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Audio-Visual Cross-Attention Network for Robotic
Speaker Tracking

Xinyuan Qian , Member, IEEE, Zhengdong Wang, Jiadong Wang , Guohui Guan, and Haizhou Li , Fellow, IEEE

Abstract—Audio-visual signals can be used jointly for robotic
perception as they complement each other. Such multi-modal sen-
sory fusion has a clear advantage, especially under noisy acoustic
conditions. Speaker localization, as an essential robotic function,
was traditionally solved as a signal processing problem that now
increasingly finds deep learning solutions. The question is how to
fuse audio-visual signals in an effective way. Speaker tracking is
not only more desirable, but also potentially more accurate than
speaker localization because it explores the speaker’s temporal
motion dynamics for smoothed trajectory estimation. However,
due to the lack of large annotated dataset, speaker tracking is
not well studied as speaker localization. In this paper, we study
robotic speaker Direction of Arrival (DoA) estimation with a focus
on audio-visual fusion and tracking methodology. We propose
a Cross-Modal Attentive Fusion (CMAF) mechanism, which ex-
plores self-attention to learn intra-modal temporal dependencies,
and cross-attention mechanism for inter-modal alignment. We also
collect a realistic dataset on a robotic platform to support the
study. The experimental results demonstrate that our proposed
network outperforms the state-of-the-art audio-visual localization
and tracking methods under noisy conditions, with an improved
accuracy of 5.82% and 3.62% at SNR = −20 dB, respectively.
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I. INTRODUCTION

S PEECH is one of the most significant mediums of communi-
cation between humans and machines. Speaker localization

and tracking are helpful in many human-robot interaction (HRI)
applications, such as speech enhancement [1] and separation [2],
music information processing [3], [4]. They can be estimated
via the arrival time or energy level differences between signals
from two spatially separated microphones [5], [6]. The Signal
Processing (SP)-based Sound Source Localization (SSL) tech-
niques are analytical solutions under certain assumptions about
the signal, noise type, and environmental conditions, which
may vary in practice. As an alternative, recently, researchers
have proposed Deep Learning (DL)-based approaches that build
machine learning models to bypass explicit sound propaga-
tion modeling and other required priors [7]. Those approaches
model the mapping from acoustic features to speaker locations,
and have demonstrated significant performance gain over the
SP-based methods, unless the training and testing data are of
different conditions [8]. Despite much progress, the techniques
that solely rely on acoustic signals are always affected by adverse
acoustic conditions [9].

Humans use multi-modal cues to explore, capture, and per-
ceive the real world. In addition to audio, vision is another
primary stream that conveys significant information [10]. Many
studies confirmed the advantages of audio-visual fusion, such
as visually indicated sound separation [11], video-infused audio
in-painting [12], and embodied navigation [13]. If a visually
tracked object emits sound, its location can also be inferred using
SSL techniques. Audio and vision offer complementary charac-
teristics [9]. For example, one may achieve improved tracking
accuracy by using sound to estimate the speaker trajectories in
unseen regions of a camera [14] or by using visual cues to predict
a target location during silent periods [15].

Since audio and vision operate in different spaces, i.e., au-
dio in a 3D space and video on a 2D image plane, in most
audio-visual localization-based applications, sensor calibration
information, which constructs the mapping between different
coordinates, is required. Using calibrated sensors, one can align
a DoA to specific 2D locations on an image plane [16], [17],
or map a target image location to a 3D spatial space [18], [19].
However, such a calibration process is labor-intensive [20] and
precise calibration information is hard to come by.
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TABLE I
SUMMARY OF THE SIGNIFICANT STATE-OF-THE-ART (SOTA) DL-BASED SPEAKER DOA LOCALIZATION AND TRACKING APPROACHES AND OUR PROPOSED

METHODS (INDICATED WITH “PROP.”)

Not to be burdened with such sensor calibration, one solution
is using DL techniques to transform the localization task into
a data-driven optimization problem, where a model gradually
learns the mapping from input signals to speaker location ground
truth [28]. It is noted that the success of DL techniques is based
on a large amount of training data. However, most existing
datasets provide data of audio-only localization [28], [33], [34],
or audio-visual localization, but with a short recording dura-
tion [35]. The scarcity of datasets hinders the DL-based speaker
tracking studies [9].

In this paper, we tackle the speaker location estimation prob-
lem with signals captured by multi-modal sensors mounted on
a real robot. We are particularly interested in exploiting three
unique properties of audio-visual signals for speaker tracking
under noisy acoustic conditions: (1) both audio and visual sig-
nals are sequential; (2) the speaker locus at either an audio or
visual frame is temporally correlated to that at the neighboring
frames; and (3) audio and visual signals from the same speaker
are highly correlated as far as the speaker locus is concerned. To
this end, we propose an audio-visual cross-attention network. We
consider our work is of significant importance with the following
contributions.

1) We make the first attempt at audio-visual speaker spatial
DoA estimation using DL-based techniques and a tracking
strategy.

2) We propose a Cross-Modal Attentive Fusion (CMAF)
architecture that explores the self-attention mechanism to
learn intra-modal temporal dependencies and the cross-
attention mechanism for inter-modal alignment.

3) We develop a DL-enabled audio-visual dataset with sig-
nals captured by a real robot. The monocular image
sequences, multi-channel microphone array signals, and
speaker 3D location annotations are provided.

4) We demonstrate that the proposed CMAF outperforms the
state-of-the-art uni-modal and multi-modal approaches.1

1We will release the dataset and the source code.

The rest of the paper is organized as follows. Section II
gives a comprehensive review of the related works. Section III
formulates the research problem. Section IV first characterizes
the audio and video processing, and then elaborates the proposed
audio-visual tracking network. Section V summarizes the exist-
ing DL-based datasets, followed by a detailed description of our
self-collected audio-visual dataset. Experiments are conducted
and analyzed in Section VI. Limitations and future works are
discussed Section VI-H. Finally, we conclude in Section VII.

II. RELATED WORK

Let us start with a review of the significant SSL approaches.
Then, we discuss how speaker tracking is different from the
localization task, and how the incorporation of vision can help
improve performance. The most relevant DL-based SSL and
tracking approaches are summarized in Table I.

A. Speaker Localization

Speaker localization using sound is a well-established area of
research. Conventional SP-based speaker localization methods
generally belong to four categories: (1) time delay estimation,
e.g., Time Difference of Arrival (TDoA) (2) sub-space
methods, (3) beamforming methods, and (4) histogram analysis
methods. Among the four categories, time delay-based methods
attract the most attention. In particular, Generalized Cross
Correlation (GCC) estimates the sound location at the maximum
correlation between the inter-microphone signals. As only phase
information conveys TDoA, Generalized Cross Correlation
with Phase Transform (GCC-PHAT) eliminates the amplitude
and uses only phase of the cross spectrum for robustness against
noise interference [5]. Studies show that speaker localization
benefits from the use of a multi-channel microphone array [36].
By aggregating information from multiple microphone pairs,
we overcome errors from an individual microphone pair.
As an example, Steered Response Power PHAse Transform
(SRP-PHAT) [6] promotes this concept by estimating the
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speaker DoA at the hypothesis with the maximized accumulated
GCC-PHAT value. Despite much progress, SP-based methods
remain to be improved under adverse acoustic conditions [28].
Nonetheless, the SP-based features are shown to be effective
under controlled acoustic conditions.

Recently, DL-based SSL approaches, also called neural so-
lutions, show superiority over the conventional SP-based ap-
proaches for their generalization ability under reverberation and
noise conditions [21], [29], [37]. The neural solutions employ a
network architecture that learns to map input acoustic features to
sound source locations. They differ in terms of feature represen-
tation and network architecture. As listed in Table I, SP-based
acoustic spatial features are mostly used, e.g., GCC-PHAT [21],
[23], [28], Short-Time-Fourier-Transform (STFT) variants [24],
[26], [27], [29], [31], [32], eigenvectors of spatial covariance
matrix [25], Inter-channel Time Delay (ITD) and Inter-channel
Level Differences (ILD) [22]. Several common network archi-
tectures are studied that include Multi-Layer Perceptron (MLP),
Convolutional Neural Network (CNN), and CNN ResNet (with
residual block). In this paper, we further study neural solutions
by exploring a novel multi-modal fusion technique.

B. Speaker Tracking

In speaker localization, we tackle frame-level localization,
which does not consider sound source motion dynamics. Un-
like speaker localization, speaker tracking not only locates the
speaker, but also follows the speaker’s motion over consecutive
frames. Speaker tracking is required in many real-world robotic
applications. As it benefits from sound source motion dynamics,
it potentially provides more accurate position information than
speaker localization.

Traditional parametric tracking approaches often rely on a
recursive Bayesian estimation paradigm, such as Kalman Filter
(KF) [38] and Particle Filter (PF) [16], [18], [39]. PF is a
stochastic inference strategy that relies on sequential impor-
tance sampling to approximate the target posterior distribution
using weighted samples. To complement audio cues, vision is
shown effective [17], [18], [40]. For example, [18] uses PF
for speaker tracking, where audio-visual fusion is implicitly
handled during the recursive particle likelihood update stage.
[41] adopts the Extended Kalman Filter (EKF) paradigm to
achieve dynamic weighting of audio-visual streams according
to the instantaneous sensor reliability measure. However, those
parametric approaches require prior knowledge of the scene,
such as spatial distribution and respective velocity of a sounding
object, or manual tuning of specific hyperparameters according
to the scene composition and dynamics.

Unlike parametric approaches, DL-based trackers do not
require problem-specific parameter settings. For example, the
Recurrent Neural Network (RNN) learns to capture long-term
information. Others [27], [32] use consecutively stacked CNN
and RNN layers, that is referred to as Convolutional Recurrent
Neural Network (CRNN). In terms of audio-visual fusion, it is
common to track a sound source on an image plane. For exam-
ple, [42] generates a heat map to visualize the image location of
a sounding object. [43] represents an audible and visible object

as the trajectory of a potential sound source through space and
time. When it comes to the spatial DoA domain, few studies
have tackled the audio-visual tracking problem, let alone their
fusion mechanism. One of the reasons that hinder the research
is the lack of a large annotated dataset. As the first attempt, we
tackle this problem with a simple but effective visual simulation
method in our prior work [9] by taking advantage of sensor
calibration information, where a straightforward audio-visual
weighting mechanism is studied. Nonetheless, in [9], we did
not investigate the temporal dynamics of speaker motion as the
involved sound source is stationary.

It is tempting to combine parametric methods with DL tech-
niques for speaker tracking. For example, [44] proposes Back-
prop Kalman Filter (BKF), which downsizes the observations
to a lower-dimensional space through a nonlinear encoding
network. Inspired by [44], a DL-based KF extension for audio-
visual speaker tracking was introduced in [45] where dynamic
multi-modal stream weights are jointly learned during model
optimization. Despite comparable performance with standard
KF-based methods, this approach still requires manual parame-
ter tuning.

C. Summary

Most of the previous DL-based studies are conducted on
synthetic recordings with a spatially static sounding object,
either using audio signals [21], [22], [23], [24], [25], [26], [27],
[29], [30], [31], [32], or audio-visual signals [9]. None of them
explore the problem of DL-based audio-visual speaker spatial
DoA tracking, which is the focus of this paper. Fig. 1 illustrates a
general block diagram of our proposed architecture. In addition
to multi-modal input data capture, it consists of three stages:
(1) the front-end feature processing block, (2) the multi-modal
fusion block, and (3) the speaker DoA classifier. We discuss this
in further detail next.

III. PROBLEM FORMULATION

We start by defining a few notations and definitions. Unless
otherwise specified, matrices are in bold uppercase, e.g., X, Y,
vectors are in bold lowercase, e.g., x,y, variables are in lower-
case, e.g., x, y, and functions are in calligraphic font, e.g.,F . Let
us denote the synchronized audio and image sequences captured
by an M-channel microphone array and a camera mounted on
a robotic platform, as s1:M and I. We aim to estimate DoA of
a speaker, denoted as θt ∈ [1◦, 360◦], in each frame t = 1, .., T .
We formulate the problem as a regression problem, which seeks
to predict DoA as one of the 360 discrete classes, denoted as
θ = {j|j is an integer, and 1 ≤ j ≤ 360}.

As DoAs are spatially continuous, instead of adopting the one-
hot output coding, we use a Gaussian-like vector [28], denoted
as pt(θ), to represent the posterior probability likelihoods of a
speaker presence in the direction of θt,

pt(θ) = exp

(
−|θ − θt|2

σ2
θ

)
(1)

where pt(θ) is centered on the ground truth θt with a standard
deviation σθ. To be noted, the prefix 1√

2πσθ
of the Gaussian



QIAN et al.: AUDIO-VISUAL CROSS-ATTENTION NETWORK FOR ROBOTIC SPEAKER TRACKING 553

Fig. 1. The proposed network architecture for speaker DoA estimation given the audio and video input streams captured by a robotic platform. Apart from the
input multi-modal data, it consists of three stages: (1) audio and video front-end feature processing block (red and yellow rectangles), (2) multi-modal fusion block
(blue rectangle), and (3) MLP back-end DoA classifier (grey rectangle). On the right-most part, we use a color bar with the varying color from purple to yellow
indicating the DoA variations from 1◦ to 360◦.

distribution is dropped in Eq. (1) as well as in [28], since it is a
constant which has no impact on the algorithm.

As will be discussed later, we will adopt a DL technique to
learn the mapping from the multi-modal inputs to the speaker
DoA posterior probability,

p̂t(θ) = F(s1:M , I; Ω) (2)

where F(·) is the proposed network with Ω the learnable pa-
rameters. In this way, the locus of the speaker is approximated
by the DoA value of the highest probability,

θ̂t = argmax
∀θ

p̂t(θ) (3)

We adopt the Mean Square Error (MSE) loss for the posterior
probability-based coding in (1),

Lt(s
1:M , I; Ω) =

360∑
θ=1

||pt(θ)− p̂t(θ)||22 (4)

For brevity, we drop the time index t hereafter.

IV. PROPOSED METHODS

Audio-visual signals provide rich spatial and temporal cues
to track the speaker in the scene [10]. It was shown that directly
concatenating the frame-level multi-modal features is vulnerable
to temporal misalignment and uni-modal outliers [46]. We start
with the basics of audio and visual characterization. We then
formulate CMAF, the cross-modal attentive fusion architecture
for speaker tracking.

A. Audio Processing

In acoustic speaker localization, time-delay based methods
have achieved remarkable success with widespread applications
thanks to their simple and effective computation. In particular,
GCC-PHAT, which facilitates the TDoA estimation between any
two arbitrary microphones, is more robust to noise and room
reverberations [47]. Herein, we use it as the acoustic feature.
Let Sn1

and Sn2
denote the STFT of short-time audio signals

at a microphone pair {(n1, n2), ∀n1 < n2 ≤ N} where N is
the total number of microphones. We use m ≤ M to index the

microphone pair with M the total pair number. Then, the GCC-
PHAT feature with time delay τ is computed as,

gm(τ) =
∑
k

(
Sn1

(k)S∗
n2
(k)

|Sn1
(k)S∗

n2
(k)|e

i 2πk
Ns

τ

)
(5)

where i indicates the imaginary unit, ∗ denotes the complex
conjugate, k indicates the frequency bin, and Ns is the STFT
length. GCC-PHAT is a feature in the time domain that peaks at
the actual time delay. It is noted that its performance is unstable
for signals under a low Signal-to-Noise Ratio (SNR).

Since frequency-domain DoA estimation methods are more
robust than time-domain methods, in particular in the presence
of background noise and reverberation [48], we also incorporate
log-mel spectrogram by passing STFT through a mel filter bank
to provide a compact representation. The mel Spectrogram is
supplementary to GCC-PHAT that operates in the frequency
domain. We use Mn to denote the one calculated in the n-
indexed microphone (n ≤ N ). Since DL features are automati-
cally deduced and optimally tuned for the desired DoA outcome,
incorporating features from both domains brings the greatest
benefits.

In summary, we extract two location-related features from the
audio processing block: the time-domain GCC-PHAT features,
and the frequency-domain log-mel spectrogram features.

B. Video Processing

The advances in object detection have enabled many real-
world applications, such as autonomous driving, robot vision,
and surveillance [49]. Human face detection has served as the
front-end of many audio-visual tasks, such as speaker track-
ing [18], diarization [50], and speaker extraction [51].

Object detection results are typically represented by bounding
boxes [52]. In this paper, we adopt the tracking-by-detection
methodology [53], and use face detection as the front-end for
video encoding. Let us denote a detected face bounding box at
t as

bt = (ut, vt, wt, ht) (6)

where (ut, vt) indicates the image position of the top-left corner,
and (wt, ht) the width and height of the bounding box.
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Fig. 2. The encoded visual features from an image face detection bounding
box. The red and blue curves follow a Gaussian distribution which centers at
the face detection point. The Gaussian standard deviation is proportional to the
detection width and height.

We propose to encode the visual locus of a speaker as the
concatenation of two Gaussian-like vectors where ρt(u) and
ρt(v) represent the likelihoods of a speaker visually present
along the image’s horizontal axis u and vertical axis v. We use
the same formulation as [9],

ρt(u) =

{
exp

(
−|u−μu,t|2

σ2
u

)
bt �= ø,

0 otherwise
(7)

where μu,t = ut +
1
2wt is the horizontal center of bt, and σu is

the standard deviation. The vertical representation ρt(v) has the
same format as ρt(u) by replacing u with v, μu,t with μv,t =
vt +

1
2ht, and σu with σv in (7). Notice that when there is no

face detection, the visual features are set to all-zero vectors.
In Fig. 2, we show an example of the encoded visual features

of a face detection result, where the red and blue curves indicate
the posterior probability of the horizontal and vertical positions
of the bounding box. The curves peak at the central points of the
detected face.

C. Cross-Modal Attentive Fusion (CMAF)

We extract the location-related features from audio and video,
respectively. Then, we design a deep module to refine the
location-related cues by taking into account the temporal varia-
tions among cross-modalities.

Self-attention in neural networks learns which element to
focus on in a sequential signal, while cross-attention learns
the interaction between audio and visual signals. Self-attention
makes use of historical data to make a decision, that is par-
ticularly useful for speaker tracking because it considers a
receptive field instead of a single frame, and benefits from the
temporal correlation properties of audio and visual signals sepa-
rately. Cross-attention exploits the synchronization information
between audio and visual signals, which takes advantage of
the audio-visual correlation properties. We believe that by em-
ploying both self-attention and cross-attention in the proposed
CMAF network, we make full use of multi-modal cues.

We detail the architecture of CMAF in Fig. 3. For brevity,
we exclude the input streams and DoA outputs from the fig-
ure. We first apply a fully-connected (FC) layer to project the
multi-channel information from each of the three individual
modalities (i.e.,M -channel GCC-PHAT gm(τ),N -channel log-
mel spectrogram Mn, and two-channel visual features) into

Fig. 3. The network architecture of the proposed CMAF model (we ignore
the input streams and DoA estimates). The model first uses separate Fully-
Connected (FC) layers to project each of the three encoded multi-channel fea-
tures (two dimensional face features ρ(u), ρ(v), acoustic GCC-PHATs gm(τ)
with m ≤ M , and log-mel spectrogram features Mn with n ≤ N ) into the
latent representations, Xρ, Xg and XM. Then, six parallel CMAFs are applied
to any two modalities. The resulting cross-attentive features are concatenated to
the back-end speaker DoA classifier (⊗ indicates the concatenation operation).

the latent representations, denoted as Xρ, Xg , and XM. Then,
we adopt six parallel CMAF blocks which enumerate all order
combinations of the three latent representations. Finally, the
resulting cross-attentive features are concatenated for speaker
DoA estimation.

Specifically, in Fig. 4, we illustrate one CMAF block that deals
with two arbitrary inputs, denoted Xα and Xβ . Two attention
modules, Multi-head Self-Attention (M-SAtt) and Multi-head
Cross-Attention (M-CAtt), are detailed in the left-most and
right-most panels.

1) Self-Attention (SAtt): SAtt allows the model to attend to
all features at the scale of the input sequences. As described
in [54], it maps a query to a set of key-value pairs. For instance,
given a sequential input Xα from modality α, the scaled dot-
product self-attention matrix, which represents the energy, is
computed as,

SAtt(Xα) = softmax

(
XαWQα

Wᵀ
Kα

Xᵀ
α√

dk

)
XαWVα

(8)

= softmax

(
QαK

ᵀ
α√

dk

)
Vα (9)

where WQα
, WKα

and WVα
are the trainable parameters of

three individual FC layers which project Xα into a common
space. Qα = XαWQα

∈ RTα×dq is a set of queries, Kα =
XαWKα

∈ RTα×dk is a set of keys, and Vα = XαWVα
∈

RTα×dv is the corresponding set of values (where T	 and d	
denote the sequence length and feature dimension, respectively).
The softmax(·) is used to normalize the weights.

To make full use of self-attention, a multi-head attention
mechanism is applied [54], which enables a model to attend
to various projections of an input. The resulting multi-head
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Fig. 4. An individual CMAF block (Fig. 3) given the input streams Xα and Xβ from modality α and β. The self-attention and the cross-attention block are
displayed on the left-most and the right-most sides, respectively (⊕ indicates the pair-wise addition operation).

self-attention, denoted as M-SAtt, is then formulated as,

M − SAtt(Xα) = cat (SAtt1(Xα), . . .,SAttH(Xα))Wα

(10)
where cat denotes concatenation,H is the total number of heads,
Wα is the set of trainable parameters that have been associated
with the concatenated SAtt(·) representation. Moreover, each
self-attention module indexed byh ≤ H consists of independent
trainable parameters WQα,h, WKα,h and WVα,h, respectively.

2) Cross-Attention (CAtt): Technically, CAtt queries the fea-
ture of one modality to the other modality and vice versa. Since
the learned audio and visual features share the same spatial
correspondence, we use the CAtt module to achieve collabora-
tive fusion while preserving the intra-modal characteristics. The
right-most part of Fig. 4 illustrates the details. With the cross-
attention module, each modality keeps updating its features via
external information from the other modality.

Given the latent representations Xα and Xβ of modalities α
and β, the scaled dot-product cross-attention (i.e., a variant of
cross-correlation) achieves latent adaptation across modalities
through a formulation similar to (8). This process is formulated
as,

CAtt(Xα,Xβ) = softmax

(
XαWQα

Wᵀ
Kβ

Xᵀ
β√

dk

)
XβWVβ

(11)

= softmax

(
QαK

ᵀ
β√

dk

)
Vβ (12)

where WQα
, WKβ

and WVβ
are the projection parameters of

the query and the key-value pairs, respectively.
Accordingly, the M-CAtt mechanism follows the same prin-

ciple as the self-attention counterpart (10),

M−CAtt(Xα,Xβ) = cat (CAtt1, . . .,CAttH)Wα,β (13)

where we abbreviate the cross-attention representation (11) as
CAtt1,...,H with the subscript indexing the head number, and
Wα,β indicates the set of trainable parameters.

3) CMAF: We jointly model the temporal recurrence, co-
occurrence, and synchrony of the multi-modal features in the
CMAF block through the self-attention and cross-attention mod-
ules. The intermediate CMAF features are computed as,

X̃α,β = Xα +M−SAtt(Xα) +M−CAtt(Xα,Xβ) (14)

where the skip connections can help preserve the identity infor-
mation from the input stream Xα.

The final CMAF outcome is formulated as,

CMAF (Xα,Xβ) = LN
(
MLP

(
LN

(
X̃α,β

)))
(15)

where LN stands for layer normalization, and MLP includes
two FC layers with a ReLU activation function.

The overall CMAF block models the interactions between
each cross-modal pair. With three input multi-modal streams,
six parallel CMAFs are adopted (as illustrated in Fig. 3) where
all the cross-attentive features are concatenated to the back-end
DoA classifier at the last step.

V. DATASET

We now first review the existing datasets which are suitable
for DL-based speaker DoA estimation, to motivate the design of
a new dataset for Audio-Visual Robotic Interface (AVRI).

A. Existing Datasets

We summarize all datasets in Table II and characterize them
in terms of modality, sensing platform, type of sounding source,
recording duration, and data annotation.

1) The LOCalization And TrAcking (LOCATA) dataset [55]
is recorded with different array configurations in a high-
reverberant indoor environment. Annotations include mi-
crophones and target 3D locations and Voice Activity
Detector (VAD) labels.

2) The Realistic Speech Localization (RSL) dataset [34] is
recorded in a low noise and nearly reverberation-free
environment, using a 4-channel ReSpeaker microphone
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TABLE II
SUMMARY OF THE SIGNIFICANT DL-BASED SSL DATASET (L: LOUDSPEAKER; H: HUMAN; NA: INFORMATION NOT AVAILABLE)

TABLE III
SPECIFICATIONS OF THE AVRI DATASET

array.2 A loudspeaker is placed at two different heights
(1 m and 1.5 m height from the ground plane) with DoA
of a sound source ranging from 1 to 360 degrees (5-degree
resolution).

3) The Sound Source localization for Robots (SSLR) [28]
is recorded using the humanoid Pepper robot3 where four
microphones and a stereo-vision are mounted on the robot
head. It mostly uses a loudspeaker for recording, whereas
human recordings only last for 4 minutes.

4) The MultiModal Mall Entertainment Robot (MuMMER)
dataset [35] uses the Pepper robot to record the audio-
visual streams. However, it only provides 2D face location
annotations, which are not suitable for speaker spatial
location estimation.

In summary, LOCATA and RSL only include audio signals.
Among the audio-visual datasets, SSLR only has 4 minutes of
human video, while MuMMER lacks the annotated 3D speaker
location. To support our study, we propose a large-scale AVRI
dataset, which is elaborated in the following.

B. AVRI Dataset

We collect the AVRI dataset, as summarized in Table III, that
features several unique properties: (1) it involves both multi-
channel audio signals and images, (2) it is recorded from on-site
human speakers, (3) it includes 3D location annotations, and
(4) it not only enables DL-based applications, but also supports

2https://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
3Pepper robot: https://www.softbankrobotics.com/emea/en/pepper

Fig. 5. The AVRI recording platform consists of: (a) the KINOVA robot and
(b) the multi-modal sensory platform: a 4-channel ReSpeaker microphone array
is mounted on top of a Kinect sensor (the red arrow directs DoA = 90◦).

SP-based techniques. To promote research in DL-based audio-
visual speaker localization and tracking, the AVRI dataset and
the source code of this work are publicly available together with
this paper.

For HRI applications in smart home scenarios, the recording
environment makes the most difference. Thus, we design the
recording in a real indoor reverberant room equipped with
various furniture (e.g., table, sofa, and chairs) where the data are
captured from a real robot and affected by ego and background
noise. Reverberation time is approximated to RT60 ≈ 0.35 s
according to [56]. The whole recording procedure lasts for two
months, while we do not constrain the robot location and room
arrangements. This makes the data more realistic in a robotic
scenario. Specifically, a Kinect sensor is used to capture RGB
image sequences (with a resolution of 960× 540 pixels), and
audio signals are captured with a four-channel circular ReS-
peaker microphone array (i.e., at the sampling frequency of
16 kHz). The setup of the multisensory equipment is illustrated
in Fig. 5(b), which is mounted on a KINOVA robot4 (Fig. 5(a)).

We invite 6 female and 5 male speakers, that is, 11 participants
in total. For each speaker, we record 3∼4 clips with each
length varying from 6 to 18 minutes. During the recording, the
participants freely move around the robot while reading a given
script. In particular, 22 recordings were read in Chinese, while 21

4KINOVA robot: https://www.kinovarobotics.com/en

https://wiki.seeedstudio.com/ReSpeaker_Mic_Array_v2.0/
https://www.softbankrobotics.com/emea/en/pepper
https://www.kinovarobotics.com/en
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were read in English. Moreover, participants wore a face mask
in 22 recordings.

To annotate the speech activities, we adopt a wireless presen-
ter system5 where a lavalier microphone is clipped on the collar
of each participant to acquire the close-talk speech. Moreover,
to facilitate speaker spatial localization, we incorporate an Op-
tiTrack system to annotate the 3D locations of speakers and
sensors. In Fig. 5(b), the small silvery dots stuck on the sensors
are the reflection points (annotators) of the OptiTrack system.

VI. EXPERIMENTS

As studies show that DL-based localization methods are su-
perior to SP-based methods [9], [21], [26], [32], we focus on
comparing our proposed methods with the significant DL-based
DoA estimation methods. The experiments are conducted on
AVRI dataset to compare CMAF with the competitive base-
lines. We also provide qualitative analysis and visualization in
a comparative study. Furthermore, we would like to show that
appropriate audio-visual fusion greatly improves the robustness
of speaker tracking in noisy acoustic conditions.

A. Baselines

We compare our proposed CMAF method with four compet-
itive SOTA methods where three of them use audio as input
(GCC-MLP [28], STFT-ResNet [29], A-CRNN [32]), and the
fourth one uses audio-visual signals (AV-MLP [9]). For AV-MLP
and A-CRNN [9], [32], we use their provided source codes,
while for GCC-MLP and STFT-ResNet [28], [29], we reproduce
their results.

All methods are tested with the same parameter settings for
fair comparison. We briefly summarize the methodology of the
baseline methods as follows:

1) GCC-MLP [28]: It incorporates GCC-PHAT as the acous-
tic feature, where an MLP network with three fully-
connected hidden layers is used as the DoA classifier.

2) STFT-ResNet [29]: It uses STFT as input, which captures
richer temporal and spatial information than GCC-PHAT.
A CNN network with residual blocks [57] is used to avoid
the problem of vanishing gradients and to learn the DoA
feature representation.

3) A-CRNN [32]: It stacks GCC-PHAT and log-mel spec-
trogram as the inputs to a CRNN network to capture
the temporal motion dynamics. Although this work was
originally designed for sound event tracking, it is easily
extendable to track a speaker.

4) AV-MLP [9]: It uses GCC-PHAT and Gaussian-encoded
visual features ((7)) as input. The two modalities are
concatenated to form a global audio-visual representation
for the back-end MLP-based DoA classifier.

To be noted, since AV-MLP [9], the only comparable DL-
based DoA estimation work, is our previous method replies on
visual augmentations, we facilitate a new data collection and
novel method proposals to encourage more explorations in this
field.

5https://www.shure.com/en-ASIA/products/wireless-systems/blx_wireless/
blx188-cvl-dual-presenter-set

Fig. 6. The network architecture of the contrastive model i.e., AV-CRNN. The
encoded multi-modal features are firstly concatenated, then feed into a stack
of CNN blocks to learn a high-level representation. Then, a GRU module is
adopted to incorporate the temporal information before the final DoA classifier
(⊗ indicates the concatenation operation, which aggregates the multi-modal
features as the entire input representation).

B. A Contrastive Model: AV-CRNN

Besides the four baselines in Section VI-A, we also implement
a contrastive model to examine the contributions of the pro-
posed self-attention and cross-attention mechanism in CMAF.
We introduce a CRNN module, i.e., a stacked CNN and GRU
architecture, in place of the parallel fusion module in CMAF,
referred to as AV-CRNN in Fig. 6, where the dashed box denotes
the CRNN architecture.

AV-CRNN has the same front-end feature extractor and the
back-end classifier as CMAF, but employs a different multi-
modal fusion mechanism without cross attention, that allows us
to clearly show the effect of the proposed CMAF. In the CRNN
module, since the translation invariant characteristics of CNN
are effective in processing multi-modal data [58], we concate-
nate these features into stacked CNN layers. Each 2D CNN
block is followed by an average pooling, a batch normalization,
and a ReLU activation, to extract high-level location-related
information. To model speaker temporal dynamics that are not
captured by CNN layers, we apply a Gated Recurrent Unit
(GRU) module where each unit consists of multiple gates to
identify the temporal information to store, ignore, and eventually
trigger the output. In this way, the recurrent layers can accumu-
late the evolution of spatial parameters from neighboring time
frames to facilitate speaker tracking. Finally, the GRU outcome
is taken by the classifier to produce class-wise DoA posterior
probabilities (p̂t(θ) in (2)).

C. Evaluation Metrics

We evaluate the methods in terms of mean absolute error
(MAE) and accuracy (ACC). The symbols ‘↑’ and ‘↓’ indicate
the desired direction of improvement.

MAE (◦) is calculated as the average difference between the
ground truth and the estimated DoA,

MAE (↓) = 1

T

T∑
t=1

|θt − θ̂t| (16)

https://www.shure.com/en-ASIA/products/wireless-systems/blx_wireless/blx188-cvl-dual-presenter-set
https://www.shure.com/en-ASIA/products/wireless-systems/blx_wireless/blx188-cvl-dual-presenter-set
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TABLE IV
COMPARISON OF OUR PROPOSED METHODS WITH THE SIGNIFICANT STATE-OF-THE-ART DL-BASED DOA ESTIMATION METHODS ON THE AVRI DATASET

ACC denotes the ratio of correctly estimated frames,

ACC (↑) = 1

T

T∑
t=1

δt, where δt =

{
1 |θ − θ̂t| ≤ ρ
0 otherwise

(17)

where ρ is the accuracy tolerance which is set to 10◦.

D. Implementation Details

We split the AVRI dataset (Section V) into non-overlapping
70% and 30% between a training and test set. We apply a face
detector to extract the face bounding boxes (i.e., bt in (6)), in
each frame of the image. We chose [59] considering its high
accuracy and robustness for masked faces. A face detection rate
of 67.07% is achieved in the whole data set, where 59.43% is for
the training set and 84.9% is for the testing set. The frames of no
detections are mainly because the speakers move out of the cam-
era’s sight. It is noted that different face detection rates between
the training and testing set result from subconscious actions of
multiple different participants, since we do not constrain their
motions. With such face detection rates, visual cues contribute
over half of the time for speaker DoA tracking. Whenever no
visual cue is available, the audio-visual algorithms rely only on
the audio modality.

We set the standard deviation σθ of the DoA-based posterior
probability (Eq. 1) to 8, the same as [9], [28]. For the audio
building block, the STFT is computed over an audio segment
of 64 ms (1024 samples) with 50% overlapping. Considering
the maximum available TDoA given the inter-distance of a
microphone pair, we compute the 21-dimensional GCC-PHAT
coefficients with the time delays ranging from −10 to 10 sam-
ples. The log-mel spectrogram is computed with 21 mel-scale
filters at a frequency range from 20 to 8 kHz. For the visual
building block, to be consistent with the audio features, each
of the resulting horizontal and vertical visual image features,
i.e., ρt(u) and ρt(v), is of dimension 21 as well. The standard
deviation σu is empirically set to 3 ((7)), and the same for σv .
Moreover, since audio and video are of different sampling rates,
we resample all features with the same frame rate, i.e., 32 frames
per second.

For CMAF, as shown in Fig. 3, we first use separate FC
layers to derive the latent representations, Xρ, Xg , and XM of
128 dimensions. Since we have three input modes, six parallel
CMAFs are used. For each involved M-SAtt and M-CAtt blocks,
we empirically set the multi-head number and employ H = 4

heads for satisfactory performance. For the back-end DoA clas-
sifier, we use the same architecture as [28] for all comparable
methods, which consists of three FC layers. Except the output
layer, each hidden layer is followed by a batch normalization,
a ReLu activation function, and a dropout layer. We use Adam
Optimizer [60] with a learning rate of 0.001 and a batch size of
32.

E. Comparative Study on AVRI Dataset

The performance of different methods is summarized in
Table IV where the localization and tracking results are grouped
separately. We observe that our proposed methods significantly
outperform others. We also provide the number of trainable
parameters (in million).

For audio-only methods, GCC-MLP simply feeds the GCC-
PHAT features to the classifier and achieves the MAE of 19.03◦

and ACC of 66.00%. STFT-ResNet [29] has slightly better
performance than GCC-MLP with the resulting MAE of 17.21◦

and the ACC of 67.63%. The tracking method A-CRNN [32]
uses RNN to temporally filtering the input acoustic features. The
reduction of MAE to 7.91◦ and the increase of ACC to 79.28%
emphasize the benefits of consolidating the motion dynamics of
the speaker between consecutive frames.

For audio-visual methods, AV-MLP outperforms GCC-MLP
with a lower MAE of 17.55◦ and an improved ACC of 68.78%,
which is attributed to visual cues ((7)). When comparing A-
CRNN and the group of systems with localization as the design
task, it is obvious that temporal filtering (tracking) has a greater
impact than visual cues. The results of our contrastive model
AV-CRNN corroborate the tracking influence, while compared
to A-CRNN, the improved MAE to 7.58◦ and ACC to 79.72%
shows the benefits from vision.

The proposed CMAF model further boosts the performance
with the parallel CMAF modules (described in Section IV-C),
reducing MAE to 7.26◦ and improving ACC to 80.86%. In
addition to superior performance, CMAF only includes 3.825
million (M) trainable parameters, which are 50% fewer than
the CRNN-based tracking methods (7.713 M parameters for
A-CRNN, and 7.715 M parameters for AV-CRNN).

To give an intuitive illustration, Fig. 7 displays the speaker
trajectory and the DoA estimates of different methods where
the horizontal and vertical axes correspond to the time and
DoA scale, respectively. We differentiate the localization and
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Fig. 7. Comparison between the speaker ground truth trajectory (the black
curve) and the DoA estimates from different methods (the blue curves correspond
to the localization methods while the orange ones are the tracking methods;
results of non-speech segments are marked with cyan crosses; frames with
face detections are with grey background.). The horizontal axis represents time
while the vertical axis represents the DoA variations. The adopted modalities
are specified in the bracket. (a) STFT-ResNet [29], (b) GCC-MLP [28], (c)
AV-MLP [9], (d) A-CRNN [32], (e) the proposed AV-CRNN method, and (f)
the proposed CMAF method.

the tracking methods with the color index of blue and or-
ange, respectively. Moreover, results of non-speech segments
are marked with cyan crosses while frames with face detections
are with grey background. From the figure, we can see that
for the localization methods, i.e., STFT-ResNet (Fig. 7(a)),
GCC-MLP (Fig. 7(b)) and AV-MLP (Fig. 7(c)), although the
vast majority of DoA estimates follow the ground truth (black
curve), there are still some spines, resulting from intermedi-
ate speech pauses or background noise, randomly distribute
over various DoAs. Nevertheless, it is obvious that with the
help of vision, Fig. 7(c) produces less spines than Fig. 7(b).
Observing the estimated speaker trajectories of the tracking

methods, i.e., A-CRNN (Fig. 7(d)), AV-CRNN (Fig. 7(e)) and
CMAF (Fig. 7(f)), we find that the tracking mechanism helps
remove the DoA outliers (especially in non-speech segments)
and thus results in smoother DoA trajectories. Furthermore,
when comparing tracking methods with and without visual
incorporation (AV-CRNN and CMAF vs. A-CRNN), we can
observe the contributions from face detections. In general, our
proposed CMAF achieves the most smoothed trajectory over the
other competitive methods.

F. Noise Robustness

In real-world applications, audio signals are always corrupted
by noise. We would like to test the proposed DL-based model
under noisy conditions compared to other models. The Additive
White Gaussian Noise (AWGN) is added to the multi-channel
audio signals, and the resulting SNR ranges from −20 dB to
10 dB. The results are summarized in Table V.

From Table V, we can see that the tracking methods using
either audio (A-CRNN) or audio-visual (AV-CRNN and CMAF)
exhibit superiority over the localization methods (STFT-ResNet,
GCC-MLP, and AV-MLP). When SNR ≥ 0 dB, they maintain
a great performance of MAE < 10◦ and ACC > 70%. As the
SNR degrades, the contribution of visual signals increases. For
example, AV-MLP has a slightly higher localization accuracy
(59.02%) than GCC-MLP (54.26%) at SNR = 10 dB, while it
shows a greater improvement in localization accuracy (40.40%)
than GCC-MLP (27.92%) at SNR = −20 dB.

The same view applies to the two tracking methods (AV-
CRNN and A-CRNN). The tracking accuracy improves from
76.26% to 78.18% for SNR = 10 dB, and from 33.06% to
42.60% for SNR = −20 dB. To be mentioned, the audio-visual
localization method AV-MLP (ACC= 40.40%) outperforms the
audio tracking method A-CRNN (ACC = 33.06%) at SNR =
−20 dB, which elaborates that video has a higher impact than
the tracking mechanism at high noise interference. In summary,
incorporating visual influence and temporal information helps
improve the system’s robustness. From Table V, the proposed
CMAF always achieves the best results where the improved
accuracy of 5.82% and 3.62% over AV-MLP and AV-CRNN
at SNR = −20 dB are observed.

G. Feature Visualization

One of the reasons that DL-based methods are superior to SP-
based methods is the encapsulation of feature extraction stages
into a learning framework. Thus, we illustrate in Fig. 8 the t-SNE
visualization [61] of feature representations which are extracted
from the penultimate layer of the speaker DoA classifier. The
gradient color varying from purple to yellow corresponds to
the DoA range from 1◦ to 360◦. It should be noted that since
the azimuth is cyclic, the DoA estimates near 1◦ and 360◦ are
spatially close. Moreover, since we treat speaker localization as
a regression problem on discretized DoA labels, an ideal feature
distribution should contain high inter-class variance and low
intra-class variance.
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TABLE V
COMPARISON OF OUR PROPOSED METHODS WITH THE BASELINES ON THE AVRI DATASET UNDER DIFFERENT SNR CONDITIONS

Fig. 8. The t-SNE visualization [61] on feature representations extracted from the penultimate layer of the DoA classifier, given the same inputs to different
methods in the test set. The gradient color varying from purple to yellow corresponds to the DoA range from 1◦ to 360◦. The top row indicates the audio-only
baselines [28], [29], [32] and the bottom row indicates the audio-visual baseline [9], and two of our proposed methods i.e., AV-CRNN and CMAF.

Fig. 8(a) shows the feature representation of the GCC-MLP
network [28]. It is observed that given the concatenated multi-
channel GCC-PHAT as inputs, in most cases, the network can
successfully distinguish different DoA classes. However, the
features of distinct classes are gathered around the origin area,
which is not informative for the classifier. Fig. 8(b) visualizes
the features from the STFT-ResNet [29] where we observe the
same limitation as shown in Fig. 8(a), that the network fails on the
distinct-class features located around the origin. Fig. 8(c) uses
the CRNN module to incorporate a tracking mechanism. By
considering the feature variations among neighboring frames,
the model can successfully disambiguate the gathered inter-class
features around the origin.

Fig. 8(d) shows the use of audio-visual cues for DoA clas-
sification. We observe that the features are better clustered
than Fig. 8(a), while there are still some distinct class features
distributed around the origin. Fig. 8(e) corresponds to the con-
trastive AV-CRNN network, which considers the temporal de-
pendency among audio-visual features. The feature distribution
is similar to Fig. 8(c). For our proposed CMAF in Fig. 8(f),

features are cohesive for the same class, while they are divergent
for distinct classes. Moreover, it is observed that the DoA
features of neighboring classes are spatially close, leading to
smooth temporal transition between adjacent DoAs, which is
beneficial to the tracking task.

In summary, the t-SNE visualizations in Fig. 8 corroborate
the numerical results in Table IV: First, visual cues contribute to
improving the audio-only SSL performance. Second, incorpo-
rating CRNN-based tracking helps to overcome the inter-class
ambiguity. Finally, our proposed CMAF illustrates the best fea-
ture visualization with clustered intra-class features and distinct
inter-class features. The distances between the different features
are proportional to their spatial DoA difference.

H. Limitation and Future Work

The collected AVRI dataset is device-specific. Our proposed
method, which is trained on AVRI, herein limits at the spe-
cific recording setup i.e., a Kinect with a 4-channel ReSpeaker
microphone array mounted on top of it (Fig. 5). When with
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a different sensor setup, recordings need to be re-collected for
model retraining. Nevertheless, theoretically, as long as the same
sensor setup is used, our method can adapt to different room
conditions and robotic platforms.

Future works include the DL-based multi-speaker localization
and tracking, peculiarly, how to disentangle the identity-specific
features from the multi-modal inputs. For observation-to-track
assignments, one may be inspired by the permutation invariant
training (PIT) mechanism [62] utilized in speech separation as
a potential direction. Different room conditions and deployed
robotic platforms should be investigated as well. Moreover,
how to handle the situation with non-tracked point noise source
needs to be explored. Last but not least, deploying an end-to-
end network is another promising way for real-world robotic
applications.

VII. CONCLUSION

Multi-modal processing endows the robot with a higher capa-
bility of scene understanding. Despite the success of deep learn-
ing, most existing multi-modal localization works still rely on
SP techniques, where the research development is penalized by
the lack of dataset, complex coordinates transformation among
heterogeneous sensors, and very few open-sourced algorithms.
We consider our work to be of significant importance in the
field of audio-visual speaker location estimation. Specifically,
we contributed a newly annotated multi-modal dataset that
enables DL technique exploration. What’s more, we proposed
a CMAF framework as the first attempt at DL-based audio-
visual speaker DoA localization and tracking. The introduced
CMAF module incorporates self-attention and cross-attention
to jointly explore the intra- and inter-modality relations for
more accurate and robust speaker tracking. The experimental
results demonstrate the superiority of CMAF over the other
methods. We will make the dataset and the source code publicly
available.

ACKNOWLEDGMENT

We thank (1) the research engineer Yunfan Lu for his help in
device setup; (2) the NUS-Advanced Robotics Centre for their
support in providing the robotic platform, and finally (3) all the
volunteers participated data annotation and collection.

AUTHOR CONTRIBUTION STATEMENT

The authors confirm contribution to the paper as follows: (1)
idea and design: Xinyuan Qian, Jiadong Wang, Haizhou Li; (2)
data collection: Guohui Guan, Zhengdong Wang; (3) analysis
and interpretation of results: Xinyuan Qian, Zhengdong Wang,
Jiadong Wang; (4) draft manuscript preparation: Xinyuan Qian;
(5) manuscript revision: Xinyuan Qian, Haizhou Li, Jiadong
Wang. All authors reviewed the results and approved the final
version of the manuscript.

REFERENCES

[1] R. Li, F. Zhao, D. Pan, and L. Dong, “Speech enhancement based on
binaural sound source localization and cosh measure wiener filtering,”
Circuits, Systems, Signal Process., vol. 41, no. 1, pp. 395–424, 2022.

[2] P. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Joint opti-
mization of masks and deep recurrent neural networks for monaural source
separation,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23,
no. 12, pp. 2136–2147, Dec. 2015.

[3] X. Gao, C. Gupta, and H. Li, “Genre-conditioned acoustic models for
automatic lyrics transcription of polyphonic music,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2022, pp. 791–795.

[4] X. Gao, C. Gupta, and H. Li, “Automatic lyrics transcription of polyphonic
music with lyrics-chord multi-task learning,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 30, pp. 2280–2294, 2022.

[5] C. Knapp and G. Carter, “The generalized correlation method for estima-
tion of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24,
no. 4, pp. 320–327, Aug. 1976.

[6] M. S. Brandstein and H. F. Silverman, “A practical methodology for
speech source localization with microphone arrays,” Comput. Speech
Lang., vol. 11, no. 2, pp. 91–126, Apr. 1997.

[7] W. He, P. Motlicek, and J.-M. Odobez, “Neural network adaptation
and data augmentation for multi-speaker direction-of-arrival estimation,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 29, pp. 1303–1317,
2021.

[8] E. Vargas, J. R. Hopgood, K. Brown, and K. Subr, “On improved training
of CNN for acoustic source localisation,” IEEE/ACM Trans. Audio, Speech
Lang. Process., vol. 29, pp. 720–732, 2021.

[9] X. Qian, M. Madhavi, Z. Pan, J. Wang, and H. Li, “Multi-target DOA
estimation with an audio-visual fusion mechanism,” in Proc. IEEE Int.
Conf. Audio, Speech Signal Process., 2021, pp. 4280–4284.

[10] A. K. Katsaggelos, S. Bahaadini, and R. Molina, “Audiovisual fu-
sion: Challenges and new approaches,” Proc. IEEE, vol. 103, no. 9,
pp. 1635–1653, Sep. 2015.

[11] R. Gao, R. Feris, and K. Grauman, “Learning to separate object sounds
by watching unlabeled video,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 35–53.

[12] H. Zhou, Z. Liu, X. Xu, P. Luo, and X. Wang, “Vision-infused deep audio
inpainting,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 283–292.

[13] C. Gan, Y. Zhang, J. Wu, B. Gong, and J. B. Tenenbaum, “Look, listen,
and act: Towards audio-visual embodied navigation,” in Proc. Int. Conf.
Robot. Automat., 2020, pp. 9701–9707.

[14] F. Talantzis, A. Pnevmatikakis, and A. G. Constantinides, “Audio-visual
active speaker tracking in cluttered indoors environments,” IEEE Trans.
Syst., Man, Cybern., vol. 38, no. 3, pp. 799–807, Jun. 2008.

[15] I. D. Gebru, S. Ba, G. Evangelidis, and R. Horaud, “Audio-visual speech-
turn detection and tracking,” in Proc. Int. Conf. Latent Variable Anal.
Signal Separation, Liberec, Czech Republic, 2015, pp. 143–151.

[16] V. Kilic, M. Barnard, W. Wang, A. Hilton, and J. Kittler, “Mean-
shift and sparse sampling based SMC-PHD filtering for audio informed
visual speaker tracking,” IEEE Trans. Multimedia, vol. 18, no. 12,
pp. 2417–2431, Dec. 2016.

[17] Y. Liu, V. Kılıç, J. Guan, and W. Wang, “Audio–visual particle flow
SMC-PHD filtering for multi-speaker tracking,” IEEE Trans. Multimedia,
vol. 22, no. 4, pp. 934–948, Apr. 2020.

[18] X. Qian, A. Brutti, O. Lanz, M. Omologo, and A. Cavallaro, “Multi-speaker
tracking from an audio-visual sensing device,” IEEE Trans. Multimedia,
vol. 21, no. 10, pp. 2576–2588, Oct. 2019.

[19] H. Liu, Y. Li, and B. Yang, “3D audio-visual speaker tracking with a
two-layer particle filter,” in Proc. IEEE Int. Conf. Image Process., Taipei,
Taiwan, 2019, pp. 1955–1959.

[20] O. Lanz, A. Brutti, A. Xompero, X. Qian, M. Omologo, and A. Cavallaro,
“Accurate target annotation in 3D from multimodal streams,” in Proc.
IEEE Int. Conf. Audio, Speech Signal Process., Brighton, U.K., 2019,
pp. 3931–3935.

[21] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A
learning-based approach to direction of arrival estimation in noisy and
reverberant environments,” in Proc. IEEE Int. Conf. Audio, Speech Signal
Process., 2015, pp. 2814–2818.

[22] R. Roden, N. Moritz, S. Gerlach, S. Weinzierl, and S. Goetze, “On sound
source localization of speech signals using deep neural networks,” in Proc.
Deutsche Jahrestagung für Akustik, 2015, pp. 1510–1513.

[23] E. L. Ferguson, S. B. Williams, and C. T. Jin, “Sound source localization
in a multipath environment using convolutional neural networks,” in Proc.
IEEE Int. Conf. Audio, Speech Signal Process., 2018, pp. 2386–2390.

[24] T. Hirvonen, “Classification of spatial audio location and content using
convolutional neural networks,” in Proc. 138th Audio Eng. Soc. Conv.,
2015, pp. 328–334.

[25] R. Takeda and K. Komatani, “Discriminative multiple sound source local-
ization based on deep neural networks using independent location model,”
in Proc. IEEE Spoken Lang. Technol. Workshop, 2016, pp. 603–609.



562 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 31, 2023

[26] S. Chakrabarty and E. A. Habets, “Multi-speaker DOA estimation using
deep convolutional networks trained with noise signals,” IEEE J. Sel.
Topics Signal Process., vol. 13, no. 1, pp. 8–21, Mar. 2019.

[27] S. Adavanne, A. Politis, and T. Virtanen, “Direction of arrival estimation
for multiple sound sources using convolutional recurrent neural network,”
in Proc. Eur. Signal Process. Conf., 2018, pp. 1462–1466.

[28] W. He, P. Motlicek, and J.-M. Odobez, “Deep neural networks for multiple
speaker detection and localization,” in Proc. Int. Conf. Robot. Automat.,
2018, pp. 74–79.

[29] W. He, P. Motlicek, and J.-M. Odobez, “Adaptation of multiple sound
source localization neural networks with weak supervision and domain-
adversarial training,” in Proc. IEEE Int. Conf. Audio, Speech Signal
Process., 2019, pp. 770–774.

[30] Z. Pan, M. Zhang, J. Wu, J. Wang, and H. Li, “Multi-tones’ phase
coding (MTPC) of interaural time difference by spiking neural network,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 29, pp. 2656–2670,
Jul. 2020.

[31] Z. Tang, J. D. Kanu, K. Hogan, and D. Manocha, “Regression and clas-
sification for direction-of-arrival estimation with convolutional recurrent
neural networks,” in Proc. Interspeech, 2019, pp. 770–774.

[32] Y. Cao, Q. Kong, T. Iqbal, F. An, W. Wang, and M. D. Plumbley, “Poly-
phonic sound event detection and localization using a two-stage strat-
egy,” in Proc. Workshop Detection Classification Acoust. Scenes Events,
May 2019, pp. 402–406.

[33] C. Evers and P. A. Naylor, “Acoustic SLAM,” IEEE/ACM Trans. Audio,
Speech Lang. Process., vol. 26, no. 9, pp. 1484–1498, Sep. 2018.

[34] R. Sheelvant, B. Sharma, M. C. Madhavi, R. K. Das, S. Prasanna, and H.
Li, “RSL2019: A realistic speech localization corpus,” in Proc. IEEE 22nd
Conf. Oriental COCOSDA Int. Committee Co-Ordination Standardisation
Speech Databases Assessment Techn., 2019, pp. 1–6.

[35] O. Canévet, W. He, P. Motlicek, and J.-M. Odobez, “The MuMMER data
set for robot perception in multi-party HRI scenarios,” in Proc. IEEE Int.
Conf. Robot Hum. Interactive Commun., 2020, pp. 1294–1300.

[36] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localization
in reverberant rooms,” in Microphone Arrays, Berlin, Germany: Springer,
2001, pp. 157–180.

[37] J. Wang, X. Qian, Z. Pan, M. Zhang, and H. Li, “GCC-PHAT with speech-
oriented attention for robotic sound source localization,” in Proc. IEEE
Int. Conf. Robot. Automat., 2021, pp. pp. 5876–5883.

[38] T. Gehrig, K. Nickel, H. K. Ekenel, U. Klee, and J. McDonough, “Kalman
filters for audio-video source localization,” in Proc. IEEE Workshop Appl.
Signal Process. Audio Acoust., New York, NY, USA, 2005, pp. 118–121.

[39] V. Kılıç, M. Barnard, W. Wang, and J. Kittler, “Audio assisted robust visual
tracking with adaptive particle filtering,” IEEE Trans. Multimedia, vol. 17,
no. 2, pp. 186–200, Dec. 2015.

[40] Y. Ban, X. Alameda-Pineda, L. Girin, and R. Horaud, “Variational bayesian
inference for audio-visual tracking of multiple speakers,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 43, no. 5, pp. 1761–1776, May 2021.

[41] C. Schymura and D. Kolossa, “Audiovisual speaker tracking using nonlin-
ear dynamical systems with dynamic stream weights,” IEEE/ACM Trans.
Audio, Speech Lang. Process., vol. 28, pp. 1065–1078, 2020.

[42] A. Owens and A. A. Efros, “Audio-visual scene analysis with self-
supervised multisensory features,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 631–648.

[43] T. Afouras, A. Owens, J. S. Chung, and A. Zisserman, “Self-supervised
learning of audio-visual objects from video,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 208–224.

[44] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop KF: Learning
discriminative deterministic state estimators,” in Proc. Int. Conf. Neural
Inf. Proc. Syst., 2016, pp. 4383–4391.

[45] C. Schymura et al., “A dynamic stream weight backprop Kalman filter
for audiovisual speaker tracking,” in Proc. IEEE Int. Conf. Audio, Speech
Signal Process., 2020, pp. 581–585.

[46] Y. Wu, L. Zhu, Y. Yan, and Y. Yang, “Dual attention matching for
audio-visual event localization,” in Proc. Int. Conf. Comput. Vis., 2019,
pp. 6292–6300.

[47] D. Florencio, C. Zhang, and Z. Zhang, “Why does PHAT work well in low
noise reverberant environment,” in Proc. IEEE Int. Conf. Audio, Speech
Signal Process., 2008, pp. 2565–2568.

[48] X. Li, L. Girin, R. Horaud, and S. Gannot, “Estimation of the direct-
path relative transfer function for supervised sound-source localiza-
tion,” IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 24, no. 11,
pp. 2171–2186, Nov. 2016.

[49] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,”
2019, arXiv:1905.05055. [Online]. Available: http://arxiv.org/abs/1905.
05055

[50] R. Tao, Z. Pan, R. Das, X. Qian, M. Z. Shou, and H. Li, “Is someone
speaking? exploring long-term temporal features for audio-visual active
speaker detection,” in Proc. 29th ACM Int. Conf. Multimedia, 2021,
pp. 3927–3935.

[51] Z. Pan, R. Tao, C. Xu, and H. Li, “Muse: Multi-modal target speaker
extraction with visual cues,” in Proc. IEEE Int. Conf. Audio, Speech Signal
Process., 2021, pp. 6678–6682.

[52] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 941–951.

[53] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V. Gool,
“Robust tracking-by-detection using a detector confidence particle filter,”
in Proc. Int. Conf. Comput. Vis., Kyoto, Japan, 2009, pp. 1515–1522.

[54] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 6000–6010.

[55] C. Evers et al., “The LOCATA challenge: Acoustic source localization
and tracking,” in Proc. LOCATA Challenge Workshop - A Satell. Event
IWAENC, Tokyo, Japan, 2018, pp. 410–414.

[56] M. R. Schroeder, “New method of measuring reverberation time,” J.
Acoust. Soc. Amer., vol. 37, no. 6, pp. 1187–1188, 1965.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. Int. Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.
Proc. Syst., Lake Tahoe, Nevada, USA, 2012, pp. 1097–1105.

[59] X. Peng, H. Zhuang, G.-B. Huang, H. Li, and Z. Lin, “Robust real-time
face tracking for people wearing face masks,” in Proc. Int. Conf. Control,
Automat., Robot. Vis., 2020, pp. 779–783.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 375–388.

[61] L. V. D. Maaten and G. Hinton, “Visualizing data using T-SNE,” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[62] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech separation
with utterance-level permutation invariant training of deep recurrent neural
networks,” IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 25,
no. 10, pp. 1901–1913, Oct. 2017.

http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


