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Improving Seq2Seq TTS Frontends with
Transcribed Speech Audio

Siqi Sun, Korin Richmond, Hao Tang

Abstract—Due to the data inefficiency and low speech qual-
ity of grapheme-based end-to-end text-to-speech (TTS), having
a separate high-performance TTS linguistic frontend is still
commonly regarded as necessary. However, a TTS frontend is
itself difficult to build and maintain, since it requires abundant
linguistic knowledge for its construction. In this paper, we start
by bootstrapping an integrated sequence-to-sequence (Seq2Seq)
TTS frontend using a pre-existing pipeline-based frontend and
large amounts of unlabelled normalized text, achieving promising
memorization and generalisation abilities. To overcome the per-
formance limitation imposed by the pipeline-based frontend, this
work proposes a Forced Alignment (FA) method to decode the
pronunciations from transcribed speech audio and then use them
to update the Seq2Seq frontend. Our experiments demonstrate
the effectiveness of our proposed FA method, which can signifi-
cantly improve the word token accuracy from 52.6% to 91.2%
for out-of-dictionary words. In addition, it can also correct the
pronunciation of homographs from transcribed speech audio and
potentially improve the homograph disambiguation performance
of the Seq2Seq frontend.

Index Terms—Text-to-Speech synthesis, sequence-to-sequence
model, linguistic frontend, pronunciation learning, grapheme-to-
phoneme.

I. INTRODUCTION

BUILDING a conventional text-to-speech (TTS) synthesis
system requires significant expert manual effort. Recently

though, machine learning has promised increasingly to reduce
or remove requirements for expert knowledge and input.
With the emergence of sequence-to-sequence (Seq2Seq) neural
networks in the past few years, it has been proposed a Seq2Seq
network could directly convert input text to frequency-domain
speech audio (e.g. acoustic features like Mel-spectrogram) in
an end-to-end (E2E) manner, only requiring a large training
corpus of ⟨text, speech audio⟩ [1]. This is known as grapheme-
based E2E TTS, where conventional pronunciation modelling
is embodied within the network implicitly [2].

Appealing as it might be, grapheme-based E2E TTS can
prove highly data-inefficient. Many languages (e.g. English)
have complicated letter-to-sound mappings, meaning that the
pronunciation for many words cannot be reliably predicted,
but must instead just be known. This requires a TTS system
to see as many words as possible during training. For natural
speech audio, word frequencies follow a Zipf distribution, so
that the number of new words added for each additional hour
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of training data tends to flatten to a very long low tail [3].
Thus, in order to achieve good coverage of words, the training
corpus needs to include thousands of hours of speech audio,
which is two orders of magnitude larger than current corpus
sizes typically. For ideographic languages (e.g. Chinese and
Japanese), the problem is even worse, since there are no direct
letter-to-sound mappings for these languages [4].

To avoid the data inefficiency of grapheme-based E2E TTS,
most researchers have stepped back to a conventional two-
stage architecture, which is composed of a linguistic frontend
and an acoustic backend. The frontend converts input text to
the internal linguistic pronunciation sequence (e.g., a string
of phones, lexical stresses, syllable boundaries and prosodic
boundaries), which the backend consumes to output a sequence
of acoustic features. Usually, the backend is modelled by an
integrated neural network [5]–[7], whereas the frontend is
modelled by a pipeline of several modules [8], [9]. With a
separate frontend, the aforementioned problems can be greatly
relieved. The frontend can be constructed from much larger
text corpora to ensure sufficient word coverage, since text is
much cheaper and more accessible than speech audio. Several
studies have shown having a separate linguistic frontend
results in better speech quality and naturalness [10]–[12].

Moving from E2E TTS to this two-stage configuration
inevitably complicates TTS system building. In particular, the
pipeline structure in the first stage is notoriously difficult to
build and maintain, as several labelled datasets are needed
for constructing various modules and expert knowledge is
required in the construction. Recently though, some work has
demonstrated the feasibility of replacing the frontend pipeline
with another Seq2Seq model [13]–[15], only requiring a large
training corpus of ⟨text, linguistic pronunciations⟩. Moreover,
all the parts within the Seq2Seq model can be optimized in
an integrated way to mitigate the compounding error problem
widely existing in the pipeline structure.

Having said that, it is still not easy to develop and
update a Seq2Seq frontend, as corpora of ⟨text, linguistic
pronunciations⟩ do not widely exist and require abundant
linguistic knowledge to build. The initial development requires
large amounts of linguistic annotation, not to mention the
ongoing effort incurred by frequently updating and growing
the frontend to increase its word coverage over time. In this
work, our overriding aim is to make it easier to (i) initialise
the Seq2Seq frontend building and (ii) improve and update the
Seq2Seq frontend.

To facilitate the initial building, in this work, we bootstrap

0000–0000/00$00.00 © 2021 IEEE
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the Seq2Seq frontend using mature pipeline-based frontends
which already exist for many languages. Specifically, we distill
the knowledge from a pre-existing pipeline-based frontend (the
teacher model) to a Seq2Seq frontend (the student model).
A large unlabeled text dataset and a pre-existing pipeline
frontend are required for this process. Our experiment results
show that the bootstrapping is effective and the bootstrapped
Seq2Seq frontend can achieve impressive performance.

One main drawback of this bootstrapping approach is
that the Seq2Seq frontend’s performance is largely upper-
bounded by the pipeline frontend, since within the approach
the teacher’s output is viewed as the ground truth for training
the student model but the teacher will unavoidably have
fixed dictionary size, grapheme-to-phoneme (G2P) conversion
performance, homograph disambiguation performance, and so
on. One way to overcome this limitation is to update the boot-
strapped Seq2Seq frontend using other training sources. For
instance, to overcome the limitation of fixed dictionary size,
we can update the Seq2Seq frontend with text-pronunciation
pairs containing out-of-dictionary words.

In updating the Seq2Seq frontend, it would be desirable
if we could utilize transcribed speech audio (i.e., corpora of
⟨text, speech audio⟩) rather than pronunciation annotation, as
transcribed speech audio is more accessible. Specifically, as
the main contribution of this paper, we propose a Forced-
Alignment (FA) method which utilizes transcribed speech
audio to improve upon and regularly update the bootstrapped
Seq2Seq frontend. The proposed method decodes from tran-
scribed speech audio the pronunciation sequence and then
updates the Seq2Seq frontend with it. Our experiment results
show that the FA method is effective in decoding the pronun-
ciation sequence (containing out-of-dictionary words), and so
the updated Seq2Seq frontend has a larger “dictionary size”
along with other improvements, such as better homograph
disambiguation ability.

This paper is organized as follows. Section II provides
the background of TTS frontend modelling and the detail of
the bootstrapping approach. Section III provides a detailed
formulation of updating the Seq2Seq frontend with transcribed
speech audio. Section IV shows the experimental results of our
methods. Section V concludes this paper.

II. FROM PIPELINE-BASED FRONTEND TO SEQ2SEQ
FRONTEND

In this section, we provide detailed formulations of the con-
ventional pipeline-based frontend and recent Seq2Seq frontend
modelling. Then, we introduce the detail of the bootstrapping
procedure, which is used to facilitate the initial building of
Seq2Seq frontend.

A. Pipeline-based Frontend

Although several paradigms, including concatenative sys-
tems, statistical parametric speech synthesis (SPSS) systems
and integrated neural networks, have seen use in the acoustic
backend, the linguistic frontend is typically a relatively stan-
dard pipeline-based system. This pipeline is usually a con-
catenation of three stages, which are text normalization (TN),

TABLE I: Input and output for each stage within the pipeline-
based frontend and the Seq2Seq frontend. TN is not included
in our Seq2Seq frontend in this work.

Frontend / stage Input Output

Pipeline-based frontend
Text normalization unnormalized text normalized text
Phonetic analysis normalized text phonetic sequence
Prosodic analysis phonetic sequence pronunciation

Seq2Seq frontend normalized text pronunciation

phonetic analysis and prosodic analysis, each stage including
one or more modules, such as non-standard word (NSW)
normalization, dictionary lookup, G2P conversion, part-of-
speech (POS) tagging, prosodic structure prediction and so
on1. In recent years, much effort has been put on replacing
each component with a corresponding neural network [17]–
[29]. Nevertheless, each component is still usually trained
independently.

TN is usually the first step in the pipeline. The main
objective of TN is to normalize NSWs such as dates, numbers,
and various other alphabetical and numerical expressions to
spoken form word sequences [17]–[21]. NSWs can be normal-
ized to different spoken forms depending on the surrounding
context. The output of TN is then sent to the phonetic analysis
stage, which converts the normalized text into a phonetic
sequence. Each word is first looked up in a dictionary to find
a corresponding phonetic pronunciation sequence. If a word
cannot be found, its phonetic sequence will instead then be
predicted by the G2P module, which is usually error prone.
Much research has focused on G2P conversion to improve its
accuracy [22]–[28]. Finally, the output of the phonetic analysis
stage is input to the prosodic analysis stage to include prosodic
information such as prosodic boundaries, phrasing and so on.
The input and output for each stage are shown in Table I.

Most existing TTS systems involve a pipeline-based fron-
tend similar to the above. The long-standing Festival [30]
system, for example, developed primarily for speech synthesis
research, has a frontend that is a combination of dictionary
lookup, rule-based models and statistical models. We use
Festival as a typical example of the pipeline-based frontend
in our experiments in the following sections of this paper.

B. Seq2Seq Frontend

Recently, Seq2Seq models have emerged to become the
state-of-the-art model for the acoustic backend [1], [31], [32].
This has also precipitated work on moving towards Seq2Seq
frontends [13]–[15]. A Seq2Seq frontend aims to replace
the whole processing pipeline with a monolithic Seq2Seq
model, converting the input text x1:S = [x1,x2, . . . ,xS ] to
the pronunciation sequence y1:T = [y1,y2, . . . ,yT ] directly,
where S and T are the lengths of the text sequence and the
pronunciation sequence respectively.

1The details of the modules within each stage and their interconnections
are beyond the scope of this paper. Interested readers may refer to Chapter 8
in [16] and Section 2.2 in [12].
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In this work, the TN stage is not included in the Seq2Seq
frontend modelling, as it has been shown that it is difficult
to solve TN merely by having huge amounts of annotated
training data and feeding it to a neural network [17], [33]. We
leave incorporating TN into the Seq2Seq frontend for future
work. As a result, the input to the Seq2Seq frontend x1:S is
normalized text, as shown in Table I.

A Seq2Seq model is based on an Encoder-Decoder archi-
tecture, often augmented with an attention mechanism. x1:S

is first encoded by the encoder to form a sequence of hidden
representations h1:S = [h1,h2, . . . ,hS ] of the same length

h1:S = Encoder(x1:S) (1)

Then, for each decoding step t ∈ [1, T ], h1:S is attended by
the attention mechanism to generate a context vector ct.

α1:S = Attention(h1:S , gt−1) (2)

ct =

S∑
s=1

αshs (3)

where α1:S = [α1, α1, . . . , αS ] is the weight vector and gt−1

is the previous hidden state of decoder [34]. Together with the
previous target yt−1 and gt−1, ct is consumed by the decoder
to model the conditional probability of the current target yt

and update gt.(
Pr(yt|y1:t−1,x1:S), gt

)
= Decoder(ct, gt−1,yt−1) (4)

The Seq2Seq model is trained using maximum likelihood
estimation, and the ground-truth value of y1:t−1 is used to train
the decoder in a teacher-forcing manner. During inference,
the Seq2Seq model aims to decode the most likely linguistic
pronunciation y∗

1:T by using the chain rule.

y∗
1:T = argmax

y1:T

[log Pr(y1:T |x1:S)] (5)

= argmax
y1:T

[ T∑
t=1

log Pr(yt|y1:t−1,x1:S)

]
(6)

which can be approximated by beam search according to the
conditional probability in an auto-regressive manner.

y∗
t ∼ Pr(yt|y1:t−1,x1:S) (7)

Note the normalized text x1:S can have varying granularity,
including characters, subword units (e.g. Byte Pair Encoding
[35]) and words. In this work, we use characters as input, as
character input can handle unseen words during inference and
the number of embedding vectors is much smaller.

C. Bootstrapping the Seq2Seq Frontend

In order to ensure sufficient word coverage, a large corpus
of ⟨normalized text, pronunciations⟩ is required in training a
Seq2Seq frontend. Moreover, a large training corpus is also
needed to prevent a neural network from overfitting. This kind
of labelled data does not widely exist and abundant linguistic
knowledge is required to create it.

One solution to the lack of readily available training data
is to bootstrap the Seq2Seq frontend using a pre-existing
pipeline-based frontend, in which unlabelled normalized text

Pipeline-based 
frontend

Seq2Seq 
frontend

1. Target generation

2. Model training

: Inference
: Training

Normalized text

TOM THE PIPER'S SON

Pronunciation seq.
1 t o m + 0 dh @ + 1 p ai
p - 0 @ z + 1 s uh n _B

Fig. 1: Bootstrapping the Seq2Seq frontend using a pre-
existing pipeline-based frontend and large amounts of unla-
belled normalized text.

is first input into the pipeline-based frontend (the teacher
model) to generate the pronunciation target, and then the
pairs of normalized text and generated target serve as the
training data for training the Seq2Seq frontend (the student
model), as shown in Figure 1. In the bootstrapping procedure,
a large amount of unlabelled normalized text and a pre-existing
pipeline-based frontend are the only requirements. Fortunately,
many languages already have mature pipeline-based frontends
and unlabelled normalized text is also widely accessible.

Such a bootstrapping approach has already been success-
fully applied in the TTS research field to facilitate the
transformation of a pipeline-based system to an integrated
neural network. For instance, Conkie & Finch [13] run web-
crawled sentences through a working production synthesizer
to produce phone sequences for training multilingual neural
TTS frontends. Sproat & Jaitly [17] and Zhang et al. [18]
run web-crawled unnormalized text through Google’s Kestrel
TN component to produce normalized text for training neural
TN models. Jia et al. [36] run web-crawled sentences through
Kestrel to produce phone sequences for pre-training the en-
coder of Seq2Seq acoustic model.

III. UPDATING THE SEQ2SEQ FRONTEND WITH
TRANSCRIBED SPEECH AUDIO

In this section, we first consider the limitation of the
above bootstrapping approach, which motivates the need for
updating the bootstrapped Seq2Seq frontend. We argue it
would be more desirable to use transcribed speech audio rather
than pronunciation annotations when updating the Seq2Seq
frontend, which in turn motivates our proposed FA method.

A. Limitation of the bootstrapping approach

There is one major limitation inherent in the above boot-
strapping approach. Since the pipeline’s output is given as
the ground-truth target for training the Seq2Seq frontend, the
pipeline’s performance (including the dictionary size, G2P
performance, homograph disambiguation performance and so
on) becomes a likely upper bound for the Seq2Seq model’s
performance.

For In-Dictionary (ID) words, the pipeline must have a
large expert-crafted dictionary in which to look up word
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pronunciations (including the phones, lexical stresses and
syllable boundaries). However, this dictionary is fixed in size
and requires ongoing expert effort to keep it up to date. Thus,
the considerable memorization ability of a Seq2Seq frontend is
limited by this dictionary. In the pipeline, a statistical learning
model might determine the pronunciation of homographs (a
special category of ID words), which for example also limits
the generalisation ability of the Seq2Seq frontend as far as
homograph disambiguation is concerned.

For Out-Of-Dictionary (OOD) words, the pipeline heavily
relies upon statistical learning models and rules, which may
be of variable accuracy. Specifically, the G2P module in the
pipeline can limit the ability of the Seq2Seq frontend for
generalising phone prediction. Stress prediction and syllab-
ification rules in the pipeline can limit the stress predic-
tion generalisation and the syllabification generalisation of
the Seq2Seq frontend respectively. Since acquiring inaccurate
knowledge from OOD words would harm the generalisation
ability of the Seq2Seq frontend and the same kind of knowl-
edge (phone/stress/syllabification) can be acquired from ID
words, we opt to avoid learning from OOD words entirely. We
call this method OOD-free bootstrapping, which is presented
in Section IV-A.

Consequently, the Seq2Seq frontend will mainly be limited
by the dictionary size and the homograph disambiguation
performance of the pipeline. These limitations are inherent
in the bootstrapping approach itself and so are challenging
to overcome. One straightforward way to overcome these
limitations is to update the bootstrapped Seq2Seq frontend
using other training sources. Specifically, to overcome the
limitation of dictionary size, we can update the Seq2Seq
frontend with text-pronunciation pairs containing OOD words.
To overcome the limitation of homograph disambiguation, we
can update the Seq2Seq frontend with text-pronunciation pairs
containing homographs in specific contexts.

In the rest of this section, we propose a method to coun-
terbalance the limitation of the bootstrapping method to some
extent. In contrast to relying on corpora of ⟨normalized text,
pronunciations⟩ which do not widely exist and are expensive to
create, our proposed method makes efficient use of transcribed
speech audio (i.e. corpora of ⟨normalized text, speech audio⟩),
a resource which is much more readily accessible.

B. Learning Pronunciations from Other Training Sources
Previous studies have demonstrated the feasibility of learn-

ing pronunciations indirectly from other training sources,
rather than directly from pronunciation annotations. One such
approach is multilingual pronunciation modelling [37]–[40],
which models the pronunciation of multiple languages in a
shared neural network. Multilingual pronunciation modelling
has been proven to benefit low-resource languages which have
limited pronunciation annotations. Specifically, the pronunci-
ations of the low-resource languages can be learned indirectly
from the pronunciations of rich-resource languages, utilizing
shared knowledge between different language pronunciation
systems. This can be viewed as a multi-task learning method,
where the pronunciation modelling of each language corre-
sponds to a separate task.

Pronunciations can also be learned indirectly from other
types of data. For instance, translation data has been used
to improve diacritization for Arabic in a multi-task learning
setting [41], exploiting the implicit linguistic and semantic
knowledge involved in translation data which are helpful to
pronunciation modelling. Similarly, transcribed speech audio
has been used to improve G2P conversion in a multi-task
learning setting [42], drawing from pronunciation information
in speech audio.

Instead of using transcribed speech audio in the multi-
task learning manner as in [42], this work directly decodes
the pronunciation sequence from the transcribed speech audio
and then updates the Seq2Seq frontend, which is conceptually
more straightforward. Previous studies have demonstrated the
feasibility of decoding word-level or phrase-level pronuncia-
tions (phones only) from transcribed speech audio [43]–[46],
offering us an efficient way to use transcribed speech audio to
improve the Seq2Seq frontend. In their method, a pre-trained
phonetizer (e.g., a G2P model) is used as a candidate generator
to generate for each target word a batch of pronunciation
candidates which they then forced-align [43] to decode the
closest match using the speech audio.

Our proposed FA method overlaps with these studies [43]–
[46], but differs from them in several important ways. First,
our work aims to model the whole pronunciation sequence
of the frontend (a string of phones, lexical stresses, syllable
boundaries and prosodic phrase boundaries), whereas the
previous studies have focused on the pronunciation model
(PM) of an automatic speech recognition (ASR) system, only
modelling the phone sequence. Second, their work has focused
on the word/phrase level, whereas our method is applicable
at both the sentence level and the word/phrase level (by
viewing each word/phrase as a separate sentence). There are
multiple potential benefits to this, for example improved and
implicit modelling of postlexical processes and homograph
disambiguation. Finally, our aim is to improve upon an existing
integrated Seq2Seq frontend for TTS, whereas they aim for
a larger dictionary for ASR. Note that though this method is
mainly proposed to update the bootstrapped Seq2Seq frontend,
it is independent of the bootstrapping approach. It can also be
used to improve/update any existing Seq2Seq frontend as well.

C. A General Formulation
In this subsection, we provide a general formulation of

updating the Seq2Seq frontend with transcribed speech audio,
and in the next subsection we provide one specific implemen-
tation of it.

An analogy to our formulation is how an external language
model (LM) is integrated into an ASR system2. An external
LM can greatly improve accuracy during decoding [48]–[50]
as follows3

y∗
1:T = argmax

y1:T

[λ log Pr(y1:T )︸ ︷︷ ︸
LM

+ log Pr(y1:T |z1:F )︸ ︷︷ ︸
AM

] (8)

2Although external LMs are not limited to ASR only (e.g., see neural
machine translation [47]), we choose ASR as an illustration here for clarity.

3Here, for simplicity, we drop the length term which is usually required
for length control in ASR decoding.
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Seq2Seq 
frontend

ASR acoustic 
model H

Language 
model G

BS H∘Gcom- 
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 3) FA Decoding FA-Seq2Seq 
frontend

4) FA Seq2Seq 
Training

n-best candidates

1 ei + 1 b l eir + 1 ai d ...

1 ei + 1 b l eir _B 1 ai d ...

1 ei + 1 b l i@ + 1 ai d ...

1-best candidate

1 ei + 1 b l eir + 1 ai d ...
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1 ei + 1 b l i@ + 1 ai d ...

FA text

A BLEAR EYED ...

1) AM 
Training

2) LM 
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: Inference / Decoding
: Training / Building

FA speech
audio

Fig. 2: The flow chart of our proposed FA method, where BS stands for Beam Search.

where y1:T = [y1,y2, . . . ,yT ] is the phonetic sequence and
z1:F = [z1, z2, . . . ,zF ] is a sequence of acoustic features
(e.g., MFCCs) derived from the corresponding speech audio,
in which T is the length of phonetic sequence and F is the total
number of acoustic frames. λ is a weighting factor balancing
the importance between the LM, i.e., log Pr(y1:T ), and the
acoustic model (AM), i.e., log Pr(y1:T |z1:F ).

The decoding of our baseline Seq2Seq frontend (Equation
5) can be viewed as a special variant of Equation 8, in which
the AM is omitted and the LM is replaced by a conditional LM
conditioned on the input text x1:S (i.e., log Pr(y1:T |x1:S)).

In order to use transcribed speech audio for decoding and
then the decoded pronunciation for updating, we can extend
Equation 5 to include an AM. For each text and audio pair
⟨x1:S , z1:F ⟩, where x1:S is the input text sequence and z1:F
is the corresponding acoustic feature sequence (e.g., MFCCs),
we can instead decode the best pronunciation sequence y∗

1:T

as follows

y∗
1:T = argmax

y1:T

[λ log Pr(y1:T |x1:S)︸ ︷︷ ︸
conditional LM

+ log Pr(y1:T |z1:F )︸ ︷︷ ︸
AM

] (9)

Subsequently, the pairs of text and corresponding decoded
pronunciation sequence ⟨x1:S ,y

∗
1:T ⟩ form a new dataset for

frontend model update.
Note the difference between Equation 8 and Equation 9,

where the LM in the former case is unrestricted, whereas the
conditional LM in the latter case is highly restricted.

D. Forced Alignment Method

There are several ways to implement Equation 9. In this
work, we choose an implementation based on Hidden Markov
Models (HMM) and forced-alignment [43], because it is most
straightforward to see its correspondence to Equation 9. For
convenience, we call this implementation the FA method. We
leave other implementations for future work.

In the FA method, Equation 9 is approximated by a candi-
date generation process followed by a decoding process. For

each text and audio pair ⟨x1:S , z1:F ⟩, a candidate generator
generates a list of pronunciation candidates {y1:T }n1 for x1:S ,
sorted according to the conditional LM score, where n denotes
the length of the candidate list. Then, the AM scores these
candidates to produce the acoustic scores. Finally, two scores
are added for each candidate and the candidate with the largest
overall score is selected by the decoding process (termed FA
hypothesis). In this work, the bootstrapped Seq2Seq frontend
serves as the candidate generator. The transcribed speech audio
dataset used throughout is called the FA dataset. Note that the
accent variant of the bootstrapped Seq2Seq frontend should
match that of the FA dataset speech audio.

Concretely, the flow chart of the FA method is shown in
Figure 2, which consists of four main steps:

1) AM Training: The bootstrapped Seq2Seq frontend is
first used to generate the 1-best candidate for the text of the
FA dataset. Meanwhile, acoustic features (e.g., MFCCs) are
extracted from the corresponding speech audio. Expectation-
Maximization (EM) training is then carried out on the training
pairs to obtain the AM H . All of this is done efficiently with
HTK [51] in this work. Specifically, each vowel is modelled
by 4 stress-vowel 5-state4 HMMs (e.g., vowel ‘a’ is modelled
by ‘a0’, ‘a1’, ‘a2’, ‘a3’ models), so that they are sensitive to
different lexical stress patterns in the acoustics. Each conso-
nant is modelled by one 5-state model. The syllable boundary
is modelled by a skip model (‘ ’), so it is (largely) insensitive
to acoustic variations. The word boundary is modelled by a 3-
state tee model (‘sp’) with its emitting state tied to the centre
state of the ‘sil’ silence model, and the phrase boundary is
modelled by a 3-state tee model (‘sp’) followed by a 5-state
model (‘sil’), making them sensitive to acoustic variations too.

2) LM Building: The bootstrapped Seq2Seq frontend is
also used as a candidate generator to generate the n-best
candidates for each input sentence. For the Seq2Seq model,
this can be done efficiently via beam search. Next, we use
a weighted finite state transducer (WFST) [52], [53] to build
a sentence-level LM G from these candidates, regarding the

4Three emitting states and 2 non-emitting states
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Fig. 3: An example WFST of G after determinization and minimization, constructed from 10-best candidates of “THE
ORPHAN”. The weights on the arcs are derived from the the beam search scores produced by the bootstrapped Seq2Seq
frontend.

score produced by the beam search as the LM score (i.e.
log Pr(y|x)). Hence, LM G contains all the pronunciation
information of the n-best candidates generated by the Seq2Seq
frontend. LM building is done efficiently using OpenFST [53].
An example WFST of G constructed from 10-best candidates
of the input text “THE ORPHAN” is shown in Figure 3.

3) FA Decoding: After composing H with G (H ◦ G),
we force-align [43] using the acoustic features to decode the
closest matching candidate (i.e., the FA hypothesis). This is
equivalent to re-ranking the n-best candidates based on the
sum of the AM score (i.e. log Pr(y|z)) and the LM score
(i.e. log Pr(y|x)). In order to incorporate λ, we multiply the
LM score by λ before the composition. Since we treat stressed
vowels, consonants and various boundaries as different HMMs
in a systematic way, the decoding is done efficiently using the
Viterbi decoding algorithm (HVite function in HTK [51]) and
the decoded FA hypothesis is just a single string of symbols
containing all levels of linguistic analysis (phones, lexical
stresses, and the various boundaries).

4) FA Seq2Seq Training: After decoding, the paired text
and FA hypothesis form a new dataset for subsequent model
update. We can either combine this dataset with the original
training set to train a new Seq2Seq frontend from scratch (as
indicated in Figure 2), or use this new dataset to finetune
the original Seq2Seq frontend (not shown in Figure 2 for
clarity), the differences between which are explored in Section
IV-B. For brevity, we call the resulting model the FA-Seq2Seq
frontend.

IV. EXPERIMENTS

A. Bootstrapping the Seq2Seq Frontend

In this subsection, we present the experimental results of
bootstrapping the Seq2Seq frontend. We show the feasibility
of bootstrapping the Seq2Seq frontend using a pipeline-based
frontend and that the bootstrapped Seq2Seq frontend achieves
promising results. At the same time, we also show the limita-
tion of the approach, i.e., the pipeline’s performance can limit
the performance of the resulting Seq2Seq frontend.

1) Experimental Settings: LibriSpeech [54] is used in this
experiment. It contains the speech recordings and the corre-
sponding normalized transcriptions. We use the transcription

parts of this corpus as our unlabelled normalized text. We
merge all the transcriptions of three subsets of LibriSpeech
(train-clean-100, train-clean-360 and train-other-500) to form
the unlabelled dataset for bootstrapping (281,241 sentences
in total). The transcriptions of Dev-clean (2,703 sentences)
and Test-clean (2,620 sentences) of LibriSpeech are used to
form the validation and test sets in our experiment respectively.
To generalise our conclusion, we also use an out-of-domain
dataset LJSpeech [55] (13,100 sentences) to form our second
test set.

Festival [30] is used as our pipeline-based frontend.
unilex-rpx (British English) is used as our dictionary
and defines the phone set. Our Seq2Seq model is based on
RNN models5, in which the encoder is a 2-layer bidirectional
LSTM and the decoder is a 2-layer unidirectional LSTM. The
embedding vector size is set to 512 and the RNN hidden unit
size is set to 512. Dropout rate is set to 0.3. We use the general
attention mechanism [34] in our Seq2Seq model. The Adam
optimizer [56] is used, where β1 = 0.9 and β2 = 0.999.
The initial learning rate is set to 0.001. After 50k steps, the
learning rate decays by half every 10k steps. We implement
our Seq2Seq model using OpenNMT6 [57] and use character
sequences as model input.

Before training the model, we pre-process Festival’s output
to remove symbol redundancies. For example, when inputting
the normalized text “TOM THE PIPER’S SON”, Festival
generates a string of structured output:

<{(1 t o m )}{(0 dh @ )}{(1 p ai p )(0 @ z
)}{(1 s uh n )}> _B

in which the braces indicate word boundaries, the parentheses
indicate syllable boundaries and the angle brackets indicate
phrase boundaries. Numbers correspond to the lexical
stresses, and “ B” indicates the phrase boundary type. The
other alphabetical symbols are the phones. We preprocess its
output as follows:

5We tried Transformer models in preliminary experiments, but the results
were found to be inferior. We suspect Transformer models can prove more
powerful and hence also require more data to overcome overfitting problems.

6https://github.com/OpenNMT/OpenNMT-py
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TABLE II: Word-level results of the naive bootstrapping approach, where ‘total’ is the combination of ‘seen’ and ‘unseen’ for
each group. Word ACC stands for word-level accuracy of word tokens considering the phones, stresses and syllable boundaries,
while Word PACC stands for word-level accuracy of word tokens considering phones only.

(a) LibriSpeech Test-clean

Category # word
tokens

Word
ACC
(%)

Word
PACC
(%)

PER
(%)

Stress
ACC
(%)

Syl
ACC
(%)

ID

seen 51,121 99.9 99.9 0.03 99.9 100
unseen 115 65.2 85.2 4.8 70.4 92.2
total 51,236 99.8 99.9 0.05 99.9 100

OOD

seen 291 90.7 95.9 0.75 92.1 98.6
unseen 208 29.8 59.1 10.3 43.8 86.0
total 499 65.3 80.6 4.9 71.9 93.4

(b) LJSpeech

Category # word
tokens

Word
ACC
(%)

Word
PACC
(%)

PER
(%)

Stress
ACC
(%)

Syl
ACC
(%)

ID

seen 211,862 99.7 99.8 0.06 99.9 100
unseen 1,543 56.9 80.6 4.3 64.5 94.8
total 213,405 99.4 99.7 0.12 99.6 100

OOD

seen 698 79.6 89.0 2.3 83.8 94.4
unseen 1,711 24.2 51.4 11.2 42.8 88.7
total 2,409 40.3 62.3 8.5 54.7 90.4

1 t o m + 0 dh @ + 1 p ai p - 0 @ z + 1 s
uh n _B

where “+” corresponds to a word boundary and “–” corre-
sponds to a syllable boundary.

2) Naive Bootstrapping Approach: To start with, we boot-
strap the Seq2Seq frontend directly, without considering the
negative effect of OOD words. As mentioned in Section
III-A, for OOD words, Festival relies on relatively simple
statistical models and rules for phone/stress/syllabification
prediction, which are not necessarily accurate. For instance,
when unilex-rpx is used, Festival applies a default rule
for stress prediction, predicting 0 stresses for all the syllables
within an OOD word.

To illustrate the negative effect of learning from OOD
words, we separate the word tokens7 in the test sets into four
categories: (1) seen8 ID words, (2) unseen ID words, (3) seen
OOD words and (4) unseen OOD words. The test results on
Test-clean and LJSpeech are summarized in Table II.

Besides showing overall word accuracy which takes the
correctness of phones, stresses and syllabification into account
(Word ACC), we also show here the traditional word accuracy
only considering the phones (Word PACC), Phone Error Rate
(PER), lexical stress accuracy and syllabification accuracy.

For ID words, we can regard Festival’s predictions as being
correct in most cases. For both test sets, the word accuracy is
high for seen ID words (> 99%), since those words’ pronun-
ciations have been seen during training. Note that some of the
mismatches are due to the presence of homographs. For unseen
ID words, the word accuracy drops dramatically (65.2% &
56.9%). When inspecting the predictions, we observe that
many of the mismatches are caused by the all-zero lexical
stress issue. The Seq2Seq frontend has apparently generalised
the default stress prediction rule of OOD words to unseen ID
words, which is not desirable. This is also reflected in the low
stress accuracy (70.4% & 64.5%).

7Following standard terminology in the natural language processing com-
munity, a ‘word token’ is an individual occurrence of a distinct ‘word type’
in the text.

8seen and unseen designate whether the word and its pronunciation have
appeared in the paired training set.

For OOD words, we can regard Festival’s predictions as
being unreliable, since they always contain a null all-zero
stress pattern. For seen OOD words, the word accuracy is also
high, as they have been seen during training. Since this word-
level accuracy is equivalent to the stress defect rate, we want
this value to be as low as possible. For unseen OOD words, the
word accuracy is not too high (∼ 25%). When inspecting the
predictions, we observe that the Seq2Seq frontend successfully
generalises the correct stress pattern learned from ID words
to some unseen OOD words, which confirms our hypothesis.
However, it also generalises the defective stress pattern to
some other unseen OOD words. We also want this value to be
kept as low as possible.

3) OOD-free Bootstrapping Approach: One straightforward
strategy of OOD-free Bootstrapping is to exclude sentences
with OOD words from the unlabelled dataset before boot-
strapping. We evaluate this strategy here. After excluding
those sentences, the total number of sentences drops from
281,241 to 206,056 (73.3%). The total number of unique word
types drops from 89,114 to 51,429 (57.7%). We perform the
bootstrapping as before, with the same hyper-parameters and
training schedule. The test results are summarized in Table III.

For both test sets, the word accuracy largely remain un-
changed for seen ID words (> 99%). However, the word
accuracy of the unseen ID words indicate that the Seq2Seq
model now generalises much better to unseen ID words than
before (81.9% vs. 65.2% and 65.3% vs. 56.9%). This is
also reflected by the improvements in stress accuracy and the
syllabification accuracy and the reduction in PER for both test
sets respectively. This confirms the benefits of not learning
from bad teachers, i.e., OOD words.

For OOD words, the stress accuracy equals or becomes
close to 0. When inspecting the predictions, we do not observe
the all-zero stress pattern anymore. Note that all OOD words
are excluded from the training set, and hence the total number
of seen OOD words is 0.

To further generalise our conclusions, we conduct the OOD-
free approach on a third test set, which is one order of
magnitude larger in size than LJSpeech, shown in the column
labelled ‘Baseline Seq2Seq’ of Table IV. The ID (seen) result
(word token ACC of 99.94%) shows that the Seq2Seq frontend
is good at memorizing the words it has seen. Note that word
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TABLE III: Word-level results of OOD-free bootstrapping approach, where ‘total’ is the combination of ‘seen’ and ‘unseen’ for
each group. Word ACC stands for word-level accuracy of word tokens considering the phones, stresses and syllable boundaries,
while Word PACC stands for word-level accuracy of word tokens considering phones only.

(a) LibriSpeech Test-clean

Category # word
tokens

Word
ACC
(%)

Word
PACC
(%)

PER
(%)

Stress
ACC
(%)

Syl
ACC
(%)

ID

seen 51,070 99.9 99.9 0.03 100 100
unseen 166 81.9 89.2 2.9 91.6 96.4
total 51,236 99.8 99.9 0.05 99.9 100

OOD

seen 0 – – – – –
unseen 498 0 42.2 14.8 0 78.1
total 498 0 42.2 14.8 0 78.1

(b) LJSpeech

Category # word
tokens

Word
ACC
(%)

Word
PACC
(%)

PER
(%)

Stress
ACC
(%)

Syl
ACC
(%)

ID

seen 211,699 99.8 99.8 0.06 99.9 100
unseen 1,874 65.3 80.5 4.9 81.8 97.7
total 213,573 99.5 99.7 0.14 99.7 100

OOD

seen 0 – – – – –
unseen 2,425 1.0 41.8 15.4 1.1 81.6
total 2,425 1.0 41.8 15.4 1.1 81.6

type PACC (99.4%) is close to that reported elsewhere in the
literature (99.0% reported in [27]), though they use a different
test set.

The ID (unseen) result (word token ACC of 82.1%) shows
that the resulting Seq2Seq frontend also performs well on
generalising to unseen words. Note that word type PACC
(88.3%) outperforms those reported in recent literature (e.g.
70.2% (NetTalk) & 77.9% (CMUDict) in [26] and 66.2% in
[27]), though they use different test sets.

B. Forced Alignment Method

In this subsection, we show the experimental results of our
proposed FA method. We show that the FA method is espe-
cially effective in decoding the pronunciation sequence (and
hence the pronunciation of OOD words within it) and updating
the bootstrapped Seq2Seq frontend (OOD-free bootstrapping
approach). Moreover, the resulting FA-Seq2Seq frontend is
more robust than the bootstrapped Seq2Seq frontend.

1) Experimental Settings: The Seq2Seq frontend from Sec-
tion IV-A3 serves as the candidate generator. Hi-Fi TTS [58]
is used to construct the FA dataset and the test set in this
experiment. Hi-Fi TTS is a high-quality multi-speaker English
dataset, which consists of speech audio from 11 speakers with
different accents. As mentioned in Section III-D, the accent
of the speech audio should match that of the bootstrapped
Seq2Seq frontend. Since our Seq2Seq frontend is based on
the British accent (RPX), we choose the RPX speakers and
combine their data to form the FA dataset. As a result, 3
British-accent (RPX) speakers (numbered 92, 6097 and 9136)
are chosen and the resulting FA dataset consists of 102,749
utterances in total (∼ 81.7 hours).

The other 7 American-accent (GAM) speakers’ text data in
Hi-Fi TTS are merged to form the test set in this experiment,
amounting to 219,669 sentences in total. As usual, for ID
words, we can regard Festival’s predictions as (reasonably
reliable) ground truth. For OOD words, we ask a native linguist
to correct the pronunciation predicted by Festival, so we also
have the ground truth for OOD words this time.

2) Hyper-parameters: There are several important hyper-
parameters involved in our FA method. The first one is how
to obtain a FA-Seq2Seq frontend. There are three options:

1) Train a brand new Seq2Seq model with all the available
data (original dataset plus decoded FA hypotheses, 308,805
sentences in total) from scratch; 2) train a new Seq2Seq model
only with decoded FA hypotheses (102,749 sentences); and
3) finetune the bootstrapped Seq2Seq model with decoded
FA hypotheses (102,749 sentences). We compare their perfor-
mance on Dev-clean using their best checkpoints respectively
and find that option 1 performs best overall, 3 is slightly
worse than 1, and 2 performs much worse compared to
options 3 and 1. This is most likely due to the lack of the
original bootstrapping dataset in option 2, which confirms the
importance of bootstrapping in the first place. In the following
sections, we will stick to option 1 unless otherwise stated.

The second hyper-parameter is n, i.e., the length of the
candidate list. At first glance, we might expect that the larger
n is the better, as it becomes more probable that the correct
pronunciation sequence is within the n-best list. However,
larger n also means that the LM G will be composed of
more candidates of minor differences, making the FA decoding
more error-prone. Hence, there is a trade-off between the
comprehensiveness and the redundancy of the n-best list. We
compare n = 3, 5, 10, 30 on Dev-clean and find that when
n = 10, the best validation performance is achieved in our
setting.

The final hyper-parameter is the LM scaling factor λ. As
shown in Equation 9, λ balances the LM and the AM during
decoding. A larger λ means the LM (i.e., the bootstrapped
Seq2Seq frontend) dominates the decoding, whereas a smaller
λ means the AM dominates. Intuitively, we should set a larger
λ if the LM is more accurate and a smaller λ if the AM is more
accurate. We evaluate different λs on a separate validation
set, and the results of this are shown in Figure 4. The best
validation performance is achieved in our setting when λ = 50.

3) Experimental Results: The results on the Hi-Fi TTS test
set are shown in Table IV. The fourth column shows the test
results of the baseline Seq2Seq frontend and the last column
shows the test results of the updated FA-Seq2Seq frontend.
The results are grouped into four groups.

The first group corresponds to sentence-level results. The
measure “# alignment error” indicates the number of sentences
with an alignment error (e.g., word skip or word duplication,
which are two common alignment error types for Seq2Seq



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Fig. 4: Token Error Rate and utterance ACC vs. LM scale λ
on a golden validation set (best viewed in color)

TABLE IV: Test results on Hi-Fi TTS test set for the baseline
Seq2Seq frontend (OOD-free bootstrapping approach, 120k
checkpoint) and the FA-Seq2Seq frontend (150k checkpoint).
The numbers in parentheses indicate how many word tokens
or word types there are for each category. PBER stands for
phrase boundary error rate. ACC stands for word-level accu-
racy considering phones, stresses and syllabification, whereas
PACC stands for word-level accuracy considering phones only.
PER stands for phone error rate.

Baseline
Seq2Seq FA-Seq2Seq

Sentence
(219K)

# alignment error 138 35

Sum of length difference 937 60

PBER (%) 2.95 2.94

ID
(seen)

Token
(2.2M)

ACC (%) 99.94 99.94

PER (%) 0.018 0.017

Type
(29k)

ACC (%) 99.1 99.2

PACC (%) 99.4 99.5

ID
(unseen)

Token
(2.9k)

ACC (%) 82.1 82.2

PER (%) 3.26 3.15

Type
(1.6k)

ACC (%) 83.0 83.4

PACC (%) 88.3 88.8

OOD

Token
(982)

ACC (%) 52.6 91.2

PER (%) 15.7 1.7

Type
(198)

ACC (%) 83.3 87.9

PACC (%) 86.4 91.4

models). As we can see, the resulting FA-Seq2Seq is much
more robust than the baseline (138 vs. 35). Sum of length
difference is the sum of differences between the ground truth
and the prediction sequence lengths, which correlates well

with “# alignment error”. The phrase boundary error rates
(PBER) are similar for both frontends. Note that here we
evaluate the phrase boundaries against Festival’s predictions,
which may be rather inaccurate, as Festival partly relies on the
punctuation to determine the phrase boundaries and we remove
all punctuation but apostrophes when preprocessing the input
text. We leave formal evaluation of phrase boundaries against
ground truth for future work.

The second group corresponds to the seen ID words (2.2M
word tokens or equivalently 29k word types). Measures based
on word tokens and word types are shown here respectively.
We can see the two frontend models achieve similar perfor-
mance under all four metrics.

The third group corresponds to the unseen ID words (2,923
word tokens or equivalently 1.6k word types). The same
four metrics are shown here. Unsurprisingly, FA-Seq2Seq
generalises slightly better than the baseline does according to
all four metrics, due to the slightly larger training set.

The fourth group corresponds to the OOD words (982 word
tokens or equivalently 198 word types), which is of the most
interest to us. Note that these words used to be unseen but
have now become seen because of the newly formed FA
decoded dataset. The same four metrics are shown here. FA-
Seq2Seq frontend surpasses the baseline by a large margin
(91.2% vs. 52.6% in word token ACC), indicating that it has
successfully decoded and then learned the pronunciation of
OOD words from transcribed speech audio and it now has a
larger “dictionary size” than the baseline does.

C. Error Analysis

To better understand the performance and behaviour of
the Seq2Seq frontend (including both the baseline and FA-
Seq2Seq), we manually analyze the errors made by FA-
Seq2Seq in this subsection. Specifically, we focus on the
prediction error for unseen ID word types on Hi-Fi TTS test
set (i.e., the third group in Table IV), as Festival’s predictions
of these word types are mostly reliable and so they can be
regarded as the ground truth. For FA-Seq2Seq, there are 265
prediction errors in total, which we divide into two error super-
types: phone error and non-phone error. Phone errors are those
containing phone mismatches and are further divided into five
error types:

• Vowel→schwa: exactly one vowel other than schwa (plus
its lexical stress) in the ground truth is substituted by a
schwa (plus its lexical stress).

• Schwa→vowel: exactly one schwa (plus its lexical stress)
in the ground truth is substituted by a vowel other than
schwa (plus its lexical stress).

• Vowel: exactly one vowel other than schwa (plus its
lexical stress) in the ground truth is substituted by another
vowel other than schwa (plus its lexical stress).

• Consonant: exactly one consonant in the ground truth is
substituted by another consonant.

• Unrecoverable: other errors not belonging to any of the
above four types (e.g., two vowel substitutions in one
word), which can be largely regarded as unrecoverable
phone errors.
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TABLE V: The prediction errors made by FA-Seq2Seq for unseen ID word types on Hi-Fi TTS test set (265 in total) and
some illustrative examples. Festival’s predictions are mostly reliable and so they can be regarded as the ground truth.

Error type Word Festival FA-Seq2Seq Proportion

Phone error (i.e., errors containing phone mismatches)

Vowel→schwa
ENDICOTT 1 e n - 0 d i - 0 k o t 1 e n - 0 d i - 0 k @ t

7.5%
CONVERSES 1 k o n - 0 v @@r s - 0 i z 0 k @ n - 1 v @@r s - 0 i z

Schwa→vowel
HORRENDOUS 0 h @ - 1 r e n - 0 d @ s 0 h o - 1 r e n - 0 d @ s

5.7%
ALLYING 0 @ - 1 l ai - 0 i ng 1 a - 0 l ai - 0 i ng

Vowel
LATHERING 1 l aa - 0 dh @ r - 0 i ng 1 l a - 0 dh @ r - 0 i ng

18.1%
REPUBLICATION 2 r ii - 0 p uh - 0 b l i k - 1 ei - 0 sh n! 0 r i - 2 p uh - 0 b l i k - 1 ei - 0 sh n!

Consonant
ROTHENBURG 1 r o - 0 th @ n - 0 b @@r g 1 r o - 0 dh @ n - 0 b @@r g

2.3%
TRANSFUSE 0 t r a n s - 1 f y uu z 0 t r a n s - 1 f y uu s

Unrecoverable
INITIATES 0 i - 1 n i - 0 sh iy @ t s 0 i - 1 n i - 0 sh iy - 0 ei t s

34.0%ADIRONDACKS 2 a - 0 d i - 1 r o n - 0 d a k s 0 @ - 1 d ai @ n - 0 d a k s
GOURMET 1 g ur - 0 m ei 1 g ur - 0 m i t

Non-phone error (i.e., errors in which the phone subsequence match the ground truth)

Stress
GERMANTOWN 1 jh @@r - 0 m @ n - 2 t ow n 2 jh @@r - 0 m @ n - 1 t ow n

11.7%
INTAKING 1 i n - 2 t ei k - 0 i ng 0 i n - 1 t ei k - 0 i ng

Syllabification
IDEOLOGICALLY 2 ai - 0 d iy @ - 1 l o - 0 jh i - 0 k l iy 2 ai - 0 d iy @ - 1 l o - 0 jh i k - 0 l iy

20.8%
BOTANIC 0 b @ - 1 t a - 0 n i k 0 b @ - 1 t a n - 0 i k

Non-phone errors are those errors in which the phone
subsequences match and can be further divided into two error
types:

• Stress: at least one lexical stress does not match.
• Syllabification: at least one syllable boundary’s position

does not match.
All the aforementioned error types and some illustrative

examples are shown in Table V. We manually checked all the
prediction errors and found despite the mispronunciation, these
predictions are plausible according to the English letter-to-
sound rules (e.g., “TRANSFUSE” is plausibly mispronounced
as “0 t r a n s - 1 f y uu s”). This again confirms that Seq2Seq
frontends are good at generalising to unseen words. During our
manual inspection, we found only “Unrecoverable” errors are
severe errors, which may result in the listener not being able
to recover the original word from its prediction, accounting
for around 1/3 of the total errors. Also note that a prediction
error does not mean it is indeed incorrect, as it might be an
alternative pronunciation which is not present in Festival’s
dictionary (e.g., the prediction of “1 l a - 0 dh @ r - 0 i
ng” for LATHERING is an acceptable pronunciation).

D. Discussion and Future Work

In this subsection, we consider the strength and the weak-
ness of the proposed FA method using some illustrative
examples, as well as discussing the scaling of the Seq2Seq
frontend.

1) Decoding the Pronunciation of OOD Words: To inves-
tigate the effectiveness of our FA method in decoding the
pronunciation from transcribed speech audio, we first focus
on OOD words. Three positive examples are shown in Table

VI. It is possible that there are several training sentences in
the FA dataset containing the target word. Here, for each
example word, we only show one such training sentence and
its 4 most probable candidates according to the LM scores
(λ log Pr(y|x), shown in the second to last column). The
baseline Seq2Seq model will select the candidate with the
largest (scaled) LM score as the prediction. Instead, the FA
method will select the candidate with the largest sum of the
scaled LM score and the AM score (log Pr(y|z), shown in the
last column), highlighted in bold in Table VI.

2) Improving Homograph Disambiguation: In addition to
correctly decoding the pronunciation of OOD words, we
observe the FA method also has the potential to improve
homograph disambiguation using transcribed speech audio.
The last example “READ” in Table VI is a homograph which
is a seen ID word. From this example, we see that seen ID
homographs can potentially benefit from our method as well.
To confirm this, we analyze all the newly introduced “READ”s
in the FA dataset, which is summarized in Table VII. Over
all the newly introduced 179 “READ”s, the 1-best candidate
accuracy is 69.8%. The percentage of the n-best list (n = 10)
containing the correct pronunciation is 100%. For the negative
examples, the FA method corrects them most of the time
(85.5%). For the positive examples, the FA method always
leaves the correct pronunciation untouched (error rate of 0).

Furthermore, we analyze the impact of adding these FA-
corrected pronunciations into the training set of FA-Seq2Seq.
The baseline Seq2Seq contains 1,719 tokens of “READ” in
its training set, while FA-Seq2Seq contains 1,897 after the
augmentation. We manually check all differences between the
baseline Seq2Seq prediction and the FA-Seq2Seq prediction
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TABLE VI: Some positive examples of the proposed FA method (decoded with a 10-best candidate list and λ = 50 in Equation
9). The first three examples are OOD words while the last example is an ID seen homograph. Only one training sentence
containing this word and its first 4 candidates (with truncation) are shown here to save space. The closest matching candidate
with regard to Equation 9 (i.e. FA hypothesis) is highlighted in bold.

Word Baseline
(incorrect)

FA-Seq2Seq
(correct)

Context &
Hypotheses

λ×LM
score

AM
score

BLEAR 1 b l eir 1 b l i@

. . . BY A BLEAR EYED OLD WOMAN

1 b ai + 1 ei + 1 b l eir + 1 ai d + 1 ou lw d + 1 w u - 0 m @ n B −21.9 −60076

1 b ai + 1 ei + 1 b l eir B 1 ai d + 1 ou lw d + 1 w u - 0 m @ n B −78.8 −60130

1 b ai + 1 ei + 1 b l i@ + 1 ai d + 1 ou lw d + 1 w u - 0 m @ n B −111.1 −59447

1 b ai + 1 ei + 1 b l i@ B 1 ai d + 1 ou lw d + 1 w u - 0 m @ n B −164.4 −59483

INVAL
-IDED

2 i n - 0 v @ -
1 l ai d - 0 i d

0 i n - 1 v a -
0 l i d - 0 i d

. . . THEY HAD LEFT INVALIDED

1 dh ei + 1 h a d + 1 l e f t + 1 i n - 0 v @ - 2 l ai d - 0 i d B −35.0 −99629

1 dh ei + 1 h a d + 1 l e f t + 2 i n - 0 v @ - 1 l ai d - 0 i d B −51.3 −99576

1 dh ei + 1 h a d + 1 l e f t + 0 i n - 1 v a - 0 l i d - 0 i d B −104.5 −99521

1 dh ei + 1 h a d + 1 l e f t + 1 i n - 0 v @ - 0 l ai d - 0 i d B −272.3 −99612

QUAD
-ROON

0 k w @ -
1 d r uu n

0 k w o -
1 d r uu n

. . . BEAUTIFUL QUADROON GIRL

1 b y uu - 0 t i - 0 f u lw + 0 k w @ - 1 d r uu n + 1 g @@r lw B −34.6 −79619

1 b y uu - 0 t i - 0 f u lw + 0 k w o - 1 d r uu n + 1 g @@r lw B −60.7 −79460

1 b y uu - 0 t i - 0 f u lw + 1 k w o - 0 d r uu n + 1 g @@r lw B −87.9 −79578

1 b y uu - 0 t i - 0 f u lw + 0 k w @ - 1 d ur n + 1 g @@r lw B −233.1 −79888

READ 1 r ii d 1 r e d

. . . SEEMED TO HAVE HEARD OR READ . . .

1 s ii m d + 0 t uu + 1 h a v + 1 h @@r d B 1 oo + 1 r ii d −76.4 −224833

1 s ii m d + 0 t uu + 1 h a v + 1 h @@r d B 1 oo + 1 r ii d −91.7 −224809

1 s ii m d + 0 t uu + 1 h a v + 1 h @@r d B 1 oo + 1 r ii d −94.5 −224796

1 s ii m d + 0 t uu + 1 h a v + 1 h @@r d B 1 oo + 1 r e d −96.7 −224346

TABLE VII: Newly introduced homograph “READ” in the
FA dataset. See Section IV-D for a detailed analysis. (decoded
with a 10-best candidate list)

# word
tokens

1-best
ACC
(%)

Within n-best
list
(%)

FA correction
ACC
(%)

FA mis-correction
error rate

(%)

179 69.8 100 85.5 0

for “READ” tokens in the test set. Among all the 728 “READ”
tokens in the test set, the two models agree in the prediction
658 times and disagree in the prediction 70 times. Among
all the 70 differences, the baseline Seq2Seq is correct 33
times (47.1%), while FA-Seq2Seq is correct 37 times (52.9%).
We suspect the relatively small improvement is due to the
relatively small number of newly introduced “READ” tokens
(179 vs. 1,719). We leave formal evaluation of the improved
homograph disambiguation performance for future work.

3) Scaling up the Seq2Seq frontend: Currently, the total
number of unique ID word types in the unlabeled training set
(∼51k) is only a small fraction of the dictionary size (∼116k9).
For better initial memorization and generalisation in practice,

9Note that the number of dictionary entries in unilex-rpx is 166.6k,
in which some entries share the same word type and pronunciation, only
differing in the POS tag. These similar entries are regarded as one unique
word type in this work.

we can opt for a larger unlabelled dataset which at least covers
all the ID word types. To further improve the initial homograph
disambiguation generalisation ability, we shall find or collect
an FA dataset which focuses on homographs. To enlarge the
initial “dictionary size”, we shall find or collect an FA dataset
containing the OOD words of interest to us. We leave the
exploration of significantly scaling up for future work, as here
we aim only to present our basic approach.

4) Limitations of the FA method: Despite the success of our
proposed FA method, we outline that it has some limitations
which could result in the method failing to decode the pro-
nunciation from transcribed speech audio. First, the proposed
FA method assumes the candidate generator is diverse enough,
so that the correct pronunciation of the sentence is included
within the n-best list. This is true for many OOD words
and most seen ID homographs. However, sometimes this
assumption may not be met. Most negative examples of OOD
words are indeed cases where this assumption has failed.
Often, increasing n cannot solve this issue. For instance, the
correct pronunciation “1 sh o m - 0 b r @” of the loanword
“CHAMBRE” is so uncommon according to English letter-
to-sound rules that it is not within the n-best candidate list.
Finding an effective solution to this problem will be the subject
of our future work. Second, as mentioned in Section III-D,
our FA method is HMM-based, which can hinder its speech
recognition accuracy. In future work, we shall investigate other
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more advanced implementations of Equation 9.

V. CONCLUSION

To facilitate the initial building of an integrated Seq2Seq
frontend, this paper first describes how we bootstrap from
a pre-existing pipeline-based frontend, to overcome the lack
of paired training data. Our experimental results demonstrate
the effectiveness of this approach, showing that the resulting
Seq2Seq frontend achieves impressive performance. However,
a limitation of this bootstrapping approach is that the Seq2Seq
frontend’s performance is upper-bounded by the pipeline’s
performance. To overcome this limitation, we propose the FA
method, which updates the bootstrapped Seq2Seq frontend
using other training sources. This method only requires speech
audio and corresponding text, without input from expert lin-
guists. Our experimental results show the effectiveness of the
FA method in updating the Seq2Seq frontend. It offers an
efficient way to enlarge the “dictionary size” and potentially
improves the homograph disambiguation performance of the
Seq2Seq frontend.
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