to simulate
loudspeaker distortion, and path changes, we find that our Meta-
AEC approach (light blue, x) continues to perform well, as
shown in Fig. 8. That is, our peak-performance is≈ 2 dB above
the nearest baseline. In STOI, Meta-AEC scores. 027 above

TABLE IV
ICASSP-2021-AEC TEST SET LINEAR FILTER RESULTS. OUR PROPOSED

METHOD OUT PERFORMS SEVERAL PAST COMPARABLE LINEAR-FILTERING

APPROACHES. A � DENOTES RESULTS WHEN MODELS WERE TRAINED/TUNED

ON THE ICASSP-2021-AEC DATA

Speex (green, up triangle). We hypothesize that our approach
effectively learns to compensate for the signal model inaccuracy,
even if we only use a linear filter.

5) ICASSP 2021 AEC Challenge Results: In addition to test-
ing with our own variant of the ICASSP-AEC-2021 dataset that
includes scene changes, we test our work with an unmodified
version of the test set in Table IV. Furthermore, we evaluate per-
formance when we train (or tune) on our custom training dataset
versus when we train on the original training dataset (denoted
with �). See also a similar Table in past work [81]. To the best of
our knowledge, this dataset is the most recent and widely used
dataset for benchmarking AEC algorithms. Here, results from
WebRTC-AEC3 and wRLS, β = 0.2 come from past work [81].
All other methods have the same MDF filtering architecture
as described above. Our approach outperforms all methods we
compare against for both training datasets, including Speex and
wRLS, which were the linear filters used in the first- and second-
place winners of the ICASSP 2021 AEC Challenge [83]. Inter-
estingly, there is a significant effect on training or tuning with
data that includes scene changes (ours) vs. the original data (e.g.
RMSProp and D-KF [61]). That is, because the ICASSP-2021-
AEC train and test set does not include scene changes, most
algorithms give better performance when trained/tuned on the
matching, unmodified train set, even though such results are less
realistic.

6) Computational Complexity: Our learned AF has a single
CPU core real-time factor (RTF) (computation/time) of≈ 0.36,
and 32ms latency (OLS hop size). Our optimizer network alone
has ≈ 14K complex-valued parameters and single CPU core
RTF of ≈ 0.31. While this performance is already real-time
capable, we suspect it could easily be improved with better
optimized code.

VI. EQUALIZATION ABLATION

A. Problem Formulation

For our third task, we train a Meta-AF for the inverse modeling
task of equalization (EQ). Here, our goal is to estimate the
inverse of an unknown transfer function, while only observing
input and outputs of the forward system, as shown in Fig. 9.
This is a common component of loudspeaker tuning. We model
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Fig. 9. Inverse modeling block diagram. System outputs are fed to the adaptive
filter. The adaptive filter is continually updated to invert the unknown sys-
tem (shaded box).

the unknown inverse transfer function with a linear frequency-
domain filter hθ , measure the response d to an input signal
u, and adapt the filter weights θ using our learned Meta-EQ
AF gφ. The AF loss is the ISE between the true and predicted
responses. More precisely, the frequency-domain AF output is
yk[τ ] = wk[τ ]

Huk[τ ].

B. Experimental Design

We compare our Meta-EQ approach to LMS, RMSProp,
NLMS, and D-RLS on the task of frequency equalization.
Additionally, we ablate the equalization filtering mechanics
for two cases: constrained and unconstrained filters (optimizee
architecture modifications). In the constrained case, we set hθ to
use standard OLS. However, in the unconstrained case, we sethθ

to use aliased OLS whereZw = IK . This comparison lets us test
if Meta-EQ is automatically learning constraint-aware update
rules. We train a new gφ for each case (no separate tuning) and
tune all baselines for each case.

We measure performance with signal SNRd, and system
SNRw. We define these as

SNRd(d,y) = 10 · log10
( ‖d‖2
‖d− y‖2

)
(31)

SNRw(ŵ
−1,w−1) = 10 · log10

( ‖|w−1|‖2
‖|w−1| − |ŵ−1|‖2

)
(32)

respectively, where higher is better. We compute SNRw using
the inverse system magnitude, which ignores the phase. We train
gφ via Algorithm 1 on one GPU, which took at most 36 h. We
use an OLS filter with a window size of N = 1024 samples and
a hop of R = 512 samples on 16 kHz audio.

To construct the equalization dataset, we use speech from the
DAPS dataset [95], take the cleanraw recordings as inputs, and
apply random equalizer filters from the sox library to generate
the outputs, where we randomly pick between [5, 15] filters
with settings c ∈ [1, 8] kHz, g ∈ [−18, 18], and q ∈ [.1, 10]. All
values are sampled uniformly at random to produce 16,384 train,
2048 validation and 2048 test signals, all 5 seconds long. At train,
validation, and test time we truncate the system response to 512
taps.

Fig. 10. Equalization results for signal (SNRd) and system (SNRw) SNR.
Meta-EQ performance is the least impacted by constraints.

Fig. 11. Comparison of true and estimated systems over time. The Meta-EQ
system rapidly fits to the correct inverse model. The top plot shows an example
system and the bottom shows SNRw over time across the test set.

C. Results and Discussion

We find our approach (blue, solid) outperforms LMS, RM-
SProp, NLMS, and D-RLS for our equalization task by a no-
ticeable margin as shown in Fig. 10 and further verify with a
qualitative analysis plot in Fig. 11.

1) Constrained vs Unconstrained: For the unconstrained
case, our method outperforms D-RLS in SNRd by .75 dB and
by 4.67 dB in SNRw. When we look at the constrained case,
the performance for all models is degraded. Interestingly, how-
ever, our performance is proportionally degraded the least. We
hypothesize that our approach learns to perform updates which
are aware of the constraint.

2) Temporal Performance Analysis: We display final system
and convergence results in Fig. 11. Our Meta-EQ model finds
better solutions more rapidly than D-RLS. D-RLS diverged ≈
300 times but Meta-EQ never did.

3) Computational Complexity: Our learned AF has a single
CPU core RTF of ≈0.24, and 32ms latency. Our optimizer
network alone has≈14K complex-valued parameters and single
CPU core RTF of ≈0.19.

VII. DEREVERBERATION ABLATION

A. Problem Formulation

For our fourth task, we train a Meta-AF to perform dere-
verberation via multi-channel linear prediction (MCLP) or the
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Fig. 12. Prediction block diagram. A buffer of past inputs are used to estimate
a future, unknown signal. The delay, z−D signifies a delay by D frames.

weighted prediction error (WPE) formulation, as is commonly
used for speech-to-text pre-processing. The WPE formulation is
based on the idea of being able to predict the reverberant part of
a signal from a linear combination of past samples, most com-
monly in the frequency-domain [25], [26] and shown as a block
diagram in Fig. 12. Using our method, we use a multi-channel
linear frequency-domain filter hθ and adapt the filter weights θ
using a learned AF gφ to minimize the normalized ISE AF loss
below.

Assuming an array of M microphones, we estimate a dere-
verberated signal with a linear model via

ŝkm[τ ] = dkm[τ ]−wk[τ ]
Huk[τ ] (33)

where ŝkm[τ ] ∈ C is the current dereverberated signal estimate
at frequency k and channel m, dkm[τ ] ∈ C is the input mi-
crophone signal, wk[τ ] ∈ C

BM is a per frequency filter with
B time frames and M channels flattened into a vector, and
uk[τ ] ∈ C

BM is a running flattened buffer of dk[τ −D].
We then minimize a per channel and frequency loss

L(ŝkm[τ ],λk[τ ]) =
‖ŝkm[τ ]‖2

λ2
k[τ ]

, (34)

λ2
k[τ ] =

1

M(B +D)

τ∑
n=τ−B−D

dk[n]
Hdk[n],

(35)

where λ2
k[τ ] is a running average estimate of the signal power

and dk[τ ] ∈ C
M . We use this formation within our framework

to perform online multi-channel dereverberation or Meta-WPE
and focus on dereverberating a single output channel.

B. Experimental Design

We compare our Meta-WPE to frame-online NARA-
WPE [30], a BD-RLS based AF which uses the WPE formu-
lation. We ablate the filter size and inputs across: M = 1, 4, 8
microphones (optimizee size and input modification). We seek
to test if our method can scale from single- to multi- channel
tasks without modification. We train a new gφ for each M (no
tuning). We measure performance with two metrics, segmental
speech-to-reverberation ratio (SRR) [31] and STOI. SRR is a
signal level metric and measures how much energy was removed

Fig. 13. Dereverberation performance in terms of SRR. Meta-WPE excels in
SRR, a metric which measures energy removed. However, inSTOI, Meta-WPE
scores worse.

from the signal. It is computed as,

SRR(dk[τ ], ŝk[τ ]) = 10 · log10
( ‖ŝk[τ ]‖2
‖dk[τ ]− ŝk[τ ]‖2

)
, (36)

where smaller values indicate more removed energy and better
performance. STOI is computed between the dereverberated
signal estimate and the ground truth anechoic signal. We train
gφ via Algorithm 1 on two GPUs, which took at most 24 h. We
use an OLA filter with a Hann window size ofN = 512 samples
and a hop ofR = 256 samples on 16 kHz audio. We fix the buffer
size B = 5 taps and the delay to D = 2 frames.

We use the simulated REVERB challenge dataset [96]. The
REVERB challenge contains echoic speech mixed with noise
at 20 dB in small (T60 = .25 sec), medium (T60 = .5 sec) and
large (T60 = .7 sec) rooms at near and far distances. The array
is circular with a diameter of 20 cm. Background noises are
generally stationary. The dataset has 7861 training files, 1484
validation files, and 2176 test files.

C. Results and Discussion

We find our approach (blue, solid) outperforms NARA-WPE
in SRR across all filter configurations, but is worse in STOI as
shown in Fig. 13. We discuss this below.

1) Overall and Temporal Performance: As shown in Fig. 13,
Meta-WPE (blue, solid) scores strongly on SRR, where our
single-channel Meta-WPE model scores better than 4 and 8
channel NARA-WPE (red, dotted) models. However, as shown
by STOI, the perceptual quality is poor. While Meta-WPE is
solving the prediction more rapidly, as shown by segmental
SRR, it is not doing so in a perceptual pleasing manner. Previ-
ous studies [31], [97] have also encountered this phenomenon,
and propose a variety of regularization tools to align the in-
stantaneous optimization objective with perceptually pleasing
processing. We re-ran these experiments with a buffer of size
B = 10 as well as with larger and smaller optimizer network
capacities and found this trend was consistent. As a result, we
conclude our approach is very effectively improving the online
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Fig. 14. Informed interference cancellation block diagram. An auxiliary signal
is used as input to an adaptive filter which is fit to an alternate signal.

optimization of the target loss, but the instantaneous loss itself
needs to be changed to better align with perception.

2) Computational Complexity: The 4 channel learned AF
has a single CPU core RTF of ≈0.47, and 16ms latency. Our
Meta-WPE optimizer network alone has≈17K complex-valued
parameters and single CPU core RTF of ≈0.38.

VIII. BEAMFORMING ABLATION

A. Problem Formulation

For our fifth and final task, we train a Meta-AF for inter-
ference cancellation using the minimum variance distortionless
response (MVDR) beamformer. The MVDR beamformer can
be implemented as an AF using the generalized sidelobe can-
celler (GSC) [38] formulation and is commonly used for far-field
voice communication and speech-to-text pre-processing. We
depict a version of this problem setup in Fig. 14 and use a
linear frequency-domain filter hθ . We use the mixture d[τ ] as
the target, informed input u[τ ], and adapt the filter weights θ[τ ]
using our learned Meta-GSC AF gφ and ISE AF loss.

Assuming an array of M microphones, we have the time-
domain signal model for mic m via,

um[t] = rm[t] ∗ s[t] + nm[t] (37)

where um[t] ∈ R is the input signal, nm[t] ∈ R is the noise
signal, s[t] ∈ R is the target signal, and rm[t] ∈ R is the impulse
response from the source to micm. In the time-frequency domain
with a sufficiently long window, this can be reformulated as

ukm[τ ] = rkm[τ ]sk[τ ] + nkm[τ ]. (38)

The GSC beamformer also assumes access to a steering vec-
tor, vk. While estimating the steering vector is well studied [38],
it remains non-trivial for real-world applications. For our case,
we assume access to a clean speech recording sk[τ ] and first
compute

Φss
k [τ ] = γΦss

k [τ − 1] + (1− γ)(sk[τ ]sk[τ ]
H + λIM) (39)

where Φss
k [τ ] ∈ C

M×M is a time-varying estimate of the target
signal spatial covariance matrix, γ is a forgetting factor, and λ is
a regularization parameter. We then estimate the steering vector
by computing the normalized first principal component of the
target source covariance matrix,

ṽk[τ ] = P(Φss
k [τ ]) (40)

vk[τ ] = ṽk[τ ]/ṽk0[τ ] (41)

where P(·) extracts the principal component and vk[τ ] ∈ C
M

is the final steering vector. We then use the steering vector
to estimate a blocking matrix Bk[τ ]. The blocking matrix is
orthogonal to the steering vector and can be constructed as

Bk[τ ] =

[
− [vk1[τ ],...,vkM [τ ]]H

vk0[τ ]H

IM−1×M−1

]
∈ C

M×M−1. (42)

The distortionless constraint is then satisfied by applying the
GSC beamformer as

ŝk[τ ] = (vk[τ ]−Bk[τ ]wk[τ ])
Huk[τ ] (43)

where wk[τ ] ∈ C
M−1 is the adaptive filter weight, and the

desired response for the loss is dk[τ ] = vk[τ ]
Huk[τ ].

Our objective is to learn an optimizer gφ that minimizes the
AF ISE loss using this GSC filter implementation. By doing
so, we learn an online, adaptive beamformer that listens in one
direction and suppresses interferers from all others.

B. Experimental Design

We compare our Meta-GSC beamformer to LMS, RMSProp,
NLMS, and BD-RLS beamformers, in scenes with either diffuse
or directional noise sources. We seek to test if our method
can learn to process scenes with different spatial characteristics
without modification. We train a single gφ and tune all baselines
on a single dataset of all scene types. We measure performance
using scale-invariant source-to-distortion ratio (SI-SDR) [98]
and STOI. SI-SDR is computed as,

a = (ŝ�s)/‖s‖ (44)

SI-SDR(s, ŝ) = 10 · log10(‖as‖2/‖as− ŝ‖2), (45)

where larger values indicate better performance. STOI is com-
puted between the output and desired speech signal. We also
compute the BSS eval metrics, source-to-distortion ratio (SDR),
source-to-interference ratio (SIR), and source-to-artifact ra-
tio (SAR) [99]. We train gφ via Algorithm 1 on one GPU, which
took ≈ 24 h. We use an OLA filter with a Hann window size of
N = 1024 samples and a hop of R = 512 samples on 6 channel
16 kHz audio.

We use the CHIME-3 challenge proposed in [100], [101]. This
dataset contains scenes with simulated speech and relatively dif-
fuse noise sources in a multi-channel environment. The array is
rectangular and has six microphones spaced around the edge of a
smart-tablet. There are 7,138 training files, 1,640 validation files,
and 1,320 test files. When running this dataset with directional
sources, we mix spatialized speech from one mixture with the
spatialized speech from a random other mixture. We do not mix
speech across folds.

C. Results and Discussion

We find that Meta-GSC outperforms LMS, RMSProp,
NLMS, and BD-RLS in median performance metrics as shown
in Figs. 15 and 16 and in a qualitative analysis in Fig. 17.

1) Diffuse Interferers: The diffuse scenario tests the ability to
suppress omnidirectional noise in a perceptually pleasant fash-
ion. We show these comparisons in the “Diffuse Interferer” rows
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Fig. 15. Performance comparison across interferers. The directional noise is
the most challenging and diffuse is the easiest.

Fig. 16. BSS eval comparison across interferers. Meta-GSC provides more
suppression with less distortion and artifacts.

Fig. 17. Spatial response plots at ≈1KHz for a directional interferer at ≈1
sec. (left) and ≈2 sec. (right).

of Fig. 15 and Fig. 16. The median input STOI was 0.675 and
the median input SI-SDR was −0.67. Meta-GSC (blue, solid)
outperforms BD-RLS (red, dotted) inSI-SDR performance with
Meta-GSC scoring 12.54 dB improvement and BD-RLS scor-
ing 10.53 dB improvement. In STOI, Meta-GSC outperforms
BD-RLS by 0.004. The BSS Eval metrics show that Meta-GSC
provides 5.8 dB more interferer suppression (SIR) while simul-
taneously introducing 1.4 dB fewer artifacts (SAR) and 2.02 dB
less distortion (SDR) than BD-RLS. Typically, enhancement
algorithms trade improved interference suppression for addi-
tional artifacts. However, the meta-training scheme produces an
optimizer which simultaneously improves both.

2) Directional Interferers: The directional scenario tests the
ability to suppress sources from one particular direction –

typically achieved by steering nulls in the beam pattern. We
show these comparisons in the “Directional Interferer” rows
of Figs. 15 and 16. The median input STOI was 0.734 and the
median input SI-SDR was −0.45. Meta-GSC scores 11.03 dB
on SI-SDR improvement whereas BD-RLS scores 8.58 dB.
STOI performance trends similarly with Meta-GSC outper-
forming BD-RLS by 0.029. The BSS-Eval metrics show a
similar trend with Meta-GSC providing 7.37 dB more SIRwhile
simultaneously introducing .29 dB fewer artifacts (SAR) and
2.51 dB less distortion (SDR) than BD-RLS. We hypothesize
Meta-GSC steers sharper nulls and learns an automatic VAD-like
controller.

3) Beampattern Comparison: We compute beam plots for
Meta-GSC and BD-RLS at ≈ 1 sec. and ≈ 2 sec. in a scene
with a directional interferer. As expected, the models share the
same look direction. However, our Meta-GSC method appears
to steer more aggressive nulls as shown in Fig. 17

4) Computational Complexity: Our Meta-GSC method has
a single CPU core RTF of ≈ 0.54, and 32ms latency. The op-
timizer network alone has ≈ 14K complex-valued parameters
and single CPU core RTF of ≈ 0.25.

IX. DISCUSSION, FUTURE WORK, AND CONCLUSION

A. Discussion

When we review the cumulative results of our approach, we
note several interesting observations. First, the performance of
our meta-learned AFs is strong and compares favorably to con-
ventional optimizers across all tasks. Second, the performance
difference between our meta-learned AFs and conventional AFs
is larger for tasks that are traditionally more difficult to model
by humans including AEC double-talk, AEC path changes, and
directional interference cancellation. Third, we found that we
could use a single configuration of our method for all five tasks,
which significantly reduced our development time. This suggests
that our learned AFs are a viable replacement of human-derived
AFs for a variety of audio signal processing tasks and are most
valuable for complex AF tasks that typically require more human
engineering effort.

When we reflect on how our learned optimizers are able
to achieve this success, we note two core reasons. First, and
most obvious, our meta-learned AFs are data-driven and trained
on a particular class of signals (e.g. speech, directional noise,
etc). Thus, Meta-AF is limited by the capacity of our optimizer
network and training data and not signal modeling skill. Second,
by framing AF development as a meta-learning problem, we
effectively distill knowledge of our meta loss into the AF loss
and corresponding learned update rules, thus enabling us to learn
AFs which optimize objectives that would be very difficult (e.g.
our frame accumulated) or even impossible to develop manu-
ally (e.g. supervised losses, STOI, SI-SDR, etc).

B. Future Work

The field of meta-learning and meta-learned optimizers
is young and has a bright future for signal processing
applications. Future directions of research include improving
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training methods, non-linear optimizee filtering, optimizer ar-
chitecture, and the optimizer/meta loss. Particularly promising
avenues for future work including identifying better optimiza-
tion losses and better filter representations for Meta-AF style
optimization. Overall, we are optimistic that our Meta-AF ap-
proach can benefit from both adaptive filtering advances as well
as deep learning progress and will be an exciting research topic.

C. Conclusion

We present a general framework called Meta-AF to auto-
matically develop adaptive filter update rules from data using
meta-learning. Our proposed approach offers several benefits
including the first general-purposes method of learning AF
update rules directly from data and a self-supervised training
algorithm that does not require any supervised labeled training
data. To demonstrate the power of our framework, we test it on
all four canonical adaptive filtering architectures and five unique
tasks including system identification, acoustic echo cancellation,
equalization, dereverberation, and GSC-based beamforming –
all using a single configuration trained on different datasets. In
all cases, we were able to train high performing AFs, which
outperformed conventional optimizers as well as certain state-
of-the-art methods. We are excited about the future of deep
learning combined with adaptive filters and hope our complete
code release will stimulate further research and rapid progress.
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