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The Power of Fragmentation: A Hierarchical
Transformer Model for Structural Segmentation in

Symbolic Music Generation
Guowei Wu, Shipei Liu, Xiaoya Fan

Abstract—Symbolic Music Generation relies on the contextual
representation capabilities of the generative model, where the
most prevalent approach is the Transformer-based model. The
learning of musical context is also related to the structural
elements in music, i.e. intro, verse, and chorus, which are
currently overlooked by the research community. In this paper,
we propose a hierarchical Transformer model to learn multi-
scale contexts in music. In the encoding phase, we first designed
a Fragment Scope Localization layer to syncopate the music
into chords and sections. Then, we use a multi-scale attention
mechanism to learn note-, chord-, and section-level contexts. In
the decoding phase, we proposed a hierarchical Transformer
model that uses fine-decoders to generate sections in parallel and
a coarse-decoder to decode the combined music. We also designed
a Music Style Normalization layer to achieve a consistent music
style between the generated sections. Our model is evaluated on
two open MIDI datasets, and experiments show that our model
outperforms the best contemporary music generative models.
More excitingly, the visual evaluation shows that our model is
superior in melody reuse, resulting in more realistic music.

Index Terms—Symbolic music generation, Transformer-based
model, structural segmentation, multi-scale attention.

I. INTRODUCTION

Symbolic Music Generation (SMG) refers to generating
continuation from the initial notes. It has received great
attention with the prosperity of deep learning [1]. Music can
be seen as a sequence of notes in time. A musical generative
model should be able to refer to the context of note repre-
sentations, as required for natural language models. Hence,
Language Models (LMs), such as the auto-regression model,
are prevalently used for music generation. A representative
model is PerformanceRNN [2], an LSTM-based recurrent
neural network designed to model polyphonic music with
complex dynamics. It performs well in generating short music
(∼ 30s). But generating long music sequences (≥ 4 minutes)
is still a challenge because errors accumulate as the length
of the sequence increases. The output length is often limited
in current LMs, resulting in a restricted maximum perception
range. When the length of the generated sequence exceeds the
perception range, its performance degenerates quickly.

Many efforts have been devoted to maintaining long-term
relevance with reasonable computational complexity in SMG
tasks. Especially the Transformer model [3] have helped the
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advance state-of-the-art (SOTA) in symbolic music genera-
tion. For instance, Google researchers [4] have proposed
MusicTransformer, which can deal with longer sequences (∼
4096 notes) with optimized intermediate memory occupation.
MuseNet [5] is a Transformer-based model, using the same
general-purpose unsupervised technology as GPT-2 [6], that
generates 4-minute music and discovers patterns of harmony,
rhythm, and style in long-form music. Despite recent improve-
ments in long-term music generation, existing approaches fail
to learn music structure effectively. This may be attributed to
their incompetence in segmenting structural elements.

Most music is typically structural, such as intro, verse,
chorus, etc., meaning that some attractive melodies are re-
peated throughout the song. In traditional neural networks,
hierarchical architectures have been proposed to generate
these structured melodies. MusicVAE [7] uses a hierarchical
decoder to model structural elements, such as the repetition
and variation between measures and sections of a piece of
music. MuseGAN [8] consists of three Generative Adversarial
Networks (GANs) models, called jamming model, composer
model, and hybrid model, for generating multi-track music
with their respective temporal dynamics. Researchers have
shown that the hierarchical architecture enables the extraction
of structural context, enhancing the long-term relevance in the
decoding phase. A similar idea has also been introduced to
a transformer-based model for text generation task [9] that
references paragraph-level context and achieves SOTA perfor-
mance. Therefore, we argue that structural segmentation and
section-level contextual learning are the primary challenges in
generating realistic long-term music.

In this paper, we propose a hierarchical Transformer model
to learn multi-scale representations extracted by structural
segmentation methods. Concretely, chords were first recog-
nized from note sequence and then fed to a custom-designed
Fragment Scope Localization (FSL) layer. The note sequence
was segmented into several structural sections by the region
proposal method with two sub-layers, namely the cls layer
and the reg layer. Then, fine-decoders were pre-trained with
multi-scale attention through these structural corpora, enabling
chord-level and section-level contextual learning. Next, the
first few notes and labels are input as activation information
to generate sections. We propose a Music Style Normalization
(MSN) layer to control the music style of the generated
sections. The followed aggregation layer and coarse-decoder
are used to combine the generated sections and fine-tune
them at the global scale, respectively. An illustrative diagram
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Fig. 1. An overview of the proposed framework. (a) The encoding phase: The FSL layer is used to recognize chords and sections. It consists of two sub-layers,
a classification (cls) layer and a regression (reg) layer, for recognizing sections and locating the location of each recognized section, respectively. Then, these
structural elements are fed into a Transformer encoder that uses multi-scale attention to embed musical representations at the note, chord and section levels.
Fine-decoders of different lengths are subsequently pre-trained by multi-scale representations. (b) The decoding phase: At the bottom of the hierarchical
architecture, fine-decoders are used to generate output sections in parallel. We introduced an MSN layer to normalize the music style through a variable
z and maintain consistency between the generated sections. The normalized sections are combined by an aggregation layer and fine-tuned by a followed
coarse-decoder.

of the proposed framework is shown in Fig. 1. Our main
contributions are as follows:
• We designed an FSL layer that divides the music into

structural elements and further analyzed its utility with
different settings through ablation studies.

• We proposed a multi-scale attention mechanism to learn
music representations at the note, chord, and section
levels. Visual evaluation shows its superiority in reusing
melodies, such as chord progression at the chord-level.

• We proposed a hierarchical architecture, using fine-
decoders to generate sections in parallel and fine-tune
the combined music with a coarse-decoder. Since the
proposed model generates the music by section, it can
alleviate the problem of error accumulation. Experimental
results show that it achieves SOTA performance on two
open datasets.

• We designed an MSN layer to control music style and
argued for the importance of Mutual Information (MI) in
this process. Thus, the proposed model showed superior-
ity in the style consistency of generated music compared
to other models.

II. RELATED WORKS

A. Transformer baselines

The Transformer model has been the typical choice for
sequence data modeling due to its advantages in contextual
representation capabilities. However, applying the Transformer
model to the SMG task is computationally prohibitive since
the computational complexity increases quadratically with the
sequence length [10]. Reformer [11] is an effective work,
where the dot-product attention is replaced by a locality-
sensitive hashing-based calculation, reducing the complexity
from O

(
L2
)

to O(L
√
L). Many other Transformer models

have been devoted to resolving the problem of building
longer-term dependencies in sequence prediction tasks. For
instance, Transformer-XL [12] learns dependencies beyond a

fixed length by a segment-level recurrence mechanism and
a positional encoding scheme. Some approaches introduce
additional modules to improve music generation. Transformer-
GANs [13] introduces a pre-trained discriminator that uses
adversarial loss to complement the negative log-likelihood
objective, enabling improvement in synthesizing minute-long
compositions. These proposed baselines provide the feasibility
of solving SMG tasks by Transformer models.

B. Music structure segmentation

Structure segmentation is commonly used for modeling
long-form music, which can be tackled with hierarchical
architecture. In a music annotation work [14], attentive con-
volution networks and recurrent networks were hierarchically
combined to solve the problem of audio music representation
and structure learning. McCallum [15] explores the use
of Convolutional Neural Networks (CNNs) for unsupervised
training in music segmentation, aiming to detect the bound-
aries of musical fragments in audio music. Dai [16] proposed
a hierarchical model to generate a full-length melody guided
by long-term repetitive structure and achieved near-human
performance in melody generation about half the time. These
works suggest that it is beneficial to design a structural
segmentation module for SMG tasks.

C. Music Style Control

Instance normalization methods are often used for style
transfer. For instance, Huang et al. [17] proposed an adaptive
instance normalization approach to achieve flexible style con-
trol. Ling et al. [18] used a region-aware adaptive instance
normalization module to formulate the visual style of the
background and transfer it to the foreground. MI is also
commonly used for style control. Chawla [19] proposed a
model for formality style transfer, which maximized the MI
between original and target styles as the training objective
and achieved better performance. Inspired by these studies,
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we utilized a MI-based strategy to maintain a consistent style
in long-form music.

III. THE PROPOSED MODEL

The key challenge for the SMG task is to generate long-
term music with structural relevance and consistent style.
We begin with a description of note sequence encoding and
structural element fragmentation, followed by an introduction
of the hierarchical architecture and music style normalization.
A theoretical analysis of the coverage of attention patterns of
the proposed and baseline models was also performed.

A. Encoding: Fragmentation scope localization and Multi-
scale attention mechanism

During the encoding phase, the FSL layer is used to
recognize chords and sections, which facilitates the extraction
of multi-scale contexts in music. Then, we propose multi-
scale attention to learn musical representations at different time
scales and pre-train the fine-decoders. The detail of the FSL
layer and multi-scale attention is illustrated in Fig. 1 (a).

Chord recognition: A chord, in music, is a group (typically
three or more) of notes that sound together and serve as a
basis of harmony. In tonal music rules, a chord can also be a
group of notes that appear dispersed in a bar. Therefore, we
extracted the chord feature, called chord profile, by counting
the notes of each bar. The notes (transferred to the same
octave) was mapped to a 12-dimensional vector, usually called
twelve-tone equal temperament, which is a set of pitch classes
[C1, Db2,D3, Eb4,E5,F6, F ]7,G8, Ab9,A10, Bb11,B12].

TABLE I
DESCRIPTION OF USUAL CHORD PROFILES.

Id Chord type Chord profile Id Chord type Chord profile
1 (empty) [0, 4, 7] 25 79] [0, 3, 4, 7, 10]
2 + [0, 4, 8] 26 79]11] [0, 3, 4, 6, 7, 10]
3 +7 [0, 4, 8, 10] 27 79]13 [0, 3, 4, 5, 7, 9, 10]
4 +79 [0, 2, 4, 8, 10] 28 7911 [0, 2, 4, 5, 7, 10]
5 +79] [0, 3, 4, 8, 10] 29 7911] [0, 2, 4, 6, 7, 10]
6 +7911] [0, 2, 4, 6, 8, 10] 30 7913 [0, 2, 4, 5, 7, 9, 10]
7 +79b [0, 1, 4, 8, 10] 31 7913b [0, 2, 4, 5, 7, 8, 10]
8 +j7 [0, 4, 8, 11] 32 79b [0, 1, 4, 7, 10]
9 - [0, 3, 7] 33 79b13 [0, 1, 4, 5, 7, 9, 10]
10 -6 [0, 3, 7, 9] 34 79b13b [0, 1, 4, 5, 7, 8, 10]
11 -69 [0, 2, 3, 7, 9] 35 7alt [0, 1, 4, 6, 10]
12 -7 [0, 3, 7, 10] 36 j7 [0, 4, 7, 11]
13 -79 [0, 2, 3, 7, 10] 37 j79 [0, 2, 4, 7, 11]
14 -7911 [0, 2, 3, 5, 7, 10] 38 j79] [0, 3, 4, 7, 11]
15 -7913 [0, 2, 3, 5, 7, 9, 10] 39 j79]11] [0, 3, 4, 6, 7, 11]
16 -79b [0, 1, 3, 7, 10] 40 j7911] [0, 2, 4, 6, 7, 11]
17 -j7 [0, 3, 7, 11] 41 m7b5 [0, 3, 6, 10]
18 -j7911] [0, 2, 3, 6, 7, 11] 42 o [0, 3, 6]
19 -j7913 [0, 2, 3, 5, 7, 9, 11] 43 o7 [0, 3, 6, 9]
20 6 [0, 4, 7, 9] 44 sus [0, 5, 7]
21 69 [0, 2, 4, 7, 9] 45 sus7 [0, 5, 7, 10]
22 6911] [0, 2, 4, 6, 7, 9] 46 sus79 [0, 2, 5, 7, 10]
23 7 [0, 4, 7, 10] 47 sus7913 [0, 2, 5, 7, 9, 10]
24 79 [0, 2, 4, 7, 10] 48 Non-chord [0]

We counted the 47 most common forms of chord compo-
sition (major triads, minor sixth chords, minor-major seventh
chords, suspension chords, etc.). Single notes that cannot form
a chord are denoted as type 48. For example, the C triad chord
consists of three notes: a root note C, intervals of a third E,

and a fifth above the root note G. Thus, the C triad chord
can be represented by [C,E,G], and in twelve-tone equal
temperament by Cchord = C1 + Triad[0,4,7] = [C1, E5, G8].
The chord profile used in our model is shown in Tab. I.

In our model, chords are identified automatically from MIDI
data in two steps: 1. Template matching for complete chord; 2.
Sequence estimation for unidentified bars. More specifically,
we use the template matching method to match the same
chords as in the chord template, including the 47 common
chord profiles. These matching chords have neither missing
notes nor other ornamental notes. Then, we construct an n-
gram sequence to represent unidentified bars and use a non-
linear classifier to calculate correlation, which can determine
the probability of the chord category. The result of chord
recognition is demonstrated in Fig. 2.

Bar
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Fig. 2. Example of chord recognition results. The first 20 music bars
are displayed in a visual MIDI diagram, which can easily exhibit the note
constitution of the chord between bar lines.

A series of chords is called a chord progression, and it has
the characteristic of being periodically reused in sections of
the same label. For example, in Fig. 2, the 19, 20, and 21 bars
use the same chord as the 2, 3, and 4 bars. The construction of
these specific chord progressions is one of the goals we hope
to achieve with our model.

Fragment region proposal: We use the region proposal
method to selectively search for music sections. The candidate
windows ω used to extract section location and length, is
applied to the note sequence chord (x) labeled by the chord
profiles. Thus, the window size is set to a multiple of the chord
length (usually 16 semiquaver notes), with K sizes available.
Normally, sections are extracted through windows sliding from
left to right. The left-to-right (L2R) strategy can be written as:

Cand [m] = ω [k] · chord (Locm : Locm + ω [k]) (1)

where Cand [m] denotes the scope of m-th extracted frag-
ment; ω [k] denotes the candidate window with the appropri-
ate size k; The current location is calculated by Locm =∑m−1
j=1 ωj ; The goal of L2R strategy is to select suit-

able windows with the maximum classification probability
arg max (cls (ω · chord (x))) in order from left to right.

Obviously, the L2R strategy is prone to error accumulation
of the window location. To deal with this, we design a global
strategy, where a random location ∆Loc is added to the input,
and the non-overlapping windows are padded. The global
strategy can be written as:

Cand∗ [m] = ω [k] · chord
(

∆Locm ±
1

2
ω [k]

)
(2)
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where ∆Locm denotes the center of the m-th ran-
dom location; The non-overlapping windows are padded
by maximizing the average confidence, calculated by
arg max

(
1
M

∑M
m=1 cls (ω · chord (x))

)
. The comparison of

the two alignment strategies is shown in Fig. 3.
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Fig. 3. Two alignment strategies for candidate window. (a) The candidate
windows slide over the note embeddings to produce proposal regions. The
cls layer identifies the section categories, and the reg layer locates the section
scopes to the ground truth. (b) The central locations of the candidate scopes
are randomly initialized on the note embedding. Then, the cls layer identifies
the section labels, and the reg layer regresses the candidate scopes.

Candidate classification: The cls layer produces category
probabilities pϕ ∈ Rφ to predict the label ϕ ∈ φ of candidate
sections, such as intro, verse, chorus. The number of labels in
the training data is unbalance, so we use Gumbel Softmax [20]
to optimize the cls layer, which is defined as:

Lcls = − log
exp ((pϕ + θϕ) /τ)∑
ϕ̃∼φ exp ((pϕ̃ + θϕ̃) /τ)

(3)

where τ is a non-negative coefficient of spread in the Gumbel
distribution; The smaller the coefficient, the closer the sam-
ple expectation is to the Argmax function; The larger the
coefficient, the more average the sample expectation is. θ are
samples drawn from Gumbel (0, 1). The ϕ̃ lists the all labels,
and pϕ̃ is the probabilities of candidate section in every label.
The value of Lcls should be close to 0 if the candidate is
consistent with the ground-truth label.

Scope regression: To measure the overlap ratio between
the candidate and ground-truth sections, we check the per-
centage of shared and different notes in these paired sections.
Let D = [(ω1, y1), · · · , (ωM , yM )] be a training set of
instance pairs, y are the ground-truth sections. We use the
Jaccard similarity coefficient to evaluate the similarity between
the predicted and ground-truth scopes, which is denoted as
Jac (a, b) = (a ∩ b) / (a ∪ b). The regression loss function can
be calculated by:

Lreg = − log(Jac (ωm, ym)) (4)

A low regression loss indicates high coincidence between the
prediction and the ground-truth. Accordingly, the loss function
of our FSL layer can be represented by:

LFSL =
1

Ncls

Ncls∑
m=1

Lcls +
1

Nreg

Nreg∑
m=1

Lreg (5)

where Lcls and Lreg are normalized by Ncls and Nreg , which
are the sample number in these two layers, respectively.

After passing through the FLS layer, the note sequence is
segmented into structural sections. The fragmentation process
is formulated as:

Sectionm (x) = reg (cls (Cand [m])) (6)

where cls and reg stands for the classification and regression
operation of the m-th fragment, respectively;

Multi-scale attention and fine-decoders pre-training: In
Transformer models, the attention pattern determines the per-
ceptual range. We designed a multi-scale attention mechanism
for musical representation, to enable learning of chord-level
and section-level contextual features, as shown in Fig. 4.
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Fig. 4. A diagram of multi-scale attention. Each layer in the encoder consists
of three groups of attention heads, capable of learning music representations
at different scale.

Given a vector X ∈ RL×D of note sequence, where L is
the length of section sequence and the D is the dimension
of the vector. The output embedding h (x) is obtained by a
Transformer encoder, which has l hidden layers, denoted as:

hl = LN (hl−1 + FFN (MS Attention (Q,K, V ))) (7)

where Q, K, V represent the Query, Key, Value vector in the
Transformer-based model; LN and FFN represent the layer
normalization operation and feed-forward network, respec-
tively; MS Attention represents the multi-scale attention.

Multi-scale attention has a scale pattern S = (S1, · · · , Si),
which we parameterize by default three scales Snote, Schord,
and Ssection, to control its working scope. The multi-scale
attention can be calculated as:

MS Attention =

 head1 (S1) , · · · , headN1 (S1)

· · ·
head1 (Si) , · · · , headNi

(Si)


(8)

where Ni is the number of heads at each scale; The attention
head is the weighted sum of scaled dot-product of the input
vectors, calculated by:

head (Si) = Softmax

(
QSi

KT
Si√

D

)
· VSi

(9)

 QSi

KSi

VSi

 =

 WQ

WK

WV

�X (Si) +

 0

PSi

PSi

 (10)

where WQ,WK ,WV represents the weight matrix that trans-
form the input into the Query, Key, and V alue vector,
respectively; X(Si) defines the references at the i scale,
corresponding to note(x), chord(x) and section(x). PSi
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represent the position embeddings (PEs) in each scale, for
example, use relative PEs (RPEs) in the note and chord scales,
and absolute PE (APEs) in the section scale.

Through the MS Attention, we pre-trained several fine
decoders, whose maximum length is according to the section
length. The training steps and important parameters are de-
tailed in Appendix.

B. Decoding: hierarchical architecture with Music Style Nor-
malization

The proposed hierarchical model, a bottom-up architecture,
aims to generate notes at scales from fine to coarse. The
decoding phase is shown in Fig. 1 (b).

At the bottom of the hierarchical architecture, we use the
fine decoders, pre-trained with different maximum lengths, to
generate music sections. Each section is decoded in parallel
with an activation information, which usually uses the first few
notes and a label:

Gm = Decoderfine (Sectionm (x) [0 : r] ; zm) (11)

where Gm represents the m-th generated section; Fine-
decoders are activated by start notes Sectionm (x) with default
length r; zm indicates the target label of the generated section,
i.e., intro, verse, and chorus, etc.

Specifically, given the start notes (h′1, · · · , h′r), the output
embedding h′r+1 is obtained by:

h′r+1 = LN (h′r + FFN (ar+1 (h′1 : h′r))) (12)

where an is the self-attention block, which calculates a weight
score from previous notes.

Music Style Normalization: To enhance the style consis-
tency between the original and generated section, we designed
an MSN layer. The musical style is quantified by a variable z
that has the same dimensions as the note embedding. Through
the MSN layer, the style variable z, initialized by the section
label, is transferred to the generated sections, which can
be expressed as zm → z′m. For example, the MSN layer
normalizes the mean and standard deviation of note pitches of
each original section and maps them to the generated section:

MSN (G, z) = γz

(
Gm − µ(z′m)

σ(z′m)

)
+ βz (13)

where γz , βz are the scaling and translation parameters,
respectively, which are calculated independently for each
category. µ(z′m) and σ(z′m) represent the mean and standard
deviation of note pitches in i-th generated section, respectively.

At the up of the hierarchical architecture, these sections are
aggregated into a long sequence by the weighted concatenation
operation v. The coarse-decoder used to learn the global
contextual reference from the merged sequence. The coarse
decoding process can be represented by:

G = Decodercoarse

(
v

(
MSN

(
M∑
m=1

Gm

)))
(14)

where G stands for the output sequence; The coarse-decoder
Decodecoarse uses a multi-scale attention with same fixed-
length as the encoder.

Multi-Task Loss: The loss function we used in decoding
phase consists of two terms: (1) The LMLM for the note
prediction in coarse decoder; (2) The Lstyle for music style
normalization.

LDecoding = LMLM (hΠ | h−Π)+λLstyle (x,G (x, z)) (15)

where hyperparameter λ is used to balance the magnitude of
loss terms.

Given a sequence h1:n, decoders predicts T masked notes
among them. We minimize the following MLM loss:

LMLM (hΠ | h−Π) = − 1

T

T∑
t=1

log p (hΠt | h−Π) (16)

where hΠ and h−Π denotes the masked and unmasked notes,
respectively.

To improve the stylistic similarity between the original and
generated sections, we maximize their MI in the optimizer.
Mathematically, we can examine the KL divergence between
the joint probability distribution and the marginal probability
distribution to determine whether the two variables are approx-
imately independent. Thus, we can use the variational informa-
tion maximization method [21] to estimate the I (x;G (x, z))
by instantiating an intermediate tensor Q (x | G (x, z)):

I(x;G(x, z)) = Ep(x,G(x,z))

[
log Q(x|G(x,z))

P (x)

]
+Ep(G(x,z)) [DKL(P (x | G(x, z))‖Q(x | G(x, z)))]

(17)

where P (x) is the distribution of training data; P (G (x, z)) is
the distribution of generated samples; We empirically deduce
that DKL > 0, then the I (x;G (x, z)) can transform to:

I(x;G(x, z)) ≥ Ep(x,G(x,z)) [logQ(x | G(x, z))] +H (X)
(18)

where H (x) is the differential entropy of X . We can derive
an initial lower bound, which is tight when Q (x | G (x, z)) =
P (x | G (x, z)). The musical style loss Lstyle (x,G) can
calculate on I (x;G (x, z)):

Lstyle(x,G) = Ep(x,G(x,z))[logQ (x | G (x, z))] +H(z)

= Ex∼P (x)

[
EG′(x,z)∼P (G(x,z)|x) [logQ (x | G′ (x, z))]

]
+H(z) ≤ I(x;G(x, z))

(19)
The Lstyle (x,G) can be thought of as a negative recon-

struction error, in which the gradient of intermediate tensor
Q (x | G) is tractable. Therefore, Lstyle can be maximized via
the re-parameterization trick. This optimization conforms to
the information-theoretic regularization: MI is high when the
two musical sections are similar. Hence, it is feasible to add
the Lstyle loss to maintain consistency of generated sections.

Attention pattern analysis: At last, we analyze the advan-
tage of the proposed hierarchical model in attention patterns
and compare it with others. We use a 16*16 image to compare
attention mechanisms, where the differences between the four
patterns are revealed by the connection matrix of the output
(rows) and the input (columns).

As shown in Fig. 5 (a), local attention cannot exchange
information with distant notes. This situation is the opposite
of dilated attention, see Fig. 5 (b). The drawback of sparse
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TABLE II
COMPARISON OF MODEL PERFORMANCE WITH FOUR OTHER MODELS, TESTED ON J.S. BACH AND MAESTRO DATASETS. FOR EACH METRIC, THE

CLOSER TO THE TRAINING SET THE VALUES IS, THE BETTER. THE VALUES OF THE METRICS ARE EXPECTED TO BE CLOSE TO THAT FOR THE TRAINING
SET. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD.

Models PPL PCU ISR PRS TUP PR APS IOI PCH GS CPI SI
Training Set (J.S. Bach) - 8.407 0.835 0.422 25.45 34.32 11.67 0.064 2.994 0.930 0.985 0.011

PerformanceRNN 1.96 7.5 0.853 0.446 9.3 28.4 3.901 0.05 2.665 0.999 0.999 0
Transformer-XL 1.846 5.742 0.785 0.383 34.859 40.136 10.763 0.074 2.531 0.919 0.990 0.008

MusicTransformer 1.833 5.768 0.792 0.386 36.069 42.542 10.257 0.075 2.535 0.916 0.993 0.009
Transformer-GANs 1.789 5.9 0.807 0.423 34.817 40.41 10.993 0.072 2.537 0.921 0.987 0.009

Hierarchical model (Ours) 1.716 7.061 0.819 0.412 25.194 34.597 10.982 0.124 2.944 0.872 0.994 0.01

Training Set (Maestro v3.0.0) - 6.665 0.815 0.429 66.01 68.15 11.59 0.083 2.886 0.901 0.958 0.208
PerformanceRNN 1.403 3.99 0.682 0.268 5.52 10.71 3.98 0.099 1.912 0.880 0.322 0.014
Transformer-XL 1.188 6.121 0.796 0.305 53.53 61.54 11.18 0.067 2.639 0.931 0.957 0.083

MusicTransformer 1.167 6.16 0.833 0.499 55.55 62.72 11.69 0.071 2.539 0.919 0.990 0.095
Transformer-GANs 1.145 6.136 0.814 0.298 56.17 63.93 11.95 0.091 3.51 0.919 0.997 0.129

Hierarchical model (Ours) 1.063 6.716 0.815 0.429 57.26 67.62 11.35 0.087 2.985 0.894 0.987 0.191

attention, in Fig. 5 (c), is that the dilated stride is fixed and has
no structure-related connection. In Fig. 5 (d), our multi-scale
attention enables both intra- and inter-section connectivity,
which has the advantage of enhancing intra-section integrity
while learning section-level dependencies. The range and loca-
tion of section-level attention are adaptive to the corresponding
section in each music composition rather than hard-coded in
advance. Therefore, section segmentation can be viewed as a
dynamic assignment of full attention at a local scale, which
has decreased computational cost while maintaining the long
perception range of full attention.

(a) local (b) dilated (c) sparse (d) hierarchical

Fig. 5. Illustration of four attention patterns: (a) Local attention (window size
3); (b) Dilated attention (dispersion stride 1); (c) Sparse attention (window
size 3 and dispersion stride 3); (d) multi-scale attention (4 fine-decoders for
4 sections of length [3, 7, 3, 6]); The depth of blue represents the weight of
attention, while the white color block indicates the absence of attention. The
light blue, green, and orange block correspond to the attention range of note-,
chord- and section-level, respectively.

IV. EXPERIMENT RESULTS

We used the same methods as MusicTransformer to process
MIDI data. The structural information of musical sections
is automatically extracted from the music score, which are
obtained by the GuitarPro software, a music recording tool.
The annotation extraction method is detailed in Appendix.

Datasets: For pre-training the FSL layer, we collected a
total of 300 scores with 3,188 sections, called the GuitarPro
dataset. After pre-training the FSL layer, we trained and tested
the proposed hierarchical Transformer based on two canonical
music corpora: (1) J.S. Bach Chorales [22] for short-term
generation; (2) Maestro v3.0.0 [23] for long-term generation.
The sample length of the Maestro dataset is significantly

longer than that of the J.S. Bach dataset. The split standard
of these datasets abides by the rule of 80/10/10 proportion
for train/validation/test. The detailed information of datasets
is shown in Tab. III.

TABLE III
DESCRIPTION OF DATASETS.

Dataset Scores Sections Notes Average length
GuitarPro (Ours) 300 3,188 355,411 ∼1185

J.S. Bach Chorales 382 - 56,441 ∼148
Maestro v3.0.0 1276 - 7,040,164 ∼5517

Evaluation metrics: Several quantitative music metrics
were used to evaluate the generated music [13], [24]: PPL
(Perplexity, measures the performance of predict the next
note); PCU (Unique pitch classes); ISR (Nonzero entries in C
major scale / Total nonzero entries); PRS (Time steps where
the no. of pitches ≥ 4 / Total time steps); TUP (Different
pitches within a sample); PR (Avg. difference of the highest
and lowest pitch in semitones); APS (Avg. semitone interval
between two consecutive pitches); IOI (Time between two con-
secutive notes); PCH (Pitch-Class Histogram Entropy, mea-
sures the instability of pitch usage in shorter timescales); GS
(Grooving Pattern Similarity, measures consistency of rhythm
across the entire piece); CPI (Chord Progression Irregularity,
measures consistency of harmony across the entire piece); SI
(Structural Indicator, detects presence of repeated structures
within a specified range of timescale);

Platform: All models were trained/tested on two Nvidia
GeForce RTX 2080-Ti 12 GB GPU.

A. Symbolic Music Generation

We compared the performance of the present hierarchical
model with other outstanding music generation models that
had achieved SOTA performance at the moment. The exper-
iments focused on assessing the pitch diversity (PCU, TUP,
PR, APS), non-blank rate (ISR, PRS), rhythm consistency
(IOI, PCH, GS), and musical rules (CPI, SI) of the generated
samples. All models were retrained with the same training sets.
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TABLE IV
ABLATION STUDIES OF FSL AND MSN LAYERS ON J.S. BACH AND MAESTRO V3.0.0 DATASETS. FOR EACH METRIC, THE CLOSER TO THE TRAINING

SET THE VALUES IS, THE BETTER. THE VALUES OF THE METRICS ARE EXPECTED TO BE CLOSE TO THAT FOR THE TRAINING SET. THE BEST
PERFORMANCE IS HIGHLIGHTED IN BOLD.

Baseline Configuration PPL PCU ISR PRS TUP PR APS IOI PCH GS CPI SI
Training Set (J.S. Bach) - - 8.407 0.835 0.422 25.453 34.322 11.671 0.064 2.994 0.930 0.985 0.011

Local Attention [Global,MSN ] 1.872 6.979 0.815 0.417 24.812 34.832 11.153 0.125 2.92 0.871 0.99 0.009
Sparse attention [Global,MSN ] 1.724 7.123 0.817 0.419 24.859 34.699 11.237 0.124 2.934 0.922 0.993 0.013

Multi-scale Attention [L2R,None] 1.917 5.565 0.802 0.391 22.178 41.955 6.983 0.084 2.566 0.879 1 0.005
Multi-scale Attention [L2R,MSN ] 1.729 6.933 0.815 0.415 24.68 34.704 11.32 0.127 2.915 0.874 0.997 0.011
Multi-scale Attention [Global,None] 1.733 6.449 0.789 0.402 20.021 38.186 6.883 0.074 2.501 0.889 0.998 0.003
Multi-scale Attention [Global,MSN ] 1.716 7.061 0.819 0.412 25.194 34.597 10.982 0.124 2.944 0.872 0.994 0.01

Training Set (Maestro) - - 6.665 0.815 0.429 66.002 68.146 11.598 0.083 2.886 0.901 0.958 0.208
Local Attention [Global,MSN ] 1.184 6.361 0.786 0.411 52.924 61.422 10.651 0.090 2.817 0.942 0.743 0.089
Sparse Attention [Global,MSN ] 1.086 6.626 0.834 0.436 73.965 76.011 10.767 0.082 2.863 0.892 0.998 0.171

Multi-scale Attention [L2R,None] 1.108 6.516 0.825 0.44 76.0 77.7 11.4 0.087 2.949 0.882 0.997 0.093
Multi-scale Attention [L2R,MSN ] 1.042 6.759 0.832 0.435 74.17 76.93 11.09 0.083 2.987 0.887 0.992 0.156
Multi-scale Attention [Global,None] 1.181 6.751 0.824 0.439 66.91 73.0 11.19 0.084 2.988 0.892 0.994 0.139
Multi-scale Attention [Global,MSN ] 1.063 6.716 0.815 0.429 57.26 67.62 11.35 0.087 2.985 0.894 0.987 0.191

We ran the results 5 times and reported the average values. The
minimum unit of a visual token is a semiquaver note.

As shown in Tab. II, our hierarchical model surpasses other
models in most metrics. MusicTransformer and Transformer-
XL use the similar relative attention mechanism, and achieve
similar results. Transformer-GANs achieved the better per-
formance in some metrics, especially in short-term music
generation (J.S. Bach dataset), duo to adversarial training
that reduced the distributional discrepancy between real and
generated data. Our model performs the best result (the value
of metrics are the closest to the training set), which can be
attributed to the MSN layer that learns the musical style of the
training set. Meanwhile, our model achieved a higher ISR,
TUP, PR, and PCH compared to other models, suggesting
better pitch diversity and rhythm consistency in our generated
samples. Most excitingly, we achieved the best SI, indicating
the superiority of our model in reusing structural melody.

Error accumulation Analysis: We further tested the gen-
eration performance under different conditions, i.e., number
of sections and length of the output, using the PPL metric,
which measures the underlying performance of the language
model. These tests were performed on the J.S. Bach and
Maestro datasets. As shown in Fig. 6, the PPL increases
rapidly when the section number exceeds 6 for MusicTrans-
former and Transformer-GANs, while staying stable for our
hierarchical model. Similarly, the PPL for MusicTransformer
and Transformer-GANs increases significantly when the out-
put length exceeds 1500, while the drop is much less for
our hierarchical model. This indicates that our model can
better avoid the error accumulation problem compared to other
Transformer-based models.

B. Ablation studies
The improvements in the different configurations of the

FSL and MSN layers were analyzed by ablation studies.
We performed all the ablation studies on the J.S. Bach and
Maestro datasets, which were designed to test three aspects of
performance: (1) The influence of the baseline model choice;
(2) The optimal alignment strategy of candidate windows in

Section Number Output Length

(a) Impact of section number and output length in J.S. Bach dataset

Section Number Output Length

(b) Impact of section number and output length in Maestro dataset

Fig. 6. Results of the error accumulation analysis. Note that the PPL of
MusicTransformer and Transformer-GANs increases considerably with the
length and number of sections, even on the exponential scale. On the contrary,
our model was affected very slightly.

the FSL layer; (3) The effectiveness of the MSN layer; (4) The
best configuration of our model. The results are demonstrated
in Tab. IV.

The results of ablation studies have suggested the effective-
ness of the FSL and MSN layers, while the sparse attention
configured with [Global,MSN ] parameters achieved the best
performance on most metrics. Almost all models that use
the global strategy (compared to the L2R strategy) to align
the candidate windows lead to better performance of music
generation. The use of the MSN layer resulted in better pitch
diversity in the generated music (TUP, PR, and APS are great
improvements), validating its utility in musical style control.
These results show the importance of structural segmentation
(FSL layer) and music style control (MSN layer) for SMG
tasks.
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Fig. 7. Illustration of visual comparison of the generated (upper in shallow blue) and original music (lower in orange). Blue boxes indicate activation notes;
Red boxes are examples of reused melody.

Fig. 8. Visual comparison of musical samples generated by four different models, i.e., Transformer-XL (top left), MusicTransformer (top right), Transformer-
GANs (bottom left), and our hierarchical model (bottom right). The blue box shows the same activation notes.

C. Visual Evaluation

In order to test the practical performance of our model,
we specifically analyzed the structure of the music in the
generated samples. The sample evaluation was demonstrated
by the visual MIDI diagram. Fig. 7 shows an example of a
composition generated by our model, in which a steady rhythm
is maintained compared to the original music, and some strong
melodies are recreated (in the red boxes).

Further, samples generated by our model and other three
comparison models were also presented under the same ex-
perimental condition, as shown in Fig. 8. In the sample
generated by Transformer-XL, all notes are the minimum unit
(semiquaver note), making the composition sound monotonous
and boring. The sample generated by MusicTransformer is
rhythmically inconsistent because there is an in-equivalent
note density in the sequence (see purple box), making the gen-
erated music unrealistic. All notes in the samples generated by
Transformer-GANS are large in timescale (longer duration), in
higher octaves (higher pitches), and rigid in musical style. Our
model generates samples with lively tonal trends and stable
rhythms. Furthermore, the samples reflect many compositional
techniques, such as the use of grace notes (bass tones) and
melodic repetition, which conform to the musical sense and
are similar to realistic music.

V. DISCUSSION AND CONCLUSION

We propose a hierarchical Transformer model to generate
music with structural sections and reused chord progressions,
which the advantage is learning contextual representation
at multi-scale. Results demonstrated that the present model
achieved SOTA performance on two opening datasets. Abla-

tion studies showed the effectiveness of the proposed FSL and
MSN layers.

Another advantage of our model is that the decoding time of
our model was reduced to approximately 0.8 times compared
to other Transformer models, after using the hierarchical
architecture. For example, the computational complexity of
the Sparse Transformer (the most common model) with a
maximum length L is O (L logL). In our multi-scale attention,
since chord-level and section-level heads avoid connecting
all sequence nodes. Benefiting from parallel decoding, our
hierarchical architecture reduces the computational complexity
by approximating O ((L/m) log (L/m)). Tab. V shows the
computational complexity of contemporary canonical models.

TABLE V
L-RELATED COMPUTATION COMPLEXITY. B IS THE NUMBER OF MEMORY
BLOCKS IN MUSICTRANSFORMER. m IS THE NUMBER OF SECTION IN THE

SAMPLE.

Model Computational Complexity Decoding Step
LSTM O (L) L

Transformer O
(
L2

)
L

Sparse Transformer O (L logL) L

MusicTransformer O
(
(L/B)2

)
L

Transformer-GANs O (2L logL) L

Hierarchical Transformer O ((L/m) log (L/m)) L/m

However, we are also aware of some shortcomings that we
have not addressed. In some cases, the segmentation operation
of the FSL layer may lose its effectiveness for dealing with a
composition with rhythmic variations, such as in Beethoven’s
Piano Sonata No.30, This problem could be improved by
resizing the windows according to the note density of the
candidate scope.
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In the future, we plan to explore other applications of the
hierarchical models, for instance, generating polyphony music
that involves multiple tracks. We can also try other strategies,
such as adversarial learning and curriculum learning, to im-
prove the performance of music generation.
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APPENDIX

Data Preprocessing: To pre-train the FSL layer in a su-
pervised manner, the location and length of structural section
are needed, which can be independently extracted from the
GuitarPro (GTP) software. We proposed a transfer method
for automatically marking the section regions from GTP data.
The approach is as follows: (1) The GTP data was first
converted into MIDI data and the corresponding ASCII text
was exported; (2) The ASCII symbols were discretized onto
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(a) The GTP data

(b) The ASCII data
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Fig. 9. An example of a music section in GTP data with the corresponding ASCII data and MIDI data. The section label was extracted in the GTP data
and noted on the MIDI data through the ASCII code transfer method.
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Fig. 10. Illustration of the training details. Indigo boxes represent the starting notes (16 semiquaver notes), which is used to activate the initial state in each
section; Green boxes and Gray boxes represent the input and output of the decoder, respectively; Orange boxes represent section labels (labeli) and style
representation (z) of the generated section. Yellow boxes represent start token and end token, which are used to change the state of the model.

a note grid and then serialized by iterating through all the
symbols within a time step; (3) The section labels can be
marked by adding a location coordinate since there is a direct
correspondence between the sequence location and the grid
location. An example of a music section in GTP data with the
corresponding ASCII data and MIDI data is illustrated in Fig.
9.

In GTP data, the symbols “‖ :” and “: ‖” represent the
beginning and the end of the section, respectively, and are
equivalent to the symbol “‖” in ASCII data. These section
labels can be synchronously marked in the MIDI data. We
have compiled 3188 sections from various genres of music,
including blues, flamenco, rock, classical, and other music.
The diversity of music styles in the music samples enables
the FSL layer to generalize better and learn to fragment
musics with various styles. In the FSL layer, the number
K of candidate windows was set to 8, and the window
size was selected from [8, 16, 32, 64, 128, 256, 512, 1024] to
accommodate music sections with various musical styles.

Training details: Applying LMs to downstream tasks by
pre-training and fine-tuning is a common strategy. Since the
Transformer-based model has the problem of error accumu-
lation when dealing with musical sequences with thousands
of notes, it is also slow. We first pre-train fine-decoders
to generate sections at a fine scale and then fine-tune the
combined sequence at a coarse scale. The coarse-encoder
and fine-decoders were trained with different default hyper-
parameters. While maintaining the overall design of our hi-
erarchical model, we set the maximum length of the coarse-
decoder to be 4096, as in other Transformer-based models in
comparison. The maximum length of fine-decoders is chosen
from [256, 512, 768, 1024], using a carry-up strategy to fit
the section length (the smallest one that exceeds the section
length).

Then, we fix the weights of fine-decoders and train the MSN
layer and the coarse decoder. The the MSN layer is optimized
together with the coarse-decoder. The MI-based loss Lstyle is
used to optimize the coarse-decoder, which is calculated as
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the MI of the input and the renormalized music sections. The
training process of coarse-decoder is shown in Fig. 10.

In our experiments, both fine-decoders and coarse-decoder
have 6 hidden layers. We implemented the model in Tensor-
Flow framework and the hyper-parameters for training were
as follows:
• (a) 1e-03 initial learning rate minimized with 1e-04

weight decay;
• (b) 100 epoch and 8 batch size;
• (c) 0.2 dropout;
• (d) dynamic position embedding;
• (e) multiple GPU training and early stopping strategy.
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