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Abstract—Recently, two approaches, fine-tuning large pre-
trained language models and variational training, have attracted
significant interests, separately, for semi-supervised end-to-end
task-oriented dialog (TOD) systems. In this paper, we propose
Variational Latent-State GPT model (VLS-GPT), which is the
first to combine the strengths of the two approaches. Among
many options of models, we propose the generative model and
the inference model for variational learning of the end-to-end
TOD system, both as auto-regressive language models based on
GPT-2, which can be further trained over a mix of labeled and
unlabeled dialog data in a semi-supervised manner. Variational
training of VLS-GPT is both statistically and computationally
more challenging than previous variational learning works for
sequential latent variable models, which use turn-level first-
order Markovian. The inference model in VLS-GPT is non-
Markovian due to the use of the Transformer architecture. In
this work, we establish Recursive Monte Carlo Approximation
(RMCA) to the variational objective with non-Markovian infer-
ence model and prove its unbiasedness. Further, we develop the
computational strategy of sampling-then-forward-computation
to realize RMCA, which successfully overcomes the memory
explosion issue of using GPT in variational learning and speeds
up training. Semi-supervised TOD experiments are conducted
on two benchmark multi-domain datasets of different languages
- MultiWOZ2.1 and CrossWOZ. VLS-GPT is shown to signifi-
cantly outperform both supervised-only and semi-supervised self-
training baselines.

Index Terms—Task Oriented Dialog Systems, Semi-Supervised
Learning, Variational Learning, GPT

I. INTRODUCTION

Task-oriented dialogue (TOD) systems are mainly designed
to assist users to accomplish their goals, which usually consists
of several modules for tracking user goals (often called the
belief states), querying a task-related database (DB), deciding
actions and generating responses. The information flow in a
task-oriented dialog is illustrated in Figure 1, which involves
user utterances, belief states, DB results, system acts and
responses. The methodology for building TOD systems is
gradually advancing from separate training of individual mod-
ules [1], [2] to the end-to-end (E2E) trainable approach [3]–
[8]. E2E methods usually employ the encoder-decoder seq2seq
architecture [9] to connect modules and train them together.
Incorporating intermediate supervisions from annotated belief
states and system acts, and optimizing the system jointly for
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Fig. 1: The information flow in one turn from a task-oriented
dialog. Square brackets denote special tokens in GPT-2.

belief state tracking, action and response generation in multi-
task settings, is found to significantly improve the performance
[5]–[7].

Although E2E methods have achieved promising results,
they usually require substantial amounts of domain-specific
manually labeled data. The long-standing labeled-data scarcity
challenge, which hinders efficient development of TOD sys-
tems at scale, is even magnified in building E2E TOD systems.
There are increasing interests in developing semi-supervised
learning (SSL) [10] methods for E2E TOD systems, which
aims to leverage both labeled and unlabeled data. Remarkably,
two SSL approaches have attracted significant interests for
semi-supervised E2E TOD systems.

First, a broad class of SSL methods formulates a latent vari-
able model (LVM) of observations and labels and blends unsu-
pervised and supervised learning [10]. Unsupervised learning
with LVM usually maximizes the marginal likelihood via vari-
ational learning [11]. This approach has been studied [12], [13]
for semi-supervised TOD systems, and the models typically
use LSTM based seq2seq architectures. Another broad class
of SSL methods is unsupervised pre-training, where the goal
is to find a good initialization point instead of modifying the
supervised learning objective [14]. In the pre-training-and-fine-
tuning approach, large-scale language models pre-trained on
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(a) Generative Model

(b) Inference Model

Fig. 2: An overview of VLS-GPT, which consists of two
auto-regressive lanugage models - a generative model and an
inference model, both initialized from GPT-2 but trained with
different training sequences as shown in Figure 3.

open-domain texts, such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) [15], GPT (Generative Pre-
Training) [14]), are fine-tuned with in-domain labels [16], [17].
Particularly, Transformer [18] based auto-regressive language
models, like GPT-2 [19], learn a strong distribution for next-
token prediction, which makes them particularly useful for
generative TOD systems [17], [20]–[24].

Remarkably, the two approaches, pre-training-and-fine-
tuning and LVM based variational training, are not mutually
exclusive and could be jointly used, and conceivably, can
complement each other. The pre-training approach is powerful
at leveraging unlabeled open-domain data, while the varia-
tional approach is suited to exploiting unlabeled in-domain
data1. Particularly, both applications of pre-trained GPT and
variational learning are previously known separately in the
literature for semi-supervised TOD systems. But how we can
leverage both pre-trained GPT and variational learning is
not clear, presents new challenges and has not ever been
examined.

To answer the aforementioned question, we develop Varia-
tional Latent-State GPT model (VLS-GPT), which success-
fully combines the pretraining and variational approaches
for semi-supervised TOD Systems. Among many options of
models, we propose the generative model and the inference
model for variational learning of the end-to-end TOD system,
both as auto-regressive language models based on GPT-2, as
shown in Fig. 2. To be clear, GPT-2 [19] in this paper refers to
the particular class of causal language models, which computes
conditional probabilities for next-token generation via self-
attention based Transformer neural network [18].

1Variational semi-supervised learning with LVM generally assumes that
the unlabeled and labeled data are drawn from the same distribution, except
that the unlabeled data are missing data (without labels) [11]. This is often
occurred in real-world situations, e.g. unlabeled in-domain data are easily
available between customers and human agents.

VLS-GPT takes all the intermediate states (including the be-
lief states, DB results and system acts) as latent variables. The
generative model iteratively generates belief states, DB results,
system acts and response given user inputs, and the inference
model iteratively infers all intermediate states given user inputs
and system responses. Both the generative model and the
inference model are initialized from the pretrained GPT-2, and
can be further trained (finetuned) over a mix of labeled and
unlabeled in-domain dialog data from the targeted task in a
semi-supervised manner. Semi-supervised TOD experiments
are conducted on two benchmark multi-domain datasets of
different languages, MultiWOZ2.1 [25] and CrossWOZ [26],
which are in English and Chinese respectively. VLS-GPT is
shown to significantly outperform both supervised-only and
semi-supervised self-training baselines.

VLS-GPT builds on prior work on using pretrained GPT
and variational learning for semi-supervised TOD systems, and
makes the following contributions in model, algorithm, and
experiment, respectively.
• VLS-GPT is the first to combine the strengths of large

pre-trained language model and variational learning for
semi-supervised TOD systems. Previous GPT based TOD
systems, e.g. SimpleTOD [21] and UBAR [24], only
conduct supervised learning. LABES [13] employs vari-
ational learning, but only uses turn level LSTM based
generative and inference models.

• Variational training of VLS-GPT is both statistically and
computationally more challenging than previous varia-
tional learning works for sequential latent variable models
[13], [27], which use turn-level first-order Markovian.
The inference model in VLS-GPT is non-Markovian due
to the use of the Transformer architecture. In this work,
we establish Recursive Monte Carlo Approximation
(RMCA) to the variational objective with non-Markovian
inference model and prove its unbiasedness. Further,
we develop the computational strategy of sampling-then-
forward-computation to realize RMCA, which success-
fully overcomes the memory explosion issue of using
GPT in variational learning and speeds up training.

• We conduct extensive experiments on two benchmark
multi-domain datasets of different languages (Mul-
tiWOZ2.1 in English and CrossWOZ in Chinese)
and demonstrate the effectiveness of VLS-GPT in
semi-supervised TOD experiments, outperforming both
supervised-only and semi-supervised baselines. Overall,
VLS-GPT using 50% labels can obtain close performance
to the strong GPT-based supervised-only baseline on
100% labeled data. We release the code to reproduce our
experiments at https://github.com/thu-spmi/VLS-GPT.

II. RELATED WORK

A. Semi-supervised TOD systems with pre-trained GPT-2

GPT-2 is an auto-regressive language model (LM), pre-
trained over large amounts of open-domain data, which can
be fine-tuned to accomplish a range of natural language
processing tasks. The pre-training-and-fine-tuning approach
broadly falls under the category of semi-supervised learning



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, 2022 3

TABLE I: Comparison of existing GPT-based TOD methods by their training objectives. LABES is also shown to compare
with VLS-GPT. For LABES and VLS-GPT, we show objectives for training their generative models. ut, bt, dt, at, rt, denote
user utterance, belief state, DB result, system act, and response, respectively, for dialog turn t in a dialog of T turns. The
subscript operates on each element in the bracket, e.g. {b, d, r, t}t is a shorthand for bt, dt, at, rt.

Model Training Objective

B&V [17]
∏T
t=1 p(rt|{u, b, d}t)

Ham et al. [20]
∏T
t=1 p({b, a, r}t|{u, r}1, · · · , {u, r}t−1, ut)

SOLOIST, AuGPT
∏T
t=1 p({b, d, r}t|{u, r}1, · · · , {u, r}t−1, ut)

SimpleTOD
∏T
t=1 p({u, r}1, · · · , {u, r}t−1, {u, b, d, a, r}t)

LABES
∏T
t=1 p({b, d, r}t|rt−1, bt−1, ut)

UBAR p({u, b, d, a, r}1, · · · , {u, b, d, a, r}T ) =
∏T
t=1 p({u, b, d, a, r}t|{u, b, d, a, r}1, · · · , {u, b, d, a, r}t−1)

VLS-GPT p({b, d, a, r}1, · · · , {b, d, a, r}T |u1, · · · , uT ) =
∏T
t=1 p({b, d, a, r}t|{u, b, d, a, r}1, · · · , {u, b, d, a, r}t−1, ut)

[14]. Two early studies in finetuning GPT-2 on labeled dialog
data for TOD systems are [17] and [20]. Later, two similar
further developments are proposed, namely SimpleTOD [21]
and SOLOIST [22]. Two recent studies are AuGPT [23] and
UBAR [24]. AuGPT proposes a modification of the loss
function and a data augmentation strategy based on back-
translation. UBAR proposes the session-level finetuning of
GPT-2, namely on the whole sequence of the entire dialog
session which is composed of user utterances, belief states,
DB results, system acts and responses of all dialog turns.
This is different from the turn-level training, employed in all
previous works. Moreover, UBAR also performs session-level
evaluation, which means it uses previous generated responses
instead of the ground truth to form the context for current
turn. We summarize the differences between existing GPT-
based TOD methods by their training objectives in Table I.
Notably, all previous GPT-based TOD systems only conduct
supervised learning of the generative model.

VLS-GPT adopts the session-level training and evaluation
as in UBAR, which is found to be useful. But as can be seen
from Table I, VLS-GPT uses a new objective for training the
generative model, which is different from that used in UBAR.
VLS-GPT does not calculate the cross-entropy loss over user
utterances, while UBAR does. This is important for VLS-GPT
in developing variational learning, since both the generative
model and the inference model in VLS-GPT are defined as
conditional distributions given user utterances for variational
learning.

B. Semi-supervised TOD systems with variational latent vari-
able models.

Variational latent variable models have been used in TOD
systems with two different, orthogonal aims. In the first class
of studies, latent variables are introduced to model the system
acts of a TOD system, which aims to help reinforcement
learning (RL) of dialog policy. The second aim, which is also
the aim of this work, is to enable semi-supervised training
of a TOD system, where belief states (optionally with other
annotations) are treated as latent variables. Notably, two fun-
damental abilities of a TOD system are tracking of the belief
states and planning of the system actions [28]. It is interesting
to see that the two classes of studies aim to enhance the two
fundamental abilities of a TOD system respectively.

For the first class of modeling system acts, typical studies
include LIDM [2], LaRL [29], and LAVA [28]. Traditional
approaches use handcrafted system acts. LIDM [2] employs
a categorical latent variables to discover dialog intentions
(i.e. system acts), which is similar to unsupervised clustering.
LaRL [29] and LAVA [28] follows the latent action framework
and uses the latent space of a variational model as the action
space. The motivation is to alleviate the problem of large
action spaces and long trajectories of word-level RL (i.e.
using the entire output vocabulary as the action space), instead
of towards semi-supervised learning of TOD systems. On
top of LaRL, LAVA [28] further leverages auxiliary tasks to
shape the latent variable distribution to yield a more action-
characterized latent representation. Recently, PLATO [30] also
uses a K-way categorical latent variable, still modeling system
actions, to tackle the inherent one-to-many mapping problem
in response generation.

For the second class, there are previous studies in using
latent variable models for semi-supervised TOD systems.
SEDST [12] uses a combination of posterior regularization
and auto-encoding to perform semi-supervised learning for
belief tracking. LABES [13] is an inspiring related work,
which models belief states as latent variables and employs
variational learning. However, only turn-level LSTM based
generative and inference models are used in LABES; In con-
trast, VLS-GPT adopts session-level GPT based models. Such
difference can be seen from Table I for the generative models.
Correspondingly, the session-level inference model designed
in this paper for VLS-GPT is radically different from that in
LABES, which is non-Markovian, and we need to address
new challenges in using GPT in variational learning, both
statistically and computationally. To the best of our knowledge,
combining both pre-trained GPT and variational learning for
semi-supervised TOD systems has not been explored yet.

III. PRELIMINARIES

A. Variational learning

Here we briefly review the variational learning methods,
recently developed for learning latent variable models [11],
[31]. Consider a latent variable model pθ(x, z) for observation
x and latent variable z, with parameter θ. Instead of directly
maximizing the marginal log-likelihood log pθ(x) for the
above latent variable model, variational methods maximize the
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following variational evidence lower bound (ELBO), after in-
troducing an auxiliary inference model qφ(z|x) to approximate
the true posterior pθ(z|x):

ELBO(θ, φ;x) , Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
It is known that the gradient of ELBO with respect to (w.r.t.)
θ can be reliably estimated with a single Monte Carlo sample:

∂

∂θ
ELBO(θ, φ;x) ≈ ∂

∂θ
log pθ(x, z), z ∼ qφ(z|x)

Estimating the gradient of ELBO w.r.t. φ in the case of contin-
uous z can be effectively performed via the reparameterization
trick [11], [31], but is challenging for the case of discrete z,
mainly due to the difficulty in estimating the second term:

∂

∂φ
ELBO(θ, φ;x)

=Eqφ(z|x)

[
∂

∂φ
log

pθ(x, z)

qφ(z|x)

]
+
∑
z

[
∂

∂φ
qφ(z|x)

]
log

pθ(x, z)

qφ(z|x)

(1)

For estimating gradients with discrete latent variables, some
methods have been proposed, as reviewed in [32]. The classic
REINFORCE trick [33] can suffer from high variance, and
various variance reduction techniques have been developed to
make the estimator more usable. The categorical reparameter-
ization trick [34] relaxes discrete variables to be continuous
variables computed by the Gumbel-Softmax function and then
apply the reparameterization trick to estimate the gradients.

B. The Straight-Through trick

For scenarios in which we need to sample discrete values
(e.g. from a vocabulary of tokens) in addition to estimating
the gradients, the Straight-Through [35] gradient estimator is
attractive. To study the estimation of the second term in Eq.(1),
we consider the illustrative problem of estimating the gradient
of the expectation of f(z) where z is a discrete variable with
distribution qφ(z) over the domain {1, 2, · · · ,K}, i.e.

∂

∂φ
Eqφ(z) [f(z)] =

∂

∂φ

K∑
z=1

qφ(z)f(z) (2)

Denote z = onehot(z) by encoding z as the K-dimensional
one-hot vector and hereafter we can rewrite f(z) as f(z)
by abuse of notation. Assume the probability vector π =
(qφ(1), qφ(2), · · · , qφ(K)) is denoted shortly as π, which is
usually calculated by softmax function on top of neural net-
works parameterized by φ. Here we suppress the dependence
of π on φ to reduce notational clutter.

The basic idea of the Straight-Through gradient estimator
is that the sampled discrete values are used for forward
computation, and the continuous softmax probabilities are used
for backward gradient calculation2. Specifically, the gradient

2The Straight-Through trick can be used in combination with Gumbel-
Softmax [34], called Straight-Through Gumbel-Softmax estimator, which can
tune a temperature hyper-parameter to balance estimator bias and variance.
We find the Straight-Through estimator works pretty well in our experiments,
and leave the exploration of other estimators as future work.

in Eq.(2) is approximated with a single Monte Carlo sample
z ∼ qφ(z), as follows:

∂

∂φ
Eqφ(z) [f(z)] ≈ ∂f(z)

∂z

∂z

∂φ
≈ ∂f(z)

∂z

∂π

∂φ
(3)

It can be seen that the above Straight-Through Trick (STT)
can be realized by representing the one-hot vector of each
discrete variable z as follows, whenever feeding z forward:

STT (z) = z + π − π.detach (4)

where π.detach means that we do not calculate its gradient
during back-propagation. It can be seen that applying the
above STT (z) in the forward direction and computing back-
propagation as usual realizes the Straight-Through gradient
estimator Eq.(3), and thus successfully propagates gradients
through z in the backward direction.

IV. METHOD

In the following, we first introduce the VLS-GPT model,
as shown in Fig. 2, then we describe the supervised learning
and semi-supervised learning methods based on VLS-GPT,
respectively. Finally, we elaborate on the statistical and com-
putational strategies, which enables us to perform variational
training for the GPT-2 based models.

A. Model

Notations Consider the information flow in a task-oriented
dialog of T turns, as illustrated in Figure 1, and let ut denote
the user utterance, bt the belief state, dt the database result,
at the system action and rt be the delexicalized response,
respectively, at turn t = 1, · · · , T , which all are represented
as token sequences. Denote the token sequence, for example,
for ht by h

(i)
t , i = 1, · · · , |ht|, where |ht| denotes the length

of ht in tokens. The vocabulary size of tokens is K. Denote
the sub-sequence h1, · · · , ht−1 by h<t, similarly h

(<i)
t for

h
(1)
t , · · · , h(i−1)

t .
Motivated by recent studies [21], [24], we unify the

workflow of a TOD system (belief state tracking, action
and response generation) into a single sequence predic-
tion problem, which can be accomplished by an auto-
regressive language model. In this work, the auto-regressive
model for dialog generation is denoted by the conditional
distribution p({b, d, a, r}1, · · · , {b, d, a, r}T |u1, · · · , uT ) as
described in Table I. Given user utterances u1:T , the
belief states, DB results, system actions and responses
b1:T , d1:T , a1:T , r1:T are recursively generated3 according to
pθ(b1:T , d1:T , a1:T , r1:T |u1:T ). Specifically, at the first turn
t = 1, given u1, the model sequentially generates b1, d1, a1, r1.
At turn t, based on all previous user utterances and all gener-
ated outputs u1, b1, d1, a1, r1, · · · , ut−1, bt−1, dt−1, at−1, rt−1

and current user utterance ut, the model sequentially generates
bt, dt, at, rt. It can be easily seen that such recursive genera-
tion completes the entire dialog session.

A shorthand for p({b, d, a, r}1, · · · , {b, d, a, r}T |u1, · · · , uT )
is pθ(b1:T , d1:T , a1:T , r1:T |u1:T ), and further will be written

3The DB results d1:T are obtained by querying the database using the
generated belief states.
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as pθ(h1:T , r1:T |u1:T ) for brevity. ht = {bt, dt, at} denotes
the concatenation of intermediate states, which are observed
in labeled dialogs, but become latent variables in unlabeled
dialogs. Note that these are simplified notations, which should
obey the auto-regressive dialog generation, as explained above.
Further, the generative model can be decomposed as:

pθ(h1:T , r1:T |u1:T ) (5)

=ΠT
t=1pθ(ht|{u, h, r}1, · · · , {u, h, r}t−1, ut)

× pθ(rt|{u, h, r}1, · · · , {u, h, r}t−1, {u, h}t)
,ΠT

t=1pθ(ht|h<t, r<t)pθ(rt|h<t, r<t, ht)

where, intuitively, we refer the conditional distribution
pθ(ht|h<t, r<t) as the latent state prior, and
pθ(rt|h<t, r<t, ht) the response probability. To reduce
notational clutter, we suppress the conditioning of ht on user
utterances in pθ(ht|h<t, r<t), which actually should follow
the auto-regressive generation structure as emphasized above.
Similarly for the notation pθ(rt|h<t, r<t, ht).

In order to perform unsupervised variational learning from
unlabled dialogs (to be detailed below), we need an inference
model qφ(h1:T |u1:T , r1:T ) to approximate the true posterior
pθ(h1:T |u1:T , r1:T ), which is defined as follows:

qφ(h1:T |u1:T , r1:T ) (6)

=ΠT
t=1qφ(ht|{u, r, h}1, · · · , {u, r, h}t−1, {u, r}t)

,ΠT
t=1qφ(ht|h<t, r<t, rt)

where similarly we suppress the conditioning of ht on user
utterances in the auto-regressive inference structure as shown
in Eq.(8) below.

The VLS-GPT model thus consists of two auto-regressive
models - the generative model pθ(h1:T , r1:T |u1:T ) and the in-
ference model qφ(h1:T |u1:T , r1:T ), both initialized from GPT-
2 but structured to be trained with different training sequences,
as described below. The two models in VLS-GPT are denoted
by VLS-GPT-p and VLS-GPT-q respectively.

B. Supervised learning

In supervised learning, the entire dialog is labeled. The
training sequence for the generative model VLS-GPT-p is
obtained by the concatenation as follows4:

u1, b1, d1, a1, r1, ..., uT , bT , dT , aT , rT (7)

And the training sequence for the inference model VLS-GPT-q
is organized as:

u1, r1, b1, d1, a1, ..., uT , rT , bT , dT , aT (8)

See examples in Figure 3. Both models can then be trained
from these training sequences through maximizing their like-
lihoods pθ(h1:T , r1:T |u1:T ) and qφ(h1:T |u1:T , r1:T ) respec-
tively, via teacher-forcing.

4The training sequence for the generative model VLS-GPT-p is the same
as in UBAR. But as shown in Table I, the training objective in VLS-GPT-
p is pθ(h1:T , r1:T |u1:T ), which is different from UBAR and brings minor
performance improvement as shown in Table II.

(a) Training sequence for the generative model

(b) Training sequence for the inference model

Fig. 3: Examples of training sequences described in Eq. (7)
and Eq. (8). Note that a complete training sequence contains
many turns concatenated together.

C. Semi-supervised learning

When a mix of labeled and unlabeled data is available, we
perform semi-supervised learning, which essentially is a com-
bination of supervised learning and unsupervised variational
learning [10], [11]. Specifically, we first conduct supervised
pre-training of VLS-GPT on labeled data. Then we alternately
draw supervised and unsupervised mini-batches from labeled
and unlabeled data, and update the generative model and the
inference model via supervised gradients and unsupervised
gradients, respectively. The supervise gradients are calculated
the same as in supervised learning.

For unsupervised learning, the intermediate states b1:T , d1:T

and a1:T (simply h1:T ) are unlabeled. Thus, we maximize
marginal likelihood, which is translated to maximizing the
following variational bound (ELBO):

JVL = Eqφ(h1:T |u1:T ,r1:T )

[
log

pθ(h1:T , r1:T |u1:T )

qφ(h1:T |u1:T , r1:T )

]
Plugging the GPT-based generative and inference models

(Eq. (5) and (6)) into the above ELBO objective function, we
obtain

JVL =Eqφ(h1:T |u1:T ,r1:T )

[
T∑
t=1

log pθ(rt|h<t, r<t, ht)

]

+ Eqφ(h1:T |u1:T ,r1:T )

[
T∑
t=1

log
pθ(ht|h<t, r<t)
qφ(ht|h<t, r<t, rt)

]
(9)

which is analytical intractable to compute and usually opti-
mized via the Monte Carlo methods.

Remarkably, the inference models in previous variational
learning studies for sequential latent variable models [13],
[27] are first-order Markov models, i.e. the latent state at
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Algorithm 1 Recursive Monte Carlo approximation with STT

Input: u1:T , r1:T with generative model pθ in Eq. (5), infer-
ence model qφ in Eq. (6)
J = 0;
for t = 1 to T do
i = 1;
Given previous sampled states h<t:
repeat

Given previous sampled state tokens h(<i)
t :

J+ =
∑
h̄
(i)
t
qφ(h̄

(i)
t |STT (h<t), r<t, rt, STT (h

(<i)
t ))

× log
pθ(h̄

(i)
t |STT (h<t),r<t,STT (h

(<i)
t ))

qφ(h̄
(i)
t |STT (h<t),r<t,rt,STT (h

(<i)
t )

;

Draw h
(i)
t ∼ qφ(h

(i)
t |h<t, r<t, rt, h

(<i)
t );

i+ = 1;
until The < eos > token is generated
J+ = log pθ(rt|STT (h<t), r<t, STT (ht));

end for
Return: J

current turn only depends on that at previous turn (e.g.
qφ(bt|bt−1, rt−1, ut, rt) used in [13]). In contrast, the session-
level GPT-based inference model in VLS-GPT is inherently
not a Markov model - the latent state at current turn ht depends
on all history latent states h1:t−1. The use of self-attention
in the Transformer architecture connects current position to
all previous positions. The ELBO objective Eq. (9) is thus an
expectation under non-Markovian inference model. Its stochas-
tic optimization presents new challenges, both statistically
and computationally. In the following, we first establish the
Recursive Monte Carlo Approximation (RMCA) to the ELBO
objective with non-Markovian inference model and prove its
unbiasedness. Second, we develop the computational strat-
egy of sampling-then-forward-computation to realize RMCA,
which successfully overcomes the memory explosion issue of
using GPT in variational learning and speeds up training.

D. Recursive Monte Carlo approximation to ELBO

A naive Monte Carlo approximation is to draw one sample
h1:T ∼ qφ(h1:T |u1:T , r1:T ) and optimize the following esti-
mator of the ELBO objective (via the STT trick):

JVL ≈
T∑
t=1

log pθ(rt|h<t, r<t, ht) + log
pθ(ht|h<t, r<t)
qφ(ht|h<t, r<t, rt)

This method is found to perform very unstable and fails to
converge in our experiments, presumably due to the high
variance of the Monte Carlo estimator. Therefore, we propose
the following recursive Monte Carlo approximation for VLS-
GPT, as shown in Algorithm 1, which has two main features.
The first is to employ ancestral sampling according to the
inference model, and the second is to calculate the KL
divergences arised in the second term in the ELBO objective
Eq. (9) analytically as much as possible, so that the Monte
Carlo variance is reduced [11], [13], [27].

Algorithm 1 summarizes the forward pass to calculate the
ELBO objective with recursive Monte Carlo approximation.
Here follows several comments for illustration. First, the latent

state ht at any turn is a token sequence. Thus, the second term
in the ELBO objective Eq.(9), denoted by JVL2, can be further
decomposed into a token-level sum:

JVL2

= Eqφ(h1:T |u1:T ,r1:T )

 T∑
t=1

|ht|∑
i=1

log
pθ(h

(i)
t |h<t, r<t, h

(<i)
t )

qφ(h
(i)
t |h<t, r<t, rt, h

(<i)
t


(10)

The state tokens h(i)
t are recursively sampled until the special

token < eos > (end-of-sentence) is generated, and the length
|ht| is thus determined. At turn t and position i, the expected
log ratio between the prior and the posterior of current token,
given previous sampled state tokens, turns out to be the KL
divergence, which can be computed analytically. Then, we
sample h

(i)
t and iterate to the next position. After all the

sampled tokens for turn t are obtained, the first term in the
ELBO objective Eq.(9) can be directly estimated based on the
sampled states.

Second, we show in Appendix A that the following Propo-
sition 1 holds, where we make explicit the dependence of
J on the sampled states h1:T and JVL on T . Proposition 1
is new and stronger in establishing the unbiasedness of such
recursive Monte Carlo approximation to the ELBO objective
with non-Markovian inference model, beyond of those in [13],
[27] which can be thought of as weak versions of RMCA,
working with Markovian inference model.

Proposition 1. The output J(h1:T ) from the recursive Monte
Carlo approximation shown in Algorithm 1 is an unbiased
estimator of the ELBO objective Eq.(9), i.e.

Eqφ(h1:T |u1:T ,r1:T ) [J(h1:T )] = JVL(T ) (11)

Third, taking the derivatives of J(h1:T ) w.r.t. θ and φ
yields the stochastic gradients to update the model parameters.
Remarkably, Algorithm 1 not only shows the forward pass to
obtain the stochastic estimator of the ELBO objective J(h1:T ),
but also shows the application of the Straight-Through Trick
(STT), as defined in Eq. (4), for calculating the gradients with
discrete latent variables h(i)

t ’s. The STT trick is applied to each
sampled state tokens h(i)

t ’s in the forward pass for computing
J(h1:T ). Subsequently, in the backward pass, the gradients can
be back-propagated through the sampled h(i)

t ’s for parameter
update.

E. Sampling-then-forward-computation strategy

As remarked above, the inference models in previous works
[13], [27] are turn-level first-order Markovian. In contrast, the
inference model in VLS-GPT is non-Markovian due to the
use of the Transformer architecture. The use of self-attention,
connecting current position to all previous positions, leads to
great memory consumption, if we apply the computational
strategy as used in [13], [27] to realize RMCA to optimize
the ELBO objective J(h1:T ).
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Fig. 4: Illustration of forward calculation with different models
for optimization in variational learning. (a) qφ(h1, h2, h3) is
a first-order Markov model. (b)(c) qφ(h1, h2, h3) is based on
GPT, which is non-Markovian. The difference between (b) and
(c) is how the computational graph is created, which yields
different memory costs. See text for details. For (c), we run a
forward pass first to infer h1:T , which is omitted in the figure;
only the second forward pass is shown here. STT () means
applying Straight-Through Trick, as defined in Eq. (4).

For illustration shown in Figure 45, we drop the con-
ditional on u1:T and consider a simplified optimization
maxθ,φEqφ(h1,h2,h3) [log pθ(r1, r2, r3|h1, h2, h3)], which is
similar to optimizing the actual ELBO objective function,
namely optimizing an expectation under the inference model.
The computational strategy used in [13], [27] to realize RMCA
is shown in Figure 4(a). In this strategy, turn-by-turn sampling
of h1:3 from qφ(h1, h2, h3) and feeding h1:3 forward to
compute pθ(r1, r2, r3|h1, h2, h3) are taken in one forward
pass, which creates the computational graph at the same time
(with requires grad=true). This is feasible, since the model is
turn-level first-order Markovian and the memory complexity
of the computation graph is O(T ) (T denotes the number of
turns in a dialog). If we apply this one-forward-pass strategy
to realize RMCA for VLS-GPT, the memory complexity of
the computation graph will be increased to O(T (T + 1)/2),
as illustrated in Figure 4(b).

We propose a sampling-then-forward-computation strategy
to realize RMCA for variational learning of VLS-GPT, as
illustrated in Figure 4(c). We first run ancestral sampling of
h1:3 from qφ(h1, h2, h3) (with requires grad=false), which is
not shown in Figure 4. Then, we can treat the latent states h1:3

as known, compute qφ(h1, h2, h3) in the forward direction,
feed h1:3 forward to compute pθ(r1, r2, r3|h1, h2, h3) (with
requires grad=true). The resulting computational graph be-
comes much smaller, still in the complexity of O(T ).

Putting all together, applying the sampling-then-forward-
computation strategy to realize RMCA to optimize the ELBO
objective J(h1:T ) together with the Straight-Through trick, the
unsupervised variational training of VLS-GPT is summarized
as follows. The semi-supervised training of VLS-GPT is
shown in Algorithm 2.

5Without loss of generality, the illustration is taken at the turn level, without
delving into the token level. In fact, the latent state ht at any turn is a token
sequence. Thus, Figure 4(a), (b) and (c) should all be expanded by token-by-
token sampling.

Algorithm 2 Semi-supervised training of VLS-GPT

Input: A mix of labeled and unlabeled dialogue data
Run supervised pre-training of θ and φ on labeled data;
repeat

Draw a labeled mini-batch of dialogs;
Update θ and φ via supervised gradients;
Draw an unlabeled mini-batch of dialogs;
for an unlabeled dialog u1:T , r1:T do

Latent state generation (requires grad=false):
Draw h1:T ∼ qφ(h1:T |u1:T , r1:T );

Forward computation (requires grad=true):
Apply Algorithm 1, but omit the step of sampling

h
(i)
t ’s, to obtain J(h1:T );

Backward computation and accumulate gradients;
end for
Update θ and φ via unsupervised gradients;

until convergence
Return: θ and φ

An iteration of unsupervised training consists of three steps
- latent state generation, forward computation, backward com-
putation. First, we run sampling of h1:T (via greedy decoding
in our experiments) from qφ(h1:T |u1:T , r1:T ), which is termed
as latent state generation. Then in forward computation, we
can apply Algorithm 1, but treating h1:T as given, to obtain
J(h1:T ). Finally, we run the backward pass to obtain the
gradients, which are used to update the generative model
parameter θ and the inference model parameter φ.

V. EXPERIMENTS

A. Datasets

We conduct our experiments on MultiWOZ2.1 [25] and
CrossWOZ [26]. MultiWOZ2.1 is a large-scale English multi-
domain dialogue datasets of human-human conversations.
Compared to MultiWOZ2.0, MultiWOZ2.1 removed noisy
state values from the dialog state annotations. It contains
8438 multi-turn dialogues with 13.68 average turns, spanning
over seven domains (restaurant, train, attraction, hotel, taxi,
hospital, police) and providing additional validation set and
test set, each of 1000 dialogues.

CrossWOZ is the first large-scale Chinese Cross-Domain
Wizard-of-Oz task-oriented dataset. It contains 6K dialogue
sessions and 102K utterances for 5 domains, including hotel,
restaurant, attraction, metro, and taxi. Moreover, the corpus
contains rich annotation of dialogue states and dialogue acts
at both user and system sides.

B. Data Pre-processing

We delexicalize dialog responses to reduce surface
language variability on both datasets. During delexicalization,
we replace values in the ontology with specific placeholders
such as [value name] and [value price]. We use the
same pre-processing method as in UBAR [24], which
implements domain-adaptive pre-processing like in DAMD
[7]. This pre-processing method adopts a domain-adaptive
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delexicalization scheme, which decouples the domain and
slot name of placeholders, by representing belief states as
[domain1] slot value slot value [domain2] slot value
sequences and representing system acts as
[domain] [inform] slot [request] slot sequences. The
domains, acts and placeholders for slot values are all
bracketed as special tokens. Remarkably, to interact with real
users, the system will lexicalize the generated delexicalized
responses using the generated belief states and the entities
queried from the database, which currently is a common
practice.

C. Metrics

In our experiments on MultiWOZ2.1, we follow the original
MultiWOZ guidance [36] for individual metrics and follow
[37] for the combined score. Inform Rate measures how often
the entities provided by the system are correct. Success Rate
refers to how often the system is able to answer all the re-
quested attributes by user. BLEU Score is used to measure the
fluency of the generated responses by analyzing the amount of
n-gram overlap between the real responses and the generated
responses. And Combined Score is computed as (BLEU + 0.5
* (Inform + Success)).

As for CrossWOZ, we develop end-to-end corpus-based
evaluation scripts, which are missing in the original release
of CrossWOZ. In MultiWOZ, the Inform and Success metrics
are computed in session-levels, which means entity matching
and success can only be 0 or 1 for a dialog. We propose
to use finer grained metrics on CrossWOZ, considering its
characteristics. Match rate is a turn-level metric to measure the
system’s ability to provide correct entities, which is obtained
by calculating the proportion of turns providing correct entities
in all turns that provide entities. Request Success rate (Req-
Suc) is also a turn-level metric, namely the proportion of infor-
mative attributes in oracle system acts that appear in generated
responses, which reflects the system’s ability to successfully
answer user requests. BLEU measures the fluency of generated
responses. Combined Score is computed as (BLEU + 0.5 *
(Match + Req-Suc)).

Note that different from MultiWOZ, users in CrossWOZ
may ask for multiple entities with different constraints in the
same domain at different turns. For example, the user wants
to eat in both a roast duck restaurant and a pancake restaurant.
The user asked about the two types of restaurants in two
different turns and the system must provide correct entities
respectively. It is better to calculate Match rate turn by turn
in this case. Req-Suc does not check the matching of entities
again, since turn-level entity matching is already evaluated by
Match rate.

D. Implementation Details

All models are trained on two 16-GB Tesla P100 GPUs.
The training time of one semi-supervised experiment (Semi-
ST or Semi-VL) with a certain label proportion in Table III is
about two days. We implement the models with Huggingface
Transformers repository of version 3.5.1. We initialize the
generative and inference models with DistilGPT2 which is a

TABLE II: End-to-end evaluation results on fully-supervised
MultiWOZ2.1. * denotes results obtained by our run of the
open-source code. The means and standard deviations for
UBAR and VLS-GPT-p are from 3 independent runs.

Model Pretrained LM Inform Success BLEU Combined

DAMD - 76.4 60.4 16.6 85.0
LABES-S2S - 76.89 63.3 17.92 88.01
SimpleTOD DistilGPT-2 85.00 70.05 15.23 92.98

AuGPT GPT-2 91.4 72.9 17.2 99.35
UBAR∗ DistilGPT-2 89.62±0.56 80.85±1.03 17.60±0.13 102.84±0.38

VLS-GPT-p DistilGPT-2 90.27±0.53 81.44±0.82 17.48±0.16 103.33±0.91

distilled version of GPT-2 and has 6 self-attention layers. The
maximum sequence length is 1024 and sequences that exceed
1024 tokens are pre-truncated. We use the AdamW optimizer
and a linear scheduler with 20% warm-up steps. We run 50
epochs during supervised pre-training and 40 epochs during
semi-supervised learning. Early stopping is not used in our
experiment and we select the model of the highest combined
score on validation set during training. The maximum learning
rate of linear scheduler is 1e-4 and the batch size is 32
dialogs, which is implemented with basic batch size of 2 and
gradient accumulation steps of 16. During evaluation, we use
the greedy decoding method and generate latent states and
responses in batches with the past-key-values mechanism to
reduce time consuming. We will release the code when this
work is published.

E. Fully-supervised Baselines

In this section, we show the results of end-to-end model-
ing and evaluation in the fully-supervised setting, where the
models, trained with 100% labeled data, are used to generate
belief states, query database with the generated belief states,
and then generate acts and responses. In the fully-supervised
setting, only the generative model in VLS-GPT, namely VLS-
GPT-p, is trained and tested. We compare VLS-GPT-p with
other task-oriented end-to-end models including LABES [13],
SimpleTOD [21], AuGPT [23] and UBAR [24]. The main
purpose of the fully-supervised experiments is to gauge the
strength of the generative model VLS-GPT-p. The results are
shown in Table II.

Table II shows that VLS-GPT-p obtains state-of-the-art
results on MultiWOZ2.1, compared to other recent models
in an end-to-end evaluation6. Considering that the generative
model VLS-GPT-p is similar to UBAR (but can be suited to
variational learning), and their results are close to each other,
the two models were run with 3 random seeds. Further, taking
each testing dialog as a sample, we conduct the matched-pairs
significance test [38] to compare fully-supervised VLS-GPT-
p and UBAR. The p-values for Inform, Success and BLEU
are 0.42, 0.87, 0.23, respectively. Overall, these results show
that fully-supervised VLS-GPT-p achieves minor improvement
over as UBAR (not significantly better). Enhancing the fully-
supervised baseline is not the main focus of this paper.

6Note that the end-to-end results reported in UBAR’s original paper [24]
are obtained through an incomplete end-to-end evaluation, where the oracle
belief states are used for database query. When also using this trick in our
evaluation, VLS-GPT-p obtains a combined score of 106.6, which is higher
than 105.7 reported in UBAR.
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TABLE III: Semi-supervised results on MultiWOZ2.1 and CrossWOZ. All results are reported as the means from 3 independent
runs with different random seeds. The standard deviations are shown by the error bars in Figure 5.

Model Configuration MultiWOZ2.1 CrossWOZ

Proportion Method Inform Success BLEU Combined Match Req-Suc BLEU Combined

100% SupOnly 90.27 81.44 17.48 103.33 61.88 75.77 33.81 102.63

50%
SupOnly 82.95 72.37 16.74 94.40 60.68 73.03 27.95 94.81
Semi-ST 84.95 72.44 16.54 95.24 61.28 73.15 29.66 96.87
Semi-VL 87.39 77.61 16.71 99.21 60.65 72.71 29.54 96.22

40%
SupOnly 82.35 70.70 16.43 92.95 60.01 73.69 26.80 93.65
Semi-ST 81.31 69.60 16.18 91.64 60.29 70.11 28.89 94.09
Semi-VL 84.68 72.64 16.46 95.12 61.25 74.61 29.80 97.74

30%
SupOnly 77.78 66.37 15.81 87.89 58.62 71.48 25.92 90.98
Semi-ST 77.68 66.67 16.22 88.39 59.73 71.07 29.82 95.23
Semi-VL 84.89 74.17 16.59 96.12 59.44 73.83 28.93 95.56

20%
SupOnly 71.34 58.06 15.33 80.03 58.56 67.46 24.49 87.50
Semi-ST 73.61 62.39 15.61 83.61 57.46 68.82 27.38 90.52
Semi-VL 79.41 68.54 16.54 90.52 59.37 71.67 29.93 95.45

10%
SupOnly 56.59 42.14 13.40 62.77 53.48 67.62 20.41 80.96
Semi-ST 71.94 57.96 15.20 80.15 54.78 67.59 24.19 85.37
Semi-VL 76.58 65.63 15.01 86.12 58.38 71.00 27.97 92.66

F. Semi-Supervised Experiments

Some proportions of the labeled dialogs from MultiWOZ2.1
training set are randomly drawn, with the rest dialogs treated
as unlabeled. In supervised-only training, denoted by SupOnly,
the rest dialogs are discarded and only the generative model
VLS-GPT-p is trained. Different semi-supervised models are
trained in two stages. The first stage is supervised pre-training
of VLS-GPT-p and VLS-GPT-q (if used) over labeled data
only. The second stage is semi-supervised learning over both
labeled and unlabeled data. Semi-supervised models could
be implemented by the variational learning method (Semi-
VL) or the self-training (Semi-ST) baseline method. Semi-VL
stands for exactly what VLS-GPT does, as shown in Algorithm
2. Self-training (ST), also known as pseudo-labeling, is a
classic strong semi-supervised learning method. It uses only
the generative model VLS-GPT-p and performs as its name
suggests, i.e. generating hypothesized labels using the current
model and then perform supervised training with the pseudo-
labeled samples to update the model. See Section V-I for more
details about ST.

We conduct semi-supervised experiments with different
labeling proportions from 10% to 50%. The results on Multi-
WOZ2.1 and CrossWOZ are shown in Table III. The combined
scores against label proportions with standard deviations are
shown in Figure 5. The main observations are as follows.

First, we can see that the two semi-supervised methods
(Semi-ST and Semi-VL) generally outperform the SupOnly
method across the two datasets of different languages and
at different label proportions. This clearly demonstrate the
advantage of semi-supervised TOD systems. A few results
where Semi-ST performs worse than SupOnly may reflect
some instability of Semi-ST.

Second, when comparing the two semi-supervised meth-
ods, Semi-VL generally performs better than Semi-ST across
different languages and label proportions. A close look at
Table III reveals that the improvements of Semi-VL over
Semi-ST are much larger in Match Rate and Success Rate
than in BLEU. Remarkably, the Inform and Success metrics
depend on the capability of a particular method for predicting
hidden states (belief states and system acts). In contrast,
BLEU measures the fluency of generated responses and may
be improved just by observing more (unlabeled) responses.
In semi-supervised experiments, the system responses are
observed in both methods of Semi-VL and Semi-ST, which
may make BLEU results across different methods differ not
much. Therefore with the above analysis, better Inform and
Success of Semi-VL than Semi-ST indicate the superiority
of Semi-VL in learning from unlabeled data to improve the
prediction accuracy of belief states and system acts, not merely
to improve BLEU.

Third, From Table III, careful readers may find that Semi-
VL outperforms Semi-ST with a large margin on MultiWOZ
2.1, while it only slightly outperforms Semi-ST on CrossWOZ.
Presumably, this difference is caused by the more complexity
of CrossWOZ, compared to MultiWOZ. The average number
of mentioned domains per dialog in CrossWOZ is 3.24, while
it is 1.80 in MultiWOZ. Moreover, users in CrossWOZ may
ask for multiple entities with different constraints in the
same domain at different turns, as introduced in SectionV-C;
and there are many co-references when users query nearby
entities. The more complexity of the dialog tasks in CrossWOZ
increases the difficulty for both Semi-VL and Semi-ST in
predicting belief states in many cases. As long as the predicted
belief states are not completely correct, the results produced
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(a) (b)

Fig. 5: Combined Scores at different label proportions on MultiWOZ2.1 and CrossWOZ. The standard deviations are shown
by the error bars.

by both methods will be counted as failures and the difference
between the metrics from the two methods will become
smaller.

Fourth, notably, combining Table II and III, we can see that
Semi-VL of VLS-GPT with only 20% labeled data already
performs better than fully-supervised LABES (namely with
100% labeled data). Moreover, it is observed that Semi-VL
of VLS-GPT with 50% labeled data performs close to the
fully-supervised VLS-GPT. These results clearly show that the
benefit of combining the strengths of both pre-trained GPT
and variational learning for semi-supervisded TOD systems.
Dialog examples are provided in Section V-K to understand
the superiority of Semi-VL over SupOnly and Semi-ST.

Finally, from the plot of metric scores against labeling
proportions in Figure 5, we observe that the smaller proportion
of labels, the larger gain obtained by the semi-supervised
methods. The semi-supervised methods can significantly im-
prove the performance when the label proportion is as small
as 10%, which demonstrates the fast learning capability of the
semi-supervised learning methods.

G. The performance of inference model

As suggested by a referee, we examine the performance
of the inference models in inferring the latent states (belief
states, DB results and system actions). We consider the two
inference models, which are obtained by the two methods of
SupOnly and Semi-VL respectively with 10% labeled data on
MultiWOZ2.1. The ground truth latent states and the inferred
latent states (via greedy decoding with the inference models)
are compared on the test set of MultiWOZ 2.1. The joint
goal accuracy (Joint Goal) and slot F1 score (Slot F1) for
belief states, DB result accuracy (DB acc), and system act
F1 score (Act F1) are calculated and the results are shown
in Table IV. It can be seen that the Joint Goal, Slot F1 and
DB acc of the inference model of Semi-VL are substantially
increased, when compared to the inference model of SupOnly.
This shows the advantage of variational learning. On the other

TABLE IV: The performance of the inference models trained
by different methods with 10% labeled data on MultiWOZ2.1.

Model Configuration Metrics

Proportion Method Joint Goal Slot F1 DB acc Act F1

10% SupOnly 28.01 77.37 76.03 82.87
10% Semi-VL 35.94 84.81 83.97 76.16

hand, it is interesting to see that the Act F1 becomes worse
after Semi-VL. Notably, the variational ELBO objective Eq.
(9) consists of two terms, and the second term is to minimize
the KL divergence of the approximate posterior from the prior
of latent states, which acts as a regularizer [11]. Note that the
prior for at (i.e., determining at from ut without knowing rt)
is dramatically different from its posterior (i.e., determining at
with both ut and rt), while less so for bt (i.e., determining bt
from ut with rt or not). Thus, pushing the posterior closer to
the prior will presumably have more adverse effect on learning
the posterior of at than on that of bt. This reveals some
shortcoming of variational learning and points to interesting
future work.

H. Complexity analysis

Recall that an iteration in Semi-VL consists of three steps -
latent state generation, forward computation, backward com-
putation. Due to its auto-regressive nature, the generation pro-
cess of GPT-2 is very slow and latent state generation in Semi-
VL consumes large amounts of training time. Take running
Semi-VL with 20% labels on MultiWOZ2.1 in two 16-GB
Tesla P100 GPUs as an example. The three steps for an epoch
take 32 minutes, 12 minutes and 12 minutes respectively. In
the proposed sampling-then-forward-computation strategy, we
first use the inference model to generate latent states without
gradients (requires grad=false), so that we can use a much
larger batch size of 32 in latent state generation. In contrast, if
we use the previous strategy of coupling sampling and forward
computation in one pass, the affordable batch size is 2 and such
one-forward-pass takes 300 minutes for an epoch. Thus, the
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TABLE V: Ablation experiments on different semi-supervised
self-training schemes with 10% labeled data on MultiWOZ2.1.

Scheme Inform Success BLEU Combined

JST-response with STT (h
(i)
t ) 71.94 57.96 15.20 80.15

JST-joint with STT (h
(i)
t ) 58.86 49.85 14.75 69.10

JST-response 68.02 54.45 14.93 76.17
JST-joint 47.35 38.24 13.80 56.59
ST with inference model 66.56 51.85 12.54 71.75

proposed strategy achieves a speedup by 7-fold (300/(32+12)).
In summary, the proposed strategy of sampling-then-forward-
computation in training not only reduces the memory cost, but
also accelerates latent state generation substantially.

I. On the self-training semi-supervised method

Notably, applying self-training to the generative model
VLS-GPT-p is different from applying self-training to an
ordinary classifier, and there are several possible schemes.
This section introduces more experiments on the self-training
methods, and we choose the strongest among possible self-
training schemes as the Semi-ST method, which is reported in
Table V to compare with Semi-VL.

In self-training, given unlabeled dialog {u, r}1:T , we gener-
ate hypothesized label h1:T via greedy decoding based on the
latent state prior

∑T
t=1 log pθ(ht|h<t, r<t), and then use the

pseudo-labeled h1:T to update the generative model parameter
θ by maximizing the response probability,

JST-response =

T∑
t=1

log pθ(rt|h<t, r<t, ht)

or the joint probability

JST-joint =

T∑
t=1

[log pθ(ht|h<t, r<t) + log pθ(rt|h<t, r<t, ht)] .

In forward calculation of either objective function, we can
apply STT (h

(i)
t ) and thus the gradients will propagate through

the discrete h1:T , while classic self-training does not use STT.
Notably, self-training typically involves only one model, i.e.

VLS-GPT-p here. The model used for prediction in testing is
used for predicting pseudo labels in training. As suggested
by a referee, we experiment with a variant of self-training,
which uses not only VLS-GPT-p but also VLS-GPT-q. This
ST scheme involves two models and is referred to as “ST with
inference model”. Specifically, we first use labeled data to train
VLS-GPT-q, which is then used to predict pseudo labels for
unlabeled data. Finally, both labeled data and pseudo-labeled
data are used to train the generative model VLS-GPT-p in a
supervised manner.

Table V shows the semi-supervised results for the five
possible schemes of self-training with 10% labeled data on
MultiWOZ2.1. It can be seen that using JST-response with
Straight-Through performs the best, which is exactly the
Semi-ST used in Table III for comparing with Semi-VL and
represents a strong semi-supervised baseline.

Presumably, the performance superiority of Semi-VL over
the self-training methods comes from introducing the inference

TABLE VI: Data augmentation (back-translation) results on
MultiWOZ2.1. All results are reported as the means from 3
independent runs with different random seeds and thus are
comparable to results shown in Table III.

Proportion Inform Success BLEU Combined

50% 83.15 72.21 16.85 94.53
40% 81.78 70.30 16.47 92.51
30% 78.31 67.67 15.90 88.89
20% 70.27 59.26 15.21 79.97
10% 54.02 41.47 12.86 60.61

model for hypothesis generation and optimizingbased on the
solid variational learning principle. The first four ST only
use the prior pθ(ht|h<t, r<t) for hypothesis generation. In
contrast, Semi-VL uses the inference model via the posterior
qφ(ht|h<t, r<t, rt), and thus can exploit more information
from rt to infer belief states and system acts. Remarkably, the
performance of “ST with inference model” is moderate among
the ST schemes. It seems that simply introducing an inference
model, through supervised pre-training, to predict pseudo
labels is inferior to Semi-VL. Importantly, the inference model
in Semi-VL is optimized based on the solid variational learn-
ing principle. This is beneficial for the inference model in
Semi-VL to learn to generate better pseudo-labeled samples.

J. Comparison with data augmentation

In addition to semi-supervised learning, a widely-used
method to improve system performance in low resource sce-
narios is data augmentation. Data augmentation (DA) is a
technique that augments the labeled training set with label-
preserving synthetic samples. An effective DA method for
TOD systems is paraphrasing via back-translation, as shown
in AuGPT [23]. In AuGPT, a trained multilingual machine
translation model [39] is employed with ten intermediate
languages, and a set of different paraphrases for each input
utterance is obtained. We use the paraphrased data released by
AuGPT at GitHub7 and conduct experiments in the same low
resource settings as in Table III. Specifically, some proportions
of the labeled dialogs from the MultiWOZ2.1 training set are
drawn and paraphrased, which are used to train the generative
model VLS-GPT-p. In training, as in AuGPT, we choose the
input user utterance uniformly at random from the set of
all variants of the utterance including the original one. The
results are shown in Table VI. We can see that the models
trained with augmented data perform slightly better than the
SupOnly baseline in Table III at the labeling proportions
of 50% and 30%, while they are inferior to SupOnly at
other proportions. The proposed Semi-VL outperforms the
back-translation DA method at all proportions significantly.
Presumably, such performance difference may be attributed to
the fact that semi-VL can exploit not only the labeled data but
also the unlabeled data, while back-translation only augments
the labeled data.

7https://github.com/ufal/augpt/
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TABLE VII: A lexicalized testing example in Multi-
WOZ2.1. The belief states are represented in the form of
[domain] slot value slot value. The original ground truth
dialogs are in the top row. The label proportion of SupOnly,
Semi-ST and Semi-VL models is 20%.

Dialog mul1211 in MultiWOZ2.1

u1: I would like to find in Cambridge, a restaurant, located in the
centre area. I love Spanish food.

b1: [restaurant] food Spanish area centre.
r1: I have La Tasca downtown here at 14 - 16 Bridge street.

u2: The restaurant should be in the expensive price range.
b2: [restaurant] food Spanish area centre pricerange expensive
r2: I do not have any in the centre, another criteria perhaps?

SupOnly

b2: [restaurant] food Spanish area centre.
r2: La Tasca serves Spanish food and is in the

centre area. It is in the moderate pricerange
and the La Tasca serves Spanish food.

Semi-ST

b2: [restaurant] food Spanish area centre name the
pricerange expensive.

r2: I am sorry, there are no expensive Spanish
restaurants in the centre. Would you like to
try a different type of food?

Semi-VL

b2: [restaurant] food Spanish area centre pricerange
expensive.

r2: I am sorry, there are no expensive Spanish
restaurants in the centre. Would you like to
try another area or pricerange?

K. Case Study

We provide a lexicalized testing example in MultiWOZ2.1
in Table VII. It can be seen that the supervised-only (SupOnly)
baseline fails to predict the correct belief state, while Semi-VL
makes the correct prediction. The SupOnly model misses the
generation of the pricerange slot and its corresponding value
expensive. Due to the incorrect belief state, the SupOnly
model gets the wrong database result, and generates a com-
pletely inappropriate response. The belief state generated by
the Semi-ST model contains some error but does not affect
the generated response. The Semi-VL model outperforms the
previous two models and generates both belief state and
response perfectly.

Table VIII shows an example in MultiWOZ2.1, which helps
to illustrate why unlabled dialog data are helpful in learning
TOD systems. Intuitively, there are cues from user inputs
and system responses, which reveal the belief states, database
results and system acts. So the dialog data, even unlabeled,
can be used to enhance the performance of belief tracking and
action selection, and thus benefit the whole dialog system.

Table IX is an example from CrossWOZ testing set. The
user utterance informs the constraint of “duration” and re-
quests about the fee and surrounding restaurants. Among the
three models, only Semi-VL generates the correct belief state.
SupOnly generates “fee 1 hour”, which is false. Semi-ST
mistakenly adds a slot-value pair “fee free”.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose Variational Latent-State GPT
model (VLS-GPT), which, to the best of our knowledge, is

TABLE VIII: An example in MultiWOZ2.1. The cues for
belief states, database results and system acts are contained in
user inputs and system responses, and are marked in red, blue
and green respectively. The query result [db x] (x=0,1,2,3)
indicates 0, 1, 2-3, and >3 matched results respectively.

Dialog sng0601 in MultiWOZ2.1

u1: I would like to go to an Indian restaurant in the north.
b1: [restaurant] food indian area north
d1: [db 2]
a2: [restaurant] [select] price [inform] choice
r1: I found 2 that matches your criteria. Would you prefer a

moderate or cheap pricing?

u2: How about the moderate one? May I have their address, please?
b2: [restaurant] food indian area north pricerange moderate
d2: [db 1]
a2: [restaurant] [inform] address name postcode [general] [reqmore]
r2: Yes the Nirala’s address is 7 milton road chesterton and their

postcode is cb41uy. Is there anything else i can help you with
today?

u3: No, that is all, thank you. Have a nice day.
b3: [restaurant] food indian area north pricerange moderate

name the nirala
d3: [db 1]
a3: [general] [bye]
r3: So glad we could help you out. Thanks for using the cambridge

towninfo centre, and have a glorious day!

the first to combine the strengths of large pre-trained language
model and variational learning for semi-supervisded TOD
systems. Due to the use of the Transformer architecture, the in-
ference model in VLS-GPT is non-Markovian. The variational
ELBO objective is thus an expectation under non-Markovian
inference model. Its stochastic optimization presents new
challenges, both statistically and computationally, compared
to previous variational learning works for sequential latent
variable models, which use turn-level first-order Markovian.
In this work, we establish Recursive Monte Carlo Approx-
imation (RMCA) to ELBO with non-Markovian inference
model and prove its unbiasedness. Further, we develop the
computational strategy of sampling-then-forward-computation
to realize RMCA, which successfully overcomes the memory
explosion issue of using GPT in variational learning and
speeds up training.

Semi-supervised TOD experiments are conducted on two
benchmark multi-domain datasets - MultiWOZ2.1 in English
and CrossWOZ in Chinese. VLS-GPT is shown to outperform
the supervised-only baseline, the strong semi-supervised GPT-
based self-training baseline, and the variational learning only
baseline, across languages.

Remarkably, the recursive Monte Carlo approximation to
ELBO with non-Markovian inference model and the com-
putational strategy of sampling-then-forward-computation are
useful in general for variational training of Transformer based
latent variable models. On top of VLS-GPT, there are interest-
ing directions for future work. First, it is interesting to extend
VLS-GPT to leverage unlabeled open-domain data together
with in-domain data for better semi-supervised learning of
TOD systems. Second, as overviewed in Section II-B, vari-
ational latent variable models can be used in TOD systems to
enhance not only semi-supervised learning but also reinforce-
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Algorithm 3 Turn-level Recursive Monte Carlo approximation

Input: u1:T , r1:T with generative model pθ in Eq. (5), infer-
ence model qφ in Eq. (6)
F = 0;
for t = 1 to T do

Given previous sampled states h<t:
F+ =

∑
h̄t
qφ(h̄t|h<t, r<t, rt) log pθ(h̄t|h<t,r<t)

qφ(h̄t|h<t,r<t,rt)
Draw ht ∼ qφ(ht|h<t, r<t, rt);
F+ = log pθ(rt|h<t, r<t, ht);

end for
Return: F

ment learning. While this paper mainly develops GPT based
variational latent variable models for semi-supervised learning
of TOD systems, it is definitely worthwhile to investigate
the utilization of the RMCA and the sampling-then-forward-
computation methods to learn GPT based latent action models
for reinforcement learning of TOD systems. Hopefully this
may be realized by marrying LaRL or LAVA-type models with
some variant of VLS-GPT.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. Note that for both the generative model pθ in Eq. (5)
and the inference model qφ in Eq. (6), the auto-regressive
structures at the token-level are very close to those at the
turn-level. This analogy can also be seen from the similarity
between the token-level sum in Eq. (10) and the turn-level
sum in Eq.(9). Thus, without loss of generality, we mainly
prove the unbiasedness of the turn-level recursive Monte Carlo
approximation shown in Algorithm 3, i.e.

Eqφ(h1:T |u1:T ,r1:T ) [F (h1:T )] = JVL(T ) (12)

The unbiasedness of the token-level recursive Monte Carlo ap-
proximation shown in Algorithm 1 can be proved analogously.

First, Eq. (12) clearly holds for T = 1. Then, we proceed
by mathematical induction. Suppose Eq. (12) holds for T ≥ 1.
Consider F (h1:T+1), which can be written as:

F (h1:T+1) = F (h1:T )︸ ︷︷ ︸
a1

+ log pθ(rT+1|h1:T , r1:T , hT+1)︸ ︷︷ ︸
b1

+

∑
h̄T+1

qφ(h̄T+1|h1:T , r1:T , rT+1) log
pθ(h̄T+1|h1:T , r1:T )

qφ(h̄T+1|h1:T , r1:T , rT+1)︸ ︷︷ ︸
c1

(13)

where hT+1 ∼ qφ(hT+1|h1:T , r1:T , rT+1).
According to Eq. (6), we have

qφ(h1:T+1|r1:T+1) = qφ(h1:T |r1:T )qφ(hT+1|h1:T , r1:T , rT+1)
(14)

where we suppress the dependence on ut’s.

Consider JVL(T + 1), which can be written as:

JVL(T + 1)

=Eqφ(h1:T |r1:T )qφ(hT+1|h1:T ,r1:T ,rT+1)log pθ(rT+1|h1:T , r1:T , hT+1)︸ ︷︷ ︸
b2

+

T∑
t=1

log pθ(rt|h<t, r<t, ht)︸ ︷︷ ︸
a2


+Eqφ(h1:T |r1:T )qφ(hT+1|h1:T ,r1:T ,rT+1) pθ(hT+1|h1:T , r1:T )

qφ(hT+1|h1:T , r1:T , rT+1)︸ ︷︷ ︸
c2

+

T∑
t=1

log
pθ(ht|h<t, r<t)
qφ(ht|h<t, r<t, rt)︸ ︷︷ ︸

a3


(15)

Next, we will see the equality between JVL(T + 1) and the
expectation over F (h1:T+1) under qφ(h1:T+1|u1:T+1, r1:T+1).
• The sum of expected a2 and a3 terms in JVL(T + 1)

is JVL(T ), which equals to the expected a1 term in
F (h1:T+1), by induction hypothesis;

• The expected b2 term in JVL(T + 1) is exactly the
expected b1 term in F (h1:T+1);

• The expected c2 term in JVL(T + 1) is exactly the
expected c1 term in F (h1:T+1).

Thereby, we show that the expected F (h1:T+1) equals to
JVL(T + 1). This concludes the inductive step.
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Dial 8139 in CrossWOZ
: 您好，请帮我找个游玩时间 1小时的景点呗，最好把它的门票价格与周边有什么餐馆一起查一下。

Hello, help me find a tourist attraction suitable for 1 hour of visiting. It's best to tell me its entrance fee
and the restaurants around.

: [景点] 游玩时间 1小时

[attraction] duration 1_hour
: [景点] [inform] 名称 周边餐馆 门票

[attraction] [inform] name nearby_restaurant fee
: 那 我 推 荐 您 去 [value_name] 这 个 景 点 ， 门 票 [value_price] ， 然 后 周 边 的 餐 馆 有 [nearby][value_name],

[nearby][value_name]。

I recommend you to visit the attraction [value_name] with entrance fee [value_price], and nearby
restaurants [nearby] [value_name], [nearby] [value_name].

SupOnly

: [景点] 门票 1小时

[attraction] fee 1_hour
: [景点] [inform] 名称 周边餐馆 门票

[attraction] [inform] name nearby_restaurant fee
: [value_name]的门票价格是[value_price]，周边的餐馆有[nearby] [value_name]，[nearby][value_name]，

[nearby][value_name]。

The price of [value_name] is [value_price], and nearby restaurants are [nearby] [value_name],
[nearby] [value_name], [nearby] [value_name].

Semi-ST

: [景点] 门票 免费 游玩时间 1小时

[attraction] fee free duration 1_hour
: [景点] [inform] 名称 周边餐馆 门票

[attraction] [inform] name nearby_restaurant fee
: 那我推荐您 [value_name]，它的门票 [value_price]，然后周边的餐馆有 [nearby][value_name]，

[nearby][value_name]，[nearby][value_name]，[nearby][value_name]。

I recommend you [value_name]. Its entrance fee is [value_price], and nearby restaurants are
[nearby][value_name], [nearby][value_name], [nearby][value_name], [nearby][value_name].

Semi-VL

: [景点] 游玩时间 1小时

[attraction] duration 1_hour
: [景点] [inform] 名称 周边餐馆 门票

[attraction] [inform] name nearby_restaurant fee
: 那我推荐您去 [value_name]，它的门票 [value_price]，周边的餐馆有 [nearby][value_name]，

[nearby][value_name]，[nearby][value_name]，[nearby][value_name]。

I recommend you to visit [value_name]. Its entrance fee is [value_price], and nearby
restaurants are [nearby][value_name], [nearby][value_name], [nearby][value_name],
[nearby][value_name].

TABLE IX: An example from CrossWOZ testing set. The label proportion of SupOnly, Semi-ST and Semi-VL is 10%. For
belief states marked in red, SupOnly and Semi-ST generate the wrong slot “fee”, and SupOnly even generate mismatched slot
and value (“fee 1 hour”).
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