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Abstract—Speech enhancement and separation have been a
long-standing problem, especially with the recent advances using
a single microphone. Although microphones perform well in
constrained settings, their performance for speech separation de-
creases in noisy conditions. In this work, we propose RADIOSES,
an audioradio speech enhancement and separation system that
overcomes inherent problems in audio-only systems. By fusing a
complementary radio modality, RADIOSES can estimate the num-
ber of speakers, solve source association problem, separate and
enhance noisy mixture speeches, and improve both intelligibility
and perceptual quality. We perform millimeter-wave sensing to
detect and localize speakers, and introduce an audioradio deep
learning framework to fuse the separate radio features with the
mixed audio features. Extensive experiments using commercial
off-the-shelf devices show that RADIOSES outperforms a variety
of state-of-the-art baselines, with consistent performance gains in
different environmental settings. Compared with the audiovisual
methods, RADIOSES provides similar improvements (e.g. 3 dB
gains in SiSDR), along with the benefits of lower computational
complexity and being less privacy concerning.

I. INTRODUCTION

Humans are enormously capable of understanding a noisy
speech or separating one speaker from another, we collectively
refer to these capabilities as speech enhancement and separa-
tion (SES), and is known as the cocktail party problem [1].
SES capability for computers is of great demand for many
applications, such as voice commands, live speech recording,
etc., yet remains a challenging problem using microphones.

Monaural SES methods achieved remarkable progress in the
recent years with the help of deep learning, especially when
there is not much background noise [2]. However, fundamental
problems still exist in estimating the number of sources in a
mixture, associating output sources with the desired speakers
(a.k.a. label permutation problem), and tracing the speakers
for long periods of time. Although these problems can be
solved for clean mixtures, by clustering-based methods [3] and
permutation invariant training (PIT) [4], their performance can
decrease with noisy mixtures. Overall, audio-only approaches
suffer from these ill-posed problems inherently.

To overcome the problems and enhance SES, multimodal
systems have been introduced to exploit readily available infor-
mation beyond audio, such as video [5], [6]. Similar to human
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perception, which also uses lip motion and facial information
[7], audiovisual systems are shown to improve SES perfor-
mance, especially in challenging cases, such as same-speaker
mixtures. Same and similar-speaker mixtures are especially
difficult for audio-only methods, as the distinction between
the two sources is minimal. Additional visual information
about the speaker, e.g., videos or even a facial picture of the
user [8], or other information, such as voice activity detection
[9], or pitch [10] improves the SES performance. However,
camera-based methods require good lighting conditions and
raise potential privacy concerns.

In this work, we propose to address the SES problem
by jointly leveraging millimeter-wave (mmWave) sensing as
an orthogonal radio modality. Compared to cameras, radio
devices are low-power, can operate in dark, through-wall set-
tings and are less privacy-invasive. The radio reflections from
speakers not only can allow separation of multiple speakers
but also capture articulatory motions for SES. The reasons to
select mmWave radios are two-fold: On the one hand, more
and more smart devices now include an mmWave radar and a
microphone, such as Google Soli phone and Nest Hub [11],
[12], Amazon Alexa [13] etc. mmWave sensing promises to
be more ubiquitous in the future. On the other hand, mmWave
sensing has enabled many applications related to motion
and vibration, such as heart rate monitoring [14], measuring
machinery and object vibration [15], [16], or extracting vocal
folds vibration [17]. In particular, it has been used to estimate
pitch and detect voice activity [17], reconstruct speech to some
extent [18], [19], as well as enhance speech recognition for a
single speaker [20]. Yet no existing work has explored utilizing
both modalities for joint SES tasks.

With this motivation, we develop an audioradio1 speech en-

1We combine audio and radio words as audioradio to refer to a multimodal
system consisting of both modalities, similar to the word audiovisual.
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hancement and separation system to solve the aforementioned
problems and improve the overall performance. Building an
audioradio SES system faces multiple challenges. First, in
order to solve the number of sources problem, a robust and
efficient source detection and tracking method is needed, as
the performance of a system can decrease significantly in the
event of miss detection. Second, radio signals are usually prone
to environmental effects, and their performance can decrease
considerably when tested at a new location. Returned signals
from the objects are not only affected by vibration, but also
from motion, with motion usually being the stronger effect.
Third, different from the rich literature in audiovisual deep
learning methods, radio modality has not been explored in
the context of SES. Designing a suitable and efficient deep
learning model for practical applications is non-trivial. Last,
deep learning systems require extensive data collection and
robust training methods, which is especially challenging for
radio signals.

We overcome these challenges in RADIOSES, the first
Audio-Radio Speech Enhancement and Separation system.
As illustrated in Fig. 1, RADIOSES can detect, localize, and
estimate the number of sources in an environment and improve
SES performance even in unseen/challenging conditions. To
achieve robust detection and localization, we first develop a
computationally efficient pipeline of signal processing that can
extract the radio features for speakers separately. Then we
design an audioradio deep learning framework that takes both
audio and radio signals as the inputs and outputs separated
and enhanced speeches for each of the speakers. Following
recent advances in monaural SES, our deep learning module,
called RADIOSESNET, utilizes adaptive encoders, instead of
relying on classical Short-Term Fourier Transform (STFT)
representation. We further introduce a variety of techniques
learned from audiovisual SES to improve robustness and
generalizability of RADIOSESNET to unseen environments
and users.

We evaluate RADIOSES using a commercial off-the-shelf
(COTS) mmWave radar using synthetic and real-world data.
To boost data collection for training, we build a data collection
platform, and capture 5700 sentences from 19 users. Our
results show that the radio modality can complement audio
and bring similar improvements to that of video modality
while not imposing visual privacy issues. We extensively test
RADIOSES in different number of mixtures and a variety of
environmental settings. When compared to the state-of-the art
audio-only method (e.g., DPRNN-TasNet [21]), RADIOSES
brings around 3 dB improvements for separating noisy mix-
tures, along with benefits of estimating the number of sources
and associating output streams. The improvements are not only
in terms of SDR, but also of intelligibility and perceptual
quality. Our results indicate that audioradio methods have a
tremendous potential for SES tasks, as they enable a low-
complexity, effective, privacy-preserving alternative to audio-
only or vision-based methods. RADIOSES explores an impor-
tant step in this direction and will inspire follow-up research.
Some experimental results of RADIOSES are available on our
project website: https://zahidozt.github.io/RadioSES/

In addition to our preliminary work [22] that explores the

feasibility of audioradio speech enhancement and separation,
our main contributions in this work are:
• We propose RADIOSES, a novel end-to-end audioradio sys-

tem that jointly leverages mmWave radio and audio signals
for simultaneous speech enhancement and separation.

• We introduce an audioradio deep learning framework that
fuses audio signals and radio signals for multi-modal speech
separation and enhancement.

• We utilize adaptive encoders for time-frequency represen-
tation, perhaps for the first time, not only for audio, but
also for radio signals without relying on the commonly used
spectrograms.

• We build an extensive audioradio dataset and compare
RADIOSES’s performance in various conditions with state-
of-the-art methods. RADIOSES achieves 3 to 6 dB SiSDR
improvements in separating two and three person mixtures,
respectively.
The rest of the paper follows a literature review in Section II,

and a preliminary in Section III. Section IV presents an
overview, with detailed design in Section V and Section VI.
We give dataset and implementation details in Section VII,
and present the results in Section VIII. Last, we discuss in
Section IX and conclude in Section X.

II. RELATED WORK

Audio-only Methods Traditional methods, such as com-
putational auditory scene analysis (CASA) [23] with pitch-
estimation based separation [24], nonnegative matrix factor-
ization (NMF) [25], or probabilistic methods [26] cannot
generalize well to unseen speakers [27], which is a major
limiting factor for their performance.

Deep learning based methods outperformed classical ap-
proaches recently [27]. Instead of estimating output represen-
tation directly, these methods usually estimate a mask that
is multiplied with the input. Some masks used as training
targets are binary mask [28], STFT spectral mask [29], and
complex ratio mask [30]. PHASEN [31] estimates amplitude
and phase masks separately. In SEGAN [32], a time-domain
SE system using generative adversarial networks has been
proposed. ConvTasNet [33] performs better than ideal ratio
mask for SS, with an adaptive/learnable encoder, instead of
classical STFT. Later on, the fully convolutional layers in [33]
are replaced by dual-path RNN (DPRNN-TasNet) [21], dual-
path transformer network (DPTNET) [34], and fully attention
layers in SepFormer [35].

Source association and tracking problems can be solved
with frame-level PIT [4] and utterance-level PIT [36]. Even
though these methods mitigate the problem, and estimate the
same speaker’s speech for a given frame, they can fail when the
speakers have similar pitch and speaking characteristics [37].
The number of sources can be estimated by deep clustering
[3] or deep attractor networks [38]. However, these models
still have the source tracking problem over long time, which
is started to be addressed recently [39].
Multimodal Methods Vision-based works use different fea-
tures as input, such as face embeddings [5], lip embeddings [6]
or optical flow [37]. These methods use STFT representation,

https://zahidozt.github.io/RadioSES/
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Fig. 2. a) Spectrogram of speech, captured with a microphone and sampled
at 8 kHz, b) Spectrogram of radio signal, captured from vocal fold’s of the
speaker in a)

although time-domain processing is also possible [40]. [41]
estimates faces from the speech signals, whereas [8] uses
picture of a speaker for separation. Audiovisual methods have
complex processing pipelines, require good lighting, and raise
privacy concerns.

On the other hand, ultrasound can also be used for speech
generation [42], speaker recognition [43], and speech enhance-
ment [44]. UltraSE [45] uses a deep learning to enhance single
speaker signals. Ultrasound signals can only work at a short
range (e.g. 15cm), and are too coarse to measure fine-grained
vocal folds vibration [45].
Wireless Sensing Recently, wireless sensing has been an
emerging phenomenon [46], [47], with multiple applications
to gait monitoring [48], [49], vibration monitoring [16] and
vital signs monitoring [14], [50], [51]. mmWave devices
have enabled monitoring of µm-level displacement on object
surfaces, and can capture vocal folds vibration remotely [17].
Furthermore, they can recover sound from human throats [18],
speaker diaphragms [52], or passive object surfaces, such as a
piece of aluminum [19]. Recently, mmWave information from
the speaker has also been used for speaker verification [53]
or speaker recognition [54]. Although these works can reject
interfering sound by sensing its source, they capture limited
and low-quality sound. Such systems do not employ one of
the most common sensors available, microphones, to further
improve the quality. A recent work, WaVoice [20], fuses both
modalities for speech recognition, but can only recognize
commands of a single user, and is not suitable for speech
separation. To that end, RADIOSES explores a multimodal
speech enhancement and separation system using radio signals.
Furthermore, to the best of our knowledge, RADIOSES is
the first work to utilize adaptive encoders for time-frequency
representation, instead of spectrograms, which is the typical
method for all radio-based sensing systems.

III. PRELIMINARY

In this section, we start with an illustration to explain what
radio devices measure. Channel-impulse response (CIR) of a
radio device is affected by the motion in the environment.
Human vocal folds create µm level vibration displacement on
the surface of the human body, especially in the throat region,
and this displacement changes the amplitude and phase of the
returned complex-valued radar signals. As shown in Fig. 2, the
low-frequency component of the radio captured spectrogram
and microphone captured spectrogram are extremely similar,
as the two modalities measure the same mechanical vibration.
Radio devices potentially enable measuring voice activity
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(as the silence instants do not include vibration), and pitch
tracking. As it will be shown later, this information from radio
signals will be combined with the corrupted audio signals
for high quality speech enhancement and separation. We note
that, although Fig. 2 includes spectrograms for illustration,
RADIOSES uses learnable encoders for time-frequency repre-
sentation of both audio and radio modalities.

IV. SYSTEM OVERVIEW

As an overview, RADIOSES requires a device with
mmWave sensing capabilities, and a microphone, (e.g.[12],
[11]). The monaural microphone records ambient sound, and
the mmWave radar is expected to output separate streams for
each sound source, where we constrain our investigation to
speech signals. Although it is possible to place radar in a
separate location, we assume the radar and microphone to be
colocated, as in [11]. We expect the speaking objects to be
in front of the radar. In addition, although radars can sense
in NLOS conditions, we only investigate LOS in this work
as our goal is not to eavesdrop. The application scenarios of
RADIOSES can be one or more persons speaking in front of
a computer, smart hub, or a phone, with LOS.

Having speaking persons in the field-of-view (FoV), RA-
DIOSES detects near stationary bodies and uses the output
to estimate and associate sources with the extracted sound
signals. Unlike microphone arrays, using mmWave sensing
enables to capture individual data streams not only from
different azimuth angles, but also from varying distances. After
these tasks, an efficient multimodal deep learning module is
used to estimate the clean speech(es), which can be used as
clean speech or passed through a speech-to-text engine to
convert into commands.

The first main block of RADIOSES, source detection and
localization in Fig. 3, is explained briefly in Section V,
whereas the second block, deep learning module is further
detailed in Section VI.

V. RADIO FEATURE EXTRACTION

As shown in Fig. 3, the goal of the radio feature extraction
module is to output individual radio streams from sources
in the environment. To achieve that, we adapt a variety of
methods in an efficient pipeline to detect and locate targets.
Unlike existing works, such as [19], [52], RADIOSES does not
rely on a spectrogram-based metric to localize people in the
environment, but utilizes classical, efficient methods to extract
the corresponding range-azimuth bins.
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Fig. 4. Illustration of Sound Detection & Localization Module of RADIOSES

Channel Information RADIOSES can work with any type
of radar that can report a channel impulse response (CIR),
although we use a frequency modulated continuous wave
(FMCW) radar. When using an FMCW radar, extracting the
CIR requires applying an operation called range-FFT, which
is a common operation and we refer the reader to related work
[55]. As mmWave devices usually have multiple antennas, we
define the CIR at the m-th antenna hm(τ) as:

hm(τ) =
R−1∑
r=0

αm,rδ(τ − τr) + ε(τ), (1)

where R is the number of the CIR range bins, δ(·) is the
Delta function representing the presence of an object at the
corresponding location, αm,r and τr denote the complex
amplitude and the propagation delay of the r-th range bin,
and ε denotes the additive noise, respectively. Here, the range
resolution ∆R can be inferred from the time resolution, ∆τ ,
which is inversely proportional to bandwidth (corresponding
to 4.26cm for our device). Therefore, a separate stream from
very close targets can be extracted. The CIR in (1) is captured
repeatedly during sensing, and is time dependent. To simplify
(1), we denote the CIR from m-th antenna, at r-th range bin,
at time index t as hm,r(t). Note that, hm,r(t) is quantized
with respect to time, range bin, and antenna index.
Digital Beamforming Using the individual received streams
from each antenna, RADIOSES extracts range-azimuth infor-
mation with classical beamforming [56]. Range-azimuth CIR
is denoted by hr,θ(t), where θ represents the azimuth angle.
Since our virtual antenna array elements are placed d = λ/2
apart, where λ is the wavelength, hr,θ(t) can be given as:

hr,θ(t) = sH(θ)hm,r(t) + ε(t), (2)

where sH(θ) is the steering vector for angle θ, and ε is the
additive noise. The coefficients of the steering vector are:

sm(θ) = exp

(
−j2πd sin θ

λ

)
, (3)

and the channel vector is hm,r(t) =
[h1,r(t), h2,r(t), ..., hM,r(t)], with M being the total
number of antenna elements.
Target Detection To detect human bodies in the environment,
RADIOSES first extracts the reflecting objects in the environ-
ment. As suggested by (1), the presence of objects creates
strong returned signals, whereas when there is no object,
returned signals only consist of noise. For target detection, we
utilize a classical approach in the radar literature, constant false
alarm rate (CFAR) detector [57], which adaptively estimates
the background noise for different bins and thresholds each

range-azimuth bin accordingly. As shown in Fig. 4a, the 2D
CFAR window is denoted with C, and CFAR threshold is
denoted with γ. This window is applied to the magnitude of
the range-azimuth plane, and the corresponding range-azimuth
plane is shown in Fig. 4b. Therefore, the CFAR detection rule
on the range-azimuth plane is given as:

BCFAR
r,θ (t) = 1{(C ? |hr,θ|)(t) > γ(|hr,θ(t)|)}, (4)

where ? and 1{·} denote the convolution operation and
indicator function, respectively.
Clutter Removal Previous module extracts a binary map with
bins with reflecting objects, which can include static objects.
On the other hand, even when a person is stationary, the
radar signal still captures a variation at the person’s location,
due to inherent body motion from breathing and heart rate,
a phenomenon used extensively in mmWave based person
detection [58], [59]. Therefore, to remove the static objects and
detect human bodies, we extract the variance at each range-
azimuth bin, and use a threshold to identify static objects. We
denote the variance of hr,θ(t) with Vr,θ(t), where an example
can be seen in Fig. 4c. Therefore, human detector output is
Bstat
r,θ , 1{Vr,θ(t) > Hstat(r, θ)}. Furthermore, bodies with

excessive motion can also be filtered using a similar approach,
and we reject those by: Bmov

r,θ , 1{Vr,θ(t) < Hmov(r, θ)},
where Hstat(r, θ) , ηstat cos(θ)

(1+r∆R)2 , Hmov(r, θ) , ηmov cos(θ)
(1+r∆R)2 , ηstat

and ηmov are empricially found thresholds. The minimum and
maximum variances are defined with respect to (r, θ), in order
to accommodate changing reflection energy with respect to
angle and distance. The resulting binary detection map, Br,θ(t)
is found by extracting intersection of all binary maps, i.e.
Br,θ(t) = {BCFAR

r,θ ∩Bstat
r,θ ∩Bmov

r,θ }(t), as shown in Fig. 4d.
Number of People Estimation Each bin of binary detec-
tion map, Br,θ(t) spans (∆R,∆θ) distance in 2D space.
Considering the high range and angular resolution, a human
body can span multiple bins in B(r, θ). To estimate the
number of people, RADIOSES clusters binary detection maps
using a non-parametric clustering method, DBSCAN [60]. The
parameters for DBSCAN are set empirically, and an example
clustering is shown in Fig. 4e. Furthermore, since the number
of people estimation and center extraction is done repeatedly
for a window of size W , there is a need to match the locations
of bodies at different time indices. We use Munkres’ algorithm
[61] to continuously track the location of users.
Radio Feature Extraction Having extracted the number
of persons and the corresponding range-azimuth bins, RA-
DIOSES extracts the complex radar signals from each person’s
center directly, following recent raw-data based approaches
[62]. As there are many range-azimuth bins associated with the
same person, RADIOSES extracts the median bin for testing,
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whereas multiple nearby bins are used for training, which
helps to boost dataset size and mitigate overfitting. Output
dimensionality of the radar signals is 2 × 1000 at 16bits for
a 1-second stream, which is lower than the microphone and
typical video streams.

VI. AUDIORADIO DEEP LEARNING MODEL

In this section, we explain the structure of the deep learning
model used in RADIOSES, named RADIOSESNET. We first
introduce the relevant background in SES and our design
rationale in Section VI-A and then detail our design in
Section VI-B.

A. Background and Design Rationale

Background: Usually, an SES model follows the architecture
in Fig. 5, with an encoder, masker, and a decoder block [63].
Input encoding is multiplied with an estimated mask, which
uses a decoder to reconstruct the time-domain signal. Early
works have used STFT as the encoder, with the ideal binary
mask being the training objective [64]. The performance can
be increased by using more optimal masks (such as complex
ratio mask [30]); however, these still suffer from the fact that
STFT-based encoding is not necessarily optimal for speech
separation, and methods that replace STFT with adaptive
encoders are found to be more optimal [33].
Design Rationale: RADIOSES uses the same structure as in
Fig. 5, with the addition of a radio stream. Radio streams are
encoded, and concatenated with the audio stream to estimate
the masks. However, this involves a few design choices as
follows: Unlike audio signals, radio signals are complex-
valued, and both real and imaginary parts change with respect
to the motion and vibration [62], [16]. If a spectrogram
representation is used as an input, not only it may not be
optimal for neural network, but it usually involves in throwing
away some signal content by only extracting amplitude, or half
of the spectrogram (e.g. only positive Doppler shifts), as in
[18], [20]. Using either the real or imaginary part of the signal
(as in [52]) or combining both parts optimally with a linear
projection [19] also loses important signal content. Based on
this, RADIOSES uses adaptive front-end for radio streams.

To make RADIOSES work with raw radio inputs, we apply
random rotation in IQ plane, as proposed by previous work
[62]1. However, unlike [62], we apply a high-pass filter on
returned signals to reduce the effect of body motion. The
high pass filter is needed for RADIOSESNET to run with
raw radar inputs, as will be shown in Section VIII. We select
the cutoff frequency of the high pass filter at 90 Hz in
order not to filter vocal folds harmonics. Afterward, the radio
signals are encoded with an adaptive encoder, as explained in
Section VI-B.

After the encoder, we process audio and radio streams
separately with individual blocks to exploit long-term depen-
dencies within each modality. To that end, we process each
modality through an efficient dual-path RNN block (DPRNN).
DPRNN blocks do not suffer from limited context, a main

1We refer the reader to [16] for IQ representation of the returned signals,
and to [62] for discussion and introducing random rotation.
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Fig. 5. Typical SES System Workflow

issue with fully convolutional models [21]. Afterward, we
combine two modalities via resizing and concatenation on the
feature dimension. These models are further processed with
DPRNN blocks and 1D decoders before outputs.

B. RADIOSESNET Design

1) Encoders: The audio encoder of RADIOSESNET con-
sists of a 1D convolutional layer, with kernel size 16, and
number of kernels 256, followed by ReLU nonlinearity and
layer normalization. Radio channel uses another 1D convo-
lutional layer, nonlinearity and normalization, with the same
parameters, except the number of filters being 64, due to the
lower sampling rate. Stride size is set to 1/2 of the kernel
width, resulting in 50% overlap between convolutional blocks.
After the first layer, a second 1D convolution reduces the
dimensionality to 64 for audio, and 16 for radio. Each radio
stream uses the same encoder block to create an STFT-like
representation. We denote the distorted input audio with ã, and
radio streams with ri, where i denotes the ith radio stream.
Output of the audio and radio encoders are represented with
X? ∈ RN?×L? , with ? ∈ (a, r), for audio and radio stream,
where we drop the index i for simplicity. Here, N? represents
the number of features, and L? represents the number of time
samples of encoded representation.

2) Masker: Both encoded modalities are combined to esti-
mate the masks for each source, as illustrated in the masker
of Fig. 6. Each modality passes through individual DPRNN
blocks, then fused by vector concatenation, and passes through
four more DPRNN blocks before estimating the mask with a
2D convolutional layer, which matches the output with the
expected mask number and size.
DPRNN Processing: For processing the encoded data, we use
DPRNN blocks [21], where an example DPRNN workflow is
presented in Fig. 7. DPRNN processing consists of reshaping
the input data to a 3D representation, through means of ex-
tracting overlapping blocks, and concatenating through another
dimension, and applying two consecutive RNN layers to differ-
ent dimensions of the input block. The output of the reshaping
operation can be represented as X̂a ∈ RNa×Ka×Sa , with Ka
and Sa denoting the block length and number of blocks. The
input, output representations Xr, X̂r and dimensionalities Nr,
Lr, Kr and Sr are defined similarly for radio channel, and given
in Table I, whereas the flow for a single DPRNN processing
is given in Fig. 7.

TABLE I
PARAMETERS FOR THE MASKER LAYER FOR 2-MIX

Audio Na 64 Ka 128 Sa 48
Radio Nr 16 Kr 16 Sr 48
Concatenation Nc 96 Kc 128 Kc 48
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After a suitable reshaping operation, the input blocks are fed
to an RNN module, which is operated along the S dimension
of the 3D input, followed by a fully connected layer, and layer
normalization. After a skip connection in between, a similar
operation is repeated through K dimension to capture larger
distance relationships between blocks. Each RNN block has
depth 1, and fully connected layers are used to match the
input size to the output size, which enables to repeat multiple
DPRNN blocks without any size mismatches.

3) Decoder: At the output of the masker, a number of
masks equal to the number of people are estimated, which
is then used to decode the signal to extract time domain audio
signals. DPRNN blocks are converted back to a representation
similar to the one at the input, by overlap-add method [21].
The signal is fed through the decoder, which applies a trans-
posed convolution operation. The output is a single channel
representation, with the same dimensionality and the same
number of filters in the encoder to preserve symmetry, and
it is also adaptive.

4) Training: In order to train RADIOSESNET, we use
scale-invariant signal-to-distortion (SiSDR [65]) as the loss
function between the time-domain signals, which is given by:

SiSDR(a, â) = 10 log10

 || â
T a
||a||2 a||

|| âT a||a||2 a− â||

 , (5)

where a and â denote the target and the estimated sound
signals. Use of SiSDR prevents scaling effects to dominate
the error calculation, as the amplitude of extracted speech is
not of interest. The SiSDR loss has been combined with L2

norm regularization on the weights, where the decay factor is
set to 1e−6. Since a separate model for different numbers of
users has been trained, RADIOSES switches to the appropriate
model by estimating the number of sources.

5) Other Design Considerations:: Complexity and causal-
ity are particularly considered in our design.
Complexity: RADIOSESNET has a compact design, with
only 2.1M parameters. Among these, radio stream occupies
320k parameters, which could easily be fit on a small device.
Forward pass of a 3-second input with RADIOSESNET takes

Fig. 8. Setup of Data Collection Center

4ms on a modern GPU with batch processing, which is only
0.4ms slower than the corresponding audio-only method.
Causality: RADIOSESNET uses unidirectional LSTMs in the
recurrent layers of inter-block processing, whereas intra-blocks
rely on BLSTMs which requires having the complete block in
S dimension. Therefore, RADIOSESNET can work in a causal
fashion, with roughly 150ms delay. We leave investigation of
a real-time work to future, but RADIOSES is already close to
real-time processing, unlike [45], [5].

VII. EXPERIMENT AND IMPLEMENTATION

A. Data Collection

Hardware: We build a data collection platform, as seen in
Fig. 8, to obtain large-scale data to train, validate, and evaluate
RADIOSES. As extracting clean and non-reverberant ground
truth samples are important, we reduce the echo in the room
by sound-absorbing pads. We collect clean audio data with
a Blue Snowball iCE microphone, sampled at 48 kHz, radar
data using a Texas Instruments (TI) IWR1443 mmWave radar,
and video data using the front-facing camera of an iPhone 11
Pro. The radar is set to operate with a bandwidth of 3.52 GHz
at a sampling rate of 1000 Hz. We align the radio signal and
audio signal in the time domain using the correlation of their
energy. Video data, captured at 1080p and 30 fps, is collected
for future research and not used in this work; although the
accompanying audio files are used for training.
Speaker setting: We recruit 19 users including native speakers
and speakers with different accents to read phonetically rich
sentences from the TIMIT corpus [66]. Our speakers come
from a diverse background, where there are 5 native English
speakers, along with 9 Chinese, 2 Indian, 2 Turkish, 1 Korean
accented speakers. We remove sentences that are shorter than
25 characters in the dataset. Since the size of TIMIT corpus
is limited, 200 common and 100 unique sentences are read
by each participant. A total of 5700 sentences were read,
including 2100 unique sentences and 5762 unique words.
The sentences are presented in mixed order, and our dataset
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includes a lot of pauses and filler words, in contrast to
publicly available datasets, which usually include professional
speakers (e.g. LibriMix [67]). During data collection, users
sit approximately 40cm away from the radio device and read
each material at a normal speaking volume while not moving
excessively.
Data generation: To generate the noisy and mixture sound
signals, we follow the recipe used in LibriMix [67] with
the noise files from WHAM dataset [2]. We randomly select
13 users for training, and 4 users (2 male, 2 female) for
evaluation. Validation set includes the remaining two users,
and unused speech of the users in the training set. After
downsampling all audio files to 8kHz, we create synthetic
mixtures based on the shortest of the combined files, with
a minimum duration constraint of 3-seconds. Each user’s
recordings are repeated ten times on average, which results
in 25,826 utterances (≈30 hours). The gain factors are found
by normalizing the loudness of speech and noise signals, and
creating noisy mixtures in [−5, 5] dB signal-to-noise rate (as
in [67]). We create two evaluation sets:
• Seen: mixtures from seen users, but unheard sentences

(a.k.a. closed-condition)
• Unseen: mixtures from unseen users (a.k.a. open-condition)
This helps us to better understand the dependency on
seen/unseen users in RADIOSES, as different users’ radio
signals can be different, not only due to their speaking, but also
due to their body motion and physical characteristics. Other
experimental settings are also introduced and investigated in
Section VIII. On the other hand, our experiments include
mostly overlapping speech, to better illustrate the difference
between audio-only and audioradio methods, and we leave
evaluation of partially overlapping speech to future for con-
ciseness.
Dataset Considerations for Improving Robustness: A multi-
modal system can fail easily and focus to use a single modality,
which is known as mode failure. To prevent this and to further
improve robustness, our dataset creation procedure includes
the following:
• Same-speaker mixtures: Our dataset includes same-speaker

mixtures, in order to prevent mode failure, which is shown
to be effective in the audiovisual domain [68].

• Multi-microphone mixtures: As our data collection pro-
cedure includes two microphones, we randomly select one
when generating each mixture. Our evaluation is done with
the better microphone (Blue), but this also boosts dataset
size multiple folds without collecting more data.

• Clean and Noisy Mixtures: Unlike the LibriMix dataset
[67], we create both noisy and clean mixtures of multiple
speakers and use them to train a single model. Therefore,
RADIOSES uses a single model, whether an environment is
clean or noisy.

B. Implementation Details

We implement data collection and raw data processing
modules of RADIOSES in MATLAB, whereas the deep
learning model is implemented in PyTorch, with the help of
Asteroid library [69] to follow standard training and evaluation

protocols in monoaural SES, and to borrow implementations of
existing methods, such as ConvTasNet [33] or DPRNNTasNet
[21]. We train RADIOSESNET and DPRNNTasNet for 60
epochs, using a starting learning rate of 1e−3, which is halved
when the validation loss did not improve for 5 consecutive
epochs. Furthermore, the learning rate is scaled by 0.98
every two epochs, as in [21]. An early stopping criterion
is set to 15 epochs. To accelerate training, we use mixed-
precision training. Thanks to the low complexity design of
RADIOSESNET, a single epoch takes roughly 10 minutes to
train, with a batch size of 24, using a single NVIDIA RTX
2080S GPU.
Considerations to Improve Robustness: As noted previously,
although microphone signals mostly correspond to speech
signals, radar signals can be affected by motion, vibration,
and environmental factors. Furthermore, it is usually not
straightforward to make a multimodal system work easily. To
improve the robustness of radio signals, we implement the
following:
• Capturing Multiple Snapshots Since a single user spans

multiple range-azimuth bins due to high resolution, we
record multiple range-azimuth data in our dataset. In each
epoch, we randomly select a range-azimuth bin for training
among a maximum of 8 candidates, whereas validation
and testing use the median bin. This boosts the dataset
size significantly without relying on synthetic methods and
enables to use a wider range of bins, instead of searching
for the most optimal bin.

• Input Distortions: The input radio streams are distorted in
different ways. These include introducing random rotation
[62], adding noise at different variance levels, replacing
some part of the radio signal with zeros (to imitate data loss),
or removing some radio signals completely, as suggested by
[70] to reduce mode failure.

VIII. EVALUTION

In this section, we introduce performance metrics, and
baselines for comparison, which are followed by results using
RADIOSES. Afterward, we investigate the practical limits and
robustness of RADIOSES by analyzing environmental effects.
Next, we present a real-world case study to illustrate the ben-
efits coming from RADIOSES. Last, we evaluate RADIOSES
in some interesting cases, such as noisy, partial inputs, and
conduct an ablation study.
Performance Metrics: We report the following metrics to
evaluate performance of RADIOSES:
• SiSDR [65]: Scale-invariant signal-to-noise ratio, which is

an indicator of signal levels, with a normalization factor to
prevent scaling of the signals to increase metric unfairly.

• SIR: [71]: Signal-to-interference ratio, which measures the
leakage from one person to another when there are multiple
speakers, and only reported for SS tasks.

• STOI [72]: Short time intelligibility metric, correlates with
the word error rate, reported from 0 to 1.

• PESQ [73]: Perceptual evaluation of the sound quality,
measured from 0 to 5. Since measuring human perception
requires user studies, this metric has been proposed as an
alternative, when user studies are not feasible.
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TABLE II
RESULTS FOR ENHANCING SINGLE SPEAKER SPEECH. SEEN:

CLOSED-CONDITION, AND UNSEEN: OPEN-CONDITION

Evaluation Seen Unseen
Model SiSDR STOI PESQ SiSDR STOI PESQ
Input 3.9 0.74 1.55 3.8 0.70 1.54
WaveVoiceNet 0.6 0.60 1.28 0.7 0.62 1.27
ConvTasNet 14.5 0.90 2.67 13.6 0.87 2.55
SudoRMRF 14.0 0.88 2.32 12.2 0.84 2.04
DPRNNTasNet 14.2 0.89 2.62 13.0 0.86 2.46
RADIOSES 14.5 0.90 2.68 13.3 0.87 2.52

Baseline Methods: We include several radio-only and audio-
only methods in the literature for a variety of tasks. First,
as a radio-only method, we implement WaveVoiceNet in
WaveEar [18]. This approach uses the radio modality alone
to (re)construct sound signals from vocal folds vibration, and
assumes no available microphones. It reconstructs magnitude
of audio spectrograms and uses Griffin-Lim based phase
reconstruction. We use oracle phase of the clean audio signal
instead, which poses an upper limit on its performance. An-
other recent work [20] is similar to our work in combining two
modalities, yet their end-to-end system focuses on translating
single speaker noisy voice commands into text without a sound
output and not comparable to our method.

We compare performance of RADIOSES with other audio-
only baselines, to illustrate gains from radio modality, and
sustained performance of RADIOSES. We include ConvTas-
Net [33], one of the first adaptive-encoder based systems that
outperformed STFT-based masks. Second, we include DPRN-
NTasNet, which is the audio-only baseline of RADIOSES.
DPRNNTasNet has shown to outperform ConvTasNet signif-
icantly, and can be considered as the state-of-the art. Third,
we use SudoRMRF [74], which simplifies DPRNNTasNet by
replacing the RNN blocks with downsampling and upsampling
blocks and is shown to achieve similar performance.

Last, we cannot compare with UltraSE [45], as it uses
ultrasound modality, and different speakers and noise dataset.
Due to changes in datasets and different sampling rate (16
kHz), it is not possible to copy their results and draw a direct
comparison. On the other hand, UltraSE performs similar to
ConvTasNet in 2-person mixtures, which we have included as
a benchmark in our study.

A. Speech Enhancement

In speech enhancement, RADIOSES brings improvements
to the audio-only baseline methods, as shown in Table II.
Since the background signals are statistically different than
speech signals, we see relatively small improvements. This
observation is consistent with audiovisual methods (e.g. 0.1
dB improvement in [5]), and shows that RADIOSES learns to
exploit the radio information. On the other hand, results from
WaveVoiceNet suggest that, radio modality is not sufficient
to (re)construct less-noisy audio, and may not be feasible
within our experimental setting. This can be attributed to
differences in the hardware (special hardware is used in [18]),
our phonetically rich diverse dataset (5762 unique words
vs. 631 in [18]), and users. As the results are poor, we
do not investigate WaveVoiceNet further in our experiments.
Performance of RADIOSES is matches to that of ConvTasNet,

TABLE III
EVALUATION IN 2-PERSON MIXTURES (SS)

2-person mix (clean) 2-person mix (noisy)
Model SiSDR SIR STOI PESQ SiSDR SIR STOI PESQ

Se
en

Input 0.2 -0.4 0.71 1.71 -1.7 0.3 0.61 1.37
ConvTasNet 11.3 18.5 0.87 2.53 6.1 16.8 0.77 1.78
SudoRMRF 10.9 15.4 0.84 2.60 4.7 16.4 0.68 1.77
DPRNN 13.5 21.5 0.91 2.63 8.9 20.3 0.81 1.96
RADIOSES 15.4 23.6 0.94 2.83 10.9 23.3 0.85 2.10

U
ns

ee
n

Input 0.0 0.53 0.70 1.62 -1.8 0.30 0.60 1.39
ConvTasNet 9.5 16.0 0.84 2.38 5.2 15.0 0.72 1.67
SudoRMRF 6.2 11.5 0.76 2.13 1.0 13.0 0.60 1.39
DPRNN 10.8 18.1 0.86 2.38 7.0 17.3 0.75 1.83
RADIOSES 14.5 22.3 0.92 2.70 10.3 22.5 0.83 2.05

with certain qualitative differences, such as 1.5s look-ahead in
ConvTasNet, and higher computational complexity. We also
note that, our implementation uses a pretrained ConvTasNet
on a much larger dataset, which potentially improves the
overall performance. This section investigates the case, where
the background is non-speech noise. Having an interfering
speech signal can also be considered as speech enhancement
problem, yet the enhancement methods usually require some
prior information to focus on the particular speech. If such
prior information does not exist, it is more reasonable to
evalutae the performance against speech separation models.
In order to have a fair comparison, we evaluate this case in
the following sections, under speech separation.

B. Speech Separation
In this section, we present the speech-separation results with

RADIOSES, along with the previously mentioned baselines
in Table III. For both separating single and noisy speech
tasks, RADIOSES outperforms a variety of state-of-the-art
methods in audio-only domain, including DPRNNTasNet. Our
DPRNNTasNet implementation achieves 13.5 SiSDR in 2-
person clean mixtures, which is close to the reported value
in the LibriMix dataset, 16.0. Significant improvements with
respect to SIR can be observed in both clean and noisy cases,
which indicates the usefulness of radio channel for separating
the mixtures, and suppressing the interference. Furthermore,
even though there is more variety in radio inputs (e.g. radio
channel inputs are not only affected by the sound, but also
by ambient motion and physical characteristics), RADIOSES
can still generalize better to unseen users, where the basic
DPRNNTasNet suffers. RADIOSES not only improves signal
metrics, but also intelligibility and the perceptual quality
metrics (PESQ). The difference between the audio-only base-
line becomes larger, especially when the input mixtures are
corrupted with noise and when there are multiple people. We
also train RADIOSES with three people mixtures. As shown in
Table IV, the improvements from RADIOSES is even greater
for 3-person mixtures, as radio helps to extract individual
streams from each user. Since the performance gains from
RADIOSES increases with more users, we expect it to work
well for 4 or more users. We do not test those cases for brevity.

C. Comparison with Audio Only Baselines
As mentioned previously, introducing another modality has

many benefits, such as guiding the loss function at the begin-
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TABLE IV
EVALUATION IN 3-PERSON MIXTURES (SS)

3-person mix (clean) 3-person mix (noisy)
Model SiSDR SIR STOI PESQ SiSDR SIR STOI PESQ

Se
en

Input -3.2 -2.8 0.60 1.37 -4.2 -2.8 0.55 1.30
DPRNN 7.2 14.0 0.81 1.95 4.9 15.7 0.74 1.68
RADIOSES 11.6 19.4 0.88 2.31 9.3 19.2 0.83 1.96

U
ns

ee
n Input -3.2 -2.8 0.58 1.37 -4.2 -2.8 0.54 1.31

DPRNN 4.2 10.2 0.73 1.72 2.6 12.5 0.66 1.55
RADIOSES 10.7 18.2 0.86 2.21 8.6 18.2 0.81 1.90
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Fig. 9. Learning curve for audio-only (AO) and audioradio (AR) for
separating 2-person mixtures

ning of training to solve permutation problem and estimating
the number of sources. To that end, in Fig. 9, we compare
the loss values on training and validation sets. As shown, the
audioradio system has a much steeper learning curve at the
beginning, along with a better convergence point.

Furthermore, in Fig. 10a, we compare the output SiSDR
of RADIOSES with its audio-only baseline. As shown, our
proposed method is superior to the audio-only baseline, and
the performance gains are consistent through different input
SiSDR levels. To investigate the consistency of audioradio
system over audio, we plot the differential gain in terms of
SiSDR in Fig. 10b from the radio channel. To characterize
the incorrect associations, we check the amount of samples
with ∆(DBi) < −3 is 1.03%, indicating correct physical
association of sources for 98.97% of the time.

D. Impact of Experiment Setting

We further evaluate the performance of RADIOSES in vary-
ing settings, conducted in a different location than the original
data collection location. Since it is difficult to simulate the
extracted radio signals from different environmental scenarios,
we collect data at a variety of settings. For example, to test
the effect of distance, we collect multiple user data at different
distances, (e.g. 75cm), and create mixtures from that location.
We normalize input data streams to the same loudness levels
for a fair comparison, although minor differences between
each setting is inevitable. In order to show improvements,
we present each settings’ performance along with the audio-
only baseline, and show how RADIOSES preserves a better
performance in those settings. For presentation, we refer
RADIOSES as the audioradio (AR) method, whereas base-
line DPRNNTasNet is noted as audio-only (AO) method. As
shown, RADIOSES mostly outperforms audio-only baseline
with 4dB improvement in our dataset, which includes unseen
and same-speaker mixtures. This evaluation is done with clean
mixtures for consistency, although we have observed similar
gains in noisy mixtures as well.
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Fig. 10. Comparison of RADIOSES with audio-only baseline in 2-person
noisy mixture

1) Distance: First, we evaluate the effect of distance on the
signal separation tasks, as illustrated in Fig. 11a. As shown in
Table V, RADIOSES can work robustly until the speakers are
1m away from the device, and preserve the gains compared
to the audio-only baseline. The performance for both cases
decrease, which is due to training dataset being captured from
a short distance only. As the distance increases, the received
audio signals change due to the room impulse response and
microphone nonlinearity, which is a phenomenon used for
coarse source distance estimation with microphones recently
(e.g. [75], [76]). We note that, the performance gains from
radio channel does not decrease much from 0.5m and 1m,
and the main bottleneck for lower performance is the variety
of audio data. A high-performance system can be built by
capturing more diverse audio data.

2) Orientation: Second, we ask the users to sit 0.75m away
from the device and change their orientation to explore the
practical area of sensing, as illustrated in Fig. 11b. We realize
that RADIOSES can work until 45◦, without any performance
decrease, as presented in orientation columns of Table V. The
gains from the audioradio system are consistent (e.g. ∼4dB
in SiSDR) through each setting, showing the effectiveness in
modeling of the radio stream. Furthermore, this observation
is consistent with that of distance, as a different deviation
angle from the microphone does not create any distance-based
nonlinearity, although it reduces the radio-reflection SNR.

3) Head Orientation: Third, we ask users to sit at 0.5m,
and rotate their heads from 0 degrees to 15 and 30 degrees,
as shown in Fig. 11c. For example, if a user sits in front of
a laptop or monitor, they would naturally swing their head
to see different content on the screen and 30 degrees of
head rotation at 0.5m enables them to see the entire area
of a big screen. Furthermore, if RADIOSES is using lip
motion, instead of vocal folds vibration, we would expect
the results to deteriorate quickly. The results are presented
in the head orientation column of Table V, which indicates
that RADIOSES is robust to changes in head orientation, even
though the training procedure does not include explicit head-
rotation data.

4) Distortion: Fourth, we ask users to perform a variety of
distortions. First, we ask users to perform motions in front of



10

50 cm 75 cm 100 cm
: radar
: microphone

(a) Distance setting

𝜃𝜃

: radar
: microphone

(b) Incident angle setting

: radar

50 cm

: microphone

𝜃𝜃

(c) Head orientation setting (d) Multi-user setting
Fig. 11. Multiple experimental settings

TABLE V
PERFORMANCE WITH RESPECT TO MULTIPLE EXPERIMENTS OF SOURCES

Exp Distance Orientation Head Orientation
Case 50 cm 75 cm 100 cm 0◦ 15◦ 30◦ 45◦ 0◦ 15◦ 30◦

Metric AO AR AO AR AO AR AO AR AO AR AO AR AO AR AO AR AO AR AO AR
SiSDR 6.3 10.9 3.8 8.6 2.3 4.3 3.8 8.6 3.6 7.8 4.4 8.3 4.2 8.2 6.3 10.9 5.6 9.8 5.4 9.3
SIR 12.5 18.3 9.9 15.6 8.7 9.8 9.9 15.6 9.6 14.8 10.6 15.1 10.2 15.6 12.5 18.3 11.7 16.8 11.5 16.3
STOI 0.83 0.93 0.79 0.90 0.74 0.81 0.79 0.90 0.78 0.89 0.79 0.89 0.78 0.88 0.83 0.93 0.80 0.90 0.79 0.89
PESQ 2.17 2.61 1.97 2.42 1.79 2.00 1.97 2.42 1.91 2.32 2.00 2.33 2.02 2.37 2.16 2.61 2.11 2.46 2.10 2.43
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Fig. 12. Performance when there is motion (M) of the user, or occlusion (O).

TABLE VI
In the Wild EXPERIMENT RESULTS

Case Speech Enhancement Speech Separation
Metric Clean AR Noisy Clean AO AR
WER 14 45 63 20 61 55
CER 8 32 54 11 50 40

the radar while speaking. To have the experiments controlled,
we ask the users to move their heads up and down, left-to-right
and back-and-forth naturally, as it can happen during speech.
Next, we collect data with users wearing a mask, which plays
a role as an occlusion. As shown in Fig. VIII-D4, RADIOSES
is not affected by the head motion. Furthermore, unlike certain
visual enhancement methods which lose their advantage with
occlusions (as noted in [77]), RADIOSES is robust against
wearing a mask and can preserve the improvements compared
to the audio-only method. This is due to the fact that vocal
folds vibration are extracted from the body and throat, not
from the face. Similar improvements with respect to STOI
(e.g.from 0.8 to 0.9), and PESQ (e.g.from 2.1 to 2.5) are also
observed, but not reported in the figures.

E. Case Study in the Wild

In this experiment, we ask multiple users to sit within the
same room, and test speech enhancement and separation in
the wild, as shown in Fig. 11d for the multiple speaker case.
Although making a real-world system based on multimodal
sensing, and end-to-end deep learning frameworks involve
additional challenges due to Lombard effect [78], potential
interference, and possible covariate shift in the neural network
layers, we try to explore whether there would be improvements

compared to an audio-only system. We ask a user to read
Rainbow and Arthur passages (details in [18]), and play back-
ground noises from a pair of speakers. Since this experiment
does not have the ground truth clean signals, we only evaluate
the performance in terms of word-error-rate, and character-
error-rate. To have a fair comparison, we ask the users to read
the same material in another quiet environment and capture the
performance in that setting. We use Google’s speech-to-text
engine without any model adaptation to construct transcripts.
As our speakers are not native speakers, and the RADIOSES
is implemented with telephone-quality speech (8 kHz), the
overall error rate is higher. On the other hand, as presented in
Table VI, RADIOSES can enhance and separate multi-person
mixtures and outperform the audio-only baseline for speech
separation. We also provide example files on our webpage at
https://zahidozt.github.io/RadioSES/.

F. Noisy and Partial Input Data

In this experiment, we corrupt input signals by adding
noise and zero-padding, which helps us to gain insight into
the performance changes when people are further away, or
when there is package loss in the system. These experiments
are done with the first 3-seconds of the audio streams, as
longer audio streams already require some zero-padding or
overlapping block processing.
Noisy data: We add white Gaussian noise to obtain radar
data at varying SNRs from 20 to -10 dB levels, and report
the performance metrics in Table 13a. At larger distances,
radio signals are expected to be noisy, and this experiment
explores when the radio signals are still useful. RADIOSES
outperforms audio baseline, until a radio SNR of −5dB. When
the radio signal has further noise, similar performance as the
audio baseline is achieved. This experiment indicates that there
is great potential for RADIOSES at larger distances.
Partial input: In this experiment, we zero pad the radio
streams to reduce the available radar stream duration and
test input radio durations of 2s, 1.5s, 1s, and 0.5s. Such
configurations can be used when there are power requirements
or package loss in the radio stream. As shown in Figure
13b, RADIOSES can still help with speech separation tasks
and improve the performance, compared to the audio-only

https://zahidozt.github.io/RadioSES/
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Fig. 13. Performance for distorted radio inputs. Dashed lines represent the
performance of the audio-only baseline

baseline, when there is at least 1s of signal (i.e., 33%), in terms
of perceptual quality. RADIOSES system performs better than
the audio-only baseline with respect to all inputs after 1.5s
of inputs. This indicates that for power-constrained settings,
RADIOSES can be operated with a duty-cycle less than 50%,
and can still bring performance improvements, along with the
aforementioned benefits of source association.

G. Partial Detection
Although having speakers outside the FoV of the radar is

not our key focus in RADIOSES, we explore the limits of
RADIOSES in such a mode of operation, by allowing one
speaker to be outside the FoV. This setup requires use of
alternative approaches to estimate the number of speakers, as
the radio-based methods will output fewer people (In practice,
we may still use radio-based estimation by leveraging temporal
information). We zero pad a radio stream to simulate no
information from the outside user, and investigate whether
RADIOSES can benefit from having partial information. We
evaluate a single person’s missing case, but an extension to
two missing people is also possible, with permutation-based
methods. As shown in Table VII, RADIOSES can still outper-
form the audio baseline with a large margin, and improve the
performance, with missing people. We do not observe much
performance decrease in 2-person noisy mixtures, when one
person is outside. For 3-person mixtures, there is more decline,
but the gap between audio-only system is larger, and benefits
of having the two other radio signals are clear.

H. Ablation Studies
In this experiment, we train RADIOSESNET without several

blocks to understand the effect of each component. We use
clean 2-person mixtures for our ablation study. As shown in
Table VIII, we remove i) Radio DPRNN blocks ii) Audio
DPRNN blocks and iii) High-pass (HP) filter from the mask
estimation. In the last case, the audio stream is still used to
encode the signal, in order not to change the main structure
of RADIOSES, but is not passed through any DPRNN blocks.

TABLE VII
PERFORMANCE FOR PARTIAL DETECTION OF SOURCES

Case 2-person (noisy) 3-person (noisy)
Metric AO AR(1) AR(2) AO AR(2) AR(3)
SiSDR 7.7 10.1 11.2 4.9 8.3 9.3
SIR 18.2 20.7 21.0 13.0 17.7 19.2
STOI 0.74 0.81 0.81 0.74 0.81 0.83
PESQ 1.95 2.19 2.20 1.68 1.89 1.96

TABLE VIII
ABLATION STUDY: Radio modality
and HP Filter are essential parts of
RADIOSESNET, whereas additional

radio DPRNN blocks bring extra
performance improvements.

Model SiSDR
RADIOSESNET 15.4
w/o Radio DPRNN 15.2

w/o Any Radio 13.5
w/o Audio DPRNN 4.8

w/o HP filter 0.1

IX. DISCUSSION

In this work, we propose RADIOSES to improve the ro-
bustness and performance of SES tasks using radio modality.
Despite promising results with RADIOSES, there are certain
limitations and many interesting directions to pursue further.
Other side channels: Although in this work we assume the
vibration sources in the field-of-view of radio device to be
from vocal folds only, radios can also measure vibration of
other sources, such as guitars [19], or machinery [16]. These
vibration sources usually create some sound signature, and
they can be used to estimate the sound from each source
separately, as done using cameras in [79].
Microphone arrays: RADIOSES uses a single microphone
along with an mmWave sensing device. On the other hand, it
is also possible for RADIOSES to work with a microphone
array, and radio modality can still bring further improvements
to overall performance. Although beamforming in microphone
arrays may indicate that radio modality is unnecessary, it can
fail in noisy or reverberant [63] environments. Since RA-
DIOSES senses the vibration of the source, it can estimate the
direction of the sound for robust beam-steering or can extract
the source vibration without any reverberation for further
improvement. Some recent work addresses this problem in
audiovisual domain [80], and we believe similar contributions
using RADIOSES can be achieved in the future.
Moving Speakers: Currently, RADIOSES is designed to track
bodies with the assumption that they do not move significantly.
This is usually a common constraint in the relevant vital signs
monitoring literature (breathing, heart rate), although some
recent work started addressing motion for breathing [62]. A
more thorough system should support medium and high levels
of source motion. To that end, coherent combining of multiple
vocal fold bins from person point clouds (e.g. [14]), or deep
learning [62] can be some interesting ideas to support multiple
moving targets.
Sensing Distance: Our experiments indicate that RADIOSES
can work robustly until the speakers are 1m away from the
device, and preserve the gains compared to the audio-only
baseline. The performance for both cases decreases, which
is due to the training audio dataset being captured from a
short distance. However, the performance improvements from
RADIOSES do not decrease much with the distance. During
our experiments, we realized that raw signal SNR is still
high at large distances (e.g. 2.5m) for people with low pitch
(e.g. males). To support all users, we limited the practical
range to 1m, much larger than the range of using ultrasound
[45]. Although not much radar signature can be captured from
these bodies when they are further away, they can still be
robustly detected, (e.g. as in vital sign monitoring), and even
the reduced number of high quality radio streams can still help
to improve the performance, as illustrated in Section VIII-G.
Moreover, a different hardware can capture vocal folds vibra-
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tion from 7m in [17], or at 50m [81]. We believe RADIOSES
can benefit from better hardware significantly, and a more
practical system can be built.
Multipath Effects: In our experiments, we consider cases with
multiple sources in front of the radar, and training data as-
sumes perfectly clean radio streams for each person. However,
in challenging conditions, wireless sensing-based systems can
have a strong multipath effect. Although in mmWave bands,
the effect is not as detrimental as 2.4/5 GHz, it can still reduce
the performance. We did not encounter this issue in our short-
range experiments, but it can be a limiting factor for long-
range indoor sensing. We plan to address this issue in the
future by potentially simulating multipath data.
Power Consumption and Cost: Although our evaluation
board costs $300, a single mmWave device can be purchased
for $15 from TI. Transmission power of the device is 12 dBm
(≈ 16mW ) and the selection of radar parameters result in
a duty cycle of 7.3%, (i.e.≈ 1.2mW ). For comparison, the
size of these devices can go as small as 6mm × 6mm to fit
in a phone [12], and the power consumption of the radar in
that phone is 1mW [12]. Furthermore, RADIOSES does not
require capturing the entire signal duration (Section VIII-F)
and based on the application, lower power consumption can be
achieved by reducing the duty cycle further down. As there are
already devices with continuous mmWave sensing capabilities,
we believe RADIOSES is feasible to be integrated with smart
devices, and this work introduces a new application.

X. CONCLUSION

We present RADIOSES, a joint audioradio speech en-
hancement and separation system using mmWave sensing. It
improves the performance of existing audio-only methods with
the help of radio modality and achieves similar improvements
as audiovisual systems, with further benefits in computation
complexity and privacy. Furthermore, RADIOSES can detect
the number of sources in the environment, and associate
outputs with the physical speaker locations, all being challeng-
ing problems in audio-only domain. Real-world experiments
show that RADIOSES outperforms the state-of-the-art methods
considerably (e.g. 3 dB SiSDR improvements in 2-speaker
mixtures w.r.t. audio-only baseline), demonstrating the great
potential of audioradio SES.
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