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Abstract—Beamforming is a powerful tool designed to enhance
speech signals from the direction of a target source. Computing
the beamforming filter requires estimating spatial covariance
matrices (SCMs) of the source and noise signals. Time-frequency
masks are often used to compute these SCMs. Most studies
of mask-based beamforming have assumed that the sources
do not move. However, sources often move in practice, which
causes performance degradation. In this paper, we address the
problem of mask-based beamforming for moving sources. We
first review classical approaches to tracking a moving source,
which perform online or blockwise computation of the SCMs. We
show that these approaches can be interpreted as computing a
sum of instantaneous SCMs weighted by attention weights. These
weights indicate which time frames of the signal to consider
in the SCM computation. Online or blockwise computation
assumes a heuristic and deterministic way of computing these
attention weights that, although simple, may not result in optimal
performance. We thus introduce a learning-based framework
that computes optimal attention weights for beamforming. We
achieve this using a neural network implemented with self-
attention layers. We show experimentally that our proposed
framework can greatly improve beamforming performance in
moving source situations while maintaining high performance in
non-moving situations, thus enabling the development of mask-
based beamformers robust to source movements.

Index Terms—mask-based neural beamformer, moving source,
self-attention network, time-varying filter, array processing

I. INTRODUCTION

ICROPHONE array signal processing [1]-[3]], which

uses spatio-temporal information obtained with multi-
ple microphones, has been an active research field for several
decades and plays an important role in the development of
many applications. In particular, multichannel linear filter-
ing using a microphone array, i.e., beamforming, has been
used extensively to design speech enhancement systems for
hearing aids [4]], [5] and for noise-robust automatic speech
recognition (ASR) systems [[6]—[8]. Recently, the mask-based
beamforming approaches [9]-[11] have attracted increased
attention because they were shown to be particularly effective
in reducing noise or the effect of interference speakers in
recent robust ASR challenges [[12]], [13]].

A beamformer exploits the spatial information about the
target and interfering sources derived from spatial covariance
matrices (SCMs) to emphasize the signals coming from a tar-
get source direction while suppressing the interfering signals.
The mask-based beamformer exploits time-frequency masks
derived from neural networks (NNs) [9], [[10] or other source
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models such as complex Gaussian mixture models (cGMMs)
[11] to compute the SCMs. SCMs capture the spatial infor-
mation and are thus sensitive to source movements. Most
studies involving mask-based beamformers avoided this issue
by assuming that the target and interfering sources do not move
within an utterance. However, this hypothesis may not hold in
general, especially when considering more realistic situations
such as sound captured by a smart speaker or robots, where
the target speaker or interference speakers could, for example,
walk around the room while talking. In this paper, we address
the problem of designing a mask-based beamformer that is
robust to moving sources by proposing a novel estimation
framework of the beamforming filters that can track the source
movements.

Mask-based beamformers compute the source and inter-
ference SCMs by averaging over time the outer product of
the multi-channel observation vectors (i.e., the vector of the
multi-channel observed signal at each time-frequency bin)
masked with the time-frequency masks. We can compute time-
invariant SCMs over an entire utterance if we assume that
the sources are not moving. This procedure results in a time-
invariant beamformer.

Adapting this framework to a moving source scenario
requires estimation of time-varying SCMs and beamforming
filters, which reflect changes in the acoustic conditions, i.e.,
the source positions. We can estimate the time-varying SCMs
using online or blockwise processing. For example, the online
mask-based beamformer [7], [11]], [14], [15] sequentially up-
dates the SCMs. These approaches estimate one SCM and the
resultant beamforming filters for each frame or block, not for
the entire utterance, and thus they could potentially deal with
moving sources. However, they require tuning hyperparame-
ters, such as the forgetting factor and block size that may vary
depending on, e.g., the speed of the sources. Consequently,
these approaches may not track a source in an optimal way.

We can view the computing of SCMs by online or blockwise
processing as limiting the range of frames that contribute to
estimating the SCMs for each frame or block. That is, such
processing replaces the averaging operation in the SCM com-
putation with a weighted averaging, where the weights indicate
the range of time frames to consider for the computation of the
SCMs. We call these weights attention weights. Conventional
online or blockwise processing use a simple heuristic rule
to determine the attention weights. We propose improving
upon this heuristic rule by introducing a novel framework
that automatically determines the optimal attention weights
based on an NN. Concretely, we design an NN that accepts



the observed signals and the time-frequency masks as the
inputs and predicts attention weights that determine which
time frames to focus on when computing the SCMs at a
given time. This mechanism can be implemented naturally
using the attention mechanism that has been widely used
in many machine learning applications [16[|-[18]. We train
the NN by minimizing a loss computed between the target
source of a moving speaker and the output of a time-varying
beamformer, which employs the time-varying SCMs computed
with the attention weights. With this fully supervised scheme,
we can learn to predict optimal attention weights that allow
the beamforming to steer its directivity toward the position of
the moving source for each frame, i.e., that enable implicit
source tracking by the attention mechanism.

Note that time-varying beamformers are often investigated
for online (sequential) systems that target processing with
low latency, but they can also be used for offline systems to
estimate better SCMs and beamforming filters such as those
in a previous work [19]. Similarly, in this paper, we focus on
offline processing that utilizes all of the information within an
utterance. We could easily extend the proposed framework to
sequential processing by restricting the use of future frames,
but this is out of the scope of this paper.

We tested the effectiveness of the proposed framework on
moving source signals simulated using the Wall Street Journal
(WSJO) corpus [20] for the speech signals, dynamic room
impulse responses computed with the gpuRIR toolkit [21]], and
background noise derived from CHiME-3 corpus [12]]. Exper-
imental results show that the proposed framework achieves
better speech enhancement and ASR performance, i.e., signal-
to-distortion ratio (SDR), perceptual evaluation of speech
quality (PESQ), short-time objective intelligibility (STOI), and
word error rate (WER), compared to the conventional time-
invariant, online, and blockwise beamforming frameworks. In
addition, we confirmed that our proposed scheme could track
a moving source by visualizing the directivity characteristics
(i.e., beam patterns) of the time-varying beamformer computed
with our proposed scheme.

The main contributions of this paper are as follows:

1) We propose a fully supervised scheme to allow the
design of time-varying mask-based beamformers that
can track moving sources.

2) We introduce an self-attention-based NN that predicts
the time frames that are relevant for computing the
SCMs at a given time.

3) We design an experiment using simulated moving
sources to compare the different approaches for tack-
ling moving sources and show the superiority of our
proposed framework for both speech enhancement and
ASR.

The remainder of this paper is summarized as follows.
In Section [l we briefly discuss prior works related to our
approach. Section describes the conventional mask-based
beamforming framework. In Section we first generalize
the online and blockwise framework and then introduce the
proposed time-varying beamforming framework with the at-
tention weight estimation model. In Section we detail
the experimental conditions of the moving source scenario

and demonstrate the effectiveness of the proposed framework.
Finally, we conclude this paper in Section

II. RELATED WORKS

Here, we briefly review related speech enhancement ap-
proaches that deal with source movements.

A. Beamformer-based approach

1) Mask-based beamformer: A mask-based beamformer
first computes a time-frequency mask, which indicates the
time-frequency bins where the target source is dominant. The
mask is used to compute the SCMs of the target source
and noise, which are required to compute the beamformer
coefficients.

There are currently two main research directions toward
estimating the time-frequency masks for mask-based beam-
formers, i.e., spatial clustering [[11]] and NNs [9], [[10]. The spa-
tial clustering-based approaches estimate the time-frequency
masks based on the spatial information, which is derived from
the microphone array signals, and thus the estimation accuracy
is affected by the movements of the source signals. On
the other hand, the NN-based approaches estimate the time-
frequency masks mainly based on the spectral information,
which can be derived even from a single microphone signal,
and thus, in principle, these methods are not affected by source
movements. Therefore, we adopt the NN-based approach to
estimate the time-frequency masks of moving sources.

Many related studies have investigated online/low-latency
processing for mask-based beamformers, e.g., [7]], [11], [14],
[15]. Most of these studies focused on the online computation
of the beamformer coefficients given the masks. However,
only a few approaches have actually been evaluated with
moving source scenarios. For example, in a prior work [14],
the authors introduced the block-online processing of a mask-
based beamformer to deal with a moving source scenario.

Other work [15] investigated using an NN to predict the
forgetting factor for online computation of the SCM, but it was
not evaluated on moving source scenarios. Our approach can
be considered the generalization of that previous effort [[15],
where we extend the formalization to offline processing and
introduce self-attention-based NNs that naturally generalize
the computation of the time-varying SCMs of conventional
online and blockwise approaches. Furthermore, we evaluated
and analyzed the behavior of the proposed approach on a
moving source dataset.

Time-varying mask-based beamformers have also been in-
vestigated to improve performance for offline processing. For
example, our previous effort assumed a time-varying noise
covariance matrix in designing a time-varying beamformer
that could adapt to variations in noise conditions [|19]]. Nev-
ertheless, although this beamformer is time-varying, it is not
designed to handle moving sources.

2) Other types of neural beamformers: Besides the mask-
based beamformer, there are currently two main research
directions toward estimating the beamforming filters with NNs
(i.e., neural beamformer). One approach consists of directly
estimating the time-varying beamforming filters as an NN’s



output, e.g., [22[|-[24]. The other approach uses a set of fixed
time-invariant beamforming filters implemented as a layer of
an NN and an integration layer that combines the beamformer
outputs for each time frame, e.g., [25], [26]. Such neural
beamformers were integrated into ASR systems, and their
parameters (i.e., the fixed beamformer and integration layer)
were jointly optimized during the training of the ASR system.

Both of these approaches achieve time-varying beamform-
ing and thus have the potential to handle moving source
scenarios. However, they have been evaluated mostly for
non-moving situations or for a sudden change of the source
position within an utterance [26]. Moreover, the beamforming
filters are black boxes that are optimized directly from multi-
channel data, and thus, it is difficult to include physical
knowledge (e.g., constraints) from microphone array signal
processing theory. Furthermore, they may be dependent on
the microphone array geometry used during training, and the
filter size (number of channels used for beamforming) is fixed
by the number of channels at the input and output of the NN.

In contrast to such types of neural beamformers, mask-
based beamformers combine the high estimation capability
of NNs with physical knowledge from microphone array
signal processing theory, such as the distortionless constraint
of the Minimum Variance Distortionless Response (MVDR)
beamformer. Moreover, they do not rely on the microphone
array geometries (such as number of channels, microphone
locations, and ordering) because the NN used to predict the
time-frequency mask can be trained on single-channel data.
Consequently, the mask-based beamformer with distortionless
constraint has become a de facto standard to construct robust
ASR systems in recent noisy ASR challenges (e.g., CHiME-
3 to CHiME-6 [12], [13]]). Motivated by the successes and
advantages of the mask-based beamformers, in this study, we
focus on the extension of the mask-based beamformer scheme
to handle moving sources.

B. Source localization-based approach

It is also possible to deal with moving sources by combining
source localization/tracking with a beamformer designed to
steer in the direction of the source [27|]. Source localization
for the moving sources has been an active research field for
several decades [28[]-[31]]. Although great progress has been
made in recent years, the accuracy of the source localization
still tends to degrade in high reverberation and noise conditions
[32]. Moreover, it is challenging to track the sources when
they move in silence. These limitations may make precise
localization challenging, which as a result would impact the
performance of the beamformer.

Our proposed framework does not explicitly conduct source
localization, which avoids the impact of localization errors on
beamforming performance.

C. Blind source separation approach

Source movements are also a problem for microphone-
array-based blind source separation. Recently, several studies
proposed estimating time-invariant separation filters that are

robust to source movements [33]-[35]. However, these ap-
proaches may deal with only relatively small source move-
ments because the filters are time-invariant.

In contrast, our proposed framework estimates the frame-
by-frame time-varying filters that can track a source even for
large movements such as 360°movements in the experiments

of Section

III. CONVENTIONAL MASK-BASED BEAMFORMER
A. Problem definition

LetY; ;= {Yi feet,..., Y f.e=c} € CC be a vector com-
prising the C'-channel short-time Fourier transform (STFT)
coefficients of the observed noisy signal at a time-frequency
bin (¢, f), where Y; ;. € C is the STFT coefficient for the
c-th channel. Let 7" and F' be the number of time frames
and frequency bins, respectively. Assuming that the acoustic
condition (i.e., the transfer function) is static within a short-
time duration (i.e., a short time frame), the observed signal
Y€ C¢ can be approximately modeled as:

Yo g =H; ySip+ Ny, (1)

where S,y € C and Ny € C denote the speech source
and additive noise signals at the time-frequency bin (¢, f),
respectively. H, ; € C© denotes the time-varying transfer
function between the speech source and the microphones at
a time-frequency bin (¢, f).

When the source is not moving, we can assume that the
transfer function is static within an utterance, i.e., H; y = Hp,
and thus use time-invariant beamformers to enhance the noisy
speech signals. This is the scheme used in many studies
and challenges [12], [[13]. However, in general, the transfer
function dynamically changes due to, e.g., the movements of
the source, which is the situation we tackle in this paper.
Therefore, we assume the observation model of Eq. (I) and
investigate the design of time-varying (frame-by-frame) mask-
based beamformers to enhance the speech source Sy ¢.

B. Minimum variance distortionless response beamformer

Given the observed noisy signal Y, ¢, a frequency-domain
beamfonper estimates the STFT coefficient of the enhanced
speech, Sy € C, as follows:

Sep=wi Yoy, (2)

where w; ; € CC denotes a vector comprising the beamform-
ing filter coefficients and " represents the conjugate transpose.
We then obtain the time-domain enhanced signal, § € R7, by
applying the inverse STFT to S‘t, ¢ and the overlapping add
method, where 7 denotes the duration of the time-domain
signal.

We can compute the beamforming filter coefficients from
the SCMs of the speech and noise signals. We adopt in this
paper a widely used MVDR formalization, which computes
the beamforming filter coefficients w; r as follows [36]:

(@} f)71¢§ I
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where ®7 ; € C°*“ and @}, € C*C are the SCMs of
the speech and noise s1gnals at time-frequency bin (¢, f),
respectively. u € R is a one-hot vector representing the index
of the reference microphone.

C. Mask-based spatial covariance matrix estimation

The mask-based beamforming scheme relies on the sparse-
ness property of speech signals in the STFT domain [37] to
estimate the SCMs using time-frequency masks [9]-[11], [38],
[39]. Here, the masks indicate the time-frequency bins where
the source or noise is dominant. In the following, we briefly
overview several commonly used options for estimating the
SCMs from the time-frequency masks.

1) Time-invariant SCM computation: Assuming that the
transfer function is static within the utterance, we can compute
the time-invariant SCMs <I>;» as [9]-[11]:

T
1
L=y ——m? Y, ;Y] 4)
! ; 27@:1 m:/7f %f,f_é
S
where my{ , € [0, 1] is a time-frequency mask and v € {S, N}
are the indexes for speech and noise, respectively. By abuse
of terminology, we call Wy . the instantaneous SCM (ISCM)
at time-frequency bin (t, f) Because the SCMs are time-
invariant, the beamforming filter coefficients computed with
Eq. (3) are also time-invariant. Therefore, this approach cannot
handle moving sources well.
2) Online SCM computation: A conventional way to com-
pute a time-varying SCM @' ; is to use a recursive approach
(71, (1L, [14], (15]:

P, =a<1>t” LY (5)

7Zat T‘Ile’ (6)

where o denotes the forgettlng factor, which gives exponen-
tially less weight to the older ISCMs. With this approach, the
SCMs and the beamforming filter coefficients are estimated at
each time frame, which would allow tracking a source. How-
ever, the tracking speed depends on the forgetting factor. It
may thus be challenging to tune this parameter to offer optimal
performance for various conditions of source movement.

In this paper, we adopt the frame-by-frame update of the
beamforming filters for the online processing to allow precise
tracking instantaneously.

3) Blockwise SCM computation: An alternative way of
computing time-varying SCMs is to use blockwise processing
[19], i.e., dividing a signal into consecutive time blocks and
computing the SCMs for each block as follows:

t+L

= )

T=t—L

1
t+L ‘I’:,f’ 7
T =t— L R f
where L is a block size parameter that denotes the half span
of the blocks, and thus 2L + 1 frames are used for the SCM
computation of each block.
Setting the block size requires a trade-off between using a

large block size to allow computing reliable statistics and a

small block size to allow better tracking. Therefore, as with
the online SCM computation, tuning this parameter may be
challenging and lead to sub-optimal performance.

In addition to the block size, we can consider the block
shift, which determines how often we compute the SCMs
and beamforming filter coefficients. In the experiments of
Section [V] we use a block shift of one frame, which means
that the SCMs and the beamforming filter coefficients are
computed for each frame like the online SCM computation
described in Section

IV. PROPOSED TIME-VARYING SCM COMPUTATION WITH
SELF-ATTENTION-BASED WEIGHTING

A. Generalized formulation of SCM computation

We can express the different SCM computation approaches
using a general formulation as:

T
AR I ®)
t'=1
where ¢f = {c},_,....c/,_,} € RT are weight coeffi-
cients that control the range for accumulating the statistics
used to compute the SCMs for the ¢-th frame. The weight
coefficients ¢} determine which time frames to focus on when
computing the SCMs at a given time frame (i.e., t) among all
time frames (i.e., t = 1 ~ 7). In this paper, we refer to these
weight coefficients as attention weights.

We can easily see that the SCM computation approaches
discussed in Section [[II-C| are special cases of the general
formulation of Eq. (8). The time-invariant computation of
Eq. @) corresponds to,

T ©
ZT =1 m” ' f

the online computation of Eq (6) to,

a=t <t
= , ’ (10)
bt {0 t >t
and the blockwise computation of Eq. to setting,
L 17,} tIE[t—L,...,t—i—L],
¢y = 2™ ) (11)
’ 0 t ¢t—L,....,t+ L)

B. Self-attention-based time-varying attention weight estima-
tion

1) Overall procedure of time-varying attention weight es-
timation: As mentioned above, the online and blockwise
SCM computations use simple rules to compute the attention
weights. These approaches would allow handling moving
source scenarios, but such simple rules may not be necessarily
optimal for tracking moving sources. In this section, we
propose instead to design an NN to estimate optimal attention
weights.

Figure|l|illustrates the proposed estimation procedure of the
time-varying SCMs with self-attention-based weighting. The
method relies on an NN that accepts the ISCMs’ coefficients
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Fig. 1. Overview of estimation procedure of time-varying SCMs with
attention weight estimation neural network.

for the entire signal and predicts optimal attention weights.
We detail the process below.

First, to make the ISCMs suitable for the NN’s input, we
convert the ISCMs of all frequency bins at a given time frame ¢
{®y 15, € CF**% into a real-valued vector ] € R2FC*
as:

Py = Vectorize({\Ill’;ﬁf}]15:1)7

where Vectorize(-) represents the unfolding operation that
converts the complex-valued tensor {®} ;}/_, into the real-
valued vector v}, which contains the real and imaginary parts
of all elements of the tensor.

We use the sequence of vectorized ISCMs {+)} }7_, as input
to an NN that estimates the time-varying attention weight
coefficients {c¥}7_; as follows:

{er}imy = NN"({9} } s A"),

where NN”(-) is the non-linear transformation of an NN
and A” denotes the learnable parameters of NN"(-). NN¥(-)
should predict attention weights that allow accumulating IS-
CM:s from a similar direction to estimate reliable SCMs while
making it possible to track a moving source. Since the input
ISCMs capture information about the source direction, this
behavior can naturally be implemented using an architecture
for NN”(-) inspired by self-attention network [16], which
estimates the weight coefficients focusing on the similarity
between the input frames.

Figure 2] summarizes the overall procedure of our proposed
time-varying beamforming system, which consists of the time-
frequency mask and attention weight estimation modules.
First, with the mask estimation module, we estimate the time-
frequency masks my , and compute the ISCMs W} , defined
in Eq. @). Then, W1th the attention weight est1mat10n module,
we estimate the attention weights c” % and compute the time-
varying SCMs with Eq. (B). Flnally, we construct the time-
varying beamformer based on Eq. (3) and obtain the enhanced
signals S s with Eq. (@).

(12)
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Fig. 2. Overall procedure of proposed time-varying beamforming system,
which is constructed from the time-varying beamformer with the time-
frequency mask and attention weight estimation modules.

2) Overview of attention module:
the formulatlon of an attention module. Let q; €
k, € RXP*® and v, € RT*P" be the vectors at tlme
frame t called query, key, and value, respectively. Here, DX®
denotes the dimension of the query and key, and DV denotes
the dimension of the value.

Given the sequence of the queries Q = {qi=1, . ..
RTXDKQ, keys K = {kiz1,...,ki=r} € RTXDKQ, and
values V = {vi_1,...,vizr} € RT*P" as a matrix form,
the output of the attention module is computed as:

Here, we briefly reV1ew
RlxD

) qt:T} S

T

A = Weight(Q,K) = Softmax( QK

\/[W)’ (14)

Z=At(A,V)=AV, (15)
where Weight(Q, K) denotes the function computing the
attention weights A {aj—1, - a7} € RT*T and
Att(A,V) denotes the function computing the attention
output Z = {z4—1, -+ ,2Zt—7} € RT*DY Here, a; =
{ay iy appy_p} € RT and 2, € R1*P" denote the
attention weight and output corresponding to query time ¢,
respectively. Softmax(-) is the softmax function [40] that
normalizes the attention weights over a key’s axis. A self-
attention module is a special case of attention that uses the
same features for the query, key, and values.

The attention module outputs the sum of the value features
weighted by the attention weights as in Eq. (I3). We can
confirm that the computation of Eq. (I3) is similar to that
of Eq. (8) because we can reformulate Eq. (I5) in a vector
form as z; = Zt _y G, y vy, where the value v,/ in Eq. (I3)
corresponds to the ISCM wY in Eq. (8). the attention
weight a, ,/ corresponds to the weight ct7 .- and the output
Zy corresponds to the estimated SCM @ ;.

Moreover, as seen from Eq. (]E[), the attention module
determines the attention weights a, ,» based on the dot-product
similarity between queries and keys, and thus, the weight



values become large when the input query and key features
are similar. Therefore, the attention module would give larger
weight values to the time frames where the positions of the tar-
get source speaker are similar, and it could thus automatically
determine the frame regions suitable for computing the time-
varying SCMs @} ; considering the position of the moving
source speakers. Consequently, the self-attention-based NN
can perform source tracking implicitly.

In more detail, to increase the representation capability,
we adopted a stacked self-attention architecture [16]], which
consists of multiple self-attention modules as follows:

Zo = {yi},, (16)

A; = Weight(K=Z, WX Q=2Z, \W?%), (17
L Att(Ai,V:Zi,1WY) (Z 75 I) (18)
" Att(A L, V=Z), (i =1)

where Z is the input representation of the NN, and Zj is
the output representation corresponding to the estimated time-

varying SCMs ®Y . Z; is the hidden representation at the
i-th layer, and I is the total number of layers. Here, WZ-Q,
WX and W) are linear transformations associated with the
query, key, and value, respectively. The learnable parameters
of NN(-) are A = {W% WK WY} []

3

C. Training procedure

We train the attention weight estimation NN in an end-
to-end manner with a mask-based beamformer so that it is
possible to compute attention weights that are optimal for
the beamforming of the moving source speaker; otherwise, it
would be difficult to define the optimal target for the attention
weights. We assume that a set of input and target signals
{y,s} is available for training the model, where y € R7 is
the 7T-length time-domain waveform of the observed noisy
signal, and s € R7 is its corresponding clean reverberant
source signal. As the training objective, we adopted the scale-
dependent signal-to-noise ratio (SNR) [41]. The SNR loss £
is expressed as follows:

Is|*
L=-10 loglo <HS§||2 5

where § denotes the time-domain waveform of the beam-
formed signal, which is computed based on the proposed
scheme as described in Section [V-Bl

Through the training procedure, it is expected that the
attention weight estimation networks learn to control the range
for accumulating the ISCMs at each time step; consequently,
the constructed beamformers can track the positions of the
moving source speaker. We incorporate various moving source
conditions in the training set to learn robust tracking capabili-
ties. Such tracking behavior of the proposed scheme is visually

analyzed in Section

19)

ITo simplify the description, we explain the single-head attention case,
although we use a multi-head attention followed by a position-wise feed-
forward network [16] for ¢ # I in our experiments.

D. Weight Smoothing

Our preliminary experiments showed that while the pro-
posed scheme is effective for improving the speech enhance-
ment performance, e.g., SDR [42], it does not necessarily
contribute to improving ASR performance. We hypothesized
that this is probably due to the non-smoothness introduced by
the frame-by-frame processing.

To mitigate this issue, we introduce a scheme to smooth the
attention weights estimated with the NN as:

!
t+L
ha 1

C = ZL/ 2L/ +1CT7
T=t—

(20)

where ¢} is the smoothed version of the weight coefficients
and L' determines the number of frames used for the weight
smoothing.

Here, Eq. (20) may look similar to the blockwise compu-
tation approach, since the summation of weights is performed
over a window. However, the weights c” span the entire signal,
unlike in blockwise processing, and it thus results in very
different processing.

V. EXPERIMENT
A. Experimental conditions

To evaluate the effectiveness of the proposed method, we
created a new dataset of simulated moving sources in noisy
conditions. The signals for the speech source were taken from
the WSJO corpus [20] and those for the noise from the CHiME-
3 corpus [12]. The CHiME-3 corpus contains noise signals
recorded using a tablet device equipped with a rectangular
microphone array with 6 channels, as illustrated in Figure
From the 6-channel microphones, we excluded the second
channel signals, which were captured by a microphone facing
backward the tablet, and used the remaining five channels for
the following multichannel experiments (i.e., C' = 5).

We randomly selected the pair of speech and noise signals
from the WSJO and CHiME-3 corpora, respectively, and mixed
them at various SNR between 2 dB and 8§ dB. We generated
room impulse response (RIR) for moving sources using the
gpuRIR simulation toolkit [21]], which is based on the image
method [43]. We used a randomly generated configuration (i.e.,
room geometry, array position, and source trajectory) for each
simulated RIR. Figure 4| shows an example of such a layout.
In this experiment, we assumed that the room geometry was
square and the source speaker was moving in a straight line in
the room. As illustrated in Figure d] the start and end positions
of the source trajectory are randomly sampled from the red
area, and the array position is randomly sampled from the
blue area. We set our simulation so that each moving speaker
would start speaking an utterance at the start position and stop
speaking at the end position. The speed of the moving source
speaker is constant within an utterance, but varies across
utterances. The reverberation time (T60) ranges from 0.1 to
0.3 s. Table |I] summarizes the configuration of the moving
source simulation.

We created 30,000, 2,000, and 2,000 noisy speech signals
for training, development, and evaluation sets, respectively.
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Fig. 3. Microphone array geometry for CHiME-3 corpus. All microphones
face forward except for microphone 2.

The speech sources for the training set were selected from
WSJO’s training set “si_tr_s.” Those for the development and
evaluation sets were selected from WSJ0’s development set
“si_dt_05” and evaluation set ‘“si_et_05,” respectively. We
generate noisy signals using the noise from the CHiME-3
corpus. We divided the noise sources in the CHiME-3 corpus
into three subsets for training, development, and evaluation,
containing 80 %, 10%, and 10%, respectively, of the noise
data of each environment (on a bus, in a cafe, pedestrian area,
and street junction).

In addition to the above moving source dataset, we also cre-
ated a non-moving source dataset as the additional evaluation
set, which has exactly the same configuration as the moving
source dataset (i.e., the pair of speech and noise sources and
the RIR configurations) except that the source speaker position
is fixed to the start position.

As the evaluation metrics, we used three speech enhance-
ment measures; 1) the signal-to-distortion ratio (SDR) that
permits time-invariant filters allowed distortions [42], 2) per-
ceptual evaluation of speech quality (PESQ) [44], and 3) short-
time objective intelligibility (STOI) [45]]; in addition, we used
one speech recognition measure, i.e., word error rate (WER).
To compute the speech enhancement measures, we used the
clean reverberant signals of the moving source speakers at the
fifth channel as their references.

To evaluate the ASR performance, we created a deep neural
network-hidden Markov model (DNN-HMM) hybrid ASR
system [46] based on Kaldi’s CHiME-4 recipe [47]. The
system was trained using the lattice-free maximum mutual
information (MMI) criterion [48]] with the noisy speech signals
in the training set, and decoded with a trigram language model.
The details of the system are shown in Kaldi’s recipeﬂ

B. Experimental configurations

For the time-varying attention weight estimation module
described in Section we adopted a self-attention-based
network architecture that is similar to the one used by
the Transformer encoder [16]]. It consisted of stacked self-
attention blocks, each of which was composed of the multi-
head attention module followed by the position-wise feed-
forward network. For the training loss of the attention weight
estimation NN, we adopted the SNR loss shown in Eq. @]),

Zhttps://github.com/kaldi-asr/kaldi/tree/master/egs/chime4
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Fig. 4. Simulation layout example of microphone array and moving source
(moving in straight line)

TABLE 1
CONFIGURATION OF MOVING SOURCE SIMULATED DATA.

Corpus for source signal WSJO
Corpus for noise signal CHIiME-3
Number of microphones 5
Number of sources 1
Room width and depth 3.0, 3.5, 4.0, 4.5, 5.0 m
Room height 25 m
Reverberation time (T60) 0.1 ~03s

Source start/end positions Random within red area of Figure
Source trajectory Straight line
Number of trajectory points 32

Signal-to-Noise Ratio 2~ 8dB
Height of microphones 1.0 m
Height of source 1.5~ 19m

where the enhanced signals are obtained by applying the
beamforming filters to the observed signals in Eq. (2). The
beamforming filter coefficients were obtained in Eq. (3 using
the time-varying SCMs estimated by the proposed method.
In the training stage, we used the “Wiener like” oracle time-
frequency masks [49] to compute the ISCMs and optimized
only the parameters of the attention weight estimation module
(A" in Section [I[V-B2)) based on the moving source dataset. In
the testing stage, we used the estimated time-frequency masks,
which is obtained by averaging the estimated time-frequency
masks computed from each microphone signal separately [10].

For the time-frequency mask estimation module, we adopted
a CNN-based network architecture [50] that is similar to
the time-domain audio separation network (TasNet) [51]. It
accepts a single-channel signal and outputs the time-frequency
masks for the speech source. The NN consists of stacked
dilated convolution blocks. Unlike a previous related work
[51], it operates in the STFT domain [50]. For the training
loss of the mask estimation NN, we adopted the SNR loss
shown in Eq. (I9), where the enhanced signals are obtained by
applying the estimated time-frequency masks to the observed
signals.

For the STFT computation, we used a Hanning window with
a length and shift set at 64 ms and 16 ms, respectively. The
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TABLE II
SUMMARY OF EXPERIMENTAL CONFIGURATIONS

Configuration of attention weight estimation network

Number of attention heads (dPd) 4
Dimension of attention layers (d™model) 256
Dimension of feed-forward layers (d™y 2048
Number of self-attention blocks (V) 6
Batch size 24
Learning rate 5e-5
Optimization technique Adam
Configuration of mask estimation network

Number of channels in bottleneck (B) 256
Number of channels in conv blocks (H) 512
Number of conv blocks in each repeat (X) 8
Number of repeats (R) 4
Batch size 24
Learning rate le-4
Optimization technique Adam
Configuration of STFT

Sampling frequency 16 kHz
Frame length 64 ms
Frame shift 16 ms
Window function Hanning

configurations related to the STFT and network architecture
are briefly summarized in Table where we follow the
notations introduced in [16] for attention weight estimation
network and [51]] for mask estimation network, respectively.

C. Experimental results for moving and non-moving source
datasets

Here, we compare our proposed self-attention-based time-
varying MVDR beamformer (att_mvdr) with time-invariant
(tiv_mvdr), online (onl_mvdr), and blockwise (blk_mvdr)
MVDR beamformers on moving and non-moving source
datasets. As a comparison, we also provide the results obtained
by applying the time-frequency mask to the mixture without
any beamforming (i.e., masking). In this experiment, all of
the above mask-based beamformers are constructed with the
same estimated time-frequency masks, which are estimated by
the time-frequency mask estimation network in Section
To tune the forgetting factor o and block size parameter L
for the online and blockwise MVDR implementations, we
preliminarily evaluated the enhancement performance for o =
{0.999,0.99,0.9,0.7,0.5} and L = {5,10,20,30,40,50},
respectively. We set the forgetting factor « in Eq (6) to 0.999
and the block size parameter L in Eq (7)) to 50 for the moving
source dataset, and we set the forgetting factor o to 0.999
and the block size parameter L to 50 for the non-moving
source dataset, as they achieved the best WER scores on the
development set. Moreover, we set the number of frames for
weight smoothing L' in Eq (20) to 7 for the moving source
dataset and to 9 for the non-moving source dataset. Table
shows the speech enhancement (i.e., SDR, PESQ, STOI) and
ASR (i.e., WER) performance measures for the non-moving
and moving source datasets.

First, the left side of Table [L1I| shows the results for the non-
moving source dataset. We observe that masking and all con-
ventional variants of MVDR improve the speech enhancement

measures, i.e., SDR, PESQ, and STOI. For ASR, masking
degrades performance, probably because it induces distortions
that are harmful to ASR [52]]. All conventional beamformers
improve ASR, and the best performance is obtained with
tiv_mvdr. This result is reasonable because the RIRs are static
for this dataset.

The proposed att_mvdr achieves higher SDR, PESQ, and
STOI scores compared to tiv_mvdr and comparable WER
score when applying the smoothing scheme of Eq 20) (i.e.,
att_mvdr+smooth). This result suggests that even for non-
moving situations, the proposed method can improve the
computation of the SCMs, probably because it may better
adapt to changing noise conditions [|19].

In the second experiment, we investigated the behavior of
the proposed approach in the moving source scenario. The
results are shown on the right side of Table [[II} We observe that
the performance of tiv_mvdr degrades significantly compared
to the non-moving case, i.e., SDR degrades by 3.7 dB and there
is a relative WER degradation of more than 20 %. This result
confirms the importance of considering source movements in
the design of a beamformer. onl_mvdr and blk_mvdr achieve
time-varying beamforming, but they do not contribute to
improving speech enhancement and ASR scores compared to
tiv_mvdr. This illustrates the difficulty of setting appropriate
hyperparameters to effectively track the moving sources. In
contrast, the proposed att_mvdr successfully achieved higher
SDR, PESQ, and STOI scores compared to tiv_mvdr. In
addition, by applying the weight smoothing scheme of Eq
(20), the proposed system (i.e., att_mvdr+weight_smooth) also
successfully improved the WER performance compared to the
baseline systems.

These results confirm that the proposed time-varying beam-
forming approach can mitigate the performance degradation
caused by moving sources.

D. Experimental analyses for behavior of proposed self-
attention-based time-varying beamformer

In the following experiments, we analyze the behavior of
the proposed scheme. In these analyses, we used the oracle
time-frequency masks to focus on the behavior of the attention
weight estimation module.

1) Visualization of attention weights: We analyzed the
behavior of our proposed self-attention-based time-varying at-
tention weight estimation by visualizing the attention weights.
Figure 3] plots the attention weights of an utterance in the mov-
ing source dataset for (1) the speech and (2) the noise SCM
estimations, respectively. If the value of the time-frequency
masks mZ f is close to zero, the attention weights cZ , can
take arbitrary values without impacting the SCM computation.
This makes it difficult to visualize the attention behavior. To
alleviate this issue, we plot the value of the attention weight
multiplied by the voice activity probability E; o defined as:
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Figure 5] also plots the spectrogram of the reference clean
signal to show the speech activity of the visualized utterance.
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TABLE III
SDR [DB], PESQ, STOI (HIGHER IS BETTER), AND WER [%] (LOWER IS BETTER) FOR NON-MOVING AND MOVING SOURCE DATASETS

non-moving source moving source
Method SDR1t PESQf1 STOIt WERJ] | SDRT PESQT STOI1T WER |
mixture | 53 1.37 0.87 49 | 53 1.38 0.87 49
masking 14.8 2.40 0.95 5.7 14.7 2.40 0.95 5.8
tiv_mvdr 15.1 2.31 0.96 29 11.4 2.14 0.93 3.8
onl_mvdr 13.5 2.24 0.95 34 10.2 2.08 0.92 4.1
blk_mvdr 13.0 2.19 0.95 3.1 11.4 2.11 0.93 3.8
Proposed att_mvdr 17.8 2.73 0.97 34 16.7 2.69 0.96 3.8
+ weight_smooth 15.4 2.48 0.96 3.0 13.9 2.48 0.95 34

0 100 200 300
Tirne (Kev)

(1) Attention weights for speech SCM computation

100

Time (Query}
Polf B

0 100

200 300
Time (Key)

(2) Attention weights for noise SCM computation
Fig. 5. Visualization of attention weights in a moving source case

We observe from Figure [3}(1) that for the speech SCM
computation the attention weights mainly take high values for
the diagonal region at the speech-active time steps. This means
that the speech SCM computation focuses on the ISCMs
around the time index of the query, i.e., ¢ in c;’, o In contrast,
for the noise SCM computation, the attention module mainly
focuses on the speech-inactive regions (e.g., beginning and end
parts of the utterance), regardless of the time index of the key
as shown in Figure [5}(2).

This behavior seems reasonable because in the dataset the
speaker moves while the noise signal consists of non-moving
diffuse noise.

Microphone

source
array (start, end)

6.5m

Fig. 6. Simulation layout of microphone array and moving source (moving
in circles) for the analysis of the beam patterns of Section [V-D2]

2) Visualization of beam patterns: Next, we analyze the
behavior of the time-varying beamforming filters estimated
by the proposed method by visualizing the beam patterns of
the constructed MVDR beamformer. To emphasize the source
movement, we consider here a source moving on a circle in
the room, as illustrated in Figure @ The evaluated utterance
is thus simulated under a different RIR configuration from the
training utterances in the moving source dataset. The room
width and depth are set to 6.5 m, and the room height is set
to 3.0 m. The number of trajectory points is set to 360.

Figure [7] shows an example of the beam patterns for a
moving source, where beam patterns at eight time frames are
shown. The black straight line denotes the actual direction of
the source speaker at that frame, i.e., 30°, 60°, 70°, 90°, 120°,
130°, 210°, and 270°. The blue and red lines correspond to
the beam patterns for 1 kHz and 2 kHz, respectively.

The first beam pattern on the left (i.e., 30°) corresponds
to a region where the source is inactive. In this case, the
beamformer does not show any clear directivity pattern. On
the other hand, when the source speaker is active (e.g., 60°
and 90°), we can confirm that the beamformer has a main
lobe toward the direction of the source speaker. Moreover,
we observe that the beam patterns change over time and
follow the source positions. These visualizations suggest that
the estimated beamforming filters of the proposed method can
successfully track the positions of a moving source speaker.
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Fig. 7. Visualization of beam patterns for a source moving around a circle as shown in Figure |§|

VI. CONCLUSION

In this paper, we discussed the application of mask-based
beamformers to moving source situations. We introduced a
generalized view of conventional approaches for computing
the SCMs of moving sources, which can be interpreted as a
sum of ISCMs weighted by attention weights. We proposed
using an NN to compute these attention weights and showed
that the self-attention-based NN is a reasonable candidate for
this task.

We performed experiments showing the impact of moving
sources on conventional beamformers. The results show that
it was challenging to achieve high enhancement and ASR
performance when a source was moving even with an online or
blockwise implementation of the mask-based beamformer. In
contrast, the proposed scheme uses an NN to predict optimal
attention weights to compute the time-varying SCMs. This
resulted in stable performance for both moving and non-
moving conditions.

These results demonstrate the potential of our proposed
approach as well as the importance of addressing the moving
source conditions. Future works should include application
of this framework to more challenging conditions such as
dealing with moving interfering sources, as well as extend the
approach to low-latency processing by, for example, reducing
the scope of the attention computation to the past samples.
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