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RBA-GCN: Relational Bilevel Aggregation Graph
Convolutional Network for Emotion Recognition

Lin Yuan, Guoheng Huang∗, Fenghuan Li, Xiaochen Yuan∗, Chi-Man Pun, Guo Zhong∗

Abstract—Emotion recognition in conversation (ERC) has
received increasing attention from researchers due to its wide
range of applications. As conversation has a natural graph
structure, numerous approaches used to model ERC based on
graph convolutional networks (GCNs) have yielded significant
results. However, the aggregation approach of traditional GCNs
suffers from the node information redundancy problem, leading
to node discriminant information loss. Additionally, single-layer
GCNs lack the capacity to capture long-range contextual infor-
mation from the graph. Furthermore, the majority of approaches
are based on textual modality or stitching together different
modalities, resulting in a weak ability to capture interactions
between modalities. To address these problems, we present the
relational bilevel aggregation graph convolutional network (RBA-
GCN), which consists of three modules: the graph genera-
tion module (GGM), similarity-based cluster building module
(SCBM) and bilevel aggregation module (BiAM). First, GGM
constructs a novel graph to reduce the redundancy of target
node information. Then, SCBM calculates the node similarity
in the target node and its structural neighborhood, where noisy
information with low similarity is filtered out to preserve the
discriminant information of the node. Meanwhile, BiAM is a
novel aggregation method that can preserve the information of
nodes during the aggregation process. This module can construct
the interaction between different modalities and capture long-
range contextual information based on similarity clusters. On
both the IEMOCAP and MELD datasets, the weighted average
F1 score of RBA-GCN has a 2.17∼5.21% improvement over
that of the most advanced method. Our code is available
at https://github.com/luftmenscher/RBA-GCN and our article
”RBA-GCN: Relational Bilevel Aggregation Graph Convolutional
Network for Emotion Recognition” was published in IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.31,
pp.2325-2337, 2023, doi: 10.1109/TASLP.2023.3284509.

Index Terms—Emotion recognition, multimodal fusion, context
modeling, similarity cluster.

I. INTRODUCTION

THE purpose of emotion recognition in conversation
(ERC) is to assign each sentence in a conversation to a

specific emotion category. ERC is becoming an important re-
search topic due to its broad applications in various scenarios,
such as chatbots and mental health services [1], [2]. Cambria
et al. [3] consider understanding emotions to be an important
aspect of personal development and growth; as such, it is key
for the emulation of human intelligence.

The ERC task differs from traditional emotion recogni-
tion of individual isolated utterances in that it requires a
combination of conversational intent, topic and context [4].
Previous models are mainly tested by means of contextual
information, e.g., bias compensation-long short-term memory
(BC-LSTM) [5], conversational memory network (CMN) [6],
and dialogue recurrent neural network (DialogueRNN) [7].

Hey, ready for dinner?

Great! How about you wanted to go the 

Italian place down on Bleaker Street right?

Ooh, absolutely!

Ooh, I love that place!  So, no.

I would like to know how long 

the milk has been sitting there.

I purchased this today because I 

was craving milk.

That this milk is mine.

Oh no, this area is 

completely healthy!

Go!

Okay, let's go!
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Fig. 1. (a) An example of a conversation with different aggregation methods.
The emotion will be predicted for the sentence with blue label. Traditional
graph convolutional network would aggregates the blue-labeled sentence with
the red-labeled sentences (neighboring nodes). The two blue-labeled sentences
(U7 and U12) are aggregated together by our method. (b) (c): Take U11 as
the target node as an example. Different colors of nodes represent different
labels. (b) is the traditional graph convolution method, which aggregates node
information in the graph without difference. (c) is our propose method, which
performs bilevel aggregation based on the clusters. Different colors of edges
represent the other cluster. The dashed arrows indicate the filtered nodes.

However, these models cannot effectively capture long-range
contextual information in a multiperson conversation scenario.
To address the shortcomings of the above models, some ERC
models based on graph convolutional networks (GCNs), such
as DialogueGCN [8] and multimodal fusion via deep graph
convolution network (MMGCN) [9], have been proposed.
The DialogueGCN model captures the dependencies between
speakers by forming utterances in a conversation into a fully
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connected graph. Different from DialogueGCN, which utilizes
only textual information, MMGCN further leverages multi-
modal information for emotion recognition. Similarly, it uses
all the different modalities of utterances in a conversation as
nodes to form a fully connected graph and applies multilayer
GCNs to capture long-range contextual information.

Although previously developed ERC methods have achieved
great progress, they mainly exploit GCNs based on message
passing neural networks (MPNNs) [10], [11]. Consequently,
such models possess several shortcomings. First, single-layer
GCNs aggregate only neighboring nodes. In a conversation,
utterance nodes that are far from each other may also have
high structural similarity. However, due to the influence of
graph generation methods, a single-layer GCN may be unable
to capture such utterance node information. To solve this
problem, multilayer GCNs are often used to capture long-
range contextual information. However, GCNs simply sum
the “messages” from all neighborhoods. After aggregating the
neighboring information via multilayer GCNs, the informa-
tion possessed by similar nodes at distant locations may be
disturbed by a large amount of irrelevant noisy information
acquired from the nodes that are proximal to the prediction
target. This leads to a situation where long-range contextual
information cannot be efficiently extracted. Velickovic et al.
[12]. and Ishiwatari et al. [13] adopted an attention mechanism
to reduce the interference of irrelevant noise information by
assigning corresponding weights to adjacent nodes. In contrast,
we take a different approach. We utilize the cosine similarity
function to calculate the similarity between nodes, filter nodes
with low similarity, and then map them to corresponding
clusters according to their similarity levels. With this ap-
proach, we can effectively eliminate redundant information
and preserve the discriminant information of the node. As
shown in Figure 1 1, we first consider long-range contextual
information. Although U2 and U11 are far away, they both
express excitement because they are related to the topic of
eating, which can illustrate the importance of long-range
contextual information for ERC. The traditional aggregation
methods indiscriminately aggregate the target node U7 and its
neighboring nodes U6 and U8 . In contrast, our method first
filters the redundant information. Then, the information within
each cluster is aggregated. Finally, the information between
clusters is aggregated, thus avoiding the disturbance caused
by the noise of the proximal nodes and better preserving the
discriminant information of the target node. Here, we define
the target node as the node in the graph that currently needs
to be predicted.

In summary, a relational bilevel aggregation graph convolu-
tional network (RBA-GCN) is presented in this paper, which
can capture long-range contextual information in a single-layer
architecture and improve the ability to capture interactions
between different modalities. Different from DialogueGCN
and MMGCN, we leverage the disconnected neighborhood to
handle long-range contextual information and the connected
neighborhood to handle multimodal interactions. First, we
model the contextual information via bidirectional long short-

1“Friends” Season 5 ep7: http://www.livesinabox.com/friends/scripts.shtml

term memory (Bi-LSTM) with the extracted features of differ-
ent modalities. Based on this, we propose to connect nodes of
the same modality in the same conversation in order of conver-
sation and connect different modalities in the same utterance.
We compute the similarity between the target node and the
nodes in its structural neighborhood by corner similarity and
map these nodes to different clusters. In particular, we remove
the nodes with low similarity in the relation definition to
effectively filter out the interference of noisy information. To
allow RBA-GCN to be applied to input data in different orders,
making the model more robust and general, we introduce
the design consideration of permutation invariance. To ensure
the permutation invariance of the graph-structure data, we
utilize the bilevel aggregation module (BiAM) to renew the
feature representation of the node, thereby generating the final
classification features of the target node. Finally, we pass
the final classification features of the target node through an
emotion classifier to facilitate emotion prediction.

The contributions of this paper can be summarized as
follows:

• A novel ERC framework (RBA-GCN) is proposed to
comprehensively consider the relevance between nodes
on the basis of graphs. The proposed RBA-GCN can
capture long-range context information and interactions
between modalities under a single-layer architecture.

• To reduce the redundancy of the target node information,
we present a novel graph generation module (GGM).
Based on the GGM, we propose the similarity-based
cluster building module (SCBM), which considers the
correlation between nodes, to enhance the interclass re-
lationship based on the similarity metric.

• We present a novel graph convolution aggregation
method, BiAM, to aggregate the feature representations
of distant nodes through a cluster neighborhood and
perform multimodal feature fusion. The proposed BiAM
can preserve the discriminant information of nodes during
the aggregation process.

• To verify the performance of our approach, experiments
on both the IEMOCAP and MELD datasets are con-
ducted. On both datasets, the weighted average F1 score
of our approach is improved by 2.17∼5.21% over that of
the state-of-the-art method.

II. RELATED WORK

In this section, we briefly introduce recent deep learning-
based methods for ERC tasks [14]. The specific methods are
described as follows:

Contextual Modeling Emotion Recognition: Several ad-
vances have been made in ERC research, as the number of
open-source datasets available for ERC has increased [15],
[16]. First, Hazarika et al. [6] presented a CMN that utilized
the different memories of each speaker to model the specific
context of the speaker. Second, Hazarika et al. [17] presented
an interactive conversational memory network (ICON) that
accounted for the influence of interpersonal relationships in
a conversation and modeled the affective influence between
self and speaker hierarchically as a global memory. Then,

http://www.livesinabox.com/friends/scripts.shtml
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Fig. 2. The overall framework. First, we encode contextual information for each modality feature of the utterance, using Bi-LSTM to obtain the contextual
embedding of each node. Then, we apply the RBA-GCN to filter out noisy information and reduce information redundancy, while effectively capturing the
interactions between modalities and long-range contextual information. Finally, classifiers are applied to implement emotion prediction.

Majumder et al. [7] presented the DialogueRNN, which
utilized three GRU modules interacting with each other to
model conversational information. In recent years, due to the
outstanding ability of GCNs to process contextual information,
GCNs have been used extensively in emotion recognition. For
example, DialogueGCN [8] constructs a fully connected graph
by referring to each utterance in the conversation, while the
edges between two nodes form speaker dependencies. This is
the first GCN-based model for emotion recognition, and good
results have been obtained. Tu et al. [18] presented a context
and emotion-aware framework, termed Sentic GAT, which
tends to select common sense knowledge consistent with the
context semantics and emotion of the target utterance. This
approach has also achieved good results. Finally, since the Di-
alogueGCN considers only the textual modality, the MMGCN
[9] builds upon it by exploiting information from multiple
modalities and encoding the information of the speaker. This
method uses multilayer GCNs to capture long-range contextual
information and realizes the best performance. The above
GCNs applied to ERC are all part of MPNNs. To capture long-
range contextual information, the multilayer GCN strategy
is typically used. However, when applying multilayer GCNs,
more computer resources are consumed, and the updated node
information after aggregation contains a considerable amount
of irrelevant information. Thus, the discriminant information
of the target node is lost, and the ability to capture the context
information remotely is diminished. To resolve the problems in
the ERC mission, we present an RBA-GCN, which is inspired
by the GEOM-GCN [19]. GEOM-GCN maps nodes into a
continuous latent space, followed by the construction of a
structural neighborhood for aggregation using the geometric
relationships defined in the latent space.

Multimodal Emotion Recognition: Based on textual
modality development and the increasing number of mul-
timodal emotion recognition datasets [20], [21], more re-
searchers have been focusing on the exploitation of multimodal
information. Hazarika et al. [22], [23] simply concatenated the
features of the three modalities in series for multimodal fusion

with no established intermodal interactions. Chen et al. [24]
performed word multimodal fusion for emotion recognition in
solitary utterances. Zadeh et al. [25] proposed an MFN to fuse
multiview information, which can satisfactorily coordinate fea-
tures of different modalities. However, the feature fusion tech-
nique of these methods is the simple splicing of features [26],
[27]. Lian et al. [28] proposed CTNet using a transformer-
based structure to model fusion between multimodal features.
Chen et al. [29] proposed a novel time and semantic interaction
network (TSIN) to conduct emotional parsing and emotion
refinement by performing fine-grained temporal alignment and
cross-modal semantic interaction. Although these methods
achieve some improvement in performance, the problem of
data sparsity can easily occur with high-dimensional features
[30]. Recently, Zhang et al. [31] proposed a novel multimodal
emotion recognition model for conversational videos based
on reinforcement learning and domain knowledge (ERLDK);
this model introduces reinforcement learning algorithms for
real-time ERC with the occurrence of conversations. Yang et
al. [32] proposed a multimodal framework named two-phase
multitask emotion analysis (TPMSA). This method applies a
two-stage training strategy to leverage pretrained models and
a novel multitask learning strategy to investigate classification
capabilities. In contrast to existing studies, our proposed graph
method can preserve multimodal information and effectively
capture the interactions between modalities.

III. PROPOSED METHOD

Our approach is described throughout this section. The
framework of our proposed model, which is displayed in
Figure 2, is composed of a contextual encoder, an RBA-
GCN, and an emotion classifier. In the contextual encoder
part, the extracted features are passed into the Bi-LSTM layer
to generate contextual information of the utterance. Then,
the proposed RBA-GCN is applied to capture both long-
range contextual information and multimodal information. The
information of nodes is preserved during the aggregation. In
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the emotion classifier part, the node features updated by RBA-
GCN are used as features for the final classification.

A. Problem Definition

First, a series of utterances {u1, u2, . . . , uN} composes a
conversation, where N represents the number of utterances in
a conversation. The objective of ERC is to identify emotional
labels (“happy”, “excited”, “sad”, “frustrated”, “neutral”, “an-
gry”) for each utterance. Each utterance contains three modal-
ities of data, namely, textual (t), visual (v), and acoustic (a),
which are represented as follows:

ui =
{
ut
i,u

v
i ,u

a
i

}
(1)

where ut
i, u

v
i , and ua

i represent the original feature representa-
tions of the textual, visual, and acoustic modalities of utterance
ui, respectively.

B. Contextual Encoder

Context refers mainly to factors such as time, occasion,
and place in which language activities occur. Contextual
information is essential for ERC, especially during some short
utterances, which are very important for predicting emotional
labels. Therefore, we encode contextual information for each
modality feature of the utterance. We input the per-modality
features of an utterance into a Bi-LSTM network to encode or-
derly contextual information of each modality. The contextual
information feature encoding is implemented as follows:

gx
i =

[−−−−→
LSTM

(
ux
i ,
−−→
gx
i−1

)
,
←−−−−
LSTM

(
ux
i ,
←−−
gx
i+1

)]
(2)

where ux
i represents a context-independent arbitrary modality

raw feature representation for utterance i and x ∈ {t, v, a}
represents an arbitrary modality of an utterance.

−−→
gx
i−1 is the

hidden vector obtained before processing the current sentence,
and
←−−
gx
i+1 is obtained after processing the current sentence.

After the original features pass through the Bi-LSTM
network, the context encoder outputs context-aware feature
encodings gt

i, g
v
i , and ga

i accordingly.

C. Relational Bilevel Aggregation GCN (RBA-GCN)

Our proposed RBA-GCN can filter out noisy information
and reduce the redundancy of target node information. Long-
range contextual information and interactions between modal-
ities can be effectively captured. RBA-GCN consists of three
modules: GGM, SCBM, and BiAM.

1) Graph Generation Module (GGM): Previous graph con-
volution models for emotion recognition typically construct
all nodes in a conversation as a fully connected graph. How-
ever, this method has the following drawbacks: First, in this
approach, the graph network is very large, which makes the
training of the model difficult. To address this problem, sliding
windows are used by the models of the graph generation
approach to aggregate and update target node, but the ability to
capture long-range contextual information is lacking. Second,
GCNs simply sum all the “messages” connected to the target

Similarity Measure
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Fig. 3. The construction process of similarity clusters.

node, whereas construction using fully connected graphs leads
to redundant node information. Thus, we do not know which
nodes contribute to the final aggregation. To address these
issues, we adopt an effective graph generation method. The
specific implementation details are as follows:

We construct each conversation containing N utterances
as an undirected graph G = (V,E), where V (|V | = 3N)
represents the nodes of three modalities in each utterance. E
represents the edges between every two relation nodes. The
graph is constructed as follows:
Nodes: We represent each modality of each utterance in the
conversation as a node of a graph, and the nodes of the three
modalities of each utterance are represented as nt

i, n
v
i and na

i .
The nodes are initialized with the outputs from the contextual
encoders: gt

i, g
v
i and ga

i . Therefore, for a conversation with N
utterances, the graph has 3N nodes.
Edges: To exploit multimodal information more effectively
and capture long-range contextual information, we connect
nodes of the same modality in the conversation sequentially ac-
cording to the conversation order. Nodes of several modalities
of the same utterance are connected in the same conversation.
For example, in the graph, we connect nt

i, n
v
i and na

i to each
other.

2) Similarity-Based Cluster Building Module (SCBM): We
first calculate the node similarity in the target node and its
structure neighborhood. We consider nodes with low similarity
to the target node to have opposite or different labels from
the target node, and such nodes are filtered. Nodes with high
similarity to the target node are considered to have similar
features or the same label as the target node. We map these
nodes to different clusters based on the similarity between the
nodes.

In this paper, we leverage the disconnected neighborhood
to handle long-range contextual information and the leverage
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connected neighborhood to handle multimodal interactions.
First, we construct the structural neighborhood N (o) on the
basis of the GGM. Second, for the relationship between two
nodes, we assume that the higher the similarity between
them, the more similar the information between them and the
higher the level of the relationship. Nodes in the same cluster
have a certain similarity, and we believe that the aggregation
operations of nodes in the same cluster can have a certain
feature enhancement effect. Thus, we define the structural
neighborhood N (o) as follows:

N (o) = ({Cg (o) , Dg (o)}) (3)

where Cg (o) is the connected neighborhood in the graph and
Dg (o) is the disconnected neighborhood in the graph.

The connected neighborhood Cg (o) in the graph is defined
below:

Cg (o) = {u|u ∈ V, (u, o) ∈ E} (4)

The disconnected neighborhood Dg (o) in the graph is
defined below:

Dg (o) = {u|u ∈ V, (u, o) ̸∈ E} (5)

where u and the target node o belong to the same modality.
The similarity metric function s (u, o) is defined below:

s (u, o) =

(
1− arccos (sim (fu,fo))

π

)
(u ∈ N (o)) (6)

where sim (·, ·) is the cosine similarity function. fu and
fo represent the features of nodes u and o on the graph,
respectively.

We define the cluster operator τ through similarity mapping
and specifically define the clusters as follows:

τ (u, o) = ⌊γ × s (u, o)⌋ if u ∈ Cg (o)

or (u ∈ Dg (o) ∩ s (u, o) ≥ ρ)
(7)

Clusters =
{
Clusters(r) | τ (u, o) = r

}
(8)

where γ and ρ are hyperparameters. ρ is the threshold value
for filtering noisy information from the clusters. ⌊·⌋ is the
rounding down operation. When the similarity is less than ρ
and u is in the disconnected neighborhood, we filter out this
node to reduce information redundancy. We set γ to an integer
so that we can obtain γ+1 clusters. Clusters is a set of all
clusters. r refers to the id of the cluster and Clusters(r) refers
to the r-th cluster. The process of mapping nodes to clusters
is shown in Figure 3.

3) Bilevel Aggregation Module (BiAM): On the basis of
the similarity clusters, we construct the cluster neighborhood
Ss (o), which is later used to aggregate and update the fea-
tures of the target node. The cluster neighborhood Ss (o) is
specifically defined as follows:

Ss (o) =
{
u|u ∈ V ∩ u ∈ Clusters(r)

}
(9)

To ensure the permutation invariance of graph-structure
data, we apply the bilevel aggregation scheme for the cluster
neighborhood Ss (o) to renew the characteristics of nodes. At
the first level, the nodes in the same cluster are aggregated
into a virtual node by means of an aggregation function. At
the second level, we aggregate and update the virtual nodes
aggregated in the first level together with the target node into
the final node feature representation. The cluster is obtained
by performing similarity mapping between the nodes in the
graph and the target node. The similarity between nodes does
not change with the order of the nodes in the graph, so the
order of the nodes in the graph does not affect the clustering
result. When the number of nodes in the cluster is constant, the
mean aggregator satisfies permutation invariance. In addition,
the result of first-level aggregation is the input of the second-
level aggregation process and remains unchanged, thus making
the entire bilevel aggregator satisfy permutation invariance.
We utilize the mean aggregation function in the first-level
aggregation step, and eo(r) is the final feature representation
obtained after the first-level aggregation process, which is
defined as follows:

eo(r) =
1∣∣∣Clusters(r)

∣∣∣
∑

u∈Ss(o)

δ (τ (u, o) , r) · σ(r)(gu) (10)

where |Clusters(r)| denotes the number of nodes that belong
to the r-th cluster. u is a node in the cluster neighborhood,
and gu is the value of node u.

We define the linear transformation function σ(r)(x) as
follows:

σ(r)(x) =
(
W (r)x+ b(r)

)
(11)

where W (r) is the weight matrix and x is the feature repre-
sentation of a node in the cluster neighborhood. b(r) represents
the bias vector.

We specifically implement the δ (τ (o, u) , r) function as
follows:

δ (τ (u, o) , r) =

{
1, if τ(u, o) = r

0, if τ(u, o) ̸= r
(12)

where δ (·, ·) is the Kronecker delta function, which takes
only nodes in the same cluster into account. This function
is employed to separate different clusters for aggregation
operations. The detailed process of the first-level aggregation
is shown in Figure 4.

We perform further aggregation operations based on all
virtual nodes eo(r) and the target node. hi is the final fea-
ture representation obtained after the second-level aggregator
updates the target node. We define it as follows:

hi = σ
(
W · (eo(r) || gi)

)
(13)

Here, we implement σ (·) as a ReLU function. i represents
the i-th utterance in the conversation. gi is the original feature
representation of the target node updated only by Bi-LSTM,
and || is the feature concatenation operation. W is the weight
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matrix of the node feature transformation. The detailed process
of graph aggregation via bilevel aggregation according to the
cluster neighborhood is shown in Figure 4.

D. Emotion Classifier

We take the updated feature representation of each node
through the bilevel aggregated as the input for the final
predicted label. Then, the following methods are used to
predict the emotion labels of the nodes:

li = σ (W lhi + bl) (14)

pi = Softmax (W smax li + bsmax ) (15)

where hi represents the final feature of the target node, which
contains multimodal information. pi represents the probability
vector of the emotion class for utterance i. W l, bl, W smax and
bsmax are all trainable parameters.

The category with the highest calculated probability is used
as the prediction label, and the emotion label computation is
defined as follows:

ŷi = argmax(pi) (16)

E. Model Training

We choose the categorical cross-entropy loss function dur-
ing training. The calculation process is as follows:

L = − 1∑K
i=1 Ni

K∑
i=1

Ni∑
j=1

C∑
m=1

y
(m)
i,j log

(
p
(m)
i,j

)
(17)

where K is the number of conversations, and m indicates the
category of the emotion label. y

(m)
i,j is the golden label for

utterance i, p(m)
i,j is the predicted output for utterance i, and

Ni is the number of utterances in the conversation.

IV. EXPERIMENTAL DATABASES AND SETUP

In this section, first, we introduce the datasets used for the
experiments. Second, we describe details of the implementa-
tion of our method. Finally, we present the methodology for
model evaluation and some state-of-the-art baselines.

TABLE I
STATISTICS OF THE IEMOCAP DATASET AND THE MELD DATASET.

emotion IEMOCAP MELD
train+val test sum train+val test sum

Anger 869 234 1103 1262 345 1607
Happiness/Joy 460 135 595 1906 402 2308

Sadness 877 207 1084 794 208 1002
Neutral 1387 321 1708 5180 1256 6436

Excitement 828 213 1041 – – –
Frustration 1478 371 1849 – – –

Disgust – – – 293 68 361
Surprise – – – 1355 281 1636

Fear – – – 308 50 358

A. Datasets

Both benchmark IEMOCAP [20] and MELD [21] datasets
are used to measure the performance of RBA-GCN, and both
contain three modalities: acoustic, visual and textual. Table I
presents the detailed information of the two datasets, including
the detailed distribution of each emotion and the number of
utterances used for training, validation and testing.
IEMOCAP: The University of Southern California has pro-
duced the IEMOCAP [20] dataset. It contains up to 12 hours
of multimodal audiovisual data, and there are 5 sessions in
total, each consisting of a conversation between a man and a
woman. The conversation is divided into two parts, namely, the
fixed script and the free form, in a given thematic scene. The
dataset has 151 conversations with a total of 7433 utterances
and is labeled with 6 types of emotions: “neutral”, “happy”,
“sad”, “angry”, “frustrated” and “excited”, with non-neutral
emotions accounting for 77%.
MELD: The MELD [21] dataset is an extension of the
EmotionLines Friends section of the plain text modality, and it
is presented as a multiperson conversation, unlike the binary
conversations in IEMOCAP. It contains 1433 conversations
with 13708 utterances and is labeled with seven types of
emotions, i.e., “anger”, “disgust”, “fear”, “joy”, “neutral”,
“sadness”, and “surprise”, which are categorized into three
categories, i.e., positive, negative and neutral, with nonneutral
emotions accounting for 53%.

B. Data Preprocessing

During data preprocessing, TextCNN [33] is utilized to
extract raw textual features, the openSMILE toolkit with IS10
[34] configuration is utilized to extract raw acoustic features,
and DenseNet [35] is utilized to extract raw visual facial
expression features.

C. Implementation Details

In this subsection, we focus on the specific details of the
RBA-GCN. We utilize the Adam optimizer to train the RBA-
GCN. The model is configured with a dropout rate of 0.5, a ρ
parameter of 0.3, a learning rate of 0.0009, and a γ parameter
of 8. The model is trained for up to 1500 epochs.

D. Evaluation Metrics

As shown in Table I, there are inherent data imbalances
in the IEMOCAP and MELD datasets. Considering that the
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weighted average F1 score has good ability to handle unbal-
anced classes, in the following experiments, we employ it as
our metric for the evaluation of our proposed RBA-GCN. The
weighted average F1 is shown below:

WAF1 =

∑M
j=1 Nj · F1j∑M

j=1 Nj

(18)

where the number of emotion categories in the dataset is
denoted by M and the sample size of a category is denoted
by Nj . F1j is the f1 score of samples in a category.

E. State-of-the-art Baselines

In this subsection, we present several of the most advanced
baseline methods. To highlight the superiority of RBA-GCN,
we compare our proposed method with these baselines.
BC-LSTM [5]: A context-aware utterance representation for
emotion classification is utilized, and the model aims to
capture contextual information through a Bi-LSTM layer.
CMN [6]: The context of a particular speaker is modeled
by the different memories of each speaker, and the historical
utterance of each speaker is modeled separately by GRU as a
memory unit.
ICON [17]: The attention mechanism is used to obtain the
result fusion of memory units with the current utterance
representation for utterance emotion classification.
GAT [12]: The model applies an attention mechanism to
characterize the importance of neighboring nodes to nodes and
updates node features for emotion recognition using different
edge weights.
DialogueRNN [7]: To capture speaker information, the context
of previous utterances and affective information, three types
of states, namely, speaker state, global state, and emotional
state, are employed.
DialogueGCN [8]: This is the first time that GCNs are
applied to an emotion recognition scenario in a conversation. It
can effectively model the contextual information and speaker
information in a conversation.
MTAG [36]: This method converts unaligned multimodal
sequence data into a graph with heterogeneous nodes and
edges to capture the rich interactions across modalities and
through time.
ConGCN [37]: This method constructs the entire dataset as a
graph and uses subgraphs in the larger graph to represent each
conversation. Speaker nodes are also connected to correspond-
ing utterance nodes, which are used to model speaker-sensitive
dependencies.
MMGCN [9]: This approach utilizes multimodal information
based on DialogueGCN. The model uses spectral domain
GCNs to encode the multimodal graph, which makes it pos-
sible for multilayer GCNs to capture more distant contextual
information. However, it does not consider the relationships
between nodes in the graph.

V. RESULTS AND DISCUSSIONS

In this section, first, we compare our proposed method with
all the baseline methods mentioned in Subsection IV-E to

verify the superiority of our approach. Second, we perform
a case study to further validate our approach. Then, we
evaluate the effectiveness of the three modules in RBA-GCN.
Finally, we explore the importance of effectively capturing the
interactions between different models.

A. Comparison with State-of-the-art Baselines

We compare the RBA-GCN with the baseline methods on
IEMOCAP and MELD in Subsection IV-E. Table II and Table
III show the comparison results. The experimental results
indicate that our method significantly outperforms all the
baseline methods. On the IEMOCAP dataset, the RBA-GCN
achieves a WAF1 score of 71.43%, which is 5 points higher
than that of the most advanced existing method. In addition,
it achieves a WAF1 score of 62.67% on the MELD dataset,
which is 4 points higher than that of the best baseline method.
Furthermore, we compare the proposed approach with the GAT
and MTAG models. Unlike the graph attention mechanism,
which automatically removes edges with low weights or
directly assigns low weights during aggregation, RBA-GCN
employs similarity measures to filter out redundant informa-
tion and map nodes to different clusters. Finally, intracluster
aggregation and intercluster aggregation are performed. We
conduct additional experiments to compare the performance
of different graph generation methods on the GAT. “GAT”
involves using our graph generation method, and “GAT-fully”
represents the fully graph connected method. The experimental
results are shown in Tables II and III. The overall performance
of GAT-fully is better than that of the GAT. This is because
GAT-fully is better than GAT at capturing contextual infor-
mation. The comparison results show that our proposed RBA-
GCN performs better than both the GAT and GAT-fully, which
indicates the superiority of the RBA-GCN.

The experimental results for the IEMOCAP dataset are
shown in Table II. These results demonstrate that our method
obtains the best scores on almost all the labels. Undoubtedly,
our method achieves the most advanced weighted average
F1 score. Because the IEMOCAP dataset has more than 70
conversations and the average conversation length exceeds 50
utterances, DialogueGCN and MMGCN use sliding windows
in the composition to reduce the complexity of the graph.
Although this approach reduces the complexity of the model,
it loses the context dependency of the target node over long
ranges. Remarkably, our RBA-GCN method achieves the best
prediction result, with a WAF1 score of 71.66% for the
“happy” label, which is almost 30% higher than that of the best
performing DialogueGCN model on this label. Data with a
“happy” label in the IEMOCAP dataset account for only 7% of
the whole dataset. This means that the probability of “happy”
appearing in a conversation is minimal and a correct prediction
for such an utterance is difficult. As a result, the prediction
accuracy of such labels is very low. The DialogueGCN model
uses GCNs to aggregate node information, which improves the
prediction accuracy of such nodes. Due to the complexity of
graph generation, the prediction of MMGCN for such node
labels is not satisfactory. In our method, for such nodes,
we first filter the noisy information using clusters to reduce
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TABLE II
COMPARISON WITH BASELINE METHODS ON THE IEMOCAP DATASET.

Models IEMOCAP
happy sad neutral angry excited frustrated WAF1

BC-LSTM [5] 0.3443 0.6087 0.5181 0.5673 0.5795 0.5892 0.5495
CMN [6] 0.3038 0.6241 0.5239 0.5983 0.6025 0.6069 0.5613

ICON [17] 0.2991 0.6457 0.5738 0.6304 0.6342 0.6081 0.5854
DialogueRNN [7] 0.3318 0.7880 0.5921 0.6528 0.7186 0.5891 0.6275
DialogueGCN [8] 0.4275 0.8088 0.5871 0.6608 0.6997 0.6121 0.6418

GAT [12] 0.4761 0.6962 0.5869 0.6428 0.6750 0.5857 0.6367
GAT-fully [12] 0.4720 0.7343 0.6052 0.6523 0.6638 0.5603 0.6516

MTAG [36] 0.3603 0.7136 0.5051 0.4836 0.6030 0.5579 0.5533
MMGCN [9] 0.4234 0.7867 0.6173 0.6900 0.7433 0.6232 0.6622

Ours 0.7166 0.8695 0.6768 0.6666 0.6800 0.6950 0.7143

TABLE III
COMPARISON WITH BASELINE METHODS ON THE MELD DATASET.

Models MELD
anger disgust fear joy neutral sadness surprise WAF1

BC-LSTM [5] 0.445 0 0 0.497 0.764 0.156 0.484 0.568
CMN [6] 0.447 0 0 0.477 0.743 0.234 0.472 0.559

ICON [17] 0.448 0 0 0.502 0.736 0.232 0.500 0.563
GAT [12] 0.4262 0 0 0.5128 0.6154 0.2307 0.4182 0.5045

GAT-fully [12] 0.4323 0 0 0.5186 0.6363 0.2197 0.4256 0.5166
MTAG [36] 0.4742 0 0 0.5361 0.7002 0.2464 0.4793 0.5824

DialogueRNN [7] 0.415 0.017 0.012 0.507 0.735 0.238 0.494 0.5711
ConGCN [37] 0.468 0.106 0.087 0.531 0.767 0.285 0.503 0.5823

Ours 0.5000 0.1132 0.0752 0.5714 0.7143 0.3333 0.5556 0.6267

the redundancy of the target node information. Then, we
enhance the favorable features in each cluster to improve
the classification effect. Finally, bilevel aggregation effectively
captures the long-range contextual information and makes
excellent use of the interaction between multiple modalities,
thereby improving the prediction accuracy of such nodes more
effectively.

The experimental results of the MELD dataset are dis-
played in Table III. These results indicate that our method
achieves the optimal scores on almost every label. The MELD
dataset consists of multiperson conversations, which are briefer
and have few specific emotional expressions compared to
the IEMOCAP dataset. In addition, the average conversation
length of the MELD dataset is more than 10 utterances.
Since there are more than 4 speakers in many conversations,
only a few utterances are available for most speakers in a
conversation. These factors make it more difficult to improve
the classification accuracy. However, the prediction results of
our model on the MELD dataset are also improved by at
least 4 points compared to that of ConGCN. The substantial
improvement is due to our cluster and bilevel aggregation
approach.

The confusion matrix of our RBA-GCN method with respect
to the IEMOCAP and MELD datasets is shown in Figure
5, which illustrates the effectiveness of our method more
distinctly. For the IEMOCAP dataset, the weighted average
F1 scores of all classes are relatively balanced, with the
“sad” category having the highest weighted average F1 score
of 86.95%. For the MELD dataset, we find from Table I
that the training and test sets for the three categories of
“disgust”, “fear” and “sadness” are relatively small compared
to those of other categories. Although the MELD dataset has

obvious class imbalance, leading to more difficulty in model
training, RBA-GCN is significantly improved. Thus, RBA-
GCN can filter out noisy information, reduce the redundancy
of target node information, and better retain node discriminant
information. Additionally, our model can effectively capture
long-range contextual information and interactions between
modalities.

B. RBA-GCN under Various Modality Settings

We experimentally compare the performance between
single-modality and multimodality settings to verify the ef-
fectiveness of RBA-GCN for multimodal interactions. The
performance of our proposed method in various modality
settings is shown in Table IV.

According to the results in Table IV, there are some
differences in the performance of each modality under the
single-modality setting, with the textual modality performing
best. We argue that textual features can express emotions more
intuitively than acoustic and visual features in a conversational
emotion recognition task. With few exceptions, the words for
emotional expression are in the utterance.

In a multimodal setting, the performance of multiple-
modality fusion is better than that of individual modalities,
but the best performance is obtained with the fusion of
three modalities. We believe that multiple modality features
can complement each other compared to a single modality.
Similar to communication with people in reality, we can
combine facial expressions, voice and conversation content to
determine mood fluctuations of the speaker. The experimental
results indicate that the RBA-GCN achieves a significant
improvement on most modal combinations compared to the
multimodal fusion method from MMGCN. This indicates that



9

Happy
Sad

Neutral

Angry
Excited

Frustrated

Happy

Sad

Neutral

Angry

Excited

Frustrated

0.7166 0.0333 0.1333 0.0 0.1168 0.0

0.0109 0.8695 0.0869 0.011 0.0 0.0217

0.0202 0.0101 0.6768 0.0505 0.0202 0.2222

0.0 0.0263 0.1404 0.6666 0.0088 0.1579

0.0667 0.0133 0.16 0.04 0.68 0.04

0.0 0.0284 0.1206 0.1489 0.0071 0.695

(a)

Angry
Disgust

Fear
Joy Neutral

Sadness

Surprised

Angry

Disgust

Fear

Joy

Neutral

Sadness

Surprised

0.5 0.0 0.0 0.0 0.25 0.0921 0.1579

0.0964 0.1132 0.0 0.1512 0.4229 0.0163 0.2

0.2143 0.0 0.0752 0.052 0.3265 0.1418 0.1902

0.1382 0.0 0.0 0.5714 0.1314 0.0492 0.1098

0.0631 0.0 0.0 0.1763 0.7143 0.0081 0.0382

0.2461 0.0 0.0 0.2718 0.0898 0.3333 0.059

0.1111 0.0 0.0 0.1111 0.2222 0.0 0.5556

(b)

Fig. 5. Confusion matrix of proposed RBA-GCN on: (a) IEMOCAP dataset, and (b) MELD dataset. Note: x-axis is the correct label, y-axis is the predicted
label.
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Fig. 6. (a) Representation of different quantitative clusters on the IEMOCAP dataset; (b) Representation of different quantitative clusters on the MELD
dataset. Note: the horizontal axis represents the value of γ.

our multimodal fusion method can fuse sufficient information
effectively. Meanwhile, the node discriminant information can
be retained after multimodal fusion, which makes the emotion
recognition more accurate.

C. Comparison with Other Fusion Methods

A performance comparison of RBA-GCN and the most
advanced baseline methods is shown in Table V. We compare
our proposed method with other multimodal fusion methods,
including other representative fusion methods such as MFN,
MMGCN and CTNet, to illustrate the superiority of the RBA-
GCN.

Our method outperforms other multimodal fusion methods
on both datasets, as shown in Table V. On the IEMOCAP
dataset, it outperforms the most advanced graph convolution

fusion method (MMGCN) by more than 5% and is nearly
4% higher than the current most advanced fusion method
(CTNet). On the MELD dataset, our method outperforms the
most advanced graph convolution fusion method (MMGCN)
by more than 4% and is nearly 2% higher than the most
advanced fusion method (CTNet). This reflects the superiority
of our proposed multimodal fusion method anchored on re-
lational bilevel aggregation, which can effectively capture the
interactions between modalities.

D. Ablation Study
Ablation studies are conducted to demonstrate the effec-

tiveness of the various components of our proposed method
(RBA-GCN).

1) The effectiveness of the graph generation module
(GGM): To verify the effectiveness of our GGM, we compare
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TABLE IV
PERFORMANCE COMPARISON WITH DIFFERENT MODALITIES ON THE IEMOCAP DATASET. NOTE: T=TEXT, A=AUDIO, V=VIDEO.

Modality IEMOCAP
happy sad neutral angry excited frustrated WAF1

T 0.7090 0.8366 0.6363 0.5522 0.6455 0.6461 0.6609
V 0.6326 0.5572 0.4473 0.4385 0.5769 0.5052 0.5129
A 0.6034 0.7352 0.4536 0.5200 0.5875 0.5882 0.5783

T+V 0.7049 0.8421 0.7032 0.6239 0.6410 0.6906 0.6988
T+A 0.7288 0.8404 0.6200 0.5932 0.6973 0.6764 0.6850
V+A 0.6724 0.7428 0.4695 0.5833 0.6714 0.6194 0.6162

T+V+A 0.7166 0.8695 0.6768 0.6666 0.6800 0.6950 0.7143

TABLE V
PERFORMANCE COMPARISON WITH ADVANCED MULTIMODAL FUSION

METHODS ON THE IEMOCAP DATASET AND MELD DATASET.

Multimodal fusion method IEMOCAP MELD
MFN [38] 0.6277 0.5470
MulT [39] 0.6237 0.5649

MMGCN [9] 0.6622 0.5865
CTNet [28] 0.6750 0.6050

Ours 0.7143 0.6267

the experimental results of our method with those of previous
methods for graph generation. We compare the graph gener-
ation of the fully connected graph with our graph generation
method while ensuring that other conditions of the network
structure remain unchanged. The experimental results are
shown in Table VI.

TABLE VI
PERFORMANCE COMPARISON WITH OTHER GRAPH GENERATION

METHODS ON THE IEMOCAP AND MELD DATASETS.

Graph generation method IEMOCAP MELD
Fully connected graph 0.7057 0.5733
Our graph generation 0.7143 0.6267

Our graph generation method performs better on the IEMO-
CAP dataset than other methods with fully connected graphs
by nearly 1%. On the MELD dataset, our graph generation
method outperforms the fully connected graph generation
method employed by other models by 5%. To explain the
superior performance of our graph generation method on
the MELD dataset, we argue that only a small number of
utterances per conversation by most participants in this dataset
lead to increased information redundancy. However, our graph
generation method can effectively reduce the information
redundancy of the target node and retain the discriminant in-
formation of the node. This leads to a significant improvement
in the experimental results.

2) Effectiveness of the similarity-based cluster building
module (SCBM) : To verify the effectiveness of our clus-
ters and demonstrate that the clusters can effectively filter
information irrelevant to the target node, an ablation study is
performed. According to the data in Table VII, the clusters
significantly influence the final classification result of the
model. Consequently, irrelevant information can be effectively
filtered so that the discriminant information of the target node
is better retained.

We further compare the performance with and without
clusters under different combinations of modalities. As shown

in Table VII, the performance with clusters is better than
that without clusters for different combinations of modalities.
This demonstrates the effectiveness of clusters for multimodal
interactions.

TABLE VII
THE IMPACT OF CLUSTERS ON ERC PERFORMANCE. NOTE: T=TEXT,

A=AUDIO, V=VIDEO.

RBA-GCN Modalities IEMOCAP MELD

w/o Clusters

A+T 0.6265 0.5200
A+V 0.6076 0.4933
T+V 0.6368 0.5333

A+T+V 0.6489 0.5467

w Clusters

A+T 0.6850 0.5357
A+V 0.6162 0.5067
T+V 0.6988 0.5779

A+T+V 0.7143 0.6267

The number of clusters γ is a key hyperparameter for bilevel
aggregation. Intuitively, the final classification performance of
RBA-GCN is influenced by the value of γ. Our aggregation
uses clusters to perform the first-level aggregation operation
because the value of γ affects the cluster number. Therefore, to
study the effect of clusters on model performance, we choose
γ in {2, 4, 6, 8, 10}.

Our experiments show that with increasing cluster number
within a certain range, a consistent improvement is observed.
As shown in Figure 6, RBA-GCN has the best classification
performance when γ = 8. The weighted average F1 scores are
71.43% and 62.67% on the IEMOCAP and MELD datasets,
respectively. The increase in the cluster number allows for
more detailed differentiation of other nodes so that similar
nodes can be better aggregated. However, the model classifi-
cation performance decreases when γ > 8. We believe that
the number of clusters impacts the second-level aggregation.
The greater the number of clusters is, the more virtual nodes
are aggregated, which destroys the target node information.

To further investigate the effectiveness of the SCBM, a finer-
grained ablation study is performed. The experimental results
in Table VIII show that our method achieves the best results.
This proves the effectiveness of our application of connected
neighborhood Cg(o) to retain multimodal information and
disconnected neighborhood Dg(o) with filter s(u, o) to retain
long-range contextual information.

3) Effect of GCN layers on RBA-GCN : We conduct a
comparison study on the number of GCN layers on RBA-
GCN. The experimental results are shown in Figure 7, where
the best results are achieved when we apply only bilevel
aggregation. The model performance begins to degrade when
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TABLE VIII
ABLATION STUDY ON IEMOCAP DATASET.

RBA-GCN WAF1
Cg(o) 0.6024
Dg(o) 0.6093

Cg(o) with s(u, o) 0.5921
Dg(o) with s(u, o) 0.6231
Cg(o) +Dg(o) 0.6813

Cg(o) with s(u, o) +Dg(o) 0.6489
Cg(o) with s(u, o) +Dg(o) with s(u, o) 0.6895

Cg(o) +Dg(o) with s(u, o) (ours) 0.7143
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Fig. 7. Performance with the different number of GCN layers on
RBA-GCN on IEMOCAP.

we scale up the number of GCN layers. This further validates
that after multilayer GCNs aggregation, the nodes in the
graph become very similar and may lose the discriminant
information of the node.

E. Complexity Analysis

The temporal complexity of GCNs is very important be-
cause certain conversations in the real world tend to be
relatively long. Therefore, the graphs composed of these
conversations are very large and have a very complex struc-
ture. In this subsection, we compare the temporal complexity
of our method with that of the methods in Section IV-E.
We compare the actual runtime (1500 epochs) of the Dia-
logueGCN, MMGCN, DialogueRNN and RBA-GCN models
on all datasets using the hyperparameters described in Section
IV-C. According to the data in Figure 8, DialogueRNN takes
the least time, while our method comes in second place.
We believe that our model is computationally complex and
tedious compared to traditional neural network models, which
is a significant reason why it consumes more time. Next is
DialogueGCN, and MMGCN is the slowest. Although these
methods employ some computational optimization techniques,
such as sliding windows, they have not significantly reduced
their computational cost. Due to the tremendous number
of conversations in real life every day, the graph is large.
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Fig. 8. Running time comparison of four models.

Therefore, in future work, we will consider how to reduce
the training time and enhance the robustness of the model.

F. Case Study

For a more intuitive comparative analysis of our method
and more advanced methods, we perform a case study. Table
IX shows the results of our analysis for one case on the
IEMOCAP dataset, where the results in red indicate incorrect
predictions and the results in green indicate correct predic-
tions. According to the prediction results, our method clearly
outperforms the other methods. We think that most of the
utterances in this conversation are “neutral”, while some other
emotion-labeled utterances are mixed into the conversation.
Since traditional graph convolution methods aggregate the
information of neighboring nodes, this leads to target node
discriminant information loss and prediction errors. In this
case, the prediction results of other methods for these utter-
ances are wrong, while our model handles these cases well. In
particular, the fifth utterance is predicted as “neutral” by other
models, while our model produces the correct label “happy”.
This is because our method can effectively capture long-range
contextual information and interactions between modalities
by considering the relevance between nodes and filtering out
noisy information.

VI. CONCLUSION AND FUTURE WORK

We propose a model named RBA-GCN for ERC. RBA-
GCN considers the correlation between nodes on the basis of
graphs and has the ability to capture long-range contextual
information as well as interactions between modalities in a
single-layer architecture. Our GGM is a novel graph gener-
ation method used to reduce the redundancy of target node
information. Based on the GGM, we present SCBM to cal-
culate the node similarity in the target node and its structural
neighborhood, where noisy information with low similarity
is filtered out to preserve the discriminant information of the
nodes. Finally, our propose BiAM has the capability to capture
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TABLE IX
A CASE STUDY ON THE IEMOCAP DATASET. RED LETTERING INDICATES WRONG PREDICTION, GREEN LETTERING INDICATES CORRECT

PREDICTION.

Turn Utterances Label DialogueRNN [7] DialogueGCN [8] MMGCN [9] Ours

1 A: Did we bring something less? You forgot to bring
the baby’s anvil? neutral neutral neutral neutral neutral

2 B: Women like babies it’s common knowledge, okay? neutral neutral neutral neutral neutral
3 B: Women like men who like babies. neutral neutral neutral neutral neutral
4 B: Quick, point him towards that group of beautiful women. neutral neutral neutral neutral neutral
5 B: No, no, wait, to get them, we got one, on the left. happy neutral neutral neutral happy
6 B: Well, give me the baby. neutral neutral neutral neutral neutral
7 A: No, I got him. neutral neutral neutral neutral neutral
8 A: Oh, you really wanted him? excited neutral excited excited excited
9 B: Hi. neutral neutral neutral neutral neutral

10 A: Well, don’t think I’m not being modest, but, me? excited neutral neutral excited excited
11 B: Do you want to smell him? neutral neutral neutral neutral neutral
12 B: Oh, yeah. He has that baby smell. happy happy happy happy happy
13 B: What have I told you? What have I told you? happy neutral neutral neutral happy
14 A: Well, we are great guys. neutral neutral neutral neutral neutral

long-range contextual information and interactions between
different modalities on the basis of similarity clusters. To
demonstrate the superiority of RBA-GCN, experiments were
conducted on two commonly used datasets. A novel record for
emotion recognition in conversations was created by our ap-
proach. The necessity of multimodal fusion was illustrated by
the results obtained from experiments on different modalities,
and the effectiveness of our fusion method was demonstrated
by comparing the results obtained from our method with those
obtained from other advanced multimodal fusion methods.
Meanwhile, our ablation experimental results illustrated the
importance of each module in RBA-GCN.

In future work, first, we will conduct further research on
clusters, such as calculating the relationship between nodes
by an attention mechanism and mapping them into a cluster.
Second, we will explore developing acceleration techniques to
address the scalability issue of RBA-GCN.
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