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Abstract—Benchmarking initiatives support the meaningful
comparison of competing solutions to prominent problems in
speech and language processing. Successive benchmarking eval-
uations typically reflect a progressive evolution from ideal lab
conditions towards to those encountered in the wild. ASVspoof,
the spoofing and deepfake detection initiative and challenge
series, has followed the same trend. This article provides a
summary of the ASVspoof 2021 challenge and the results of 54
participating teams that submitted to the evaluation phase. For
the logical access (LA) task, results indicate that countermeasures
are robust to newly introduced encoding and transmission effects.
Results for the physical access (PA) task indicate the potential
to detect replay attacks in real, as opposed to simulated physical
spaces, but a lack of robustness to variations between simulated
and real acoustic environments. The Deepfake (DF) task, new to
the 2021 edition, targets solutions to the detection of manipulated,
compressed speech data posted online. While detection solutions
offer some resilience to compression effects, they lack generaliza-
tion across different source datasets. In addition to a summary
of the top-performing systems for each task, new analyses of
influential data factors and results for hidden data subsets, the
article includes a review of post-challenge results, an outline of
the principal challenge limitations and a road-map for the future
of ASVspoof.
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I. INTRODUCTION

B IOMETRIC systems implemented with automatic
speaker verification (ASV) technology [1] are vulnerable

to spoofing attacks [2] whereby an adversary attempts to
masquerade as another individual through the presentation of
manipulated speech data [3]. There are four principal means
to generate attacks: impersonation, voice conversion (VC),
text-to-speech (TTS) synthesis, and replay. Impersonation
attacks have received the least attention; successful attacks
typically require special expertise, e.g. of professional
impersonators. In contrast, VC, TTS and replay spoofing
attacks can all be mounted using readily available software
toolkits and consumer devices and have hence received greater
attention [3]. The threat posed by such techniques is now
well recognised, particularly in academia and increasingly in
industry [4]–[7].

The ASVspoof initiative and challenge series [8] was con-
ceived to foster the development of countermeasures (CMs) to
protect against the manipulation of ASV systems from spoof-
ing attacks. ASVspoof has designed, collected and distributed
substantial databases of both bona fide and spoofed data, with
the latter being generated with a broad range of state-of-the-art
VC and TTS technologies, recording and replay devices. They
have been used in the series of four biennial benchmarking
challenges, the results of which show tremendous progress in
spoofing detection reliability.

The first edition of ASVspoof in 2015 [8] focused on the
development of CMs for the detection of VC and TTS attacks.
For the subsequent edition in 2017, the focus switched to
replay attacks. The third edition, ASVspoof 2019, was the
first to address all three attack types through two separate tasks
involving: (i) a logical access (LA) scenario involving VC and
TTS attacks generated using a set of different statistical and
neural methods; (ii) a physical access (PA) scenario involving
replay attacks implemented in a large number of simulated
acoustic environments.

While the overall scope of ASVspoof challenges has been
steadily expanding with the introduction of new attack algo-
rithms, evaluation scenarios, and performance metrics [9], the
technical quality of the audio data to date has remained high;
the data is relatively free of additive noise and encoding, com-
pression and transmission artifacts. While experiments with
clean data detached from the complexities of the real world
have a legitimate role in basic research, the prolonged use
of such data may promote the development of CM solutions
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Fig. 1. The ASVspoof 2021 challenge consists of three different tasks: logical access (LA); physical access (PA); deepfake (DF). While the general theme
of exposing spoofing countermeasures (CMs) to more realistic conditions is common to all three tasks, each was effectively run as a separate sub-challenge.
The database and results for each task are described in the sections indicated.

which fail to generalize to application scenarios in the wild
where external distortions are commonplace. Furthermore, the
past ASVspoof training, development and evaluation sets all
originate from the same source corpus: either VCTK [10] or
RedDots [11]. This may hinder the design of CMs which gen-
eralize to other domains with different speech characteristics.

As illustrated in Fig. 1, the move towards an evaluation
using speech data which is more representative of practical
applications was the essence of the ASVspoof 2021 challenge.
It sought to benchmark the latest CM solutions in more
realistic conditions in which speech data undergoes coding,
compression and transmission across telephony channels (LA
task, left in Fig. 1), or undergoes acoustic propagation in a
real physical space (PA task, middle in Fig. 1). ASVspoof
2021 also introduced the new deepfake (DF) task (right in
Fig. 1) in which adversaries aim not to deceive an ASV system,
but merely fabricate an utterance in the voice of a target
speaker. The goal may be to harm the reputation of a well-
known personality or to manipulate society by disseminating
disinformation or fake news [12], [13]. The aim behind the
new DF task is to assess the robustness of spoofing detection
solutions when used to detect compressed manipulated speech
data of varying characteristics posted online. The scenario is
simulated by processing audio files from different sources with
various codecs used in social media.

Described in this paper are the key advances made since
previous editions of ASVspoof, together with details of the
dataset design, collection and protocol policies. Also described
are the challenge results and principal techniques that are
common to the top-performing systems for all three sub-tasks.
The study substantially extends the preliminary workshop ver-
sion [14] with an in-depth analysis of influential data factors
that impact upon CM performance. Additionally, we present
a summary of system descriptions submitted by participating
teams and identify the most promising detection algorithms
and techniques. The article also contains a new, detailed
analysis of results for specially-designed hidden subsets and
includes a survey of post-challenge studies and related work
outside of the scope of ASVspoof. None of these were

presented in [14].
The new insights presented in this paper, together with

newly released meta-data for the three ASVspoof 2021 task
databases1 should be helpful to those looking to participate
in future ASVspoof challenges as well as all those working
in the field. Toward the end of the paper we reflect upon the
limitations and key lessons learned from ASVspoof 2021, with
a discussion of current ideas and directions for future research.

II. ASVSPOOF 2021 CHALLENGE OUTLINE

In this section, we outline the three challenge tasks, each
an independent sub-challenge with their own corresponding
evaluation database. All three are partitioned into progress and
evaluation subsets in addition to a number of hidden subsets.
Progress subsets of modest size were used for intermediate
assessment prior to the evaluation submission deadline for
which participants submitted scores for the full evaluation
database comprising the three subsets. Only progress and eval-
uation subsets are discussed in this section, with corresponding
results being presented in Section III. Hidden subsets and
results are presented in Section IV. It is worth noting the
difference between the progress set and development set: In
the former, participants do not have access to the ground-
truth speaker labels, while for the latter the speaker labels are
available for tuning the training progress. Moreover, during
the challenge, participants could make only a limited number
of score submissions during the progress phase.

For all three tasks, all data was distributed in free lossless
audio codec (FLAC) format with a sampling rate of 16 kHz
and with 16-bit quantisation. There was no new training
data for ASVspoof 2021, though protocols for training and
development using data released through previous ASVspoof
editions were made available. Participants were required to use
LA training partition from ASVspoof 2019 for training CM
systems for LA and DF tasks, and PA training partition from

1The meta-data was used in the post-evaluation analysis presented herein
and is publicly available via the challenge website: https://www.asvspoof.org/
index2021.html.

https://www.asvspoof.org/index2021.html
https://www.asvspoof.org/index2021.html
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TABLE I
NUMBER OF TRIALS AND SPEAKERS IN EACH TASK.

#. trials #. speakers
Task Subset Bona fide Spoofed Female Male

LA Progress 1,676 14,788 37 30
Evaluation 14,816 133,360 37 30

PA Progress 14,472 72,576 37 30
Evaluation 94,068 627,264 37 30

DF Progress 5,768 53,557 37 30
Evaluation 14,869 519,059 50 43

TABLE II
SUMMARY OF LA DATA CONDITIONS. UNDERLINED FACTORS APPEAR IN

EVALUATION SUBSET BUT NOT IN PROGRESS SUBSET

Cond. Codec
Sampling

rate Transmission Bitrate

LA-C1 - 16 kHz - 250 kbps
LA-C2 a-law 8 kHz VoIP 64 kbps
LA-C3 unk. + µ-law 8 kHz PSTN + VoIP - / 64 kbps
LA-C4 G.722 16 kHz VoIP 64 kbps
LA-C5 µ-law 8 kHz VoIP 64 kbps
LA-C6 GSM 8 kHz VoIP 13 kbps
LA-C7 OPUS 16 kHz VoIP VBR 16 kbps

the same dataset for PA task. Challenge rules and participant
guidelines are available in the challenge evaluation plan [15].

A. Logical Access (LA)

The ASVspoof 2015 and 2019 editions both incorporated
LA tasks in which all speech signals were clean, i.e. without
either additive noise, reverberation or other sources of channel
variation. As a consequence, the research effort focused upon
the identification of key techniques for the capturing and
classification of processing artifacts which result from the
generation of spoofed speech signals using either TTS or VC
algorithms. Such ideal conditions are unrealistic and other
work has shown the likely degradation in CM performance
when they are deployed in practical scenarios such as person
authentication over telephony channels [16], [17].

The ASVspoof 2021 LA task was hence designed to reduce
the gap between ideal laboratory conditions and those to be
expected in the wild. This was achieved with the transmission
of both bona fide and spoofed speech across real telephony
systems, including a voice-over-internet-protocol (VoIP) sys-
tem and a public switched telephone network (PSTN). The
2021 LA challenge hence focuses on the study of robustness
to nuisance variation from compression, packet loss and other
artifacts stemming from different bandwidths, transmission
infrastructures and bitrates, etc.; the consideration of additive
noise remains for a future challenge edition.

Speech data are sourced from the ASVspoof 2019 LA eval-
uation database, itself derived from the VCTK database [10].
Spoofed trials are generated using one of 13 different VC,
TTS or hybrid spoofing attack algorithms (A07-A19 in [18]).
For all but one condition, both bona fide and spoofed data
undergo transmission across either a VoIP or PSTN+VoIP
network using one of six codecs giving the seven evaluation
conditions listed in Table II. The choice of codecs is broadly
representative of traditional or legacy codecs (a-law, G.722,
etc.) and modern IP streaming codecs (OPUS) in use today.

The reference condition C1 is identical to the ASVspoof
2019 LA scenario, i.e. with neither encoding nor transmission.
Conditions C2 and C4-C7 correspond to transmission across
an Asterisk2 private branch exchange (PBX) system using
codecs operating at sampling rates of either 8 kHz (C2: a-law,
C5: µ-law, C6: GSM Full Rate 6.10) or 16 kHz (C4: G.722,
C7: OPUS). The bitrate of each data condition (last column of
Table II) was set commensurate with the codec, with the lowest
being 13 kbps for condition C6. Each utterance is transmitted
in its own individual VoIP channel, by automatically generated
Asterisk call files and between two session initiation protocol
(SIP) endpoints. The transmission is done either within a
local area network connection, or from an endpoint hosted
in France to endpoints in Italy or Singapore. Condition C3
involves transmission in Spain over a PSTN system for which
codec conditions are uncontrollable and unknown. Calls are
initiated from a mobile smartphone whereas data recordings
are made at a SIP endpoint hosted on a professional VoIP
system which uses a µ-law codec operating with an 8 kHz
sampling rate. Condition C3 may hence reflect the application
of multiple, unknown intermediate transcodings and network
transmissions. No codec information nor any external metadata
was provided in the audio file headers. The number of trials
in the LA progress and evaluation subsets is shown in Table I.
The progress subset contains a modest number of C1-C4 utter-
ances, while the evaluation subset contains the remaining C1-
C4 utterances in addition to the full set of C5-C7 utterances.

The distribution of speakers and spoofing attacks is bal-
anced in each condition, implying that differences in detection
performance can be attributed reliably to the variations in
encoding and transmission. While the total number of speakers
is the same as that of the ASVspoof 2019 LA evaluation set,
the 2021 database contains a substantial number of previously
unexposed, new bona fide utterances collected from the same
set of speakers in addition to new spoofed utterances generated
with the same attack algorithms.

Last, with no new matched training nor development data
being provided for the 2021 edition, challenge rules dictate
the use for training purposes of only ASVspoof 2019 LA
training and development subsets which contain only clean
data (no similar encoding and transmission). Use of the 2019
evaluation subset was strictly forbidden. The challenge for the
ASVspoof 2021 LA task is hence to design spoofing CMs
which generalise well to unknown channel variation. While the
use of external speech data was not permitted, the challenge
rules allow the use of external non-speech resources such
as noise samples, impulse responses, and audio compression
software for training or data augmentation [15].

B. Physical Access (PA)

Post-challenge analysis of the ASVspoof 2019 PA results
showed evidence of over-fitting to simulated attacks; CM
performance for attacks recorded in real physical spaces was
generally found to be worse than for simulated attacks [19].
Even so, the use of simulation allows for the generation of

2https://www.asterisk.org

https://www.asterisk.org
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TABLE III
SUMMARY OF PA DATA CONDITIONS. UNDERLINED FACTORS APPEAR

ONLY IN THE EVALUATION SUBSET AND NOT IN THE PROGRESS SUBSET.
TECHNICAL DETAILS OF MICROPHONE AND REPLAY DEVICES ARE

AVAILABLE IN THE SUPPLEMENTARY MATERIAL.

Sasv / Sa
Room size

w × d × h(m) Ds / D′
s / Da Angle, Dis.(m)

R1 / r1 8.0 × 8.0 × 2.4 D1 / d1 / c1 15
◦, 2.0

R2 / r2 6.0 × 5.0 × 2.3 D2 / d2 / c2 45
◦, 1.5

R3 / r3 6.6 × 5.0 × 2.4 D3 / d3 / c3 75
◦, 1.0

R4 / r4 7.5 × 7.7 × 2.6 D4 / d4 / c4 90
◦, 0.5

R5 / r5 7.2 × 4.0 × 2.3 D5 / d5 / c5 120
◦, 1.25

R6 / r6 4.5 × 6.5 × 2.5 D6 / d6 / c6 150
◦, 1.75

R7 / r7 4.5 × 2.4 × 2.4 Ds: Talker-to-ASV distance
R8 / r8 7.1 × 4.8 × 2.5 D

′
s: Attacker-to-ASV distance

R9 / r9 5.9 × 4.0 × 2.8 Da: Attacker-to-talker distance
Sasv: room for voice presentation
Sa: room for replay acquisition
Qasv,m / Qa,m Quality Qa, s Quality

M1 / m1 Medium s2 Low
M2 / m2 High s3 Medium
M3 / m3 Low s4 High

Qasv,m: ASV microphone Qa,s: Attacker replay device
Qa,m: Attacker microphone

plentiful data in an unlimited number of different, simulated
physical spaces at little cost and hence remains an attractive
alternative to recordings in real physical spaces.

The ASVspoof 2021 PA task was designed to encourage
progress in generalisation, specifically CMs trained and de-
veloped using simulated attack data which reliably detect pre-
sentation attacks made in real physical spaces. The evaluation
data hence comprises bona fide speech and replayed recordings
both collected in a variety of real physical spaces. Bona fide
data comprises 670 utterances from the VCTK corpus [10]3

which are presented to an ASV system using a high-quality
loudspeaker with a reasonably flat frequency response [20].
Recordings are made in 162 (= 9×3×6) acoustic environments
comprising nine different rooms Sasv ∈ {R1,R2,⋯,R9},
three different ASV microphones Qasv,m ∈ {M1,M2,M3},
and six different talker-to-ASV distances (and angles) Ds ∈

{D1,D2,⋯,D6} listed in Table III. The talker-to-ASV dis-
tances are illustrated in Fig. 2.

Replays are made in the same set of rooms accord-
ing to different attacker factors including the room size
Sa ∈ {r1, r2,⋯, r9}4, the attacker microphone device Qa,m ∈

{m1,m2,m3}, the attacker replay device Qa,s ∈ {s2, s3, s4}5,
and the attacker-to-talker distance Da ∈ {c2, c3, c4}. Attacker
replay devices are situated at the same positions as bona fide
talkers D

′
s ∈ {d1,⋯, d6}6. Since the number of exhaustive

attack factor combinations is large (1,458 = 9×3×3×3×6),
a non-exhaustive policy was adopted. First, the nine rooms

3This is the same set of VCTK utterances used to create the ASVspoof
2019 PA evaluation set [18, Fig. 2, #15].

4We use Sasv and Sa to denote the rooms in which utterances are presented
to an ASV microphone and the rooms in which recording of the target
speaker’s speech are made by the attacker, respectively.

5s1 denotes the simulated bona fide talker.
6Different to the notations used in [14], the attacker-to-ASV and the

attacker-to-talker distances in this paper are denoted by d* and c*, respectively.
c2, c3, and c4 are the same positions as d2, d3, and d4, respectively.

15º

Talker

D1

D2 D3
D4

D5

D6

2 m 45º
1.5 m

ASV microphones
{M1, M2, M3}

Fig. 2. Illustration of talker-to-ASV distance Ds ∈ {D1,D2,⋯,D6}. The full
set of ASV microphones {M1,M2,M3} are used in all positions. Attacker-
to-ASV distance D′

s can be plotted similarly by replacing the talker with the
attacker replay device. Distances and angles are depicted for D1 and D2 only;
those for D3-6 are listed in Table III.

TABLE IV
SUMMARY OF DF EVALUATION CONDITIONS. EACH OF THESE
CONDITIONS ALSO INCLUDES DIFFERENT VOCODER TYPES AS

SUB-CONDITIONS. UNDERLINED FACTORS ONLY APPEAR IN EVALUATION
SUBSET BUT NOT IN PROGRESS SUBSET.

Cond. Compression Bitrate
DF-C1 – 256 kbps
DF-C2 Low mp3 ∼80-120 kbps
DF-C3 High mp3 ∼220-260 kbps
DF-C4 Low m4a ∼20-32 kbps
DF-C5 High m4a ∼96-112 kbps
DF-C6 Low ogg ∼80-96 kbps
DF-C7 High ogg ∼256-320 kbps
DF-C8 mp3→ m4a ∼80-120 kbps, ∼96-112 kbps
DF-C9 ogg → m4a ∼80-96 kbps, ∼96-112 kbps

are divided into three groups7 so that each group contains one
large, one medium, and one small sized room. Replay attacks
in each room Sasv are presented to the ASV microphone using
a single replay device and speech data recorded in three Sa
rooms in the same room group. Recordings are made using
the full set of three attacker microphones Qa,m, each set at
one of the three attacker-to-talker distances Da. Accordingly,
replayed data presented in each room Sasv cover nine different
combinations of replay device, attacker room, and attacker
microphone. The nine combinations are different for each
room in which replays are made.

Recordings and replays are made using VCTK source utter-
ances at a sampling rate of 48 kHz. After collection, all bona
fide and spoofed data are downsampled to 16 kHz after anti-
aliasing — applying a non-causal Hamming-windowed sinc
filter truncated to a length of 214+1 samples. This downsam-
pling configuration is the same as that used in collecting the
ASVspoof 2019 PA database. Leading and trailing non-speech
segments of longer than 0.3 seconds are truncated. The set
of trials are then divided into utterance-disjoint progress and
evaluation subsets. Both sets include data from the full set of
speakers. As a further test of generalisation, a subset of replay
trials corresponding to the factors underlined in Table III were
withheld from the progress subset and reserved exclusively for
the evaluation subset. For other factors, 80% of the bona fide
and 70% of the replay trials are assigned to the evaluation set,
with the remaining data constituting the progress subset. The
number of trials in each set are listed in Table I.

7{R1/r1, R2/r2, R3/r3}, {R4/r4, R5/r5, R6/r6}, {R7/r7, R8/r8, R9/r9}.
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Fig. 3. ASVspoof 2021 results for LA, PA, DF tracks. Results shown in terms of pooled normalised minimum t-DCF and pooled EER (%). Blue line marks
ASV floor. Only teams that submitted system description are marked with ID.

C. Deepfake (DF)
Evaluation data for the ASVspoof 2021 DF task is a collec-

tion of bona fide and spoofed speech utterances processed with
different lossy codecs used typically for media storage. The
data is encoded and then decoded to recover uncompressed
audio. This process introduces distortions which depend on
the codec and its configuration. Generic end-user applications
are envisaged, namely we aim to promote solutions for the
detection of deepfakes in compressed audio used in television
and media hosted on news websites and social media plat-
forms, etc. In contrast to the LA and PA scenarios, the DF
task does not involve the use of an ASV system. Accordingly,
whereas the tandem detection cost function (t-DCF) [9] is used
as the primary metric for LA and PA tasks, that for the DF
task is the CM equal error rate (EER).

While the evaluation database originates partly from the
ASVspoof 2019 LA evaluation set, there are two additional
sets of source data. They are the 2018 [31] and 2020 [32]
voice conversion challenge (VCC) databases. Both are publicly
available but neither has been used previously for ASVspoof
challenges. In contrast to LA and PA evaluation data, both
of which are derived solely from the VCTK database [10],
the VCC 2018 and 2020 challenge data are derived from
DAPS [33] and EMIME [34] corpora, respectively. We in-
cluded all the audio data from the two VCC challenges,
including source and target speaker training data and all
data submitted by VCC participants. Combined, these two
additional source datasets contain bona fide speech collected

from a total of 26 additional speakers (12 in VCC 2018,
14 in VCC 2020) and a large number of spoofed utterances
generated using VC attack algorithms not used in generating
any of the past ASVspoof challenge databases. The aim was
to address CM generalisation across different codecs as well
as different source databases (domains) and spoofing attacks.
Accordingly, the evaluation data consists of various levels of
detection difficulty, as described below.

The full DF evaluation database is generated using in excess
of 100 different spoofing attack algorithms generated by the
large number of teams or individuals who contributed to the
ASVspoof 2019 database [18], or by VCC participants. It
should still be noted that, since many of the VC approaches
share similar voice coders (vocoders), we are most interested
in analysing the dependence of CM performance upon broad
vocoder categories (rather than individual VC systems). To this
end, the set of vocoders are divided into five broad categories:
traditional, neural autoregressive, neural non-autoregressive,
waveform concatenation and unknown. The unknown category
covers missing or incomplete VC system descriptions.

Audio data from the three sources (ASVspoof 2019, VCC
2018, VCC 2020) was processed with the set of codecs giving
the nine evaluation conditions shown in Table IV. The ‘no
codec’ condition C1 corresponds to original audio samples.
Conditions C2 and C3 both use an mp3 codec. C4 and C5 use
an m4a codec with advanced audio coding,8 whereas both C6

8https://trac.ffmpeg.org/wiki/Encode/AAC (referred June 23, 2023).

https://trac.ffmpeg.org/wiki/Encode/AAC
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TABLE V
EMPIRICAL DESCRIPTION OF TOP-5 SUBMISSIONS FOR EACH TASK, AND THE BASELINE SYSTEMS (BOTTOM) [14]. SOME OF THOSE SUBMISSIONS HAVE

CORRESPONDING PUBLISHED DESCRIPTIONS [21]–[26]. TEAMS ARE PRESENTED IN ORDER ACCORDING TO RESULTS OF POOLED NORMALIZED MIN
T-DCF. LFCC: LINEAR FREQUENCY CEPSTRAL COEFFICIENTS [27]. L-VQT: LONG-TERM VARIABLE Q TRANSFORM [28]. SENET:

SQUEEZE-AND-EXCITATION NETWORK [29]. SFR-CNN: SPARSE FEATURE REACTIVATION CNN BLOCK, FROM CONDENSENETV2 [30].

Task Team ID Data Augmentation Acoustic Feature Classifier System Fusion

LA

T23 Trans codec Raw waveform; Raw spec LightCNN;ResNet;LSTM Weighted score average
T35 Additive noise LFCC ResNet Score average
T19 RIR;MUSAN Mel spec ResNet;SEnet Weighted score average
T36 Speed perturbation Raw Waveform;Mel spec TDNN;ResNet;MLP Score average
T20 RIR;MUSAN;Media codec Linear Filter Bank ResNet;MLP Score average

PA

T07 Speed perturbation Log spec VAE;GMM Score average
T16 In-house replay Linear spec;Raw spec;Phase spectrum SEnet Score average
T23 RIR;MUSAN Raw spec ResNet Weighted score average
T01 - linear spec;Mel spec LightCNN Score average
T04 RIR;Speed perturbation Mel spec; CQT spec TDNN Score average

DF

T23 Media codec Raw Waveform; Raw spec LightCNN;ResNet;LSTM Weighted score average
T20 RIR;MUSAN;Media codec Linear filter bank ResNet;MLP Score average
T08 Trans codec;Media codec CQT spec LightCNN Score average
T06 Trans codec;Media codec Linear spec; Raw spec SEnet;TDNN;GMM Weighted score average
T22 Media codec L-VQT spec SFR-CNN -

Baselines
LA/PA/DF

B01 - CQCC GMM -
B02 - LFCC GMM -
B03 - LFCC LCNN-LSTM -
B04 - Raw waveform RawNet2 -

and C7 use an ogg Vorbis codec.9 The differences between
conditions with the same codec lie in the use of different,
variable bit rate (VBR) configurations, one lower and one
higher, as illustrated in the right-most column of Table IV.
Two additional conditions C8 and C9 involve the successive
application of two different codecs, one with a lower VBR,
the other with a higher VBR. The goal for these two dual-
codec conditions is to study whether spoofing artifacts persist
in the case of distortion introduced through transcoding. Such
transcoding could take place, for instance, when an adversary
acquires a sample of compressed spoof speech for a given
target speaker from one social media website, and then uploads
it to another one that uses a different audio compression
technique. We used ffmpeg10 and sox11 toolkits in creating
the DF evaluation data. The number of trials for the DF subset
is shown in Table I.

III. ASVSPOOF 2021 CHALLENGE RESULTS

A summary of results for all three tasks is shown in
Fig. 3. Baseline systems (B0n) and submissions (Tnn)12 are
ranked according to their performance on the evaluation subset
and primary metric. For all three tasks, CM performance is
illustrated in terms of the EER in red bars (bottom axes),
which is the primary metric only for the new DF task. For LA
and PA tasks, the primary metric is the min t-DCF [9]. These
results are shown in blue bars (top axes). The ASV floor [9, Eq.
(11) and Section V], which corresponds to the t-DCF in the

9https://xiph.org/vorbis/ (referred June 23, 2023).
10http://ffmpeg.org/
11http://sox.sourceforge.net/
12Submissions with no identifier correspond to teams that failed to submit a

valid system description. Due to ASVspoof challenge policy, which allows for
anonymous participation, neither the team nor individuals’ names connected
to a given team identifier can be revealed.

case of a perfect CM but imperfect ASV system, is illustrated
with a vertical blue line. The gap between blue bars and blue
lines give an indication of CM performance. Table V shows a
description of the best performing submissions for each task,
along with the one for the baseline systems.

A. Logical Access (LA)

1) Full challenge results: Results for the LA task are shown
in Fig. 3a. Many CMs outperform the best baseline B03, some
by a large margin. The top systems show t-DCFs close to
the ASV floor, indicating CMs with low error rates. For the
majority of systems the gap in performance for progress and
evaluation subsets is modest. The over-fitting to the progress
subset seen for other systems is likely caused by differences
between the known (C1-C4) and unknown (C5-C7) conditions,
the latter of which appear only in the evaluation subset.

2) Influential data factors: The left-most pane of Fig. 4a
shows the distribution in t-DCF for the top-10 systems for
each of the seven conditions shown in Table II. For reference,
the distribution for pooled conditions is shown in the right-
most pane. The distribution in t-DCF for wideband conditions
(no codec, G.722, OPUS) is lower than for narrowband
conditions (a-law, PSTN, u-law and GSM), indicating the
general importance of information at higher frequencies to
CM performance. Among the narrowband conditions, lower
bit rates and uncontrolled transmission (GSM and unk. + µ-
law, respectively – see Table II) lead to worse performance.

The middle pane of Fig. 4a shows the distribution in t-
DCF for the three transmission routes detailed in Section II-A,
namely routes across a LAN and from France to Italy (FR-
IT) and from France to Singapore (FR-SG). The similarity in
t-DCF for all three shows that transmission routes have little
impact upon CM performance; they are not dissimilar to the

https://xiph.org/vorbis/
http://ffmpeg.org/
http://sox.sourceforge.net/
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Fig. 4. Boxplots of evaluation set min t-DCF or EERs of top-10 submissions decomposed over different factors. Markers are top-1 submission (⋄), B01 (o),
B02 (◁), B03 (⭐), and B04 (×).

C1 C2 C3 C4 C5 C6 C7 Pooled

A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

Pooled

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 5. Statistics on t-DCF values of top-10 LA submissions in sub-conditions.
Dot size is decided by inter-quartile range of t-DCF distribution, and color is
decided by its median.
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Fig. 6. Break-down of the EER in the VCC 2018/2020 subset of the DF track,
according to the codecs and the type of vocoder used by the VC system.

distribution for pooled results. This would suggest that future
challenge editions could use simpler LAN routes only.

Fig. 5 depicts a condition/attack analysis, with attack algo-
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rithms on the vertical axis and evaluation conditions on the
horizontal axis. The color of each circle encodes the median
min t-DCF for the top-10 systems, while the radius represents
the inter-quartile range. For some attacks and some conditions
the min t-DCF is consistently high. For attack A18, and to a
lesser extent also A17, there is greater variation across condi-
tions, with the median t-DCF ranging from approximately 0.4
for condition C1 (no encoding) to over 0.8 for C3 (unk. + µ-
law) and approximately 0.7 for C6 (GSM). These observations
show that A18, an attack based on a non-parallel VC system
(details in Section 3.1, [18]) which is already difficult to detect
even in the absence of encoding, becomes disproportionately
more difficult to detect after low bandwidth encoding.

3) Top-performing systems: A summary of the top-5 sys-
tems is presented to the top of Table V. All use some form of
data augmentation, though no common form can be identified.
Most are ensemble systems, and most operate upon short-term
spectral features or raw waveforms. Most use a ResNet classi-
fier or variant, with other types of convolutional networks also
being popular. Fusion strategies include weighted averaging,
using either uniformly or empirically set weights.

B. Physical Access (PA)

1) Full challenge results: A summary of results for the PA
task is shown in Fig. 3b. While almost half of the systems
outperform the best B01 baseline, the performance of all
systems is substantially worse than the ASV floor of 0.12.
This would suggest that the PA task is more challenging than
the LA task. The difficulty might be attributed to the difference
between simulated replay attacks (data used for training and
development) [18, Section 2.2.3] and replay attacks recorded
in real physical spaces (evaluation data), e.g., differences in
room acoustics and noise conditions. We also observe only
modest gaps between performance for progress and evaluation
subsets indicating that, while error rates remain high, system
performance is stable across different evaluation conditions
(rooms and devices, see Section II-B).

2) Influential data factors: Fig. 4b shows min t-DCF results
pooled over the top-10 and baseline systems for a selection
of attacker and environment factors. The rooms used for
replay acquisition and voice presentation are not included in
the analysis because we observe no substantial correlation
between the room size and the min t-DCF values. However, we
observe expected impacts related to the quality of the attacker
microphone. For example, higher-quality attacker microphones
m1 and m2 lead to higher min t-DCFs than the lower-quality
microphone m3. This is to be expected because spoofed data
acquired using a higher-quality microphone Qa,m introduces
less distortion and are hence more challenging to detect.

The min t-DCF is also higher for a better quality attacker
replay device Qa,s = s3 or s4. Similarly, shorter attacker-to-
talker distances Da also lead to worse performance. At the
closest position Da = c4, min t-DCF values are the highest.

The attacker-to-ASV distance D
′
s is observed to be inversely

correlated with the min t-DCT. However, as expected, if the
talker is closer to the ASV microphone (i.e., moving from
Ds = D1 to D4), then the min t-DCF decreases.

3) Top-performing systems: A summary of the top-5 PA
systems is presented in the middle of Table V. Similar to
the LA task, most use data augmentation, once again with
various different approaches, and all are ensemble systems.
Different to observations for the LA task, there is little
variation among front-end features used for the PA task, while
there is diversity among the adopted classifiers. The top-1
system uses both frame-level and temporal-level features and
the parallel combination of variational autoencoder (VAE) and
Gaussian mixture model (GMM) classifiers. Like for the LA
task, all the top-5 systems use score averaging.

C. Deepfake (DF)
1) Full challenge results: A summary of results for the DF

task is shown in Fig. 3c. The main observation is the striking
difference in results for progress and evaluation subsets. While
23 (out of 33) systems have EERs of less than 10% for the
progress subset, and while the best performing system even has
an EER of less than 1%, all have EERs exceeding 15% for
the evaluation set. This indicates the high level of difficulty
indicated by the underlined conditions and their associated
compression algorithms in Table IV. Despite high EERs,
however, 18 systems outperformed the best B04 baseline
system.

2) Influential data factors: The left-most pane of Fig. 4c
shows the distribution in EER performance for each com-
pression method, with the distribution for pooled conditions
being shown in the right-most pane. For mp3 compression, a
higher VBR (C3) gives a lower median EER than for a lower
VBR (C2). For m4a and ogg codecs, there is no similar effect
between the low and high bit rates for either codec. EERs for
the ogg codec are lower than those for both mp3 and m4a
codecs, no matter what the VBR. Interestingly, EERs for the
two double compression methods are only modestly higher
than those for the single ogg compression, but below those for
either mp3 or m4a compression, indicating some resilience to
transcoding.

The middle pane of Fig. 4c shows the distribution in EER
for each source database. EERs are substantially higher for
VCC datasets than for the ASVspoof 2019 LA database. This
is likely due to the use of the latter in the progress set only and
is hence a consequential over-fitting, or lack of generalisation
to mis-matched VCC source data. Further analysis of this
observation is provided in Section IV-C.

Finally, Fig. 6 shows a breakdown in the EER for pooled
VCC 2018 and 2020 source data according to the type of
vocoder and codec. The results indicate that, for any given
codec, both types of neural vocoders yield higher EERs than
more traditional vocoders or waveform concatenation.

3) Top-performing systems: A summary of the top-5 DF
submissions is illustrated to the bottom of Table V. With
one exception, all submissions are ensemble systems. All
use data augmentation. While there are different approaches,
all use some form of media codec augmentation.13 Acoustic

13We use media codec to refer to generic codecs implemented in various
software packages. The challenge participants used mp3, m4a, ogg, opus,
mp4, aac, alac, vorbis, wma and sbc, along with other open-source toolkits
for media codec augmentation.
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Fig. 7. Comparison of top-10 CMs performance on evaluation subset (with non-speech) and hidden subset (w/o non-speech). For LA and DF, min t-DCFs
over VC- and TTS-based spoofing attacks are plotted separately. Markers are top-1 system (⋄), B01 (o), B02 (◁), B03 (⭐), and B04 (×).

features are diverse. A range of different classifiers are also
used, including mostly convolutional neural networks, but with
simpler MLP and GMM classifiers also featuring among the
top-5 submissions. Once again, all top-5 systems use score
averaging for fusion.

IV. HIDDEN SUBSETS AND ADDITIONAL ANALYSES

We now turn attention to results for the hidden subsets first
mentioned in Section II-B before presenting other analyses.
The purpose of hidden subsets is to assess the dependence of
CM performance upon certain data characteristics that were
withheld from challenge participants. They were unaware of
their inclusion and treated hidden subsets in the same manner
as evaluation data. Hidden subsets were not used in deriving
challenge results or rankings.

A. The role of non-speech

The databases for all three tasks contain a hidden subset
of utterances from which non-speech intervals are automati-
cally removed. The motivation is to assess performance when
spoofed speech detectors are constrained to operate only upon
speech segments; recent reports (e.g. [35]–[37]) suggest that
some CMs might rely upon information within non-speech
segments. While non-speech information might serve as le-
gitimate cues for spoofing detection, adversaries could easily
remove non-speech segments to gain an advantage. Alterna-
tively, cues within non-speech intervals might correspond to
unintended database design artifacts. It is hence of interest to
determine any differences in CM performance when they are
restricted to using information from speech segments only.

Bona fide and spoofed utterances are selected at random
from evaluation subsets giving the number of utterances shown
in Table I for LA, PA and DF tasks. An energy-based voice
activity detector (VAD) with the recommended threshold set-
tings [38, Section 5.1] is then used to remove segments labeled
as non-speech in addition to any speech segments of less than
50 ms duration. For the LA task, the hidden subset contains

C1-C7 utterances that are all treated by a VAD to remove
non-speech segments. So as to focus upon speech/non-speech
effects only, rather than variations in room characteristics and
replay configurations etc., the PA hidden subset contains data
from the D4 talker-to-ASV distance only (90◦, 0.5 m from
the ASV microphone as per Table IV). The hidden subset for
the DF task comprises utterances for all conditions C1-9, but
ASVspoof 2019 LA source data only.

Contrasting min t-DCF/EER results for evaluation data
(w/non-speech) and hidden subset (w/o non-speech segments)
are plotted in Fig. 7 for the LA task (a), the PA task (b) and
DF task (c). Boxplots for the top-10 LA systems are shown
separately for VC-based (left), TTS-based (middle) and pooled
(right) attacks.14 While the contrast is greatest for TTS attacks,
min t-DCFs calculated from utterances containing non-speech
segments (w/non-speech) are substantially lower than those
calculated from utterances without non-speech segments (w/o).
LA source data contain long non-speech segments at the
start and/or end of each utterance. While VC spoofing attack
algorithms reproduce these characteristics, TTS algorithms
produce utterances without such long non-speech segments.
Their length may hence serve as a cue to distinguish between
bona fide and spoofed utterances, accounting for why their
absence leads to degraded performance. The reliance upon
such cues may not lead to reliable detection in the wild.
Observations for the DF task shown in Fig. 7c are much
the same as for the LA task. Without the use of non-speech
segments, performance is substantially degraded, more so for
TTS attacks than VC attacks.

Boxplots for the top-10 PA systems are shown in Fig. 7b
for replay attacks recorded in real physical spaces, with
(evaluation subset) and without (hidden subset) non-speech
segments (two left-most boxes). The length of non-speech
intervals is not expected to have an impact since recording and
replaying do not alter utterance duration. Nonetheless, without

14Following the descriptions in [18], A17, A18, and A19 are grouped as
VC-based attacks. All others are grouped as TTS-based attacks.
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TABLE VI
EERS (%) FOR THE DF TRACK WITH ALL COMPRESSORS POOLED, BUT

BONAFIDE/SPOOF TRIALS SELECTED FROM DIFFERENT COMBINATIONS OF
SOURCE DATASETS.

Bonafide Spoof
trials trials T23 T20 T08 T06 T22 B04
All All 15.63 16.04 18.29 19.01 19.22 22.38

VCC18 All 23.39 27.64 31.03 30.87 29.81 34.44
VCC20 All 16.98 19.77 21.55 22.88 25.00 31.48
ASV19 ASV19 0.33 2.41 3.75 8.82 2.76 6.21
ASV19 VCC18+20 0.60 1.98 2.78 5.83 1.93 3.09
ASV19 All 0.55 2.05 2.92 6.32 2.11 3.56

non-speech segments, performance is notably worse. Any
asymmetry in the length of non-speech segments in bona fide
and spoofed speech should not serve as a detection cue. The
contents of non-speech segments, however, is a different issue.
Non-speech segments, while being information that is easily
removed by the adversary, are an innate characteristics of
recorded speech which might still provide legitimate spoofing
detection cues.

B. Real v/s simulated replay attack

Another hidden subset in the PA database contains simu-
lated replayed data.15 The motivation is to determine whether
reliable estimates of performance can also be derived using
evaluation data that is also simulated instead of being recorded
in real physical spaces. Simulated bonafide and spoofed data
are created using the same tool as that used in generating the
ASVspoof 2019 PA database [18, Section 4.3]. Room impulse
responses and background noises are extracted from swept-
sine signals recorded in the same rooms and with the same
set of microphones. For the same reasons outlined above, data
is simulated for the D4 talker-to-ASV and the d4 attacker-to-
ASV distance only.

Results shown in the right-most pane of Fig. 7b depict the
distribution in min t-DCFs for the top-10 PA systems for the
hidden, simulated subset which contains non-speech intervals.
The median min t-DCF for the simulated subset is much higher
than that for the evaluation subset. Further analysis shows
that four out of the top-10 PA systems’ min t-DCFs for the
simulated subset are higher than 0.99. The gap between the
results on the hidden and evaluation sets suggests that the
simulated subset looses the artefacts in the real recording and
replaying environments that are helpful to discriminate bona
fide and spoofed data. Analysis in the supplementary material
(Sec. III.C) found that the hidden track data involving various
simulated rooms and devices is equally challenging to most of
the CMs. This is different from the observations from Fig. 4b
on the real recorded and replayed data. The results hence
caution against the use of simulated evaluation data to estimate
CM performance in real physical environments if it cannot
faithfully reflect the room acoustics and frequency response
characteristics of the devices.

15In the official evaluation package, the simulated replayed data and the
data without non-speech are referred to as hidden track 1 and 2, respectively.

TABLE VII
SIMILAR TO TABLE VI, BUT USING THE PROPORTION OF DETECTED

NONSPEECH FRAMES BY VAD AS SPOOFING DETECTION SCORE INSTEAD
OF OUTPUT VIA CM SYSTEM. ONLY TRIALS OF C1 WERE CONSIDERED.

Positive set Negative set EER
All bona All spoof 37.59
VCC18 bona All spoof 44.17
VCC20 bona All spoof 51.14
ASV19 bona ASV19 spoof 24.98
ASV19 bona VCC18+20 spoof 9.19
ASV19 bona All spoof 10.36
ASV19 bona VCC18 bona 11.90
ASV19 bona VCC20 bona 14.00
VCC18 bona VCC20 bona 43.14

C. Performance gap for DF progress and evaluation subsets

Fig. 3 shows a substantial gap in performance for progress
and evaluation subsets for the DF task. As evident from results
shown in Fig. 4c, the gap relates in part to the inclusion
of two previously unexposed source corpora. To explore the
cause for this gap, we examined the class- and data source-
conditional CM score distributions for the top-5 submissions.
Results are shown in Fig. 8 along with distributions for the
best B04 baseline. While similar findings were observed for
compressed data conditions, the plots shown correspond to
non-compressed data (condition C1 in Table IV).

While, for any given system, score distributions for the
spoofed class (bottom row) are reasonably well aligned, there
are significant differences in the distributions for the bona
fide class (top row). Scores for the two VCC source corpora
are consistently lower than those for the ASVspoof 2019 LA
corpora. This shift leads to greater overlap in the distributions
for bona fide and spoofed classes. The use of only ASVspoof
2019 LA data for training leads to over-fitting and models
which generalise poorly to VCC data in the evaluation subset,
greater confusion between bona fide and spoofed trials, and
hence degraded detection performance.

As a further numerical quantification, Table VI displays
the EERs with either bonafide or spoof trials constrained to
specific subsets. We find that whenever either one of the two
VCC subsets is included on bonafide side (the first three rows),
the EERs are very high (∼ 15% . . . 34%). In stark contrast,
however, when both VCC’18 and VCC’20 trials are excluded
from bonafide side (the last three rows), the EERs of the six
CMs are substantially lower (< 1% for T23) – regardless of
whether the spoof trials include VCC’18 or VCC’20 data.

These findings, and given the performance mismatch be-
tween evaluation and hidden track which excludes silences,
motivated a deeper exploration of the possible role of silence
in the VCC bonafide score distribution shift. To this end,
for each audio segment from C1 (pooled from the progress
and evaluation subsets), the proportion of detected nonspeech,
defined as the number of detected nonspeech frames detected
by VAD divided by the total number of frames, was calculated
and used as spoofing detection score. EER computed from
these scores reflects the degree of similarity of the corre-
sponding positive and negative trial sets in terms of nonspeech
proportion. These EERs, for different combination of positive
and negative trials, are shown in Table VII. The trends are
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Fig. 8. Score distributions of bonafide (top) and spoof (bottom) for top-5 DF subsystem and baseline B04, broken down according to three data sources used.

similar to those shown in Table VI; EERs are substantially
lower when ASVspoof 2019 bonafide data is used as positive
set, particularly when the negative set contains VCC 2018
and VCC 2020 spoof data. The last three rows show an
alternative experiment were both positive and negative sets
consists of bona fide data only. EER values between 11%
and 14% when comparing ASVspoof 2019 and VCC indicate
that the nonspeech proportion distribution for ASVspoof and
VCC bonafide data are reasonably well separated. However,
this does not occur when comparing VCC18 against VCC20
bonafide sets (last row). It would not be a surprise that
submitted CMs learned the bonafide class based (at least,
partially) on the implicit different silence distribution of the
ASVspoof bonafide data (the only data source included in the
training set). This in turn makes them fail when an unseen
bonafide dataset does not follow the same silence distribution.

V. POST-CHALLENGE STUDIES AND RELATED WORK

Each edition of ASVspoof addresses new challenges but
also leads to the identification of new challenges and concerns
which have stimulated a number of post-challenge studies. The
2021 edition is no exception. A selection of such studies is
presented below, with a summary of related results shown in
Table VIII. 16 They pertain to LA and DF tasks and (1) the shift
from the use of acoustic features toward end-to-end (E2E)
architectures with raw waveform inputs and (2) the popularity
of data augmentation (DA).

Originating from [39] and based on RawNet [40] and graph
attention networks, AASIST [41] is representative of progress
in the use of E2E architectures. The RawNet in AASIST
has further been replaced by various self-supervised learning
(SSL) front-ends, including wav2vec [42]–[44]. While the use
of SSL brings substantial improvements in performance, the
use of models pre-trained on external data is not compliant
with the ASVspoof training protocol. A study of different
SSL frontends and related techniques can be found in [43].
While conventional acoustic features remain popular [45], E2E
architectures and SSL-based frontends have led to substantial
improvements in performance for the LA task, even for single

16The selection is based on searches of “ASVspoof 2021” and “Deepfake”
in the ISCA archive and IEEExplore.

systems (not ensembles), with best t-DCF being 0.2066 (best
EER 0.82%) for the ASVspoof 2021 LA database [42]. Such
result comes from the use of SSL with data augmentation.
Post-challenge studies that employ ASVspoof 2021 PA data
and work on replay attacks are rarely seen.

An investigation of DA for the E2E solution which operates
directly upon raw waveform inputs, named RawBoost, was
reported in [46]. The approach is based upon the combina-
tion of linear and non-linear filtering in addition to signal-
dependent and signal-independent additive noise. Investigation
on DA techniques applied on anti-spoofing can be found
in [44], [45], [47]. In these studies a number of approaches
to DA have been used. Compression, codec and channel
effect, bandwidth difference augmentation, as well as time-
frequency-masking [48]. All these studies indicated that the
robustness of spoofed audio detection is substantially im-
proved when DA techniques are employed. We accordingly
provide additional studies with controlled experiments on
various types of features, backends, training loss functions,
and DA methods using one of the baseline systems for LA and
DF in the supplementary material. The experiments follow the
ones described in [49].

Finally, other anti-spoofing / deepfake detection challenges
and databases have emerged since 2021. The first audio
deep synthesis detection (ADD) challenge [50] was launched
to evaluate the threat of low-quality and partially-spoofed
audio [51] in order to address real-time and more challenging
scenarios. The summary of the results indicate the fragility
of synthesis detection model against lower quality and un-
seen fake audio, especially when partially-spoofed audio is
presented. The spoofing-aware speaker verification (SASV)
challenge [52], which exploits the same ASVspoof 2019
LA source database as the ASVspoof 2021 LA evaluation,
provides protocols for the design of not just CM solutions, as
in the case of ASVspoof, but also ASV systems and alternative
architectures for their combination. Three different metrics
support the assessment of spoofing robustness, automatic
speaker verification and combined, spoofing aware speaker
verification. A summary of SASV results [52] anticipates the
significance of improving the reliability of both ASV and CM
sub-systems, including the joint optimization schemes.
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TABLE VIII
SELECTED POST-CHALLENGE RESULTS FROM PUBLISHED PAPERS. TOP-1

SUBMISSION IN MAIN CHALLENGE AND TWO BEST BASELINES ARE
ADDED FOR REFERENCE.

min t-DCF EER (%) EER (%)

LA

[42] 0.2066 0.82

DF

[42] 2.85
T23 0.2176 1.32 [44] 4.98
[44] 0.2780 3.54 [43] 6.18
[45] 0.2882 4.66 [45] 14.27
B03 0.3445 9.26 T23 15.64
[43] 0.3590 7.18 B04 22.38
B04 0.4257 9.50 B03 23.48

VI. LIMITATIONS AND FUTURE DIRECTIONS

While we are hopeful that ASVspoof has made substantial
contributions to open data and reproducible research in anti-
spoofing, like any evaluation, it is not without limitations.
Some of the most relevant issues that are fundamental to the
future ASVspoof road-map are discussed in the following.

Realistic audio data – ASVspoof 2021 made important
steps towards evaluation with data that is more representative
of realistic conditions. Other steps remain to be taken, espe-
cially the consideration of background noise for the LA task,
the collection of recordings from human talkers as opposed to
loudspeakers for the PA task, and the use of real social media
for the DF task.

Role of non-speech – The results for hidden data sets
confirm that non-speech intervals can play a role in the
detection of spoofed speech, particularly for LA and DF tasks.
While non-speech intervals are an innate characteristic of
natural speech, and while their contents can help to distinguish
between bona fide and spoofed speech, their length is a
database characteristic that should not serve as a cue for
detection. It is of interest to investigate the generation or
conversion of non-speech regions in the case of TTS and
VC attacks as well as the difference between cues used for
detection in non-speech and speech intervals.

Training data policy – The use of a strict training protocol
ensures the meaningful comparability of results generated by
different teams and is fundamental to most benchmarking eval-
uations. Even so, post-evaluation results show the benefits of
a relaxed training policy which allows the use of larger, more
complex models trained using external data, e.g. via semi-
supervised learning. To allow for their further exploration in a
benchmarking evaluation setting, future editions of ASVspoof
could hence allow a dual training policy, one fixed, the other
relaxed.

Diversity of attacks – The spoofing attacks in the 2021 LA
and DF databases were generated with TTS and VC algorithms
that were at the state of the art prior to 2020. TTS and VC
technology has advanced rapidly in recent years, especially in
terms of requiring far less target speaker training data [53]–
[55]. The next ASVspoof edition calls for a renewed spoofed
data collection and generation effort and the exploration of
vulnerabilities to the latest attack techniques.

Diversity in audio data – ASVspoof data are exclusively
English-language, read-speech sourced from the VCTK cor-
pus [10]. The inclusion of two unexposed datasets in the DF
database exposed a lack of CM generalization. The cause is

due mostly to differences in the characteristics of bona fide
speech and score distributions. This may suggest over-fitting
to speakers in the training datasets. In the future, ASVspoof
should increase diversity not only in spoofing attacks, but
also in bona fide source data, including collection in different
recording environments, languages and speaking styles, among
other factors.

Extensible evaluation – The two ASV-related tasks, LA
and PA, used a fixed ASV system, with participants de-
veloping only the spoofing CM. The literature shows an
increasing interest in the joint optimisation of both CMs and
ASV systems and alternative combination architectures. The
spoofing-aware speaker verification (SASV) challenge [52]
was launched to support research in this direction. SASV
challenge results [52] have shown the need for larger labeled
datasets for the learning of speaker embedding extractors and
end-to-end solutions. ASVspoof and SASV will likely merge
for a common evaluation in the future. This will require
not only a huge data collection effort but further thought to
evaluation metrics; ASVspoof uses an ASV-constrained t-DCF,
whereas the SASV challenge uses a set of three different EER-
based metrics.

Integration of multiple scenarios – There is no reason
why replay attacks cannot be made in LA scenarios (variable
microphone, telephony applications), nor why TTS and VC
attacks cannot be replayed in PA scenarios (fixed microphone,
access control applications). Their exploration will increase
the complexity of both protocol design and data collection,
but remains an important future direction for ASVspoof.

Partially spoofed audio – ASVspoof has considered only
the scenario in which utterances are either bona fide or spoofed
in full. Partial spoofs, where only a potentially short interval
or perhaps a single word is substituted or manipulated, are
known to pose a greater detection challenge [51]. The partially
spoofed scenario is perhaps most relevant to the DF task in
which there is no ASV system. This is because partially-
spoofed utterances of the shortest duration may be unlikely to
provoke ASV false alarms, but can still fundamentally change
the meaning of a given phrase17. Nonetheless, utterances in
which a greater proportion of the utterance is bona fide still
stand to fool the ASV system used in LA and PA tasks while
also being more difficult to detect with a CM. Depending of
the application, given a partially spoofed utterance, it might
then be of interest to estimate bona fide and spoofed labels at
the segment level, i.e. to explain the classifier decision.

Adversarial attacks – Many examples in the literature
show the threat to reliable ASV stemming from adversarial
attacks [56], [57]. These target the ASV system, but rarely
the CM. With estimates of security being only as strong as the
adversary model, future editions of ASVspoof should consider
adversarial attacks that target both the ASV and the CM.

DF metrics – Assessment in the case of LA and PA
tasks reflects the tandem evaluation of separate ASV and CM
subsystems. Because there is no ASV system in the case of the
DF task, assessment is applied to an independent CM system.

17An example might be the manipulation of a phrase within a video posted
to social media from ‘I won the election’ to ‘I lost the election’.
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In practice, however, there is a second sub-system, namely
a human listener. Since effective attacks must then fool both
a CM and a human listener, there is no reason why some
form of tandem assessment cannot also be applied for the
DF task. This might involve the combination of CM scores
with some form of perceptual score, e.g. quality or speaker
similarity. Some form of objective scores, e.g. derived using
MOSNet [58], might also be used as a proxy for subjective
scores.

VII. CONCLUSIONS

The ASVspoof 2021 challenge was designed to foster
progress in reliable automatic speaker verification, spoofing
and deepfake detection in more realistic and practical sce-
narios. The challenge attracted submissions from 54 teams
across the three tasks, each of whom submitted valid challenge
scores, and 34 teams submitted the required system descrip-
tion. This paper provides an overview of the challenge datasets
and an analysis of results. We also report an analysis of various
data-related issues, in addition to new results for hidden data
subsets. They reveal some challenge limitations, prompting
ideas for future challenge editions.

Results show that the transmission of speech data across
real telephony systems in a logical access task causes only
modest degradation to spoofing detection reliability and that
estimates of performance from transmission across a local
area network are as reliable as estimates from transmission
across more geographically distant endpoints. Impacts on
performance caused by compression effects in a deepfake task
are also modest, but results show a lack of generalisation to
different source data. Data augmentation is common to all
top-performing systems for both logical access and deepfake
tasks.

The physical access task appears to be the most challenging
of the three, likely due to the mismatch between training and
evaluation data. Results show the added difficulty when attacks
are recorded with higher quality microphones and replayed
with high-quality loudspeakers, both at a short distance from
the talker and microphone respectively, or when the automatic
speaker verification microphone is of lower quality.

Future editions of ASVspoof will continue the path towards
ever-more realistic conditions and will consider stronger adver-
saries, larger databases containing greater variation in acoustic
conditions and spoofing attacks, data collected from a larger
speaker population and an additional, relaxed training data
policy. Finally, ASVspoof and SASV challenges will merge
to allow greater flexibility in the form of jointly-optimised
CM and ASV sub-systems and alternative combination archi-
tectures.
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SUPPLEMENTARY MATERIAL

TABLE IX
DETAILS ON MICROPHONE AND REPLAY DEVICES USED IN PA DATA

RECORDING. NUMBERS ARE FROM OFFICIAL SPECIFICATIONS.

Replay device s2 s3 s4

Brand SONY NEUMANN GENELC
SRS-XB43 KH 80 DSP 8030 CP

Lower cut-off
freq. (–6 dB) in Hz 20 53 47
Upper cut-off
freq. (–6 dB) in Hz 20k 22k 25k
Passband free-field
FR (± 2dB) in Hz UNAVAL. 59 - 20k 54 - 20k

Microphone M1/m1 M2/m2 M3/m3

Brand Marantz M-Audio iPad Air
MPM-1000 Uber-mic MEMS mic.

FR in Hz 20 - 20k 30 - 20k UNAVAIL.
SNR in dB 77 110 UNAVAIL.
Sensitivity in dB 45 38 (± 2) UNAVAIL.

VIII. DEVICES USED IN PA DATA RECORDING

The replay and recording devices used to create PA data is
shown in Table. IX. All setups are cited from the specifications
available at the official websites.

IX. DESCRIPTION OF TOP-PERFORMING SYSTEMS

The top-5 systems for each scenario are ranked and selected
respectively based on minimum t-DCF. The architectures are
presented in terms of block diagrams which were drawn based
on the system descriptions and feedback from the challenge
participants.

For a unified presentation, we break down each system into
four cascaded processing blocks:

• Audio pre-processor includes the steps to partition data
and process input wave files. Most of the methods in this
step are applied only at training phase.

• Input processor contains the acoustic frontends used for
further processing. Learnable acoustic frontends are also
categorized to this part.

• Classifier covers the neural network as well as statistical
models for the countermeasure system. Online augmen-
tation methods and training strategies (if any) are also
covered here.

• Post-processor contains score-domain operations, includ-
ing score fusion and normalization.

In the following (starting from next page) we give short
descriptions to the architecture of the illustrated systems.
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Fig. 9. Illustration of top-5 systems for the LA scenario. The descending order is based on performance via minimum t-DCF values on evaluation set.
Numbers in brackets are the values. Dash lines indicate steps/modules which are only applied for training, while solid lines indicate ones applied for both
training and testing.

A. Logical Access (LA)

T23: Multiple sub-systems are trained based on the codec-
augmented and trimmed audio. Most of them are based on
various types of spectral features and two parallel classi-
fiers, LightCNN (LCNN) and ResNet. They are forwarded to
LSTMs and the scores are summed up with weights. Further,
another sub-system uses a SincNet frontend and an LSTM
backend. The output score of this subsystem is further fused
with the weighted averaged score above.

T35: The input audio is processed using pre-emphasis and a-
law companding algorithm. LFCC features are extracted from
the processed audio and fed into two ResNet-based classifiers.
The output scores from the two classifiers are averaged.

T19: The training data is augmented via RIR and MU-
SAN datasets, followed by trimming and additive noise. The
mel spectrograms are fed into a ResNet with squeeze-and-
excitation in its building blocks. The output scores are aver-
aged via pre-defined empirical weights.

T36 is a combination of multiple classifiers based on
RawNet and ECAPA-TDNN. The training data is augmented
via additive noise and 3-fold speed perturbation with param-
eters of 0.9, 1.0 and 1.1. Three types of feature extractors
are used — raw waveform, mel spectrogram and a learnable
LEAF frontend, whose outputs are fed into one RawNet and
two ECAPA-TDNNs. The output scores are combined using
equal weights.

T20 uses a ResNet classifier trained with log filterbanks.
The training data is augmented via RIR, MUSAN and me-

dia codecs such as mp3 and m4a. The log filterbanks are
augmented via zero-value masking at frequency domain (Fre-
qAugment). A fully-connected layer is added after the ResNet
and trained with large margin cosine loss (LMCL).
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Fig. 10. Illustration of top-5 systems for the PA scenario. The descending order is based on performance via minimum t-DCF values on evaluation set.
Numbers in brackets are the values. Dash lines indicate steps/modules which are only applied for training, while solid lines indicate ones applied for both
training and testing.

B. Physical Access (PA)
T07 is an one-class learning framework based on Gaussian

mixture models (GMM) and variation autoencoder (VAE).
The training data is augmented via room simulation 18 and
2-fold speed perturbation with parameters of 0.9 and 1.1. The
acoustic feature used is log spectrogram, which is fed into a
neural vocoder to create filtered spectrograms. Applied candi-
dates for the vocoder are WORLD, HifiGAN, and MelGAN.
The original and processed spectrograms, which are time-
frequency representations, are averaged via the temporal axis.
One GMM and one VAE are trained via the temporal-averaged
spectrograms and another GMM is trained via the original log
spectrogram and the filtered spectrogram. The output scores
are combined via equally weighting.

T16 uses a combination of SEnet and GMM trained with
various short-term spectral features. The data is augmented via
in-house replay data. The scores are fused using empirically
weighted averaging.

T23: A parallel combination of multiple sub-systems trained
on trimmed speech segments, augmented via RIR, MUSAN
and other additive noises. Mel spectrogram with various num-
bers of frequency bins and LEAF frontend are the feature ex-
tractors. Classifiers are implemented via ResNet, whose output
are forwarded to scors via attentive statistical pooling (ASP).
Final score is obtained via empirically weight averaging.

T01: The pre-emphasized audio is input to produce three
different types of acoustic features: LFCCs, magnitude spec-

18via pyroomacoustics: https://github.com/LCAV/pyroomacoustics

trogram (MagSpec), and MFCCs. Each of them is fed into a
LightCNN classifier and the output score is obtained by fusing
the output of the three classifiers using equal weights.

T04: A TDNN network with statistical pooling. The pre-
emphasized audio is used to produce another three types of
features: MFCCs, CQCCs and CQT spectrogram.

https://github.com/LCAV/pyroomacoustics
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C. DeepFake (DF)

T23 is a parallel hybrid of three classifiers. Two acoustic
frontends process the trimmed and codec-augmented audio:
Mel spectrogram extractor and a convolutive frontend built
via sinc function. The former is fed into a ResNet and a
LightCNN and the latter is fed into a RawNet. The outputs
of the three nets is feed into separate bi-directional LSTMs to
produce scores, which are finally fused via empirically weight
averaging.

T20: The feature extractor, classifier and scoring scheme is
the same as one used by the same team in the LA scenario.
The training data is augmented via media codecs such as mp3
and m4a, and other additive noises.

T08 fuses multiple LightCNN classifiers using LFCCs
and CQT spectrograms. The input data is augmented using
multiple media and transmission codecs19. LFCCs are used to
train one LightCNN and the remaining classifiers are trained
on the other feature. The scores are processed via min-max
normalization, before being averaged.

T06 is a combination of a TDNN classifier trained on
LFCCs, four SEnet modules trained on LFCCs, two GMMs
trained on product spectral cepstral coefficients (PSCCs), and
three TDNNs trained separately on the two mentioned features
and log linear filterbank energies (LLFBs).

T22 is a convolutional network based on CondenseV2Net,
trained on log power spectrum derived from long-term vari-

19G722, alaw, G723, G726, gsm, opus, SPEEX, mp3, m4a, ogg, mp2

able Q transform (L-VQT). The training data is augmented
via mp3, m4a, wma and trimmed to 4-second chunks.
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Fig. 12. Comparison of CMs EERs on evaluation set and hidden tracks. Blue dots correspond to top 1-10 submissions. Red dots are other submissions. Best
viewed in color.

TABLE X
EXPERIMENT ON NON-SPEECH REGIONS USING OFFICIAL BASELINES.

B01 B02 B03 B04
EER (%) min t-DCF EER (%) min t-DCF EER (%) min t-DCF EER (%) min t-DCF

LA

w/ non-speech (eval. set) 15.62 0.497 19.30 0.576 9.26 0.345 9.50 0.426
w/o non-speech between words 14.84 0.567 19.17 0.642 8.82 0.460 7.80 0.471
w/o non-speech at two ends 34.48 0.858 33.68 0.849 34.02 0.926 35.00 0.908
w/o any non-speech (hidden track) 34.39 0.862 33.57 0.842 35.10 0.929 37.97 0.961

PA

with non-speech (eval. subset) 30.02 0.823 32.16 0.883 49.02 1.000 43.95 0.962
w/o non-speech between words 29.77 0.839 32.71 0.906 48.84 1.000 43.23 0.959
w/o non-speech at two ends 31.22 0.862 37.13 0.991 50.09 1.000 40.08 0.966
w/o any non-speech (hidden track) 36.65 0.959 39.09 0.997 51.65 1.000 44.26 0.998

DF

with non-speech (eval. subset) 20.62 - 24.79 - 12.22 - 6.22 -
w/o non-speech between words 19.18 - 23.58 - 11.16 - 4.85 -
w/o non-speech at two ends 30.71 - 33.33 - 34.38 - 32.32 -
w/o any non-speech (hidden track) 30.76 - 33.64 - 34.54 - 34.65 -

X. HIDDEN TRACK

A. Hidden track results from challenge participants

We recall that the main goal of hidden track data is to assess
the dependence of CM upon certain data characteristics such
as non-speech and real/simulated attacks for PA track. The
comparison of EERs for evaluation set and hidden track are
presented in Fig. 12. We can see that for LA and DF scenarios,
while for the main track the EERs for the top systems are all
lower than 10%, for the hidden track the number raised to
more than 20%. Such pattern can also be found for the PA
scenario, with narrower performance gap between the main
and hidden tracks.

The results indicate the effect of silence on the spoofing
detection. Meanwhile, the different gap between PA and the
other two scenarios may due to the artifact on the length of
silence injected in the spoofed and bonafide training data —
for LA and DF, where synthetic speeches are produced via
TTS systems, such difference is large. For PA where the attack
comes from replaying the audio, such difference becomes
smaller.

B. Additional analysis on role of non-speech

The hidden track data has all the non-speech intervals
removed, including those at the two ends of the utterances (i.e.,
leading and trailing non-speech) and others between speech
sounds. To further investigate which type of non-speech affects
the CM performance, we prepared two additional test sets

that cover the same set of utterances as the official hidden
track. One set only removes the non-speech at the two ends,
while the other only removes the non-speech intervals between
words. Post-processing based on an energy-driven VAD was
employed to accommodate low-energy segments. Specifically,
we classify frames of non-speech as speech if non-speech
intervals occurring between words is less than 50 milliseconds
in duration. As a result, this ensures that nasals, or voiceless
plosive consonants are incorporated as segments of speech.

The four official baselines are used to score the two data
sets, and the results are listed in Table X. For reference,
results on the official hidden track and evaluation data20

are added to the table. Results on the LA and DF tasks
show that the non-speech intervals at the beginning and the
end of the utterances provide more information than those
between words. Trimming the non-speech intervals at the two
ends made the utterances much more difficult to detect. For
example, B04 on the LA task obtained a min t-DCF value of
0.426 on the evaluation data with non-speech. Trimming the
non-speech between words led to a slightly higher min t-DCF
0.471, but trimming those at the two ends led to a much higher
value of 0.908, which is similar to the min t-DCF of 0.961

20On the PA task, the official hidden track only contains data with a talker-
to-ASV distance equal (Ds) to D4 and an attacker-to-ASV distance (D′

s)
equal to d4. Hence, the data with non-speech is a subset of the evaluation set
with Ds =D4 or D

′
s =d4. Similarly, the data with non-speech on DF task

has the same data source as the hidden subset. In contrast, the evaluation data
with non-speech for LA is equal to the official evaluation set.
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TABLE XI
MIN T-DCFS OF TOP-5 CMS IN EVALUATION SUBSET (☆) AND SIMULATED HIDDEN TRACK (★)

.
Qa,m Da Qa,s D

′
s Qasv,m Ds

m1 m2 m3 s2 s3 s4 c2 c3 c4 d4 M1 M2 M3 D4 Pooled

T07 ☆★ real recorded 0.684 0.655 0.498 0.535 0.667 0.636 0.447 0.606 0.765 0.607 0.450 0.402 0.656 0.597 0.614
simulated 0.615 0.702 0.978 0.763 0.774 0.782 0.664 0.750 0.896 0.767 0.818 0.824 0.603 0.766 0.773

T16 ☆ real recorded 0.871 0.782 0.771 0.730 0.848 0.840 0.720 0.786 0.907 0.803 0.823 0.725 0.707 0.803 0.809
simulated 0.962 0.999 1.000 0.977 1.000 0.999 0.973 0.999 1.000 0.998 0.996 0.998 0.994 0.998 0.998

T23 ☆★ real recorded 0.718 0.750 0.569 0.562 0.673 0.786 0.645 0.675 0.716 0.672 0.637 0.434 0.686 0.668 0.680
simulated 0.780 0.776 0.778 0.720 0.804 0.810 0.803 0.759 0.773 0.771 0.939 0.634 0.647 0.774 0.779

T01 ☆ real recorded 0.850 0.778 0.802 0.729 0.795 0.895 0.794 0.804 0.831 0.805 0.841 0.683 0.807 0.806 0.811
simulated 0.963 0.998 1.000 0.989 0.999 0.992 0.970 0.998 1.000 0.996 0.986 0.998 0.994 0.996 0.996

T04 ☆★ real recorded 0.758 0.806 0.600 0.604 0.711 0.832 0.676 0.734 0.751 0.717 0.709 0.542 0.665 0.709 0.722
simulated 0.613 0.718 0.634 0.625 0.715 0.626 0.601 0.649 0.708 0.650 0.735 0.578 0.600 0.640 0.656

T27 ★ real recorded 0.721 0.728 0.576 0.650 0.699 0.679 0.645 0.658 0.717 0.668 0.690 0.538 0.727 0.664 0.676
simulated 0.833 0.719 0.688 0.825 0.775 0.653 0.704 0.713 0.817 0.744 0.761 0.641 0.800 0.743 0.752

T03 ★ real recorded 0.888 0.848 0.759 0.777 0.843 0.876 0.824 0.843 0.836 0.827 0.862 0.634 0.823 0.833 0.835
simulated 0.893 0.760 0.947 0.864 0.877 0.859 0.797 0.823 0.969 0.862 0.882 0.723 0.951 0.864 0.867

Note: for a fair comparison, the real recorded evaluation subset only covers data in D
′
s = d4 and Ds = D4.

when all non-speech regions were trimmed.
On the PA task, the results of B01 and B02 also showed

that the non-speech regions at the two ends degraded the EER
and min t-DCF, but the differences across the four data sets
are smaller compared to those on the LA and DF tasks.

C. Additional analysis on PA simulated hidden track

We found that most of the CMs performed worse on the
simulated hidden track than on the evaluation data (Sec. IV.B
of the paper). We computed the min t-DCFs under different
simulated rooms and devices and plotted the results in Fig. 13.
Compared with those on the evaluation data (Fig. 4b in the
paper), the median min t-DCF is more similar across different
simulated rooms, devices, and other factors.

The simulated data was created from impulse responses,
which were estimated from sweep signals recorded by various
devices in rooms used for the real data recording. The impulse
responses are expected to capture the room acoustics and
frequency response characteristics of the devices. However,
the estimation is not error-free, and the estimated impulse
responses may not accurately reflect different room acoustics

and frequency response characteristics of different devices.
This may be one reason for the higher min t-DCF medians
across different factors. Useful artefacts that discriminate real
recorded bona fide from real replayed spoofed data may have
been lost during the simulation process.

However, not all the CMs performed worse on the simulated
data. Table XI shows the min t-DCF of the top-5 CMs on the
evaluation set (which are marked with ☆) and the top-5 CMs
on the hidden track (★). It is interesting to note that the min
tDCF of T16 and T01 increased to around 1.0 for most of the
conditions on the simulated data, even though they are among
the top-5 on the real recorded evaluation data. In contrast, T07
and T16 saw less degradation, and T04 even performed better.
One notable difference is that T07, T16, and T04 used room-
impulse-based data augmentation, while T16 and T10 did not
(see Fig.10). This suggests that with certain training strategies,
the CMs can do well on both the real and simulated data.
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TABLE XII
RESULTS OF THE INVESTIGATION ON DIFFERENT FRONTENDS, BACKEND CLASSIFIERS AND TRAINING LOSSES. THE EVALUATION METRICS ARE EER

AND MINIMUM T-DCF.

ID Front end Back end Training 2019 LA 2021 LA 2021 DF
criterion EER(%) t-DCF EER(%) t-DCF EER(%)

M01 LFCC
LCNN-LSTM GAP

AM-softmax

3.43 0.079 22.68 0.765 27.13
M02 Spec. 5.96 0.134 12.08 0.418 18.05
M03 LFB 6.23 0.199 29.95 0.871 32.14
M04

LFCC

LCNN-LSTM SAP 3.93 0.075 23.13 0.698 25.21
M05 LCNN-LSTM FF 3.04 0.068 22.73 0.758 28.29
M06

LCNN-LSTM GAP
OC-softmax 2.96 0.076 21.72 0.613 24.95

M07 P2SGrad 2.62 0.067 19.77 0.628 34.40
M08 Vanilla Softmax 3.19 0.067 22.52 0.766 26.74

TABLE XIII
RESULTS OF APPLYING DATA AUGMENTATION ONTO THE TRAINING DATA. THE MODEL EVALUATED FOR THIS SET OF EXPERIMENTS IS M02 IN TABLE

XII.

2019 LA 2021 LA 2021 DF
Augmentation EER(%) t-DCF EER(%) t-DCF EER(%)

(No augmentation) 5.96 0.134 12.08 0.418 18.05
NOISE 5.30 0.156 11.81 0.402 19.79
MP3 4.54 0.129 11.48 0.394 19.69

REVERB 5.30 0.141 12.43 0.415 18.87

XI. ANALYSIS ON PRACTICALITY OF COMMON
TECHNIQUES

We here provide a practical, controlled analysis using
baseline-level systems. We investigate the effect of three
factors on the spoofing detection performance — feature
extractors, backend classifiers, and loss functions. The feature
extractors acquired here are linear filterbanks (LFB), linear
frequency cepstral coefficients (LFCCs), and spectrogram.
Those features are widely acquired for the submitted systems,
according to the system descriptions and feedback metadata.
The backend classifier is based on light convolutional neu-
ral networks (LCNN), but with fixed-size input trim-and-
pad strategy, global average pooling (GAP), or self-attentive
pooling (SAP) layer. The training loss functions varies among
cross-entropy over additive margin (AM) softmax, one-class
(OC) softmax, vanilla softmax, and mean square error with
Probability-to-Similarity Gradient (P2SGrad). We follow the
training scheme described in the manuscript for LA and DF
scenarios and evaluate the trained systems on 2019 LA, 2021
LA and 2021 DF datasets.

Results are presented in Table XII with M01 as the baseline.
We further conduct investigation on the effect of three data
augmentation methods is conducted based on the detailed
information of data augmentation techniques from the partici-
pants, using the best-performed on 2021 LA and DF reported
in Table XII (M02). We selected some most commonly-used
ones and analyze their impact on the performance, namely
room impulse response, MUSAN noise, and mp3 compression.
We make the following observations:

• Comparing M01 — M03, switching the frontend features
from LFCC to spectrogram degrades the performance on
2019 LA. But M02 returns the best performance on the
two 2021 datasets among all systems.

• Concerning M06 — M08, best performance on 2019 LA
on both metrics is obtained by switching the training

loss from AM-softmax to P2SGrad (M07), but the same
system returned worse performance on 2021 DF.

• Regarding data augmentation methods whose perfor-
mance are presented in Table XIII, all applied return
better performance on 2019 LA as expected in terms
of EER, and 2021 LA in terms of minimum t-DCF.
However, on 2021 DF, best performance is obtained
without any augmentation applied.

Based on these observations, it appears that more detailed
feature representations (e.g., raw spectrograms) have an edge
over filterbank-integrated spectral representations (e.g., LFCCs
and LFBs), especially in more challenging data conditions.
The choice of the loss function is critical as well, even
if the findings are inconsistent across datasets. Regarding
data augmentation, the challenge participants applied many
data augmentation techniques. Despite our initially hopeful
expectations, we only observe modest improvements in our
post-hoc analysis. The likely reason for the differences lies in
the implementation details of the data augmentations used by
the participants. For future editions of ASVspoof, it might be
recommended for the participants to share the details of their
data augmentation pipeline for reproducibility.

XII. CHALLENGE OVERALL RESULTS

We present full numerical results on progress and evaluation
sets in Table XIV, XV and XVI, for LA, PA and DF scenarios
respectively. Same as last section, the team IDs are kept
consistent with ones used in the main paper. The IDs starting
with ‘B’ are IDs of the baseline systems provided by us, for
comparability concern. For LA and PA we present both t-
DCF and EER results, while for DF we report EERs. Detailed
description and analysis on the results are presented in our
workshop paper21.

21https://www.isca-speech.org/archive/asvspoof 2021/yamagishi21
asvspoof.html

https://www.isca-speech.org/archive/asvspoof_2021/yamagishi21_asvspoof.html
https://www.isca-speech.org/archive/asvspoof_2021/yamagishi21_asvspoof.html
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TABLE XIV
ASVSPOOF 2021 PROGRESS AND EVALUATION RESULTS FOR LA.

RESULTS SHOWN IN TERMS OF POOLED NORMALISED MINIMUM T-DCF
AND POOLED EER [%].

Progress set Evaluation set

# ID t-DCF EER t-DCF EER

1 T23 0.1815 0.89 0.2177 1.32
2 T35 0.2115 2.61 0.2480 2.77
3 T19 0.2174 2.69 0.2495 3.13
4 0.2119 2.51 0.2500 2.81
5 T36 0.2373 3.69 0.2531 3.10
6 T20 0.2137 2.39 0.2608 3.21
7 T08 0.2376 3.23 0.2672 3.62
8 T16 0.2393 3.39 0.2689 3.63
9 0.2435 3.11 0.2725 3.61
10 T04 0.2371 4.54 0.2747 5.58
11 T06 0.2475 5.61 0.2853 5.66
12 0.2556 4.22 0.2880 5.01
13 T03 0.2461 3.65 0.2882 4.66
14 0.2556 5.90 0.2893 5.70
15 T31 0.2621 5.00 0.3094 5.46
16 T17 0.2989 7.10 0.3279 7.19
17 T07 0.3029 7.88 0.3310 8.23
18 T30 0.2998 7.58 0.3362 8.89
19 B03 0.3152 8.90 0.3445 9.26
20 T02 0.3219 7.71 0.3446 7.79
21 T14 0.3167 8.82 0.3451 8.98
22 T11 0.3015 6.80 0.3666 7.19
23 T34 0.3688 13.25 0.4059 13.45
24 B04 0.4152 9.49 0.4257 9.50
25 T15 0.2986 9.67 0.4890 14.68
26 B01 0.4948 15.80 0.4974 15.62
27 T25 0.2086 2.03 0.5148 13.75
28 T32 0.4256 10.93 0.5270 12.90
29 0.5887 19.04 0.5748 18.50
30 B02 0.5836 21.13 0.5758 19.30
31 0.2528 5.26 0.5775 14.28
32 T01 0.2772 6.32 0.6204 15.95
33 0.2792 7.87 0.6288 15.87
34 T24 0.3108 10.85 0.6320 15.98
35 0.3233 9.72 0.6371 16.27
36 T29 0.3316 11.87 0.6741 17.41
37 0.3678 12.54 0.6813 17.66
38 T12 0.6900 26.26 0.7228 26.41
39 0.4381 13.77 0.7233 19.19
40 0.6123 23.16 0.8521 26.14
41 0.9988 53.16 1.0000 53.81

TABLE XV
ASVSPOOF 2021 PROGRESS AND EVALUATION RESULTS FOR PA.

RESULTS SHOWN IN TERMS OF POOLED NORMALISED MINIMUM T-DCF
AND POOLED EER [%].

Progress set Evaluation set

# ID t-DCF EER t-DCF EER

1 T07 0.6736 23.60 0.6824 24.25
2 T16 0.6790 25.37 0.7122 27.59
3 T23 0.7019 24.22 0.7296 26.42
4 T01 0.6925 25.73 0.7446 28.36
5 T04 0.6676 24.80 0.7462 29.00
6 0.7207 27.23 0.7469 29.22
7 T33 0.7263 27.00 0.7648 29.55
8 T08 0.7177 25.95 0.7670 29.02
9 T37 0.7912 32.39 0.8216 35.07

10 T27 0.8102 31.62 0.8307 32.00
11 T26 0.7837 26.91 0.8362 29.61
12 T28 0.8498 30.94 0.8879 32.96
13 0.8934 35.16 0.9265 37.10
14 B01 0.9062 36.33 0.9434 38.07
15 T03 0.9084 36.37 0.9444 38.07
16 0.9193 35.78 0.9530 38.50
17 T09 0.9531 34.39 0.9666 34.77
18 B02 0.9747 39.79 0.9724 39.54
19 T11 0.9836 40.91 0.9939 42.55
20 0.9855 40.38 0.9945 42.98
21 B03 0.9827 42.16 0.9958 44.77
22 B04 0.9993 46.03 0.9997 48.60
23 T10 0.9996 45.10 1.0000 45.50

TABLE XVI
ASVSPOOF 2021 PROGRESS AND EVALUATION RESULTS FOR DF.

RESULTS SHOWN IN TERMS OF POOLED NORMALISED MINIMUM T-DCF
AND POOLED EER [%].

Progress set Evaluation set
# ID EER EER

1 T23 0.24 15.64
2 T20 1.79 16.05
3 T08 2.93 18.30
4 1.65 18.80
5 T06 8.29 19.01
6 T22 2.17 19.22
7 T03 2.32 19.24
8 T01 4.72 19.70
9 T36 0.78 20.23

10 T19 3.00 20.33
11 T31 6.88 20.33
12 2.25 20.63
13 2.00 20.82
14 T16 1.98 20.84
15 4.84 21.61
16 5.06 21.67
17 2.37 22.03
18 6.10 22.38
19 B04 6.10 22.38
20 T25 4.18 22.62
21 B03 11.61 23.48
22 0.10 23.57
23 5.36 23.88
24 T35 0.42 24.12
25 11.82 24.89
26 T30 4.66 25.21
27 B02 21.01 25.25
28 T26 16.40 25.41
29 B01 17.63 25.56
30 3.40 26.67
31 T21 17.20 28.96
32 9.07 29.25
33 29.63 29.75
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